100 research outputs found

    Dynamic Data Driven Applications System Concept for Information Fusion

    Get PDF
    AbstractWe present a framework of Information Fusion (IF) using the Dynamic Data Driven Applications Systems (DDDAS) concept. Existing literature at the intersection of these two topics supports environmental modeling (e.g., terrain understanding) for context enhanced applications. Taking advantage of sensor models, statistical methods, and situation- specific spatio-temporal fusion products derived from wide area sensor networks, DDDAS demonstrates robust multi-scale and multi-resolution geographical terrain computations. We highlight the complementary nature of these seemingly parallel approaches and propose a more integrated analytical framework in the context of a cooperative multimodal sensing application. In particular, we use a Wide-Area Motion Imagery (WAMI) application to draw parallels and contrasts between IF and DDDAS systems that warrants an integrated perspective. This elementary work is aimed at triggering a sequence of deeper insightful research towards exploiting sparsely sampled piecewise dense WAMI measurements – an application where the challenges of big-data with regards to mathematical fusion relationships and high-performance computations remain significant and will persist. Dynamic data-driven adaptive computations are required to effectively handle the challenges with exponentially increasing data volume for advanced information fusion systems solutions such as simultaneous target tracking and identification

    Peatland dynamics: A review of process-based models and approaches

    Get PDF
    Despite peatlands' important feedbacks on the climate and global biogeochemical cycles, predicting their dynamics involves many uncertainties and an overwhelming variety of available models. This paper reviews the most widely used process-based models for simulating peatlands' dynamics, i.e., the exchanges of energy and mass (water, carbon, and nitrogen). ‘Peatlands’ here refers to mires, fens, bogs, and peat swamps both intact and degraded. Using a systematic search (involving 4900 articles), 45 models were selected that appeared at least twice in the literature. The models were classified into four categories: terrestrial ecosystem models (biogeochemical and global dynamic vegetation models, n = 21), hydrological models (n = 14), land surface models (n = 7), and eco-hydrological models (n = 3), 18 of which featured “peatland-specific” modules. By analysing their corresponding publications (n = 231), we identified their proven applicability domains (hydrology and carbon cycles dominated) for different peatland types and climate zones (northern bogs and fens dominated). The studies range in scale from small plots to global, and from single events to millennia. Following a FOSS (Free Open-Source Software) and FAIR (Findable, Accessible, Interoperable, Reusable) assessment, the number of models was reduced to 12. Then, we conducted a technical review of the approaches and associated challenges, as well as the basic aspects of each model, e.g., spatiotemporal resolution, input/output data format and modularity. Our review streamlines the process of model selection and highlights: (i) standardization and coordination are required for both data exchange and model calibration/validation to facilitate intercomparison studies; and (ii) there are overlaps in the models' scopes and approaches, making it imperative to fully optimize the strengths of existing models rather than creating redundant ones. In this regard, we provide a futuristic outlook for a ‘peatland community modelling platform’ and suggest an international peatland modelling intercomparison project.Environmental Protection Agenc

    A Lagrangian model framework for the simulation of fluid flow and solute transport in soils

    Get PDF

    Infiltration from the pedon to global grid scales: an overview and outlook for land surface modelling

    Get PDF
    Infiltration in soils is a key process that partitions precipitation at the land surface in surface runoff and water that enters the soil profile. We reviewed the basic principles of water infiltration in soils and we analyzed approaches commonly used in Land Surface Models (LSMs) to quantify infiltration as well as its numerical implementation and sensitivity to model parameters. We reviewed methods to upscale infiltration from the point to the field, hill slope, and grid cell scale of LSMs. Despite the progress that has been made, upscaling of local scale infiltration processes to the grid scale used in LSMs is still far from being treated rigorously. We still lack a consistent theoretical framework to predict effective fluxes and parameters that control infiltration in LSMs. Our analysis shows, that there is a large variety in approaches used to estimate soil hydraulic properties. Novel, highly resolved soil information at higher resolutions than the grid scale of LSMs may help in better quantifying subgrid variability of key infiltration parameters. Currently, only a few land surface models consider the impact of soil structure on soil hydraulic properties. Finally, we identified several processes not yet considered in LSMs that are known to strongly influence infiltration. Especially, the impact of soil structure on infiltration requires further research. In order to tackle the above challenges and integrate current knowledge on soil processes affecting infiltration processes on land surface models, we advocate a stronger exchange and scientific interaction between the soil and the land surface modelling communities

    Hydrological Modelling and Climate Change Impact Assessment on Future Floods in the Norwegian Arctic Catchments

    Get PDF
    Climate change is expected to alter the hydrological cycle in the Arctic, which would result in the increase in intensity and frequency of hydrological extreme events such as flooding. Noticeably, the changes in flooding due to climate change would severely affect human life, infrastructures, the environment, ecosystem, and socio-economic development in the impacted areas. Hydrological models are state-of-the-art tools for assessing the impact of climate change on hydrological processes. However, performing hydrological simulation/projection in the Arctic is challenging because of the complex hydrological processes and data-sparse features in the region. In consideration of those issues, this PhD research aims: (1) to assess the performances of hydrological models in the Arctic, (2) to investigate the alternative weather inputs for running the hydrological models in the Arctic region with scattered monitoring data, (3) to evaluate the effects of the models’ structure and parameterization and the spatial resolution of weather inputs on the results of hydrological simulations, and (4) to project future hydrological events under climate change impacts using the current hydrological model, and analyse the reliability/uncertainty of the projection. To fulfil the research’s objectives, several methodologies were applied. Firstly, a comprehensive review was conducted to address the current capacities and challenges of twelve well-known hydrological models, including surface hydrological models and subsurface hydrological models/groundwater models/cryo-hydrogeological models. These models have previously been applied or have the potential for application in the Arctic. Next, the physically based, semi-distributed model, SWAT (soil and water assessment tool), was selected as a suitable model, among other potential models, to assess its performance for hydrological simulations and to verify the potential application of reanalysis weather data. Moreover, the SWAT was coupled with multiple ensemble global and regional climate models’ simulations to project the future hydrological impacts under climate change (in 2041-2070). The study areas were mainly focused in the Norwegian Arctic catchments

    Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site

    Full text link

    The changing influence of permafrost on peatlands hydrology

    Get PDF
    Hydrology and hydrological modelling in the far north is understudied, and many gaps exist in the current understanding and representation of northern thermal and hydrological systems. A combination of fieldwork and modelling was used to gain a better understanding of landscape evolution and thaw processes in the peatland-dominated discontinuous permafrost region of the Northwest Territories. Data collected at the Scotty Creek Research Station and modelling tools are developed and used to identify and quantify controls on isolated and connected talik formation in discontinuous permafrost peatland systems which include soil moisture, snow cover, surface temperature and subsurface lateral flow. The formation of a talik was shown to be a tipping point in permafrost degradation after which several positive feedback cycles led to more rapid permafrost loss. Given the widespread prevalence of taliks in this discontinuous permafrost peatlands environment, seasonal pressure and temperature gradients were analyzed in different talik configurations to determine the impacts of taliks on the landscape. It was found that the formation of taliks led to a balance between increased hydrologic storage due to isolated talik prevalence, and increased discharge from the basin due to connected talik features allowing previously inaccessible runoff features to be connected to the drainage network. Thermodynamically speaking, the interplay between subsurface temperature, thaw rates, subsidence, snow accumulation, canopy coverage and soil moisture were discussed supporting the idea that talik formation is a positive feedback for permafrost loss. It is also noted that the loss of permafrost causes subsidence and geophysical destabilization leading to ecosystem change and a change in greenhouse gas emission regimes. Existing models representing permafrost and other cold-regions processes are either computationally expensive physically-based models, or empirically based. This limits their predictive ability at the watershed scale or larger. Large-scale predictions of the impacts of changing climate and subsequent permafrost thaw are needed to improve our understanding of long-term evolution of semi-discontinuous permafrost landscapes. To extend predictions to this scale, a novel physically-based interface model of active layer and permafrost evolution is developed and validated against both field data and a benchmarked continuum numerical model. This simplified model is designed to be incorporated into a semi-distributed hydrological model that will be used to predict hydrologic impacts of changes in permafrost dynamics at the basin scale. This model was used to inform the current understanding of permafrost thaw mechanisms in this environment. In order to quantify the rate of permafrost loss, different parts of the landscape are classified based on the mechanisms for permafrost thaw including conduction and advection in both the vertical and lateral directions. These results help to explain the observed heterogeneity in thaw rates in the landscape. It was found that conduction is responsible for much of the thaw in the vertical direction, while advective processes do play a role in flow-through talik features. Lateral thaw is occurring more rapidly than vertical thaw, due both to conduction and advective heat transfer. Finally, thaw from below is documented both due to geothermal heat flux, and observed deep thermistor temperature profiles. The combined fieldwork and modelling efforts provide a better understanding of the rapidly changing discontinuous permafrost environment, help to predict hydrologic and landscape changes in Canada's north, and create tools which are transferable to other cold-regions environments

    Reactive transport modeling at hillslope scale with high performance computing methods

    Get PDF
    Reactive transport modeling is an important approach to understand water dynamics, mass transport and biogeochemical processes from the hillslope to the catchment scale. It has a wide range of applications in the fields of e.g. water resource management, contaminanted site remediation and geotechnical engineering. To simulate reactive transport processes at a hillslope or larger scales is a challenging task, which involves interactions of complex physical and biogeochemical processes, huge computational expenses as well as difficulties in numerical precision and stability. The primary goal of the work is to develop a practical, accurate and efficient tool to facilitate the simulation techniques for reactive transport problems towards hillslope or larger scales. The first part of the work deals with the simulation of water flow in saturated and unsaturated porous media. The capability and accuracy of different numerical approaches were analyzed and compared by using benchmark tests. The second part of the work introduces the coupling of the scientific software packages OpenGeoSys and IPhreeqc by using a character-string-based interface. The accuracy and computational efficiency of the coupled tool were discussed based on three benchmarks. It shows that OGS#IPhreeqc provides sufficient numerical accuracy to simulate reactive transport problems for both equilibrium and kinetic reactions in variably saturated porous media. The third part of the work describes the algorithm of a parallelization scheme using MPI (Message Passing Interface) grouping concept, which enables a flexible allocation of computational resources for calculating geochemical reaction and the physical processes such as groundwater flow and transport. The parallel performance of the approach was tested by three examples. It shows that the new approach has more advantages than the conventional ones for the calculation of geochemically-dominated problems, especially when only limited benefit can be obtained through parallelization for solving flow or solute transport. The comparison between the character-string-based and the file-based coupling shows, that the former approach produces less computational overhead in a distributed-memory system such as a computing cluster. The last part of the work shows the application of OGS#IPhreeqc for the simulation of the water dynamic and denitrification process in the groundwater aquifer of a study site in Northern Germany. It demonstrates that OGS#IPhreeqc is able to simulate heterogeneous reactive transport problems at a hillslope scale within an acceptable time span. The model results shows the importance of functional zones for natural attenuation process.Modellierung des reaktiven Stofftranports ist ein wichtiger Ansatz um die Wasserströmung, den Stofftransport und die biogeochemischen Prozesse von der Hang- bis zur Einzugsgebietsskala zu verstehen. Es gibt umfangreiche Anwendungsgebiete, z.B. in der Wasserwirtschaft, Umweltsanierung und Geotechnik. Die Simulation der reaktiven Stofftransportprozesse auf der Hangskala oder auf grĂ¶ĂŸeren MaßstĂ€be ist eine anspruchsvolle Aufgabe, da es sich um die Wechselwirkungen komplexer physikalischer und biogeochemischen Prozesse handelt, die riesigen Berechnungsaufwand sowie numerischen Schwierigkeiten bezogen auf die Genauigkeit und die StabilitĂ€t nach sich ziehen. Das Hauptziel dieser Arbeit besteht darin, ein praktisches, genaues und effizientes Werkzeug zu entwickeln, um die Simulationstechnik fĂŒr reaktiven Stofftransport auf der Hangskala und auf grĂ¶ĂŸeren Skalen zu verbessern. Der erste Teil der Arbeit behandelt die Simulation der Wasserströmung in gesĂ€ttigten und ungesĂ€ttigten porösen Medien. Das Anwendungspotential und die Genauigkeit verschiedener numerischer AnsĂ€tze wurden mittels einiger Benchmarks analysiert und miteinander verglichen. Der zweite Teil der Arbeit stellt die Kopplung der wissenschaftlichen Softwarepakete OpenGeoSys und IPhreeqc mit einer stringbasierten Schnittstelle dar. Die Genauigkeit und die Recheneffizienz des gekoppelten Tools OGS#IPhreeqc wurden basierend auf drei Benchmark-Tests diskutiert. Das Ergebnis zeigt, dass OGS#IPhreeqc die ausreichende numerische Genauigkeit fĂŒr die Simulation reaktiven Stofftransports liefert, welcher sich sowohl auf die Gleichgewichtsreaktion als auch auf die kinetische Reaktion in variabel gesĂ€ttigten porösen Medien beziehen. Der dritte Teil der Arbeit beschreibt zuerst den Algorithmus der Parallelisierung des OGS#IPhreeqc basierend auf dem MPI (Message Passing Interface) Gruppierungskonzept, welcher eine flexible Verteilung der Rechenressourcen fĂŒr die Berechnung der geochemischen Reaktion und der physikalischen Prozesse wie z.B. Wasserströmung oder Stofftransport ermöglicht. Danach wurde die LeistungsfĂ€higkeit des Algorithmus anhand von drei Beispielen getestet. Es zeigt sich, dass der neue Ansatz Vorteile gegenĂŒber die konventionellen AnsĂ€tzen fĂŒr die Berechnung von geochemisch dominierten Problemen bringt. Dies ist vor allem dann der Fall, wenn nur eingeschrĂ€nkter Nutzen aus der Parallelisierung fĂŒr die Berechnung der Wasserströmung oder des Stofftransportes gezogen werden kann. Der Vergleich zwischen der string- und der dateibasierten Kopplung zeigt, dass die erstere weniger Rechenoverhead in einem verteilten Rechnersystem, wie z.B. Cluster erzeugt. Der letzte Teil der Arbeit zeigt die Anwendung von OGS#IPhreeqc fĂŒr die Simulation der Wasserdynamik und der Denitrifikation im Grundwasserleiter eines Untersuchungsgebietes in NordDeutschland. Es beweist, dass OGS#IPhreeqc in der Lage ist, reaktiven Stofftransport auf der Hangskala innerhalb akzeptabler Zeitspanne zu simulieren. Die Simulationsergebnisse zeigen die Bedeutung der funktionalen Zonen fĂŒr die natĂŒrlichen Selbstreinigungsprozesse

    Rangeland Systems: Processes, Management and Challenges

    Get PDF
    environmental management; environmental law; ecojustice; ecolog
    • 

    corecore