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A B S T R A C T

Physical soil water models are an important instrument of the hydro-
logical toolbox for the assessment of water and solute dynamics in
the partially saturated soil zone. Up to now, soil hydrological models
have commonly relied on the classical theories of Darcy-Richards
and the advection-dispersion-equation (ADE). The theories physically
describe (i) soil water fluxes by means of the interplay of gravity
and capillarity, as well as (ii) solute transport driven by advection
and hydrodynamic dispersion in the soil pore system (cf. Sect. 1.2.1).
Under ”ideal” conditions both theories have been proven to perform
well. ”Ideal” refers to the redistribution of soil water and dissolved
solutes in a homogeneously structured matrix that is dominated by
the capillarity of soil pores. However, it has been also proven that
the Darcy-Richards theory and the ADE have limitations under more
natural conditions. Soils are usually a composition of various materials
and exhibit heterogeneous structures. These structures imply larger
voids (macropores) in which capillarity effects lose their dominance.
Instead, water flow and solute transport in macropores are mainly
gravity-driven and faster (preferential flow) than the theories can
assume by the homogeneous, capillarity-dominated pore system.
Preferential flow especially occurs during rainfall events when water
and dissolved solutes are actively infiltrating.

The significance of subsoil processes, like preferential flow, for hy-
drological systems and the limitations of the Darcy-Richards theory
and the ADE under more natural conditions are the main motivations
of this thesis. The objectives of the thesis are in turn (i) to propose a
new theoretical concept as alternative to the common theories, and
(ii) to develop an integrated model framework for the simulation of a
multitude of soil hydrological processes. This framework is called the
Lagrangian Soil Water and Solute Transport (LAST) Model. Soil water
is represented by discrete water particles of constant mass. The model
applies a Lagrangian perspective on the trajectories of the particles
through a partially saturated soil domain. Particle displacements
along the trajectories are calculated by a non-linear, space domain
random walk that combines physics and stochastic. The theoretical
concept of the LAST-Model is introduced in Sect. 1.2.2.

In Sect. 2, I extend the basic LAST-Model by routines for solute
transport and preferential flow. Water particles are assigned by a
solute mass and in this way, solutes are distributed together with the
displacement of water particles. For preferential flow, a structural
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macropore domain is implemented as a second flow domain. Particles
can infiltrate and travel purely by gravity in the macropore domain,
independent from the capillary-flow conditions in the soil matrix. As
a result, they can bypass the bulk water fractions in the soil matrix
before re-infiltrating the matrix and accumulating in greater depths.

In Sect. 3, I modify the solute transport routine to allow for the
simulation of the transport of reactive substances. Specific routines
for sorption and degradation processes are implemented. Sorption is
represented by an explicit solute mass transfer between water particles
and the solid phase by means of non-linear Freundlich isotherms,
and driven by a concentration gradient. Adsorbed solutes are then as-
sumed to be microbially degraded following first-order decay kinetics.

In Sect. 4, I introduce the diffusive pore mixing (DIPMI) approach as
additional routine for the simulation of pore-size-dependent diffusive
mixing of water and solutes over the pore space. This approach
should produce more reliable descriptions of frequently observed
(imperfect) mixing behaviours, in contrast to the common assumption
of averaging concentrations over all pore sizes in a single time step.

Each model extension is tested by simulations of field and labo-
ratory experiments as well as sensitivity analyses. Simulation results
are compared against observed data and results of a benchmark model
that uses the Darcy-Richards theory and the ADE. The most important
findings of this thesis can be summarized as:

• The structural macropore domain of LAST is the key for a suc-
cessful representation of preferential water flow and (reactive)
solute transport. In heterogeneous soils, LAST simulations match
better the observed redistribution and depth-accumulation of
solutes compared to simulations with the Darcy-Richards +
ADE model (cf. Sect. 2.5.2). Retardation, degradation and re-
mobilization processes must be taken into account in soil hydro-
logical modelling as they highly influence the fate and break-
through of reactive substances (cf. Sect. 3.6.1).

• Mixing over the pore space of a control volume is far way from
being an instantaneous and perfect process, as often assumed
by soil hydrological models. Imperfect, diffusive mixing on the
pore scale has a significant influence on macroscopic leaching
behaviours and chemical/isotopic compositions of soil water
fractions (cf. Sect. 4.4.4).

• The particle-based approach of the LAST-Model framework is a
promising tool for further soil- and ecohydrological application
fields (cf. Sect. 5.2). However, the Darcy-Richards theory and the
ADE remain the commonly used approaches in soil hydrological
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modelling, although their limitations are widely approved and
several alternative model concepts are available (cf. Sect. 5.3).
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Z U S A M M E N FA S S U N G

Physikalische Bodenwassermodelle sind ein wichtiger Bestandteil des
hydrologischen Methodenkatalogs für die Bewertung von Wasser- und
Stoffdynamiken in der teilgesättigten Bodenzone. Bisher stützen sich
die bodenhydrologischen Modelle im Wesentlichen auf die klassische
Darcy-Richards-Theorie und die Advektions-Dispersions-Gleichung
(ADG). Diese Theorien beschreiben physikalisch (i) die Wasserflüsse
im Boden durch das Zusammenspiel von Schwerkraft und Kapillarität,
und (ii) den Transport gelöster Stoffe getrieben durch Advektion und
Dispersion im Porensystem des Bodens (vgl. Abschnitt 1.2.1). Unter
”idealen” Bedingungen haben sich beide Theorien als verlässlich
erwiesen. ”Ideal” bezieht sich dabei auf die Verbreitung von Boden-
wasser und gelösten Stoffen in einer homogen strukturierten Matrix,
die von der Kapillarität der Bodenporen dominiert wird. Es wurde
jedoch auch nachgewiesen, dass die Darcy-Richards-Theorie und die
ADG unter natürlicheren Bedingungen Limitationen aufweisen. Böden
sind üblicherweise aus verschiedenen Materialien zusammengesetzt
und weisen heterogene Strukturen auf. Diese Strukturen implizieren
größere Hohlräume (Makroporen), in denen Kapillaritätseffekte ihre
Dominanz verlieren. Der Wasserfluss und Stofftransport in Makropo-
ren wird stattdessen hauptsächlich durch die Schwerkraft getrieben
und ist somit schneller (präferentielles Fließen) als es die Theorien im
homogenen Porensystem annehmen können.

Die Wichtigkeit von Untergrundprozessen, wie präferentielles Fließen,
für hydrologische Systeme und die Limitationen der Darcy-Richards-
Theorie und der ADG unter heterogenen Bedingungen sind die
Hauptmotivationen für diese Dissertation. Die Ziele der Dissertation
sind daher (i) ein neues theoretisches Konzept als Alternative zu
den gängigen Theorien vorzuschlagen und damit (ii) ein integriertes
Modellkonzept für die Simulation einer Vielzahl von bodenhydrologi-
schen Prozessen zu entwickeln. Es nennt sich “Lagrangian Soil Water
and Solute Transport“ (LAST) Modell. Bodenwasser wird repräsentiert
durch diskrete Wasserpartikel von konstanter Masse. Das Modell
verwendet eine Lagrange-Perspektive auf die Bewegungsbahnen der
Partikel durch eine teilgesättigte Bodendomäne. Die Verlagerung
der Partikel entlang ihrer Bewegungsbahnen wird dabei berechnet
über eine nicht-lineare, räumliche Random-Walk-Gleichung, welche
Physik und Stochastik kombiniert. Das theoretische Konzept des
LAST-Modells wird in Abschnitt 1.2.2 vorgestellt.

In Abschnitt 2 erweitere ich das grundlegende LAST-Modell mit
Routinen für Stofftransport und präferentielles Fließen. Den Wasser-
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partikeln wird eine gelöste Stoffmasse zugewiesen. Auf diese Weise
werden gelöste Stoffe zusammen mit der Bewegung der Wasser-
partikel im Boden verteilt. Für das präferentielle Fließen wird eine
strukturelle Makroporendomäne als zweite Fließdomäne implemen-
tiert. Die Partikel können in die Makroporendomäne infiltrieren und
sich darin, rein durch die Schwerkraft getrieben, bewegen, und das
unabhängig von den kapillaren Fließbedingungen in der Bodenmatrix.
Dadurch können sie die größten Wasserfraktionen in der Bodenmatrix
umfließen, bevor sie wieder in die Bodenmatrix zurück infiltrieren
und sich in größeren Tiefen anreichern.

In Abschnitt 3 modifiziere ich die Stofftransportroutine, um die
Simulation des Transports von reaktiven Substanzen zu ermöglichen.
Zu diesem Zweck werden spezifische Routinen für Sorptions- und
Abbauprozesse implementiert. Die Sorption wird durch einen ex-
pliziten Stoffmassenaustausch zwischen Wasserpartikeln und der
festen Bodenphase mit Hilfe der nichtlinearen Freundlich-Isothermen
dargestellt. Getrieben werden die Sorptionsprozesse durch Konzen-
trationsgradienten. Adsorbierte Stoffmassen werden dann mikrobiell
gemäß einer Zerfallskinetik erster Ordnung abgebaut.

In Abschnitt 4 stelle ich den DIPMI (”diffusive pore mixing”) Ansatz
als zusätzliche Routine für die Simulation von porengrößenabhängigen,
diffusiven Mischen von Wasser und gelösten Stoffen im Porenraum
vor. Dieser Ansatz soll zu einer zuverlässigeren Beschreibung von
häufig beobachteten Mischungsverhalten führen, in Kontrast zu der
üblichen Annahme von gemittelten Konzentrationen über den gesam-
ten Porenraum in einem einzigen Zeitschritt.

Jede dieser Modellerweiterungen wird mit Simulationen von Feld- und
Laborexperimenten sowie Sensitivitätsanalysen getestet. Die Simulati-
onsergebnisse werden mit beobachteten Daten und den Ergebnissen
eines Vergleichsmodells bewertet, welches die Darcy-Richards-Theorie
und die ADG verwendet. Die wichtigsten Ergebnisse aller Analysen
in dieser Dissertation lassen sich wie folgt zusammenfassen:

• Die strukturelle Makroporendomäne von LAST ist der Schlüssel
für eine erfolgreiche Darstellung von präferentiellen Fließmus-
tern und des (reaktiven) Stofftransports. In heterogenen Böden
stimmen die LAST-Simulationen besser mit der beobachteten
Ausbreitung und Tiefenakkumulation von Stoffmassen überein,
im Vergleich zu Simulationen mit dem Darcy-Richards-Modell
+ ADG (vgl. Abschnitt 2.5.2). Retardations-, Abbau- und Re-
mobilisierungsprozesse müssen in der bodenhydrologischen
Modellierung berücksichtigt werden, da sie den Verbleib und
den Durchbruch reaktiver Stoffe entscheidend beeinflussen (vgl.
Abschnitt 3.6.1).
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• Die Durchmischung über den Porenraum eines Kontrollvolu-
mens ist weit davon entfernt ein instantaner und perfekter Pro-
zess zu sein, wie es jedoch oft in bodenhydrologischen Modellen
angenommen wird. Die nicht perfekte, diffusive Durchmischung
auf der Porenskala hat einen erheblichen Einfluss auf das ma-
kroskopische Versickerungsverhalten und die chemische/iso-
topische Zusammensetzung von Bodenwasserfraktionen (vgl.
Abschnitt 4.4.4).

• Der partikelbasierte Ansatz des LAST-Modells ist ein vielverspre-
chendes Instrument für weitere boden- und ökohydrologische
Anwendungsfelder (vgl. Abschnitt 5.2). Die Darcy-Richards-
Theorie und die ADG bleiben allerdings die am häufigsten ver-
wendeten Ansätze in der bodenhydrologischen Modellierung,
obwohl ihre Limitationen allgemein anerkannt sind und mehrere
alternative Modellkonzepte zur Verfügung stehen (vgl. Abschnitt
5.3).
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Part I

I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 general motivation

Physical modelling is an integral component, together with field and
laboratory experiments, for the prediction of soil hydrological pro-
cesses in the critical zone. This includes specifically the processes
along the typical pathway of water and dissolved solutes from soil
infiltration, over movement through the partially saturated soil body,
to soil storage and breakthrough into aquifers or surface waters. The The scope of soil

hydrological
modelling.

scope of soil hydrological modelling is to advance the understanding
of (i) the water storage dynamics in the critical zone and (ii) the subsoil
controls on solute transport. A considerable process understanding is
crucial for the assessment of the water supply and the fate of leaching
pollutants in ecosystems (e.g. Arias-Estévez et al., 2008; Klaus and
Zehe, 2011). The general motivation of my thesis is to provide a novel
physical model framework for the simulation of these kinds of soil
hydrological processes in the critical zone.

1.2 theoretical background

1.2.1 Physical basics of soil water flow and solute transport

The Darcy-Richards theory for describing partially saturated water dynamics

For the simulation of water dynamics in partially saturated soils,
many physically based models rely on the Darcy-Richards equation
(Richards, 1931). The theory of Darcy-Richards is regarded as the dom-
inant description of water dynamics in partially saturated soils (Beven
and Germann, 2013). I explain the principles of the Darcy-Richards
theory for vertical water flow based on an example and the sketches
in Fig. 1.1.

Let’s assume a 1-D, vertical soil domain with length z (Fig. 1.1a).
The soil domain is discretized into several vertical soil layers (= control
volumes, grid elements) of constant length ∆z. Such a subdivided
domain can be called an Euler grid. Each soil layer i stores a certain The continuity

equation for mass
conservation.

water volume, which is defined as a soil water content θi (m3 m−3).
The soil water content of a soil layer may change when water is
flowing through it. The rate of change of the soil water content ∆θi
is determined by the inflow qi−1 and outflow fluxes qi (m s−1) of
the soil layer. The difference between the water volume flowing into

3



4 introduction

and the water volume flowing out of a control volume is equal to
the difference of the water content within this control volume in a
time step (Kutı́lek and Nielsen, 1994). This principle implies mass
conservation in space and time during partially saturated water flow
and is described by the continuity equation (Eq. 1.1, Fig. 1.1c).

∂θ

∂t
= −∂q

∂z
(1.1)

Water flow is in turn induced by the interplay of the forces of capillar-
ity and gravity, which are the main actors in the physics of partially
saturated soils. The soil pores act like capillary tubes applying aCapillarity and

gravity act upon
water in soils.

capillary force on the water to hold it against gravity (binding force).
Gravity in turn is the driving force of water flow, which drags the
water out of the soil pores in downward direction. The required forces
to bring a unit mass/volume of water into a reference height above
a basis (z = 0 m), or to hold it within the soil pores in this reference
height, are defined as gravity potential Ψz and matric potential Ψm,
respectively. The unit of these potentials can be given (i) per unit water
volume as an actual pressure ( N

m2 = Pa), or (ii) per unit water weight
as a pressure head (m). In the following, I generally refer to pressure
heads, if not differently stated.

The sum of the gravity potential and the matric potential gives
the total water potential H at a depth z (Fig. 1.1b). The gravity poten-Water potential

gradient enables
water flow.

tial is positive and contrarily, the matric potential is negative. If the
difference of the water potential ∆H over the length of a soil layer ∆z
is positive (i.e. gravity force exceeds capillary force), water flows in
downward direction through the soil layer. The difference of the water
potential over a length is called the potential gradient ∇H (Eq. 1.2),
with ∇ =

(
∂

∂x , ∂
∂y , ∂

∂z

)
. Here, we only focus on the potential gradient

in the one-dimensional z-direction.

∇H =
∆H
∆z

=
∆Ψm + ∆Ψz

∆z
(1.2)

If the gravity potential and the matric potential are equal and H = 0,
the system is in equilibrium and no water is flowing. The interface of
the partially saturated soil zone and the saturated zone (groundwater)
is usually defined as the basis of the reference height (z = 0 m). At this
depth, both potentials are 0. With increasing elevation and distanceThe interplay of

matric potential and
gravity potential

over a vertical soil
domain.

to the saturated zone, the gravity potential increases while the matric
potential decreases as the soil pores gradually desaturate. At the soil
surface, only small pores with high capillary forces (= high negative
matric potentials) are still able to defy gravity and hold water. However,
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external influences like rainwater infiltration brings the system out
of equilibrium. Infiltrating water gradually saturates the pore space
from smaller to larger pores with the result that the negative matric
potential increases. As the gravity potential stays constant, the total
water potential H increases and gradients of the water potential ∇H
over the soil layers finally lead to water fluxes q (m s−1). With these
insights, we can formulate a general equation for water fluxes in the
partially saturated soil zone, which is commonly denoted as the Darcy-
Buckingham equation (Eq. 1.3).

q = −K · ∇H (1.3)

K (m s−1) is a proportionality factor called hydraulic conductivity,
which I explain later. The Darcy-Buckingham equation (Buckingham, The

Darcy-Buckingham
equation.

1907) is only valid to describe the simplified case of stationary flow
conditions when qi−1 = qi and ∆θ = 0. It can be seen as a first ad-
vancement of the Darcy equation to partially saturated flow and as an
antecedent version of the Darcy-Richards equation. By inserting Eq.
1.2 into 1.3, we obtain the Darcy-Buckingham equation in a potential-
based form (Eq. 1.4).

q = −K (Ψm) ·
[

∂Ψm

∂z
+

∂Ψz

∂z

]
(1.4)

When assuming that the length of each soil layer ∆z is equal and
stays constant, then ∆z is in turn equal to the difference of the gravity
potential over a soil layer and thus, we can re-write the last term to

∂Ψz

∂z
=

Ψz(i− 1)−Ψz(i)
∆z

= 1. (1.5)

To enable finally the description of partially saturated flow under Continuity equation
+ Darcy-Buckingham
equation =
Darcy-Richards
equation.

transient conditions when qi−1 6= qi and ∆θ 6= 0, we combine the Darcy-
Buckingham equation (Eq. 1.4 + 1.5) with the continuity equation (Eq.
1.1) to obtain the Darcy-Richards equation (Eq. 1.6).

∂θ

∂t
=

∂

∂z
·

K (Ψm) ·
(

∂Ψm

∂z
+ 1
)

︸ ︷︷ ︸
=∇H


︸ ︷︷ ︸

=−q

(1.6)

The hydraulic conductivity K(Ψm) is a factor that scales the water
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flow in a partially saturated, porous medium and describes how easy
a fluid can pass through the porous medium (Bear, 2013). It depends
on the properties of the solid material and the fluid (viscosity, intrin-
sic permeability). As the water flow primarily takes place in larger,
saturated soil pores, the partially saturated hydraulic conductivity
is further dependent on the pore-size-distribution and the soil water
content. Furthermore, from the fact that the matric potential is also
dependent on the water content it follows that K is in turn dependent
on the matric potential. These interrelations are represented by the
soil water retention curve (red) and the hydraulic conductivity curve
(yellow) in Fig. 1.1d. Both curves show the non-linear functions of theRelationship of

hydraulic state
variables with soil

water content is
non-linear and

dependent on pore-
size-distribution.

change of K and Ψm with θ in absolute values. These relationships
are commonly parameterized by the model of van Genuchten (1980)
and Mualem (1976). The more soil pores are saturated, the larger is
the cross section area in the pore space that contributes to the water
flow. By gradually approaching the saturated soil water content θs,
the mean flow velocity increases. In contrast, drying the soil and
approaching the residual water content θs means that less soil pores
contribute to the water flow. The remaining, still saturated and rather
small pores apply higher capillary forces on the water, which reduces
the mean water flow velocity.

Due to the non-linear character of K(θ) and Ψm(θ), it exists no
closed-form analytical solution to the Darcy-Richards equation. Nu-
merical modelling based on the Darcy-Richards equation is possible
by using appropriate solvers that define suitable boundary and initial
conditions. Also important is to apply the equation sequentially
to infinitesimal increments of the soil domain and simulation time
(Dingman, 2015).
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Figure 1.1: Schematic sketches of the principles of the Darcy-Richards theory.
(a) Vertical soil domain for partially saturated flow between soil
layers, (b) interplay of gravity potential and matric potential
over the vertical extent, (c) principle of the continuity equation
ensuring mass conservation (Eq. 1.1), (d) soil water retention
curve (red) and hydraulic conductivity curve (yellow). This figure
is adapted and inspired by the lecture of Conrad Jackisch.

blabla

Limitations of the Darcy-Richards theory and alternative model concepts

The Darcy-Richards theory makes assumptions, which are not suitable
to describe some of the flow processes that are frequently observed in
natural soil systems. The most essential assumptions are:
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• Capillarity is the dominant factor. The state of the water content
θ is exclusively dependent on the matric potential Ψm during
wetting and drying phases, as the gravity potential gradient is
constant (cf. Eq. 1.5, Fig. 1.1b). Infiltrating water only changes
the matric potential in the total water potential gradient ∇H
(cf. Eq. 1.2), while the gravity potential remains unchanged by
definition: Ψz = ρ · g · z. Gravity potential Ψz (Pa) is a productThree assumptions

that limit the
applicability of the

Darcy-Richards
theory to more

natural conditions.

of water density ρ (kg m−3), earth accelaration g (m s−2) and the
reference height z (m). The change of the matric potential results
in the disturbance of the equilibrium state of potentials, which
induces water flow.

• Local equilibrium (well-mixed) conditions of the hydraulic state
variables θ and Ψm over the macroscopic scale of a vertical
soil layer. Microscopic variations (e.g. on the pore scale) are
not considered although pore-size-dependent differences of the
hydraulic state variables can lead to a wide range of macroscopic
flow behaviours (Roth, 2008).

• Expecting local equilibrium further results in the assumption
that the pore space sequentially saturates from small to large
pores. This implies a homogeneous saturation from θr to θs

according to the soil water retention curve (cf. Fig. 1.1d).

Due to these assumptions the Darcy-Richards theory is restricted to
rather ideal flow scenarios. An ideal flow scenario would compriseDarcy-Richards

rather restricted to
ideal conditions.

a soil that exhibits a homogeneous matrix without any structural
inhomogeneities on the microscale (local equilibrium). Furthermore,
water flow is quite slow either during drainage/drying phases or at
most, during a continuous, homogeneous infiltration.

However, under more natural conditions, soils are a composition
of different materials with highly heterogeneous structures and in-
homogeneities such as fissures, cracks and macropores. Especially
macropores can have such large diameters that they are free of capil-
larity. This implies that water can easily infiltrate and move through
macropores in a mostly unimpeded manner solely driven by gravity.
This flow process is commonly called preferential flow (Jarvis, 2007;More natural

conditions imply
heterogeneous
structures and

preferential flow.

Beven and Germann, 2013). During preferential flow, the water flow
mainly takes place in a few macropores while the residual water
in the smaller pores of the soil matrix is relatively stagnant. This
leads to a bypassing of the soil matrix without or only very less
interactions between water in the macropores and the smaller pores
(= non-equilibrium, not well-mixed). The processes of preferential
flow cannot be resolved by models based on the assumptions of the
Darcy-Richards theory, which often leads to an underestimation of
flow velocities (Zehe, 1999; Neuweiler and Dentz, 2012).
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The limitations of the Darcy-Richards theory have been the moti- Limitations of
Darcy-Richards
motivate
development of
alternative models.

vation for the development of several alternative model concepts over
the last decades. More popular ones of these alternative concepts
comprise, e.g.:

• Bundle-of-tubes/discretization approaches (e.g. Talbot and Og-
den, 2008; Ogden et al., 2017). The soil water content domain
is discretized into tubes or bins. Each bin is a continuum in
the vertical dimension and characterized by specific hydraulic
properties. Infiltration and redistribution of wetting fronts are
calculated explicitly by means of a soil moisture velocity equa-
tion based on capillary and gravitational forces. Bins can interact
by diffusive interbin flow.

• Viscous film flow approaches (e.g. Germann, 2018). The prop-
agation of wetting fronts is described by film flows along the
vertical walls of soil pores. The flux density is only dependent
on the water film thickness and a contact length of the film with
the solid. Momentum dissipation due to shear forces reduces the
water flux density. The concept does not need any information
about soil hydraulic functions or pore-size-distributions but its
parameterization requires velocity and water content data from
experiments.

• Particle-based, Lagrangian approaches (e.g. Zehe and Jackisch,
2016; Jackisch and Zehe, 2018). Introduced for the first time by
Ewen (1996a) and Ewen (1996b). Soil water is represented by
a great number of discrete particles. Particles travel through
a vertical soil domain driven by capillarity and gravity. The
displacement of particles is calculated by a random walk ap-
proach. Spatial particle densities in control volumes give the
water content profile over the vertical domain.

The model framework, which I present in this thesis, is a representa-
tive of the particle-based, Lagrangian approaches and is based on the
previous work of Zehe and Jackisch (2016). In Sect. 1.2.2, I introduce
the basic principles of this model concept in more detail.

The advection-dispersion-equation for solute transport

Water flow in soils is often accompanied by the transport of so-
lutes dissolved in the soil water. In soil hydrological modelling, the The advection-

dispersion-equation
(ADE) as dominant
concept for solute
transport in soils.

transport of dissolved solutes through soils is dominantly described by
the advection-dispersion-equation (ADE). The ADE bases on similar
theoretical and physical principles as the Darcy-Richards equation.
For the vertical transport of conservative solutes in partially saturated
soils without any sinks or sources of solute masses, the ADE is defined
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as follows:

∂Cw

∂t
= −v · ∂Cw

∂z︸ ︷︷ ︸
= advection

+
∂

∂z

(
De ·

∂Cw

∂z

)
︸ ︷︷ ︸
= hydrodyn. dispersion

with v =
q
θ

(1.7)

Solute transport and the temporal change of the solute concentration
in the water phase Cw (kg m−3), within a control volume of the
Eulerian soil domain, is caused by the joint processes of advection
and hydrodynamic dispersion (the parameter De will be explained
later on). In line with the equation of continuity (cf. Eq. 1.1) in the
Darcy-Richards theory, the principle of mass conservation also applies
for solute transport (Kutı́lek and Nielsen, 1994). The difference of
solute masses entering and leaving a spatial control volume is equal
to the solute mass stored within the control volume per time step.

The first term of the ADE describes the displacement of dissolved
solutes due to advection along with the average water flux. ThisAdvection alone

causes uniform
displacement of all

solute particles.

advective solute displacement is determined by the mean vertical
velocity v (m s−1) of the flow field. The mean flow velocity can be
calculated by the quotient of the local Darcy-Richards flux q and the
soil water content θ in a control volume. Advection alone would result
in uniform transport lengths for all dissolved solute particles in a time
step, determined by the mean flow velocity v. It comes to a vertical
displacement but not to an actual mixing of solute particles (Bear,
2013).

The second term of the ADE describes an additional solute dis-
placement, beyond the uniform, advective transport length. This effect
is called hydrodynamic dispersion and enables the actual mixing
of solute particles. It represents the macroscopic fingerprint of the
subscale movements of individual solute particles through the soil
pore space. Such individual solute particle movements are basically
the result of the two subscale phenomena of (i) mechanical dispersion
and (ii) molecular diffusion. Mechanical dispersion occurs due to theHydrodynamic

dispersion =
mechanical

dispersion +
molecular diffusion.

presence of flow through a porous medium. The heterogeneity of
the geometry and topology of the pore system implies tortuous flow
paths for particles around the soil grains (Fig. 1.2). This in turn results
in a distribution of local flow velocities and different transport lengths
of individual particles that cause the spreading of solute masses over
an ever-increasing volume of the pore space. Simultaneously with
mechanical dispersion, variations of solute concentrations in the water
phase further induce additional displacements of solute particles.
Such concentration gradients are depleted by the subscale mixing
of solute particles. This effect is referred to molecular diffusion (or
Brownian motion) (Bear, 2013).
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All the subscale phenomena involved in the hydrodynamic dis-
persion process are lumped together in the ADE by a macroscopic, Dispersion coefficient

as lumped,
macroscopic
representation of
subscale processes.

effective dispersion coefficient De (m2 s−1). It basically represents the
ability of a porous system to enable the process of hydrodynamic
dispersion and is dependent on the properties of the porous medium,
the fluid and the solute. The effective dispersion coefficient is hence
similarly defined as the hydraulic conductivity in the Darcy-Richards
equation (cf. Eq. 1.6).

Figure 1.2: Scheme of solute transport in soils. An initial solute input pulse
occupies an ever-increasing extent of the soil domain over time
due to the effects of advection and hydrodynamic dispersion.
Hydrodynamic dispersion causes individual trajectories of so-
lute particles and leads to displacements lengths ∆z distributed
around an expected transport length according to the mean ad-
vective flow velocity v.

blabla
Further similarities shares the ADE with the Darcy-Richards theory
in regard of theoretical assumptions and their limitations for describ-
ing transport processes in natural, heterogeneous soil systems. The ADE assumes

well-mixed transport
behaviour.

ADE assumes well-mixed conditions in respect of the hydrodynamic
dispersion coefficient De over the macroscopic scale of a control vol-
ume (Dentz and Lester, 2022). This implies a Gaussian distribution of
displacement lengths (Fig. 1.2). The hydrodynamic dispersion coeffi-
cient describes the variance of this distribution Var[z] = 2 · De · t (m²)
around an expected average transport length 〈z〉 = v · t (m). The rela-
tion of both gives a measure for the distribution of transport lengths
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(Eq. 1.8).

Var[z]
〈z〉 =

2 · De · t
v · t =

2 · De

v
= α (1.8)

The constant α (m) is called dispersivity and represents the lengths of
the macroscopic heterogeneities of the porous medium. It is a medium
specific measure and together with the mean flow velocity, it defines
the hydrodynamic dispersion coefficient (Eq. 1.9).

De =
1
2
· α · v (1.9)

However, preferential flow in heterogeneous soils implies not well-
mixed conditions with a rapid transport of solutes that takes place
much faster than the actual mixing process, which cannot be suf-
ficiently described in the ADE by only one constant, macroscopicLimitations of the

ADE. dispersion coefficient. Furthermore, the ADE assumption that the
variation of subscale flow velocities, and finally also breakthrough
curve shapes, follow a symmetrical Gaussian distribution does not
hold under heterogeneous, non-Fickian transport conditions in natural
systems (Zehe et al., 2021).

1.2.2 Particle-based, Lagrangian approaches as alternative to the common
theory

What do the terms ”particle-based” and ”Lagrangian” actually mean
in this context?

”Particle-based” means that the soil water is not considered as
an entirety but is represented by a large number of discrete particles.
Each particle is defined by a constant mass and volume. They areMeaning of terms

”particle-based” and
”Lagrangian”.

allowed to move freely through the soil domain. The sum of the
number of water particles per control volume (= particle density)
gives a local soil water content. The term ”Lagrangian” in turn refers
to a Lagrangian perspective. The model acts like a mobile observer
that travels along the trajectories of the water particles as they move
through the soil domain. In this way, it is able to describe the history
of individual particles and to track the position of each particle at
every time.

In contrast to Darcy-Richards methods, Lagrangian approaches
may not calculate water flux densities to describe changes of soil
water contents. They describe the movement of discrete water particles
through the soil domain and calculate local particle densities to infer
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soil water contents. The movement of the particles is determined by
the joint effects of advection and diffusion (cf. Sect. 1.2.1). Re-writing
the Darcy-Richards equation into a soil-moisture-based form gives an
equation that reflects these effects (Eq. 1.10).

∂θ

∂t
=

∂K(θ)
∂z︸ ︷︷ ︸

v(θ)

+
∂

∂z

K(θ) · ∂Ψ
∂θ︸ ︷︷ ︸

D(θ)

·∂θ

∂z

 (1.10)

This general equation can be used to describe the movement of water
particles. The first term represents the advective movement v(θ) in
downward direction driven by gravity and is a function of the partially
saturated hydraulic conductivity K(θ) only. This parameter serves as
a lumped measure representing the complex inhomogeneities of the
flow system (tortuosity, friction, variations of pore sizes and velocities)
that act against free gravity. The second term describes diffusive water Advection and

diffusion determine
particle movements.

flow driven by local differences of the soil water content and controlled
by a water diffusivity D(θ) (m2 s−1). It is a mathematical description
of how well a fluid can freely diffuse over a porous medium (Kutı́lek
and Nielsen, 1994). It is determined by the properties of the porous
material and the fluid, and is calculated by K(θ) multiplied by the
slope of the soil water retention curve ∂Ψ

∂θ . The slope represents how
strong the water content reacts on a change of the matric potential.
The more inert this reaction, the stronger the soil can hold water and
the larger is the water saturated area that contributes to diffusion.

In this form, Eq. 1.10 is equivalent to the Fokker-Planck equation
(Risken, 1984), as it basically describes the temporal evolution of a
system under the influence of a drag force (advection/drift) and a
random force (diffusion). Due to this formal equivalence, we can
formulate Eq. 1.11 for the vertical displacement ∆z of water particles
in a time step ∆t.

∆z(∆t) = −
(

K(θ(t))
θ(t)

+
∂D(θ(t))

∂z

)
· ∆t︸ ︷︷ ︸

= advection

+ Z
√

2 · D(θ(t)) · ∆t︸ ︷︷ ︸
= di f f usion

(1.11)

According to that, individual particle displacements follow the gen-
eral form of a Langevin equation and correspond to the ADE (cf. Eq.
1.7). The first part again corresponds to advection and contains an
additional drift term that corrects the advective movement of particles
in case of spatially variable dispersivity properties in the soil domain
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(for more information see Sects. 2.2.1 and 3.3.2). The second partNon-linear, spatial
random walk for

particle displacement.
of the equation is a non-linear, spatial random walk that represents
the diffusion process (Zehe and Jackisch, 2016). A random number
Z, standard normally distributed, governs the diffusion direction of
particles in the vertical dimension of the soil domain dependent on
its algebraic sign. In this way, the random walk method reflects the
undirected nature of Brownian motion that is involved in the diffusion
process. Non-linear further means that both the advection and the
diffusion term changes non-linearly with changing particle densities
(= soil water content), which in turn refers to the characteristics of the
water retention curve and the hydraulic conductivity curve (cf. Fig.
1.1d).

Advantages of the particle-based, Lagrangian approach

Water particles are represented as discrete and independent enti-
ties. This allows them to move freely over the entire soil domain.
This mutual independence of water particles enables the resolution
of the hydraulic state variables on the microscale of the pore space.
That means, it can be assumed that particles are stored in differentParticles can move

freely dependent on
pore sizes.

pore sizes and that the size of a pore determines the flow velocity
of a particle. Smaller pores with lower soil water contents imply a
decreased particle velocity according to the water retention curve
and hydraulic conductivity curve (cf. Fig. 1.1d). In the same way,
specific particles can move with an enhanced velocity in macropores
to represent preferential flow. The dispersion term can be neglected
for those specific particles and their movement is exclusively governed
by gravity and by terms of, e.g. the saturated hydraulic conductivity
Ks or other velocities. The majority of particles still moves slowly in
the matrix following the ”normal” hydraulic state variables at the
actual soil water content.

Another advantage of the approach is the possibility to add dif-Any information can
be added to particles. ferent information to the water particles. For instance, a water particle

can carry a solute mass and together with the water particle, the
solute is moving through the soil domain. In this way, it is possible
to describe water flow and solute transport as a combined process by
the random walk method, without the need for an additional solute
transport equation.

1.3 objectives of the thesis

One objective of my thesis is to extend and optimize the particle-based,Objective 1:
Introducing the

LAST-Model
framework.

Lagrangian approach of Zehe and Jackisch (2016) and to develop a
framework for the simulation of a multitude of physical soil- and
ecohydrological processes. The framework is called the Lagrangian
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Soil Water and Solute Transport (LAST) Model. The intention is to
strengthen the general understanding of the complex, interacting
processes in the vadose zone during water flow and solute transport,
such as preferential flow phenomena.

In the following sections, I present three studies in which I de-
scribe how several routines are implemented to extend gradually
the scope of the LAST-Model framework. In Sect. 2, I start with the
implementation of solute transport and a macropore domain to enable
the simulation of preferential flow and solute transport processes.
In Sect. 3, I extend the previous solute transport routine by adding Three studies for

three extension steps
of the LAST-Model
framework.

sorption and degradation processes to account for the transport of
reactive substances. In Sect. 4, I finally implement a routine for a
more realistic description of diffusive mixing processes of waters and
solutes on the microscale of the pore space. In Sect. 5.2, I give an
outlook on why the particle-based approach is a promising tool for
the research on further soil- and ecohydrological topics, e.g. water
ages and related travel times, or evapotranspiration processes with
root water uptake.

Another objective of my thesis is to provide an alternative model
concept in contrast to common Darcy-Richards and ADE approaches.
The presented LAST-Model framework belongs to a set of novel soil
hydrological models. Their development over the last decades has Objective 2:

Alternative concept
in contrast to
Darcy-Richards
theory and ADE.

been strongly motivated by the evidence that the Darcy-Richards
theory fails to predict flow under more natural, heterogeneous soil
conditions. Besides their equal motivation, the novel approaches have
in common that they still have only minor impact on the hydrological
research and practical applications. Their alternative concepts are
by now not able to displace the theory of Darcy-Richards and the
ADE, which remain the main physical basis of most soil hydrological
models despite their well-known limitations.

In the discussion of my thesis (Sect. 5.3), I come back to this is-
sue and discuss reasons why the Darcy-Richards approaches are so
persistent and why alternative model concepts may have problems to
replace the common theory.
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abstract

We propose an alternative model concept to represent rainfall-driven
soil water dynamics and especially preferential water flow and solute
transport in the vadose zone. Our LAST-Model (Lagrangian Soil Water
and Solute Transport) is based on a Lagrangian perspective on the
movement of water particles (Zehe and Jackisch, 2016) carrying a so-
lute mass through the subsurface which is separated into a soil matrix
domain and a preferential flow domain. The preferential flow domain
relies on observable field data like the average number of macropores
of a given diameter, their hydraulic properties and their vertical length
distribution. These data may either be derived from field observations
or by inverse modelling using tracer data. Parametrization of the soil
matrix domain requires soil hydraulic functions which determine
the parameters of the water particle movement and particularly the
distribution of flow velocities in different pores sizes. Infiltration into
the matrix and the macropores depends on their respective moisture
state and subsequently macropores are gradually filled. Macropores
and matrix interact through diffusive mixing of water and solutes
between the two flow domains which again depends on their water
content and matric potential at the considered depths.

The LAST-Model is evaluated using tracer profiles and macrop-
ore data obtained at four different study sites in the Weiherbach
catchment in south Germany and additionally compared against
simulations using HYDRUS 1-D as benchmark model. While both
models show an equal performance at two matrix flow dominated
sites, simulations with LAST are in a better accordance with the
fingerprints of preferential flow at the two other sites compared to
HYDRUS 1-D. These findings generally corroborate the feasibility of
the model concept and particularly the implemented representation of
macropore flow and macropore-matrix exchange. We thus conclude
that the LAST-Model approach provides a useful and alternative
framework for a) simulating rainfall-driven soil water and solute
dynamics and fingerprints of preferential flow as well as b) linking
model approaches and field experiments. We also suggest that the
Lagrangian perspective offers promising opportunities to quantify

19



20 water and tracer transport simulated with the last-model

water ages and to evaluate travel and residence times of water and
solutes by a simple age tagging of particles entering and leaving the
model domain.
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2.1 introduction

Until now, the most commonly used hydrological models have been
following an Eulerian perspective on the flow processes with a sta-
tionary observer balancing dynamic changes in a control volume.
The alternative Lagrangian perspective with a mobile observer trav-
elling along the trajectory of a solute particle through the system
(Currie, 2002) has up to now only been used to simulate advective-
dispersive transport of solutes (Delay and Bodin, 2001; Zehe et al.,
2001; Berkowitz et al., 2006; Koutsoyiannis, 2010; Klaus and Zehe,
2011). However, this particle tracking approach is mostly embedded
in frameworks with Eulerian control volumes which still characterize
the dynamics of the carrying fluid. Lagrangian descriptions of the
fluid dynamics itself are only realized in a few models. But such a
particle tracking framework may offer many advantages, especially at
the coping of the challenges induced by preferential water flow and
solute transport in structured heterogeneous soils.

Preferential flow has become a major issue in hydrological research
since the benchmark papers of Beven and Germann (1982), Flury
et al. (1994) and Uhlenbrook (2006). The term of preferential flow
is used to summarize a variety of mechanisms leading to a rapid
water movement in soils. The most prominent one is the flow through
non-capillary macropores (Beven and Germann, 2013) where water
and solutes travel in a largely unimpeded manner due to the absence
of capillary forces and bypass the soil matrix (Jarvis, 2007). Macrop-
ores can be classified into e.g. earth worm burrows, channels from
degraded plant roots or shrinkage cracks and all of them are not static
in space nor time (e.g. Blouin et al., 2013; Nadezhdina et al., 2010; Palm
et al., 2013; van Schaik et al., 2013; Schneider et al., 2018). Especially
in rural areas and in combination with agrochemicals, macropore
flow can be a dominant control on stream and groundwater pollution
(e.g. Flury, 1996; Arias-Estévez et al., 2008). To understand such water
and solute movements a combination of plot-scale experiments and
computer models is commonly used (Zehe et al., 2001; Šimůnek and
Genuchten, 2008; Radcliffe and Simunek, 2010; Klaus et al., 2013).
One of the most frequently used approaches to simulate water flow
dynamics and solute transport is to use the Darcy-Richards and the
advection-dispersion equation. Both equations fundamentally assume
that solute transport is controlled by the interplay of advection and
dispersion (Beven and Germann, 2013) and that the underlying soil
water dynamics are dominated by capillary-driven diffusive flow.
While the second assumption is well justified in homogeneous soils, it
frequently fails in soils with macropores. Consequently, we separate
at least two flow regimes in soils: the slow diffusive flow in the soil
matrix and the rapid advective flow in the macropores. Partial mixing
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between these two flow regimes is non-trivial as it depends on the
hydraulic properties of the macropore walls, the water content of the
surrounding soil, actual flow velocities, hydrophobicity of organic
coatings and much more. The inability of the Richards equation to
simulate partial mixing between both flow regimes is well known
and a variety of different models have been proposed to address this
problem (Šimůnek et al., 2003; Beven and Germann, 2013). But most
of them are still fundamentally based on the Darcy-Richards equation
like the most prominent and well-established double-domain models
like for instance the HYDRUS model of Šimůnek and Genuchten
(2008).

A promising alternative approach is provided by particle-based
Lagrangian models for subsurface fluid dynamics. The first implemen-
tation of such a model for soil water dynamics is the SAMP model
proposed by Ewen (1996a,b). SAMP represents soil water by a large
number of particles travelling in an one-dimensional soil domain
by means of a random walk which is based on soil physics and soil
water characteristics. A more recent example is the two-dimensional
MIP model of Davies et al. (2013) developed for hillslopes. Fluid
particles travel according to a distribution function of flow velocities
which needs to be estimated from tracer field experiments. Exchange
of particles among the different pathways is conceptualized as ran-
dom process following an exponential distribution of mixing times.
Inspired by the SAMP model, Zehe and Jackisch (2016) conceptual-
ized a Lagrangian model describing soil water flow by means of a
non-linear space domain random walk. In line with Ewen (1996a,b),
they estimated the diffusivity and the gravity-driven drift term of the
random walk based on the soil water retention curve (ψ(θ)) and the
soil hydraulic conductivity curve (k(θ)).

The particle-based Lagrangian model of Zehe and Jackisch (2016)
initially assumed that all particles travel at the same diffusivity and
velocity corresponding to the actual soil water content. But a com-
parison to a Richards solver revealed that this straightforward, naive
random walk implementation highly overestimates infiltration and
redistribution of water in the soil. The solution for this overestimation
was to account for variable diffusive velocities. Now, particles in differ-
ent pore sizes travel with various diffusivities, which are determined
based on the shape of the soil hydraulic conductivity curve. This
approach reflects the idea that the actual soil water content is the
sum of volume fractions that are stored in different pore sizes and
that the different pore sizes constitute flow paths which differ in both
advective and diffusive velocities.

Recently, this model was advanced by Jackisch and Zehe (2018)
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with the implementation of a second dimension which contains
spatially explicit macropores to simulate preferential flow. Within a
macropore the velocity of each particle is described by interactions
of driving and hindering forces. Driver is the potential energy of a
particle while energy dissipation due to friction at the macropore walls
dissipates kinetic energy and accordingly reduces particle velocities.
With this approach, Jackisch and Zehe (2018) tried to make maximum
use of observables for model parametrization. The assets of their
echoRD model are a self-controlling macropore film flow and its
ability to represent 2-D infiltration patterns. The drawback of echoRD
is the huge computational expense. The simulation time is about 10 to
200 times longer than real-time.

The huge computational expense of the echoRD model is one main
motivation for us to develop a Lagrangian approach which balances
necessary complexity with greatest possible simplicity. The other moti-
vation is the inability of all models mentioned above to simulate solute
transport appropriately. This is essential for a rigorous comparison
of the model with tracer data and to get closer to the simulation of
reactive transport. Thus, the main objectives of this study are to:

1. Present a new routine for solute transport and diffusive mixing
for well-mixed matrix flow conditions which is implemented into
the model of Zehe and Jackisch (2016) and to test this approach
against tracer data from plot-scale experiments carried out in
the Weiherbach catchment (Zehe and Flühler, 2001a).

2. Extend the model by implementing a macropore domain ac-
counting for preferential flow of water and solutes and related
exchange with the matrix domain. In contrast to the echorRD
model, we maintain the one-dimensional approach to keep the
computational expense moderate.

The structure of our LAST-Model (Lagrangian Soil Water and Solute
Transport) is hence similar to a double-domain approach. The main
asset is that flow and transport in both domains and their exchange
are described by the same stochastic physics and that the macropore
domain can be parameterized by observable macropore geometries.
This fact may help to overcome the limiting assumptions of the Darcy-
Richards and the advection-dispersion equation. The refined LAST-
Model is tested by extensive sensitivity analyses to corroborate its
physical validity. Further, it is also tested with four tracer infiltration
experiments at different study sites in the Weiherbach catchment
which are either dominated by well-mixed conditions (sites 23, 31) or
preferential flow in macropores (sites Spechtacker, 33). For comparison,
these four experiments are also simulated with HYDRUS 1-D.
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2.2 concept and implementation of the last-model

2.2.1 The Lagrangian model of Zehe and Jackisch (2016) in a nutshell

The basis of our development is the Lagrangian model of Zehe and
Jackisch (2016). It describes infiltration and water movement through
a spatially explicit one-dimensional soil domain dependent on the
effects of gravity and capillarity in combination with a spatial random
walk concept. Water is represented by particles with constant mass and
volume. The density of soil water particles in a grid element represents
the actual soil water content θ(t)(m3 m−3), which reflects in turn the
sum of the volume fractions of soil water that are stored in pores of
strongly different sizes. Water particles travel at different velocities
in these pores, which are characterized by the shape of the hydraulic
conductivity and water diffusivity curve. The curves are subdivided
into NB bins, starting from the residual moisture θr stepwise to the
actual moisture θ(t) using a step size of ∆θ = θ(t)−θr

NB
(Fig. 2.1). The

particle displacement within the bins is described by Eq. 2.1:

zi(t + ∆t) = zi(t)−
(

k(θr + i · ∆θ)

θ(t)
+

δD(θr + i · ∆θ)

δz

)
· ∆t + Z

√
2 · D(θr + i · ∆θ) · ∆t,

i = 1, ..., N,

(2.1)

where z is the vertical position (m), k the hydraulic conductivity
(m2 s−1), i the number of the current bin, D the water diffusivity
(m2 s−1), i.e. the product of the hydraulic conductivity k(θ) and the
slope of the soil water retention curve with the relation δψ

δθ (m), t
the simulation time (s), ∆t the simulation time step and Z a random,
uniformly distributed number in the range [-1,1]. The equation com-
prises two terms. The first one represents gravity-driven downward
advection of each particle based on the hydraulic conductivity, and
the second one is the diffusive term driven by capillarity. According
to Fig. 2.1 and Eq. 2.1, particles in coarse pores travel more rapidly
at a higher hydraulic conductivity due to wet conditions. In smaller
pores or during drier conditions the flow velocities are so small that
the particles are in fact immobile. This binning of particle velocities
and diffusivities also opens the opportunity to simulate rainfall in-
filtration under non-equilibrium conditions. To this end, infiltrating
rainfall event water is treated as a second type of particle, which
initially travels at gravity-driven, rapid velocities in the largest pore
fraction and experiences a slow diffusive mixing with the pre-event
water particles of the matrix during a characteristic mixing time. Test
simulations revealed that the Lagrangian model can simulate water
dynamics under equilibrium conditions in good accordance with a
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Darcy–Richards approach for three different soils.
For a detailed description of the underlying model concept and the
derivation of the equations, see the study of Zehe and Jackisch (2016).

Figure 2.1: Concept of particle binning. All particles within a grid element
are subdivided into bins (red rectangles) of different pore sizes.
Depending on their related bin, the particles travel at different
flow velocities.

2.2.2 Representation of solute transport in the LAST-Model

In a first step we implement a routine for solute transport into the
particle model by assigning a solute concentration C (kg m−3) to each
particle. This implies that a particle carries a solute mass, which is
equal to its concentration times its volume. Due to the particle move-
ments through the matrix domain, the dissolved mass experiences
advective transport in every time step. Diffusive mixing among all
particles is calculated after each displacement step by summing up
the entire solute mass in a grid element and dividing it by the number
of all present water particles. The underlying assumption of perfect
mixing among all particles in a grid element requires a diffusive mix-
ing time corresponding to the molecular diffusion coefficient, which
is smaller than the time step ∆t. The latter is ensured by a sufficiently
fine subdivision of the soil matrix.

2.2.3 The macropore domain and representation of preferential flow

The second and main model extension is the implementation of a
one-dimensional preferential flow domain considering the influence
of macropores on water and solute dynamics. This requires four main
steps.

1. Design of a physically based structure of the preferential flow
domain
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2. Conceptualization of the infiltration and partitioning of water
into the two domains

3. Description of advective flow in the macropores

4. Conceptualization of water and tracer exchange between the
macropore and the matrix domain

2.2.3.1 The preferential flow domain

We define a one-dimensional macropore or preferential flow domain
(pfd) which is surrounded by a one-dimensional soil matrix domain
with vertically distinct boundaries. In line with other Lagrangian
models, we represent water as particles with constant mass and vol-
ume corresponding to their domain affiliation. As the vertical extent
and volume of the pfd are much smaller than those of the matrix
domain, the corresponding particles must be much smaller to ensure
that an adequate number of particles travel within the pfd for a valid
stochastic approach.

The pfd comprises a certain amount of macropores. Each macro-
pore has the shape and structure of a straight circular cylinder with
a predefined length LM (m) and diameter dmac (m) containing
spherically shaped particles (Fig. 2.2a). Two of the most important
geometrical properties of the pfd are the macropore diameter and the
total number of macropores nmac (–), as they scale exchange fluxes
and determine several other characteristics like the total macropore
volume. The macropore number, lengths and diameters can be directly
measured in field experiments as described in Sect. 2.3.2. From these
observable parameters it is further possible to calculate additional pfd
parameters like the total volume, stored water mass at saturation, the
circumference and the flux rate. As we assume purely gravity-driven
flow, the flux rate, the hydraulic conductivity of the pfd kp f d (m2 s−1)
and the advective velocity of a particle within the pfd v (m2 s−1)are
assumed to be equal and can be calculated by the diameter as also
described in Sect. 2.3.2.

Our one-dimensional approach can of course not account for the
lateral positions of the macropores, but the pfd allows a depth
distribution of macropores, which is important for calculating the
depth-dependent exchange with the matrix (Sect. 2.2.3.4). To calculate
the water content and tracer concentrations, the macropores of the pfd
are vertically subdivided into grid elements of a certain length dzp f d
(m). Therefore, water contents and solute concentrations are regarded
as averaged over these grid elements. Within a grid element of a
macropore we assume cubic packing of a number of particles N (cf.
Fig. 2.2a), each having a mass mP (kg) which is derived from the total
water mass stored in a macropore when fully saturated. Based on this
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mass and the water density, the pfd particles are also geometrically
defined by a diameter DP (m) and volume VP(m3). In a cubic packing
the particles are arranged in the way that the centres of the particles
form the corners of a cube. The concept of cubic packing facilitates
the calculation of the proportion of particles having contact with the
lateral surface of a grid element. The rectangle in Fig. 2.2a describes
such a lateral surface of a grid element, with a height corresponding
to the grid element length dzp f d and the circumference C (m) as length,
which can be obtained when a macropore grid element is cut open
and its surface is laid flat. The number of particles which can be
packed into this rectangle then have contact with the lateral surface
of this grid element. The proportion of these contact particles to the
total number of particles roughly corresponds to the hydraulic radius
scaling the wetted cross section with the wetted contact area in a
macropore. Within the mixing process only the contact particles are
able to infiltrate via the interface into the soil matrix.

Figure 2.2: Conceptual visualization of (a) the macropore structure and cubic
packing of particles in the rectangle of a cut-open and laid-flat
grid element cylinder (cf. Sect. 2.2.3.1), (b) the macropore filling
with gradual saturation of grid elements, exemplarily shown for
three points in time (t1–t3) whereby at each time new particles
(differently coloured related to the current time) infiltrate the
macropore and travel into the deepest unsaturated grid element
(cf. Sect. 2.2.3.3) and (c) the macropore depth distribution and
diffusive mixing from macropores into a matrix (cf. Sect. 2.2.3.4).

2.2.3.2 Infiltration and partitioning of water into the two domains

As a one-dimensional approach does not allow an explicit, spatial
distribution of the incoming precipitation water over the soil surface,
we use an implicit, effective infiltration concept. The infiltration and
distribution of water are controlled by the actual soil moisture and the
flux densities driven by the hydraulic conductivity and the hydraulic
potential gradient of the soil matrix as well as by friction and gravity
within the macropores (Weiler, 2005; Nimmo, 2016; Jackisch and Zehe,
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2018). For example, a soil matrix with a low hydraulic conductivity
increases the proportion of water infiltrating the macropores as it
preferentially uses pathways of low flow resistance.

In our model, we use a variable flux condition at the upper boundary
of the soil domain dependent on the precipitation intensity. Incoming
precipitation water accumulates in an initially empty fictive surface
storage from which infiltrating water masses and related particle
numbers are calculated. To this end, we distinguish several cases. In
Case 1, the top soil grid elements of the soil matrix and the pfd are
initially unsaturated and the infiltration capacity of the soil matrix is
smaller than the incoming precipitation flux density. Water infiltrates
the soil matrix and the excess water is redistributed to the pfd and
infiltrates it with a macropore-specific infiltration capacity. Case 2

applies when the top matrix grid element is saturated and water
exclusively infiltrates the pfd until all macropores are also saturated.
Case 3 occurs when both the top matrix layer and the pfd are satu-
rated, leading to an accumulation of precipitation water in the surface
storage. As soon as the water contents in the first soil matrix grid
element and in the pfd are subsequently decreasing due to downward
water flow or drainage of the macropores, infiltration again occurs
according to Case 1. The incoming precipitation mass (mrain) and the
infiltrating water masses into the matrix (mmatrix) and the pfd (mp f d)
are calculated with Eqs. 2.2 - 2.4. Please note that these equations
present infiltrating masses and not fluxes because the model generally
works with discrete particles and their masses.

mrain = qrain · ρw · ∆t · A (2.2)

mmatrix =

(
km1 + ks

2

)
·
(

ψ1 − ψ2

dz
+ 1
)
· A · ρw · ∆t (2.3)

mp f d = kp f d · π ·
(

dmac
2

)2

· ρw · ∆t · nmac, (2.4)

where qrain (m s−1) is the precipitation flux density or the intensity,
km1 (m s−1) the actual hydraulic conductivity of the first grid element
of the matrix, ks (m s−1) the saturated hydraulic conductivity of the
matrix and ψ1 − ψ2 (m) the matric potential difference between the
surface and the first grid element right beneath the surface, dz (m)
the grid element length in the matrix domain (0.1 m), kp f d (m s−1)the
saturated hydraulic conductivity of a macropore (cf. Sect. 2.3.2), dmac
(m) the diameter of a macropore and nmac (–) the total number of
macropores within the pfd, ρw (kg m−3) the water density, ∆t (s) the
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simulation time step and A (m2) the plot area. According to Eq. 2.3,
the infiltration rate into the matrix is based on Darcy’s law, and thus
we are generally able to account for an extra pressure due to a ponded
surface, e.g. in Case 3. But in our simulation cases, ponding heights
are small and have only a marginal effect. After the precipitation
water has infiltrated into the two domains, the masses are converted
to particles which are initially stored in the first grid elements of the
matrix and pfd. They are now ready for the displacement process.

2.2.3.3 Advective flow in the macropores

In the pfd, we assume a steady-state balance between gravity and
dissipative energy loss at the macropore walls. This implies purely
advective flow characterized by a flow velocity v which can be inferred
from either tracer or infiltration experiments on macroporous soils as
described by Shipitalo and Butt (1999), Weiler (2001) and Zehe and
Blöschl (2004). The particle displacement in our pfd is described by
Eq. 2.5:

∆z = v · ∆t. (2.5)

As all particles in the pfd travel at the same velocity, their displacement
depends on the time step. Generally, our model can work with variable
time stepping as Lagrangian approaches are not subject to time step
restrictions or numerical stability criteria. Here, we select the time
step such that the particle displacement per time step equals the
maximum depth of the pfd, and subsequently excess particles are
shifted upwards to the deepest unsaturated grid element. In this
way, we gradually fill the macropores from the bottom to the top,
comparable to the filling of a bottle with water. This simple volume-
filling method was applied before in other models, e.g. in the SWAP
model of van Dam et al. (2008) or in the study of Beven and Clarke
(1986). Fig. 2.2b shows an example of the macropore-filling concept:
in each of the three points in time (t1–t3), new particles, shown by the
different colours, infiltrate the macropore, and subsequently they are
displaced with ∆z to the bottom of the macropore, initially saturating
the deepest grid element (t1). In the following points in time t2 and t3
the new particles do not fit into the respective saturated grid elements
anymore and are then shifted to the next deepest unsaturated grid
element. In line with the matrix, particle densities are calculated in
each grid element to obtain the actual soil water content and tracer
concentrations of the pfd.
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2.2.3.4 Water and tracer exchange between the macropore and the matrix
domain

Commonly, macropore–matrix interactions are challenging to observe
within field experiments. One approach is to evaluate the isotopic
composition of water in the two domains (Klaus et al., 2013). In theory
it is often assumed that the interactions and water dynamics at the
interface between macropores and the matrix are mainly controlled
by the matric head gradients and the hydraulic conductivity of both
domains, which depend on an exchange length and the respective
flow velocities (Beven and Germann, 1981; Gerke, 2006).
Our model approach is also based on these assumptions as illustrated
in Fig. 2.2c. We restrict exchange to the saturated parts of the pfd,
assuming downward particle transport to be much larger than the
lateral exchange, and we neglect diffusive exchange between solutes in
the matrix and the pfd. We are aware that these simplifications might
constrain the generality of our model. For instance, we also neglect the
effect of a reverse diffusion from the matrix into the macropores. This
effect can influence water and solute dynamics when the propagation
of a pressure wave pushes matrix water into empty macropores,
mainly in deeper-saturated matrix areas (Beven and Germann, 2013).
We rely on those simplifications (a) to keep the model simple and
efficient and (b) because the focus of our model is on unsaturated soil
domains and during rainfall-driven conditions the macropores are
most of the time largely filled due to their small storage volume.

The distribution of different macropore depths and the definition
of distribution factors can be derived from datasets containing in-
formation on macropore networks observed in field experiments as
described in Sect. 2.3.2. Based on these datasets, the current version
of our model divides the total amount of macropores nmac in the
pfd into three depths. To this end, the total number is multiplied by
a distribution factor f for big ( fbig), medium ( fmed) and small ( fsml)
macropores (cf. Fig. 2.2c).

The saturated grid elements (blue filled) of the largest macropores
are coupled to the respective grid elements of the medium and small
macropores. In this example, the red and black framed grid elements
of the three macropore sizes are coupled due to their saturation state
and depth order. This coupling ensures a simultaneous diffusive
water flow out of the respective grid elements of all three macropore
depths. The mixing fluxes qmix (m s−1) in the actual grid elements are
calculated by Eq. 2.6:

qmix =
2 · ks · kmi

(ks + kmi)
· ψi

dmac
· C · dzp f d. (2.6)



2.2 concept and implementation of the last-model 31

Thus, diffusive mixing fluxes are calculated with the harmonic mean
of the saturated hydraulic conductivity of the matrix ks (m s−1) and the
current hydraulic conductivity of the respective matrix grid element
kmi (m s−1) multiplied by the relation of the matric potential ψi (m)
of the actual matrix grid element and the macropore diameter dmac
(m) as exchange length and the circumference C (m) of the macropore
grid element. We use the harmonic mean here because we assume
a row configuration at the calculation of the lateral diffusive mixing
fluxes between macropore and matrix as there is a vertical interface
between the two domains.

The mixing masses are again converted into particle numbers with the
two different particle masses. Due to the higher masses of the matrix
particles a much lower number of particles enters the matrix. This
has to be taken into account by choosing an adequate number of total
particles present in the matrix, i.e. at least 1 million at moderately
saturated hydraulic conductivities. In addition, it is ensured that the
number of particles leaving a grid element of the pfd is lower than the
maximum possible number of particles having contact with the lateral
surface (cf. Sect. 2.2.3.1) dependent on its current soil water content.
Please note that up to now our model has worked with a no-flow
condition at the lower boundary of the pfd, but the model structure
is generally capable of adding an additional diffusive drainage with
particles leaving the macropores at their lower boundary.
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2.3 model benchmarking

2.3.1 Evaluation of the solute transport and linear mixing approach during
well-mixed matrix flow

The bases of the first evaluation of our solute transport and linear
mixing approach are data from tracer experiments conducted by
Zehe and Flühler (2001a) in the Weiherbach catchment to investigate
mechanisms controlling flow patterns and solute transport. The Wei-
herbach Valley is located in the southwest of Germany and has a total
extent of 6.3 km2. The basic geological formations comprise Triassic
Muschelkalk marl and Keuper sandstone covered by Pleistocene Loess
layers with a thickness of up to 15 m. The hillslopes exhibit a typical
Loess catena with erosion-derived Colluvic Regosols at lower slopes
and Calcaric Regosols or Luvisols at the top and mid slopes. Land use
is dominated by agriculture. For further details on the Weiherbach
catchment, please see the work of Plate and Zehe (2008).

In this catchment, a series of irrigation experiments with bromide as
tracer were performed at 10 sites. At each site, a plot area of 1.4 m x
1.4 m was defined and the initial soil water content and the soil hy-
draulic functions were measured. The plot area was then irrigated by
a block rainfall of approx. 10 mm h−1 with a tracer solution containing
0.165 kg m−1 bromide. After 1 d, soil profiles were excavated and soil
samples were collected in a 0.1 m x 0.1 m grid down to a depth of 1 m
and their corresponding bromide concentrations measured.

Thus, in every 10 cm soil depth interval, 10 samples were taken
and, for the comparison with our one-dimensional simulation re-
sults, the bromide concentrations were averaged over each sample
depth. Note that the corresponding observations provide the tracer
concentration per dry mass of the soil Cdry, while the LAST-Model
simulates concentrations in the water phase Cw. We thus compare
simulated and observed tracer masses at the respective depths. More
details on the tracer experiments can be taken from Zehe and Flühler
(2001a,b). For the evaluation of our solute transport and linear mixing
approach, we select the two sites 23 and 31, where flow patterns reveal
a dominance of well-mixed matrix flow without any considerable
influence of macropores. Thus, we use the LAST-Model without an
active pfd for the simulations at the study sites 23 and 31.

The soil at the two sites can be classified as Calcaric Regosol (WRB,
2014). In line with the experiments, our model uses a spatial soil
matrix discretization of 0.1 m and the soils initially contain in total
1 million water particles but with no tracer masses. Initial soil water
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contents and all further experimental and model parameters as well
as the soil properties at these sites are listed in Tab. 2.1.

2.3.2 Parameterization and evaluation of the preferential flow domain

In a next step, our pfd model extension is again evaluated with the
help of the results of two additional field tracer experiments of Zehe
and Flühler (2001a). This time, we select study sites Spechtacker
and 33, which show numerous worm burrows inducing preferential
flow. The sites are also located in the Weiherbach catchment and the
sprinkling experiments were equally conducted with the application
of a block rainfall containing bromide on a soil plot. The soils can be
classified as Colluvic Regosol (WRB, 2014).

Additionally, the patterns of the worm burrows were extensively
examined at these study sites. Horizontal layers at different depths of
the vertical soil profiles were excavated (cf. introduction of van Schaik
et al., 2013) and in each layer the amount of present macropores
counted as well as the diameters and depths measured. These detailed
measurements provided an extensive dataset of the macropore net-
work at study sites Spechtacker and 33. Based on this dataset, we can
obtain those data we need for the derivation of a mean macropore
diameter, macropore depth distribution and distribution factors. We
focus on a mean macropore diameter of 5 mm at the Spechtacker
site because worm burrows with a diameter range of roughly 4–6

mm are dominant here, and at site 33 we select a mean diameter of
6 mm. Fig. 2.3 shows the mean number of macropores with these
diameters at each depth at both sites. Based on this distribution, we
can identify and select three considerable macropore depths at the
Spechtacker site (0.5, 0.8 and 1.0 m) and two macropore depths at site
33 (0.6 and 1.0 m) (cf. Tab. 2.1). At these depths, we count circa 11, 3

and 2 macropores (nmac = 16) at the Spechtacker site as well as 30

and 16 macropores (nmac = 46) at site 33, respectively. With these
distributions we are able to calibrate our distribution factors f in a
way that a multiplication of the total number of macropores by these
factors results in the correct number of macropores at the respective
depths. The obtained distribution factors are listed in Tab. 2.1.

Moreover, Zehe and Flühler (2001a) measured saturated water flow
through a set of undisturbed soil samples containing macropores
of different radii at the Spechtacker study site with the assumption
that flow through these macropores dominated. In line with the law
of Hagen and Poiseuille, they found a strong proportionality of the
flux through the macropores to the square of the macropore radius,
while frictional losses were 500 to 1000 times larger. This dependence
of the flux rate on the macropore radius can be described by the
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Figure 2.3: Distribution of macropore numbers with average diameters of
5 mm (Spechtacker) and 6 mm (site 33) along the vertical soil
profiles at the two study sites. The arrows highlight the deriva-
tion of the macropore numbers at different depths (cf. Sect. 2.3.2),
whereby “avg.” means that at these depths the macropore num-
bers are averaged because there was no clear macropore pattern
observed.

linear regression shown in Fig. 2.4. Based on this linear regression,
the hydraulic conductivity of the macropores kp f d was calculated as a
function of the macropore radius dmac

2 (termed rM in Zehe and Flühler,
2001a) as we assume the hydraulic conductivity kp f d is equal to the
flux rate qM of the macropore (Eq. 2.7):

kp f d = 2884.2 ·
(

dmac
2

)2

. (2.7)

For more details on the two study sites and their macropore network,
see also the studies of Ackermann (1998) and Zehe (1999). Here, we
select a spatial pfd discretization of 0.05 m and assume that macrop-
ores initially contain no particles and hence also no water or tracer
masses. The total possible number of particles, which can be stored
in the pfd is 10,000 particles. All further experimental and simulation
parameters, soil properties as well as information about the macropore
network at sites Spechtacker and 33 are listed in Tab. 2.1.
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Figure 2.4: Linear regression of the flux rate within the macropore on the
macropore radius (dmac/2) at the Spechtacker study site (edited
figure, adopted from Zehe and Flühler, 2001a). This relation was
derived from measurements of saturated flow through undis-
turbed soil columns containing worm burrows.

2.3.3 Simulations with HYDRUS 1-D

The simulations with HYDRUS 1-D are performed with the same soil
properties, model setups and initial conditions introduced in Sect.
2.3.1 and 2.3.2 as well as shown in Tab. 2.1. The simulations of the well-
mixed sites 23 and 31 are performed with a van Genuchten–Mualem
single-porosity model for water flow and an equilibrium model for
solute transport. For the simulations at the preferential flow sites
Spechtacker and 33 we use dual-porosity models for water flow
(“Durner, dual van Genuchten–Mualem”) and solute transport (“Mo-
bile–Immobile Water”). This means HYDRUS assumes two differently
mobile domains to account for preferential flow. The theory of that
approach describes preferential flow in the way that the effective flow
space is decreased due to the immobile fraction and thus the same
volume flux is forced to flow through this decreased flow space, result-
ing in higher porewater velocities and consequently also in a deeper
percolation of water and solutes (Šimůnek and Genuchten, 2008). For
the parameterization of these two domains we select an immobile soil
water content ThImob. of 0.2 m3 m−3. We hence assume that about 80

%– 90 % of the total soil water amounts at the two sites are stored in
the matrix and are therefore in fact immobile compared to the remain-
ing 10 % – 20 %, which are assumed to flow through macropores. Zehe
and Jackisch (2016) elaborated this rate of an immobile fraction and a
mobile fraction in the fine-grained soils of the Weiherbach catchment.
For all simulations we choose an atmospheric condition with a surface
layer and variable infiltration fluxes at the upper boundary as well as
a free drainage condition at the lower boundary.
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2.3.4 Sensitivity analyses of selected parameters

The sensitivity analyses of the model with the pfd extension are con-
ducted by varying several parameters describing the soil matrix and
the pfd in a realistic, evenly spaced value range. To this end, the
saturated hydraulic conductivity of the matrix ks, the diameter dmac
and the number nmac of the macropores are the selected parameters,
which are deemed to be most sensitive and crucial for the model
behaviour and the simulation results. The probably most sensitive
parameter is ks as it controls the infiltration capacities of both do-
mains, the displacement within the soil matrix as well as the diffusive
mixing fluxes. Besides the saturated hydraulic conductivity of the
matrix, we also assume that the total number and diameter of the
macropores are probably of great importance for the model results
because they are crucial for the development of the new pfd (cf. Sect.
2.2.3.1). Moreover, based on the derived three depths and distribution
factors at the Spechtacker site (cf. Sect. 2.3.2), we arbitrarily select
different configurations of the macropore depth distribution and the
distribution factors to evaluate the behaviour of the model related to
various numbers of macropores at different depths. The depth dis-
tribution of macropores thereby comprises deep (Configuration 1),
medium (Configuration 2) and shallow (Configuration 3) distributions.
At the distribution factors there are four different configurations. A
realistic distribution comprising more small than big macropores is
represented by Configurations A and D, a homogeneous distribution
is shown by Configuration B and a rather uncommon distribution
with more big than small macropores is illustrated by Configuration
C. All parameter ranges and the detailed configurations of the sensi-
tivity analyses are listed in Tab. 2.2. All model runs of the sensitivity
analyses are performed at the Spechtacker site using 22 mm of rainfall
in 140 min with a subsequent drainage duration of 1 d. Additional
parameters like soil properties, antecedent moisture and concentra-
tion states, and bromide concentration of precipitation water remain
constant (cf. Tab. 2.1).
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Table 2.1: Simulation and tracer experiment parameters (average values) as
well as soil hydraulic parameters following Schäfer (1999) at sites
23, 31, Spechtacker and 33, where ks is the saturated hydraulic
conductivity of the matrix, θs the saturated soil water content,
θr the residual soil water content, α the inverse of an air entry
value, n a quantity characterizing pore size distribution, s the
storage coefficient and ρb the bulk density. In general, all these
observable parameters can be freely adjusted in our model and
are hence independent of other variables. All other calculated
parameters presented in the text are dependent on these observable
parameters.

Parameter Site 23 Site 31 Spechtacker Site33

Irrigation duration (hh:mm) 02:10 02:10 02:30 02:20

Irrigation intensity (mm h−1) 10.36 10.91 11.1 9.7

Br concentration of irrigation water (kg m−3) 0.165

Recovery rate (%) 77 76 95 96

Initial soil moisture in 15 cm (%) 20.5 25.3 27.4 22.3

Initial soil moisture in 30 cm (%) 25.3 15.9 - -

Initial soil moisture in 45 cm (%) 28.1 13 - -

Initial soil moisture in 60 cm (%) 29.6 13.4 - -

Simulation time t (s) 86,400 (= 1 d)

Time step ∆t (s) 120

Particle number in matrix (-) 1 million

Particle number in pfd (-) - - 10 k 10 k

Soil type Calcaric Calcaric Colluvic Colluvic

Regosol Regosol Regosol Regosol

ks (m s−1) 0.5 x 10−7
0.5 x 10−6

2.5 x 10−6
2.5 x 10−6

θs (m3 m−3) 0.44 0.44 0.4 0.4

θr (m3 m−3) 0.06 0.06 0.04 0.04

α (m−1) 0.4 0.4 1.9 1.9

n (-) 2.06 2.06 1.25 1.25

s (-) 0.26 0.45 0.38 0.38

ρb (kg m−3) 1300 1300 1500 1500

nmac (-) - - 16 46

dmac (m) - - 0.005 0.006

Grid element length in pfd dzp f d (m) - - 0.05 0.05

mac. big (m) - - 1 1

mac. med (m) - - 0.8 0.6

mac. sml (m) - - 0.5 -

fbig (-) - - 0.13 0.35

fmed (-) - - 0.19 0.65

fsml (-) - - 0.68 -
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Table 2.2: Parameter ranges of the sensitivity analyses and configurations of
macropore depth distribution and distribution factors (cf. Fig. 2.10)

Parameter Value range

ks (m s−1) 10−6 - 10−5 (step: 1 x 10−6)

dmac (m) 0.0035 - 0.008 (step: 0.0005)

nmac (-) 11 - 20 (step: 1)

mac. depth distr. config. 1 2 3

mac. big (m) -1 -0.8 -0.6

mac. med (m) -0.8 -0.6 -0.4

mac. sml (m) -0.6 -0.4 -0.2

distr. factors config. A B C D

fbig (-) 0.13 0.3 0 0.5

fmed (-) 0.19 0.3 0.2 0.3

fsml (-) 0.68 0.3 0.8 0.2
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2.4 results

2.4.1 Simulation of solute transport under well-mixed conditions

The well-mixed sites 23 and 31 show a high similarity due to their
spatial proximity (Fig. 2.5a, b). The shape and courses of the simulated
tracer mass profiles coincide well with the observed ones over the
entire soil domain, with RMSE values of 0.23 and 0.28 g, respectively.
The observed values are within the uncertainty range, represented by
the rose shaded areas. This area reflects the uncertainty arising from
a variation of ks values of the soil matrix in the observed range of
10−7–10−6 m s−1 at site 23 and 10−6–10−5 m s−1 at site 31.

Figure 2.5: Final simulated and observed vertical bromide mass profiles of
the matrix at the two well-mixed sites 23 and 31 (a, b) with
RMSE values simulated with the LAST-Model. In comparison,
final simulated and observed vertical bromide mass profiles at the
two well-mixed sites 23 and 31 (c, d) with RMSE values simulated
with HYDRUS 1-D. The rose shaded area shows the uncertainty
area of measured ks values.

Note that in the experiments the tracer mass was not directly measured
at the soil surface, but the observations represent averages across 10

cm depth increments, starting at a depth of 5 cm. A comparison of
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the simulated masses close to the surface is thus not meaningful. This
difference between simulated and observed profiles near to the surface
suggests that the coarse resolution of the sampling grid is a likely
reason for the relatively low recovery rates of 77 % and 76 % at the two
sites (cf. Tab. 2.1). Overall, we conclude that manipulating ks within
the observed uncertainty leads to an unbiased simulation ensemble
compared to the observed tracer data at matrix-flow-dominated sites.

2.4.2 Evaluation of the preferential flow domain

Our model with the new preferential flow domain is tested against
two tracer experiments on macroporous soils at sites Spechtacker
and 33. At the Spechtacker site, the simulated and observed tracer
mass distributions are generally in good accordance (Fig. 2.6a) with
a RMSE of 0.3 g, and again the values are within the uncertainty
range. In this case, the rose area shows the standard deviation of
measured macropore numbers (±4) and diameters (±1 mm) from
the mean values (cf. Tab. 2.1) at the Spechtacker site. Especially in
deeper soil regions from 0.35 to 1 m, the shape and the magnitude
of values correspond well. In the upper soil parts from 0.05 to 0.15m
the model slightly overestimates the tracer masses. Between 0.15 and
0.35 m soil depth both profiles exhibit the greatest differences and
even contrary courses. In general, the simulated mass profile at site
33 corroborates the results of the Spechtacker site (Fig. 2.6b). The
simulated and observed tracer masses are also in good accordance
with a RMSE value of 0.15 g. In contrast to the Spechtacker site,
varying the macropore numbers and diameters within the standard
deviation (±4; ±1 mm) has just slight effects on the mass profile at
this site. However, especially in deeper soil regions from 0.6 to 1m the
values correspond well, while the greatest differences occur between
0.25 and 0.45m as the simulated mass profile is not able to completely
depict the observed hump in this area.
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Figure 2.6: Final simulated and observed vertical bromide mass profiles of
the matrix at the two preferential flow sites Spechtacker and 33

(a, b) with RMSE values simulated with the LAST-Model. The
rose area shows the standard deviation of measured macropore
numbers and diameters from the mean values at site Spechtacker
(nmac = 16, dmac = 5 mm) and site 33 (nmac = 46, dmac = 6

mm) (cf. Tab. 2.1). In comparison, final simulated and observed
vertical bromide mass profiles at the two preferential flow sites
Spechtacker and 33 (c, d) with RMSE values simulated with
HYDRUS 1-D. The rose mass profile is simulated with a dual-
porosity approach to account for preferential flow (cf. Sect. 2.3.3)
and, for comparison, the red mass profile is simulated with an
equilibrium approach.
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2.4.3 Comparison with HYDRUS 1-D

The mass profiles at the well-mixed sites 23 and 31 simulated with
HYDRUS 1-D show similar patterns and are in accordance with the
observed profiles with RMSE values of 0.1 g at site 23 and 0.37 g at
site 31 (Fig. 2.5c, d). Especially at site 23 the simulated mass profile
is centred within the uncertainty range of the measured ks values
(rose shaded area; cf. Sect. 2.4.1). At site 31, HYDRUS 1-D slightly
overestimates the tracer masses over the entire soil domain, but here
the shapes of the profiles also coincide well. In contrast, at the two
preferential flow sites Spechtacker and 33 the mass profiles simulated
with HYDRUS 1-D and the dual-porosity approach (rose profile) are
not in good accordance with the observed profiles with RMSE values
of 0.46 and 0.53 g, respectively (Fig. 2.6c, d). In the first 40 cm there is
an overestimation of the simulated tracer masses, while in the deeper
soil regions HYDRUS 1-D is not able to reproduce well the tail of the
mass profiles with their heterogeneous courses. A comparison with
the results of HYDRUS with an equilibrium model (red profile) reveals
that the dual-porosity approach is generally able to predict a deeper
percolation of solutes through the mobile domain.

2.4.4 Sensitivity analyses

2.4.4.1 Sensitivity to saturated hydraulic conductivity ks

The concentration profile range of the matrix reveals a strong sensitiv-
ity of the simulated profiles to ks when we neglect macropores (Fig.
2.7a). Especially in the upper soil part, the differences arising from
low and high ks values are clearly detectable. Lower values imply that
the soil matrix has a smaller infiltration capacity and therefore less
water is infiltrating the matrix. Consequently, without macropores so-
lutes do not penetrate into depths greater than 0.2 m. The presence of
macropores significantly alters the sensitivity of the concentration and
soil moisture profiles (Fig. 2.7b, c). Again, the profile shapes clearly
depend on the ks values, but now water and solutes reach greater
depths of down to 0.8 m by flowing through the macropores. At low
ks values (red curve) the reduced matrix infiltration capacity leads
to an increased infiltration of water and solute into the macropores.
Subsequently, the solutes bypass the matrix until they diffusively mix
into the matrix at greater depths. In contrast, at high ks values the
matrix infiltration capacity is increased. This leads in turn to a reduced
infiltration into the macropores, and instead the majority of water and
solute masses infiltrate the matrix and remain in the top soil. This
effect is reflected by the blue curves in Fig. 2.7 with higher solute
concentrations near the soil surface and decreased concentrations at
greater depths in comparison to low ks values.
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Figure 2.7: Final simulated bromide concentration (Cs) and soil moisture
(theta) profiles of the soil matrix (a) without and (b, c) with
macropores at different ks values. The blue area shows the possi-
ble range of simulated profiles with different ks values.

Finally, the yellow curves in Fig. 2.8 show the proportion of solutes
within the matrix, which originates from the macropores. In general,
at all ks values and depths below 0.2 m the entire solute amount
within the matrix travelled through the macropores. Differences are
restricted to the upper soil part. Here the largest proportion of so-
lutes has directly infiltrated the matrix without having been in the
macropores before. The pfd proportion decreases from low to high ks

values, confirming again the important influence of the ks values on
the infiltration capacities and the distribution of water and solutes.

Figure 2.8: Final bromide concentration profiles at (a) low, (b) medium and
(c) high ks values and the proportion of solutes which originate
from the macropores.
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2.4.4.2 Sensitivity to macropore number nmac and diameter dmac

The model results sensitively respond to a variation of macropore
diameters. In the upper soil part, the solute concentrations and mois-
ture are slightly higher, when macropores are small (Fig. 2.9a, b). In
this case, the macropores collect only smaller amounts of water and
solutes and the majority has directly infiltrated the soil matrix. Wider
macropores transport larger amounts of water and solutes to greater
depths, where they diffusively mix into the subsoil matrix. This deep
redistribution is reflected by the characteristic profile shapes and the
higher concentration and moisture values in the deep soil.

Figure 2.9: Final simulated bromide concentration (Cs) and soil moisture
(theta) profiles of the soil matrix at different macropore diameters
(dmac) (a, b) and macropore numbers (nmac) (c, d).

Furthermore, the influence of different macropore numbers on the
concentration and moisture profiles is marginal (Fig. 2.9c, d). This
implies that the model does not respond to every geometrical pa-
rameter equally sensitively. The macropore number scales less than
the diameter at the calculation of the further macropore measures.
However, this could change when working with higher precipitation
intensities.
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Figure 2.10: Final simulated bromide concentration (Cs) and soil moisture
(theta) profiles of the soil matrix at three different macropore
depth distribution configurations (a, b) and at four different
distribution factor configurations (c, d) (cf. Tab. 2.2).

Simulations with different macropore depth configurations again re-
veal a clear sensitivity of the model (Fig. 2.10a, b). A steady decrease in
the deep redistribution of the concentration and moisture values from
the deep (Configuration 1) to shallow depth configuration (Configura-
tion 3) is obvious. Shallow macropores distribute the total amount of
water and solutes mainly in the upper soil part, while deep macrop-
ores relocate this distribution to greater depths of down to 1 m. The
results of the distribution factor configurations again corroborate the
previous findings (Fig. 2.10c, d). Configuration B produces a homo-
geneous solute concentration profile from 0.2 m to the total depth.
Both more realistic Configurations A and D comprise more small than
big macropores. This increased number of small macropores ensures
higher water and solute amounts in the first 0.5 m of the soil matrix
due to an enhanced mixing in this area. Finally, the rather uncommon
Configuration C with more big than small macropores shows converse
results. Solute concentrations and moisture contents are strongly in-
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creased at great depths from 0.7 to 1 m because of increased diffusive
mixing fluxes in these parts.
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2.5 discussion and conclusions

We extend the Lagrangian model of Zehe and Jackisch (2016) with
routines to consider transport and linear mixing of solutes within
the soil matrix as well as preferential flow through macropores and
related interactions with the soil matrix. The evaluation of the model
with data of tracer field experiments, the comparison with results of
HYDRUS 1-D and the sensitivity analyses reveal the feasibility and
physical validity of the model structure as well as the robustness of
the solute transport and linear mixing approach. The LAST-Model
provides a promising framework to improve the linkage between field
experiments and computer models to reduce working effort and to
improve the understanding of preferential flow processes.

2.5.1 New routine for solute transport and diffusive mixing

The initially performed simulations of the bromide mass profiles at
the two well-mixed sites 23 and 31 support the validity of the straight-
forward assumptions of the underlying solute transport routine with
its perfect mixing approach (Fig. 2.5a, b). In the presented version, our
mixing routine works with a short mixing time to ensure an instanta-
neous mixing between event and pre-event particles to account for the
well-mixed conditions at the selected sites. However, the model allows
us to select longer mixing times or even a distribution of various
mixing times to consider imperfect mixing among different flow paths.

The simulation results at the well-mixed sites 23 and 31 are confirmed
by the commonly approved HYDRUS 1-D model. The simulated
tracer mass profiles and RMSE values of both models are in good
accordance at these sites (Fig. 2.5). The capability of predicting the
solute dynamics is hence a big asset of our approach, and it is a solid
base to realize the second model extension with the implementation
of the preferential flow domain.

2.5.2 Model extension to account for preferential flow in macropores

The results of the evaluation of the pfd extension show that our
model is furthermore capable of simulating tracer experiments on
macroporous soils and depicting well their observed one-dimensional
tracer mass profiles with the typical fingerprint of preferential flow
(Fig. 2.6a, b). Especially the tracer masses in the subsoil match well
between simulated and observed data. This corroborates our as-
sumptions concerning the macropore structure and the approach to
describing macropore–matrix exchange, which proved to be feasible
for predicting solute distribution patterns due to preferential flow
and related long transport lengths. In this context, we stress that the
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approach to simulating macropore–matrix exchange (cf. Fig. 2.2c) does
not rely on an extra leakage parameter, but follows the theory of de-
riving an effective diffusive exchange between the domains (cf. Eq. 2.6).

In contrast, the HYDRUS 1-D model performance is clearly infe-
rior and does not match the fingerprints of preferential flow in the
mass profiles at sites Spechtacker and 33 (Fig. 2.2c, d). Especially the
penetration of bromide through macropores into greater depths is
ignored by HYDRUS 1- D, although we selected dual-porosity models
for both water flow and solute transport (cf. Sect. 2.3.3). The better
performance of our LAST-Model at the two preferential flow sites com-
pared to HYDRUS is further reinforced by the RMSE values, which
are significantly different. The results imply that, when working with
a dual-porosity approach, HYDRUS and the underlying theory of two
differently mobile domains is indeed able to depict a generally deeper
penetration of solutes, but it is not sufficient to exactly simulate the
heterogeneous course and shape of the observed tracer mass profiles
in preferential flow-dominated soil domains.

The results of our LAST-Model mainly deviate from the observa-
tions in the upper soil parts. However, these deviations are within the
uncertainty ranges revealed by the sensitivity analyses (Figs. 2.7, 2.9).
Further, the model reveals difficulties in the simulation of bromide
masses between 0.15 and 0.35 m soil depth at the Spechtacker site (Fig.
2.6a). Possible reasons could be the influence of (a) lateral endogeic
worm burrows, which are completely unknown and not represented
in the model and (b) a nearby plough horizon. Both reasons result in
a disturbance of the soil structure, leading to an increased uncertainty
of soil properties in this region.

At site 33, our model is not able to sufficiently reproduce the hump
of the observed mass profile between 0.25 and 0.45 m soil depth (Fig.
2.6b). A possible explanation for this issue could be the fact that the
tracer experiment and the examination of the macropore network
were performed on different dates. It is likely that uncertainties arise
from this temporal discrepancy with a mismatch between observed
macropore geometries and recovered tracer patterns due to natural
soil processes as well as anthropogenic soil cultivation during this time
lapse. Another possible explanation could be the fact that up to now
the exchange has only been simulated for saturated parts of the pfd
(cf. Sect. 2.2.3.4) and hence the transport of solute masses from the pfd
into the matrix is delayed. A test of this idea requires a refinement of
the model in future research. Moreover, varying macropore numbers
and diameters in the range of the standard deviation reveals just
slight effects on the simulated mass profile at site 33 and is thus
less sensitive compared to the results at the Spechtacker site. The
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reason for this phenomenon is probably the higher total number of
macropores (nmac = 46) and thus a larger macropore volume at site 33.
In relation to this larger volume, the variation of macropore numbers
and diameters in the quite narrow range of the standard deviation
(±4, ±1 mm) has only a minor influence on the total water and tracer
masses transported through the macropore network and thus on the
resulting mass profile at site 33.

Note that the conversion of solute masses into an integer num-
ber of particles results in small errors, leading to a small amount of
solutes not entering the system and remaining in the fictive surface
storage. To mitigate this model effect, a high number of total particles
present in the matrix is necessary, at least 1 million. Besides many
displacement steps of each particle, the total number of particles is
important to render the random walk approach statistically valid
(Uffink, 1990), although too high particle numbers will decrease the
computational efficiency. Thus, we conclude that our extension of the
Lagrangian particle model of Zehe and Jackisch (2016) is a promising
tool for a straightforward one-dimensional estimation of non-uniform
solute and water dynamics in macroporous soils. However, before
the suitability of our model approach to simulate preferential flow
of non-interacting tracers is generalized, further field experiments
on a variety of differently structured soils are necessary. In the pre-
sented model version, we assume that a macropore distribution with
maximally three different depths is a sufficient approximation of
the observed macropore networks at study sites Spechtacker and 33

(cf. Sect. 2.3.2, Fig. 2.3). Nevertheless, as a variable macropore depth
distribution might be observed at other sites, the implementation of
the macropore depth distribution must be kept flexible for other soils
in future model parameterizations. Besides the parameterization with
experimental data, it is also possible to set up our model by using
pedotransfer functions for the soil hydraulic properties and to vary
the parameters of the pfd by inverse modelling, which needs prior
knowledge of the depth of typical macropore systems (e.g. worm
burrow networks) and literature data to parameterize macropore flow
velocities. This method would reduce time and the amount of work,
but it could result in equifinality as shown by Klaus and Zehe (2010)
or Wienhöfer and Zehe (2014).

Some of our assumptions, like the macropore geometry, the sim-
ple volume filling or the depth distribution of macropores, were
applied in a similar way in dual-porosity models before (Beven and
Germann, 1981; Workman and Skaggs, 1990; van Dam et al., 2008),
and a few previous studies even also worked with physically and
geometrically separated domains (e.g. Russian et al., 2013). Thus,
our model extension can be seen as an advancement of double-
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domain approaches by assuming simple volume-filling for macropore
flow and particle tracking for matrix flow instead of relying on the
Darcy–Richards equation. With these results, our model is one of the
first, which proves that simulations based on a Lagrangian perspective
of both solute transport and dynamics of the carrying fluid itself
are possible and very applicable. Also, the vertically distributed
exchange between both domains seems feasible and does not rely
on extra parameters like a leakage coefficient, e.g. as used in dual
models (Gerke, 2006). The concept of cubic particle packing within
the macropores (cf. Fig. 2.2a, Sect. 2.2.3.1) is strongly motivated by
the hydraulic radius and can thus be transferred to flow in further
kinds of macropore geometries, including flow between two paral-
lel walls as occurs in soil cracks or corner flow in rills (Germann, 2018).

Another remarkable result is the high model sensitivity towards
the saturated hydraulic conductivity ks of the soil matrix (Figs. 2.7,
2.8). Especially its direct influence on the infiltration process is crucial.
As ks determines the initialization, infiltration fluxes and distribution
of incoming precipitation masses to the two domains, it has a direct
impact on the deep displacement of water and solutes. Therewith,
our findings highlight the importance of infiltration processes for
macroporous soils and the challenge in implementing them properly
in models, which have also been stressed by other studies (Beven and
Germann, 1981; Weiler, 2005; Nimmo, 2016).

Our model shows further a remarkable sensitivity to the presence of a
population of macropores, while differences in macropore properties
comparatively have little impact. Generally, wider macropores collect
and transport more water and solutes to greater depths than small
ones (Fig. 2.9a, b). In contrast, high numbers of macropores do not
necessarily result in a greater and deeper percolation of solutes (Fig.
2.9c, d). Jackisch and Zehe (2018) also reported this aspect and explain
it with the distribution of the irrigation supply to all macropores,
and this supply can drop below the diffusive mixing fluxes from the
macropores into the matrix. However, this implies that the number of
macropores becomes more sensitive at much larger irrigation rates.

Where and to which extent water and solutes are diffusively mixed
from the macropores into the matrix clearly depend on the depth
distribution of the macropores and the distribution of the mixing
masses among the various depths (Tab. 2.2, Fig. 2.10). This concept of
the distribution of macropore depths and mixing masses is important
to meet the natural condition of a high spatial heterogeneity of the
macropore network. Generally, the results of our sensitivity analyses
are in line with the findings of Loritz et al. (2017) as they reveal a
significant impact of the implementation of macropore flow on the
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model behaviour and its complexity.

Please note that we are aware of the fact that some results of the
sensitivity analyses are straightforward and expectable. Nevertheless,
we think that their presentation is necessary to allow the reader to
check whether our Lagrangian approach with the macropore domain
reproduces these results as the model concept is new. To this end,
please also see further sensitivity analyses in the Appendix A.1.

We overall conclude that the modified one-dimensional structure
of our model is robust and provides a high computational efficiency
with short simulation times, which is a big advantage of our model.
In line with the underlying Lagrangian model of Zehe and Jackisch
(2016), we also used the MATLAB programming language to develop
the two model extensions. The model simulation at the Spechtacker
site with the selected parameterization (cf. Tab. 2.1) only runs for
about 5 min, even on a personal computer with moderate computing
power. Without an active pfd, as is the case for the simulations at
study sites 23 and 31, the model runs even faster. When performing
these simulations on a high performance computer or workstation,
one could probably also run several model simulations in parallel
within minutes.

Moreover, the efficiency allows for the implementation of further
routines with as yet still appropriate simulation times. In this way, the
model could prospectively consider retardation and adsorption effects
as well as first-order reactions during the transport of non-conservative
substances like pesticides. Until now, the solute movement of conser-
vative tracers like bromide has only been determined by the water
flow without any consideration of molecular diffusion or particle
interactions, although some evidence suggests a non-conservative
behaviour of bromide tracers under certain conditions (e.g. Whitmer
et al., 2000; Dusek et al., 2015). In our case, we believe that the event
scale and the short simulation times allow for the assumption of a
conservative behaviour of bromide.

Moreover, the model can be extended to two-dimensional for sim-
ulations on hillslope or even catchment scales. In this regard, our
model also offers the promising opportunity to quantify water ages
and to evaluate travel and residence times of water and solutes by a
simple age tagging of particles. This can shed light on the chemical
composition and generation of runoff fluxes as well as on the inverse
storage effect. This effect describes a greater discharge fraction of
recent event water at a high catchment water storage than at low
storage (Hrachowitz et al., 2013; Harman, 2015; Klaus et al., 2015; van
der Velde et al., 2014; Sprenger et al., 2018a).
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S I M U L AT I O N O F R E A C T I V E S O L U T E T R A N S P O RT
I N T H E C R I T I C A L Z O N E : A L A G R A N G I A N M O D E L
F O R T R A N S I E N T F L O W A N D P R E F E R E N T I A L
T R A N S P O RT

abstract

We present a method to simulate fluid flow with reactive solute trans-
port in structured, partially saturated soils using a Lagrangian per-
spective. In this context, we extend the scope of the Lagrangian Soil
Water and Solute Transport Model (LAST) (Sternagel et al., 2019)
by implementing vertically variable, non-linear sorption and first-
order degradation processes during transport of reactive substances
through a partially saturated soil matrix and macropores. For sorption,
we develop an explicit mass transfer approach based on Freundlich
isotherms because the common method of using a retardation factor
is not applicable in the particlebased approach of LAST. The reactive
transport method is tested against data of plot- and field-scale irri-
gation experiments with the herbicides Isoproturon and Flufenacet
at different flow conditions over various periods. Simulations with
HYDRUS 1-D serve as an additional benchmark. At the plot scale, both
models show equal performance at a matrix-flow-dominated site, but
LAST better matches indicators of preferential flow at a macropore-
flow-dominated site. Furthermore, LAST successfully simulates the
effects of adsorption and degradation on the breakthrough behaviour
of Flufenacet with preferential leaching and remobilization. The results
demonstrate the feasibility of the method to simulate reactive solute
transport in a Lagrangian framework and highlight the advantage of
the particle-based approach and the structural macropore domain to
simulate solute transport as well as to cope with preferential bypassing
of topsoil and subsequent re-infiltration into the subsoil matrix.
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3.1 introduction

Reactive substances like pesticides are subject to chemical reactions
within the critical zone (Kutı́lek and Nielsen, 1994; Fomsgaard, 1995).
Their mobility and life span depend greatly on various factors like (i)
the spectrum of transport velocities, (ii) the sorption to soil materials
(Knabner et al., 1996), and (iii) microbial degradation and turnover (cf.
Sect. 3.3). The multitude and complexity of these factors are a consid-
erable source of uncertainty in pesticide fate modelling. It is still not
fully understood how pesticides are transported within different soils
and particularly how preferential flow through macropores impacts
the breakthrough of these substances into streams and groundwater
(e.g. Flury, 1996; Arias-Estévez et al., 2008; Frey et al., 2009; Klaus
et al., 2014).

To advance our understanding of reactive solute transport (RT)
of pesticides, particularly the joint controls of macropores, sorption,
and degradation, a combination of predictive models and plot-scale
experiments is often used (e.g. Zehe et al., 2001; Šimůnek et al., 2008;
Radcliffe and Simunek, 2010; Klaus and Zehe, 2011; Klaus et al., 2013.
Such methods allow for the assessment of the environmental risks
arising from the wide use of reactive substances (Pimentel et al.,
1992; Carter, 2000; Gill and Garg, 2014; Liess et al., 1999). Combining
the Richards and advection–dispersion equations is one common
approach used to simulate water flow dynamics and (reactive) solute
transport in the partially saturated soil zone. This approach has been
implemented, for example, in the well-established models HYDRUS
(Gerke and Genuchten, 1993; Šimůnek et al., 2008), MACRO (Jarvis
and Larsbo, 2012), and Zin AgriTra (Gassmann et al., 2013). However,
this approach has well-known deficiencies in simulating preferential
macropore flow and imperfect mixing with the matrix in the vadose
zone (Beven and Germann, 2013). As both processes essentially control
environmental risk due to transport of reactive substances, a range
of adaptions has been proposed to improve this deficiency (Šimůnek
et al., 2003). One frequently used adaption is the dual-domain concept,
which describes matrix and macropore flow in separated, exchanging
continua to account for local disequilibrium conditions (Gerke, 2006).
However, studies show that even these dual-domain models can
be insufficient to quantify preferential solute breakthrough into the
subsoil (Sternagel et al., 2019) or into tile drains (Haws et al., 2005;
Köhne et al., 2009a,b). A different approach is to represent macropores
as spatially connected, highly permeable flow paths in the same
domain as the soil matrix (Sander and Gerke, 2009). This concept
has been shown to operate well for preferential flow of water and
bromide tracers at a forested hillslope (Wienhöfer and Zehe, 2014)
and for bromide and Isoproturon transport through worm burrows
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into a tile drain at a field site (Klaus and Zehe, 2011). Nevertheless,
this approach is based on the Richards equation and is thus limited
to laminar flow conditions with sufficiently small flow velocities
corresponding to a Reynolds number smaller than 10 (e.g. Bear, 2013;
Loritz et al., 2017).

Particle-based approaches offer a promising alternative to simu-
late reactive transport. These approaches work with a Lagrangian
perspective on the movement of solute particles in a flow field, rather
than by solving the advection–dispersion equation directly. They have
been particularly effective in quantifying solute transport alone, while
the movement of the fluid carrying solutes is still usually integrated
in systems based on Eulerian control volumes (e.g. Delay and Bodin,
2001; Zehe et al., 2001; Berkowitz et al., 2006; Koutsoyiannis, 2010;
Klaus and Zehe, 2010; Wienhöfer and Zehe, 2014. In the context of
saturated flow in fractured and heterogeneous aquifers, Lagrangian
descriptions of fluid flow are already commonly and successfully
applied. For example, the continuous-time random walk (CTRW)
approach accounts for non-Fickian transport of tracer particles within
the water flow through heterogeneous, geological formations via
different flow paths with an associated distribution of velocities and
thus travel times (Berkowitz et al., 2006, 2016; Hansen and Berkowitz,
2020). However, Lagrangian modelling of fluid flow in the vadose zone
is more challenging due to the dependence of the velocity field on the
temporally changing soil moisture states and boundary conditions.
This explains why only a relatively small number of models use La-
grangian approaches for solute transport and also for water particles
(also called water “parcels”) to characterize the fluid phase itself (e.g.
Ewen, 1996a,b; Bücker-Gittel et al., 2003; Davies and Beven, 2012; Zehe
and Jackisch, 2016; Jackisch and Zehe, 2018). Sternagel et al. (2019)
proposed that these water particles may optionally carry variable
solute masses to simulate non-reactive transport. Their Lagrangian
Soil Water and Solute Transport Model (LAST) combines the assets of
the Lagrangian approach with an Euler grid to simulate fluid motion
and solute transport in heterogeneous, partially saturated 1-D soil do-
mains. It allows discrete water particles to travel at different velocities
and carry temporally variable solute masses through the subsurface
domain. The soil domain is subdivided into a soil matrix and a struc-
turally defined preferential flow/macropore domain (cf. Sect. 3.2). A
comparison of HYDRUS 1-D and the LAST-Model based on plot-scale
tracer experiments showed that both models perform similarly in
the case of matrix-flow-dominated tracer transport; however, under
preferential flow conditions, LAST better matched observed tracer
profiles, indicating preferential flow (Sternagel et al., 2019).

While the results of Sternagel et al. (2019) demonstrate the feasi-
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bility of the Lagrangian approach to simulate conservative tracer
transport, even under preferential flow conditions during 1 d simula-
tions, a generalization of the Lagrangian approach to reactive solute
transport and larger timescales is still missing. The main objectives of
this study are thus as follows:

1. We develop a method for reactive transport, i.e. the sorption and
degradation of solutes within the Lagrangian framework under
well-mixed and preferential flow conditions, and implement
this into the LAST-Model. We initially test the feasibility of the
method by simulating plot-scale experiments with a bromide
tracer and the herbicide Isoproturon (IPU) during 2 d (Zehe
and Flühler, 2001a) and use corresponding simulations of the
commonly applied model HYDRUS 1-D as a benchmark.

2. We perform plot-scale simulations to explore the transport be-
haviour of bromide and IPU with the Lagrangian approach over
7 and 21 d to evaluate its performance on longer timescales.
For this purpose, we make use of data from another plot-scale
irrigation experiment (Klaus et al., 2014).

3. We conduct simulations of breakthrough experiments with Flufe-
nacet (FLU) on a tile-drain field site over a period of 3 weeks
(Klaus et al., 2014), to examine the breakthrough behaviour and
remobilization of reactive substances.
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3.2 the last-model : concept, theoretical background,
and numerical implementation

3.2.1 Model concept

The LAST-Model combines a Lagrangian approach with an Euler
grid to simulate fluid motion and solute transport in heterogeneous,
partially saturated 1-D soil domains. Discrete water particles with a
constant water mass and volume carry temporally variable informa-
tion about their position and solute concentrations through defined
domains for soil matrix and macropores that are subdivided into ver-
tical grid elements (Euler grid). Prior to simulation, the initial water
content of each grid element is converted to a corresponding water
mass with the grid element volume and water density. The water mass
of each grid element is summed to a total water mass in the entire
soil domain and then divided by the total number of particles. In
this way, the water particles in the soil domain are initially defined
by a certain water mass. During the simulation, the number of water
particles is counted in each time step, and a new particle density per
grid element is computed. By multiplying this water particle density
with the particle mass and water density, a new soil water content per
grid element and time step can be obtained (Zehe and Jackisch, 2016).
Different fractions of the water particles in a grid element correspond
to the sub-scale distribution of the water content among soil pores of
different sizes. Consequently, different water particle fractions travel
at different velocities (cf. Fig. 3.1). Their displacements are determined
by the hydraulic conductivity and water diffusivity in combination
with a spatial random walk (cf. Sect. 3.2.2, Eq. 3.5). This approach
accounts for the joint effects of gravity and capillary forces on water
flow in partially saturated soils. The use of an Euler grid allows for the
necessary updating of soil water contents based on changing particle
densities and related time-dependent changes in the velocity field. The
space domain approach also reflects the fact that spatial concentration
patterns and thus travel distances are usually observed in the partially
saturated zone. The Euler grid is hence necessary to calculate spatial
concentration profiles and to properly describe specific interactions
between the matrix and the macropore domain.

3.2.2 Underlying theory and model equations

3.2.2.1 Transient fluid flow in the partially saturated zone

The LAST-Model (Sternagel et al., 2019) is based on the Lagrangian
approach of Zehe and Jackisch (2016), which was introduced to sim-
ulate infiltration and soil water dynamics in the partially saturated
zone using a non-linear random walk in the space domain. The results
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of test simulations confirmed the ability of the Lagrangian approach
to simulate water dynamics under well-mixed conditions in different
soils, in good accord with simulations using a Richards equation solver.
We refer the reader to the study of Zehe and Jackisch (2016) for further
details on the model concept.

Derivation of particle displacement equation

Our starting point is the soil-moisture-based form of the Richards
equation:

δθ

δt
=

δK(θ)
δz

+
δ

δz

(
D(θ) · δθ

δz

)
(3.1)

with D(θ) = K(θ) · δψ
δθ .

By multiplying the hydraulic conductivity K in the first term of Eq. 3.1
by θ

θ (= 1), we obtain

δθ

δt
=

δ

δz

[
K(θ)

θ
· θ
]
+

δ

δz

(
D(θ) · δθ

δz

)
. (3.2)

Rewriting this equation leads to the divergence-based form of the
Richards equation:

δθ

δt
=

δ

δz

[
K(θ)

θ
− δD(θ)

δz
· θ
]
+

δ2

δz2 (D(θ) · θ) , (3.3)

where z is the vertical position (positively upward) in the soil do-
main (m), K the hydraulic conductivity (m s−1), D the water diffusiv-
ity (m2 s−1), ψ the matric potential (m), θ(t) the soil water content
(m3 m−3), and t the simulation time (s).
Eq. 3.3 is formally equivalent to the Fokker–Planck equation (Risken,
1984). The first term of the equation corresponds to a drift/advection
term characterizing the advective downward velocity v (m s−1) of fluid
fluxes driven by gravity:

−v(θ) =
K(θ)

θ
− δD(θ)

δz
. (3.4)

The second term of Eq. 3.3 represents diffusive fluxes driven by the
soil moisture or matric potential gradient and controlled by diffusivity
D(θ) (cf. Eq. 3.1). Eq. 3.3 can then be solved by a non-linear random
walk of volumetric water particles (Zehe and Jackisch, 2016). The non-
linearity arises due to the dependence of K and D on soil moisture and
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hence the particle density. The vertical displacement of water particles
is described by the Langevin equation:

zi(t + ∆t) = zi(t)−
(

K(θr + i · ∆θ)

θ(t)
+

δD(θr + i · ∆θ)

δz

)
· ∆t + Z

√
2 · D(θr + i · ∆θ) · ∆t,

i = 1, ..., NB,

(3.5)

where the second term describes downward advection/drift of water
particles driven by gravity on the basis of the hydraulic conductivity
K (m s−1). The term δD(θr+i·∆θ)

δz corrects this drift term for the case of
spatially variable diffusion and is hence added as upward velocity,
contrary to the downward drift term (Roth and Hammel, 1996). The
third term of Eq. 3.5 describes diffusive displacement of water particles
determined by the soil moisture gradient and controlled by diffusivity
D(θ) (m2 s−1) in combination with the random walk concept. Here, the
expression (θr + i · ∆θ) represents the aforementioned fraction of the
actual soil water content θ(t) (cf. Sect. 3.2.1) that is stored in a certain
pore size of the soil domain. Note that i is the number of a bin of NB

total bins representing the certain pore size in which the particle is
stored, θr the residual soil moisture, ∆θ the size/water content range
of a bin, and Z a random number from a standard normal distribution.

Model assumptions

The above-described distribution of water particle displacements to
different pore sizes/bins (“binning”) was the key to simulating soil
water dynamics in the case of pure matrix flow, in agreement with the
Richards equation and field observations (Zehe and Jackisch, 2016).
This binning of particle displacements is defined by the water diffusiv-
ity and hydraulic conductivity curve. These curves are separated into
NB bins, using a step size of ∆θ = θ(t)−θr

NB
from the residual moisture

θr to the actual moisture θ(t) (Fig. 3.1). Zehe and Jackisch (2016) found
that 800 bins are sufficient to resolve both curves. This particle binning
concept enables also the simulation of non-equilibrium conditions in
the water infiltration process. To that end, a second type of particles
(event particles) is introduced to treat infiltrating event water. These
particles initially travel, purely by gravity, in the largest pores and
experience a slow mixing with pre-event particles in the soil matrix
during a characteristic mixing time. This nonequilibrium flow in the
matrix is laminar, as Eq. 3.5 is based on the theory of the Richards
equation (Eq. 3.1). An adaptive time stepping is used to fulfil the
Courant criterion to ensure that particles do not travel farther than the
length of a grid element dz in a time step.
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Figure 3.1: Particle binning concept. All particles within an element of the
Euler grid are distributed to bins (i.e. red rectangles) representing
fractions of the actual soil water content stored in different pore
sizes. Displacements of these particle fractions are determined by
the corresponding flow velocities and diffusivities (figure taken
from Sternagel et al., 2019).

3.2.2.2 Transport of conservative solutes and the macropore domain

In our previous work (Sternagel et al., 2019), we extended the scope of
the Lagrangian approach (i) to account for simulations of water and
solute transport in soils as well as (ii) by a structural macropore/pref-
erential flow domain and included both extensions in the LAST-Model.
We tested this extended approach using bromide tracer and macrop-
ore data of plot-scale irrigation experiments at four study sites and
compared it to simulations of HYDRUS 1-D. At two sites dominated
by well-mixed matrix flow, both models showed equal performance,
but at two preferential-flow-dominated sites, LAST performed better.
We refer to Sternagel et al. (2019) for additional details on the model
and results.

Solute transport

Each water particle is characterized by its position in the soil domain,
water mass, and a solute concentration. This means that there is no
second species of particles representing solutes. Each water particle
is tagged by a solute mass that is defined by the product of solute
concentration and water particle volume. Hence, we do not use a sepa-
rate, specific equation for the transport of solutes in LAST. Solutes are
displaced together with the water particles according to the varying
particle displacements defined by Eq. 3.5. Subsequent to the displace-
ment, diffusive mixing and redistribution of solutes among all water
particles in an element of the Euler grid is calculated by summing their
solute masses and dividing this total mass amount by the number of
water particles present. Due to this perfect solute mixing process, the
solute mass carried by a water particle may vary in space and time. In
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this context, it is important to recall that the use of an Euler grid to
calculate soil water contents and solute concentrations in Lagrangian
models may lead to the problem of artificial over-mixing (e.g. Boso
et al., 2013; Cui et al., 2014; Berkowitz et al., 2016). This is because
water and solutes are assumed to mix perfectly within the elements of
the Euler grid, which may lead to a smoothing of gradients in the case
of coarse grid sizes. This might lead to overestimates of concentration
dilution while solutes infiltrate into and distribute within the soil
domain (Green et al., 2002, cf. Sect. 3.6.2).

Macropore domain

LAST offers a structured preferential flow domain consisting of a
certain number of macropores (Fig. 3.2a). Macropores are classified
into the three depth classes – deep, medium, or shallow – to reflect the
corresponding variations of macropore depths observed at a study site.
With this approach, we may account for a depth-dependent exchange
of water and solutes between the matrix and macropore domains. The
parameterization of the preferential flow domain may hence largely
rely on observable field data, such as the number of macropores of
certain diameters, their length distribution, and hydraulic properties.
When such field observations are not available, the parameters can be
estimated by inverse modelling using tracer data. The actual water
content and the flux densities of the topsoil control infiltration and
distribution of water particles to both domains. The soil water content
determines the matric potential and hydraulic conductivity of the soil
matrix, while flow in macropores is controlled by friction and gravity.
After the infiltration, macropores gradually fill from the bottom to
the top by assuming purely gravity-driven, advective flow in the
macropore domain (Fig. 3.2b). Interactions among macropores and
the matrix are represented by diffusive mixing and exchange of water
and solutes between both flow domains, which depends also on the
matric potential and water content (Fig. 3.2c).
We provide a detailed description of Fig. 3.2 with the structure of the
macropore domain and the infiltration and filling of macropores, as
well as exchange processes between macropores and the matrix, in the
Appendix A.2.
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Figure 3.2: Conceptual visualization of (a) the structure of a single macro-
pore, (b) the macropore filling with gradual saturation of grid
elements, exemplarily shown for three points in time (t1 - t3),
whereby at each time new particles (differently coloured related
to the current time) infiltrate the macropore and travel into the
deepest unsaturated grid element, and (c) the macropore depth
distribution and diffusive mixing of water from saturated parts of
macropores (blue filled squares) into the matrix (cf. Sect. 3.2.2.2).
The figure was adapted from Sternagel et al. (2019).
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3.3 concept and implementation of reactive solute

transport into the last-model

The main objective of this study is to present a method to simulate
fluid flow with reactive solute transport in structured, partially satu-
rated soils, using a Lagrangian perspective. The method is illustrated
through the implementation of a routine into the LAST-Model, to sim-
ulate the movement of reactive substances through the soil zone under
the influence of sorption and degradation processes (Fig. 3.3). This
is achieved by assigning an additional reactive solute concentration
Crs (kg m−3) to each water particle. A water particle can hence carry a
reactive solute mass mrs (kg), which is equal to the product of reactive
solute concentration and its water volume. Transport and mixing of
the reactive solute masses within a time step are simulated in the same
way as for the conservative solute (cf. Sect. 3.2.2.2) (Sternagel et al.,
2019). After the solute mixing and mass redistribution among water
particles, the reactive solute mass of each particle can change due to
a non-linear mass transfer (adsorption, desorption) between water
particles and the sorption sites of the adsorbing solid phase, which
are determined by the substance-specific and site-specific Freundlich
isotherms (cf. Sect. 3.3.1). The adsorbed reactive solute mass in the soil
solid phase can then be reduced by degradation following first-order
kinetics driven by the half-life of the substance (cf. Sect. 3.3.2). These
two reactive solute processes take place in the soil matrix as well as in
the wetted parts of the macropores, and their intensity can vary with
soil depth as detailed in the following sections.
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Figure 3.3: (a) Overview sketch of sorption and degradation processes in the
soil domain. Down to the predefined depth zts (m), we assume
the topsoil with linearly decreasing K f and linearly increasing
DT50 values to account for the depth dependence of sorption and
degradation, respectively. Below zts in the subsoil, we assume
constant values. (b) Flow chart to illustrate the sequence of reac-
tive solute transport. The pictograms of the sketch are assigned
to the respective positions and steps of the flow chart.
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3.3.1 Retardation of solute transport via non-linear sorption between water
and solid phase

3.3.1.1 Implementation of retardation

The interplay of adsorption and desorption characterizes the retar-
dation process and implies that the transport velocity of a reactive
solute is smaller than the fluid velocity. This is commonly represented
by reducing the solute transport velocity by a retardation factor. This
retardation factor describes the ratio between the fluid velocity and
the solute transport velocity based on the slope of a sorption isotherm.
However, this concept is not applicable in our framework because
solute masses are carried by the water particles and travel hence at the
same velocity as water. We thus explicitly represent sorption processes
by a related, explicit transfer of solute masses between the water and
soil solid phase. The mass exchange rates are variable in time, as the
solute concentrations in the water and solid phase also vary between
time steps. In each time step, the solute mass exchange between both
phases is calculated by using the non-linear Freundlich isotherms of
the respective solute and rate equations (Eq. 3.6 for adsorption, Eq. 3.7
for desorption).

mrs(t) = mrs(t− ∆t)−
(

K f · Crs
beta
) (mp

ρ

)
, (3.6)

where mrs (kg) is the reactive solute mass of a particle, K f

([
kg
kg

] 1
beta
)

the Freundlich coefficient/constant, Crs (kg m−3) the reactive solute
concentration of a particle, beta (–) the Freundlich exponent, mp (kg)
the water mass of a particle, ρ (kg m−3) the water density, t (s) the
current simulation time, and ∆t (s) the time step. Note that K f and
beta are both empirical constants that determine the shape and slope
of the sorption isotherm of a respective substance. Both are often
described as dimensionless coefficients, but K f can actually adopt
different forms to balance the units of the equation, particularly when
beta is not equal to 1.

The reversed desorption of adsorbed solutes from the soil solid
phase to the water particles, in the case of a reversed solute concen-
tration gradient between water and solid phase, is equally calculated
(Eq. 3.7). It uses the solute concentration in the sorbing solid phase
Crs, solid (kg m−3), which requires the adsorbed solute mass and the
volume of the phase Vsoil (m3). In this way, the total desorbed solute
mass is calculated for an entire grid element and must be divided by
the present particle number NP (–) to equally distribute the desorbed
solute mass among the water particles. The sorption process is hence
controlled by a local concentration gradient between water and the
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solid phase within an element of the Euler grid.

mrs(t) = mrs(t− ∆t) +

(
K f · Crs, solid

beta
)
·Vsoil

NP
(3.7)

3.3.1.2 Assumptions for the parameterization of the sorption process

Generally, sorption is a non-linear process, which reflects the limited
availability of adsorption sites and, hence, exchange rate limitations.
This may cause imperfect sorption, which can lead to the observation
of early mass arrivals and longtailings in breakthrough curves (e.g.
Leistra, 1977). Thus, our approach calculates the non-linear adsorption
or desorption of solute masses, as a function of the solute concen-
tration or loading of the sorption surfaces of the sorbent. Hence, in
a given time step, the higher the solute concentration in the solid
phase, the fewer the solute masses that can be additionally adsorbed
from the water phase, and vice versa. In the approach developed here,
the sorption process proceeds only until a concentration equilibrium
between both phases is reached. At this point, there is no further
adsorption or desorption of solute masses until the concentration of
one phase is again disequilibrated by, for example, the infiltration of
water into the water phase or by solute degradation in the solid phase.
In the case that the concentration of a reactive solute in the water
phase is higher than its solubility, the excess solute masses leave the
solution and are adsorbed to the soil solid phase.

With regard to pesticides, the major pesticide sorbent is soil or-
ganic matter, and its quantity and quality determine to a large fraction
the soil sorption properties (Farenhorst, 2006; Sarkar et al., 2020).
Several studies revealed that in the topsoil, enhanced sorption of
pesticides occurs due to the often high content of organic matter,
which may reflect bioavailability by an increased number of sorption
sites in the non-mineralized organic matter (e.g. Clay and Koskinen,
2002; Jensen et al., 2004; Boivin et al., 2005; Rodrı́guez-Cruz et al.,
2006). This implies that the conditions in the topsoil generally facilitate
the sorption of dissolved solutes. While different depth profiles of
the K f value could be implemented depending on available data,
to account for this depth dependence of sorption processes, here
we apply a linearly decreasing distribution of the K f value over the
grid elements of the soil domain between two predefined upper and
lower value limits for the topsoil. The depth of the topsoil (zts) can be
adjusted individually and for our applications; here, we set it to 50

cm. Below this soil depth, we assume the subsoil and apply constant
K f values. The exact K f parameterizations of the respective model
setups at the different sites are explained in Sect. 3.4.2.1 and 3.4.2.2
and summarized in Tab. 3.2.
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Sorption in macropores

While sorption generally controls pesticide leaching in the soil matrix,
the processes are different in macropores. Sorption in macropores is
often limited because the timescale of vertical advection is usually
much smaller than the time required by solute molecules to diffuse to
the macropore walls (Klaus et al., 2014). However, sorption may occur
to a significant degree once water is stagnant in the saturated parts of
the macropores (Bolduan and Zehe, 2006). This stagnancy facilitates
the possibility for sorption of reactive solutes between macropore
water and the macropore walls. The macropore sorption processes are
also described and quantified by the Freundlich approach and Eq. 3.6.

3.3.2 First-order degradation of adsorbed solutes in soil solid phase

3.3.2.1 Implementation of degradation

Reactive solutes such as pesticides are commonly biodegraded and
therewith transformed into metabolite/child compounds by the
metabolism or co-metabolism of microbial communities that are
present mainly on the surfaces of soil particles. The immobilization of
a reactive substance, due to adsorption, favours degradation when the
residence time in the adsorbing solid phase is sufficiently long for me-
tabolization. Many pesticides are subject to co-metabolic degradation,
which often follows first-order kinetics and can hence be characterized
by an exponential decay function

Ct = C0 · e−k t, (3.8)

where Ct (kg m−3) is the concentration of the pesticide after the time t
(s), C0 (kg m−3) the initial concentration, and k (s−1) the degradation
rate constant.

Based on the first-order kinetics of Eq. 3.8, we apply a mass rate
equation (Eq. 3.9) for the degradation of adsorbed solute masses on
the macroscopic scale of an element of the Euler grid:

msp(t + ∆t) = msp(t) ·
(

1−
(

kd ·
∆t

86, 400

))
, (3.9)

where msp(t) and msp(t + ∆t) (kg) are the reactive solute masses in
the soil solid phase of the current time step and of the next time
step after degradation and ∆t (s) the time step. The kinetics of this
degradation process are determined by the half-life DT50 (d) of the
respective substance, with the relationship between DT50 and a daily
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degradation kd (d−1) given by

kd =
ln(2)
DT50

. (3.10)

3.3.2.2 Assumptions for the parameterization of the degradation process

Turnover and degradation of pesticides depend in general on the
substance-specific chemical properties and the microbial activity in
soils (Holden and Fierer, 2005). Microbial activity in soil depends
on many factors, including organic matter content, pH, water con-
tent, temperature, redox potential, and carbon / nitrogen ratio. As
these factors are usually highly heterogeneous in space, considerable
research has focused on spatial differences in pesticide turnover po-
tentials. Some of these studies determined that pesticide turnover
rates typically decrease within the top metre of the soil matrix (e.g.
El-Sebai et al., 2005; Bolduan and Zehe, 2006; Eilers et al., 2012). This
is because the topsoil provides conditions that facilitate enhanced
microbial activity (Fomsgaard, 1995; Bending et al., 2001; Bending
and Rodriguez-Cruz, 2007). The simplest way to account for such a
depth-dependent degradation is a linear increase of the DT50 value
from the topsoil surface to a predefined depth zts, which is set to 50

cm. This value is in line with the assumption of the depth-dependent
K f parameter and was estimated based on the findings of the afore-
mentioned studies. In the subsoil below 50 cm, we apply constant
DT50 values (cf. Sect. 3.3.1). The exact DT50 parameterizations of the
respective model setups at the different sites are explained in Sect.
3.4.2.1 and 3.4.2.2 and summarized in Tab. 3.2.

Degradation in macropores

The presence of macropores allows pesticides to bypass the topsoil
matrix, while they may infiltrate and thus be more persistent in the
deeper subsoil matrix where the turnover potential is decreased. As
biopores like worm burrows often constitute the major part of macro-
pores in agricultural soils, a number of studies have focused on their
key role in pesticide transformation (e.g. Binet et al., 2006; Liu et al.,
2010; Tang et al., 2012). These studies consistently revealed an elevated
bacterial abundance and activity in the immediate vicinity of worm
burrows (Bundt et al., 2001; Bolduan and Zehe, 2006), comparable
to the optimum conditions in topsoil. This is attributed to a positive
effect of enhanced organic carbon, nutrient, and oxygen supply that
may lead to increased adsorption and degradation rates in macropores.
Thus, we assume that degradation also takes place in the adsorbing
phase of the macropores, which can be quantified with Eq. 3.9. We
apply different K f and DT50 values in the macropores that are in the
range of the topsoil values (cf. Tab. 3.2).
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3.4 model application tests

The proposed method to simulate reactive solute transport in a La-
grangian approach is tested by using LAST to simulate irrigation ex-
periments with conservative bromide tracer and the herbicide IPU as a
representative reactive substance, at two study sites in the Weiherbach
catchment (Zehe and Flühler, 2001a). Here, conservative means that a
solute is neither subject to sorption nor to degradation. These two sites
are dominated by either matrix flow under well-mixed conditions (site
5) or preferential macropore flow (site 10) on a timescale of 2 d. These
experiments are also simulated with the HYDRUS 1-D model. To test
the method on simulation periods longer than 2 d, we use data from
an additional plot-scale (site P4) irrigation experiment (Klaus et al.,
2014) on timescales of 7 and 21 d. Finally, we evaluate the method
by simulating the breakthrough and remobilization of the herbicide
Flufenacet that was observed in the tile drain of a field site within two
irrigation phases: 1 d and 3 weeks after substance application.

3.4.1 Characterization of the irrigation experiments

3.4.1.1 Study area: the Weiherbach catchment

The Weiherbach valley extends over a total area of 6.3 km2 and is
located in the southwest of Germany. The land is used mainly for agri-
culture. The basic geological formation of the valley is characterized
by a Pleistocene loess layer up to 15 m thick, which covers Triassic
Muschelkalk marl and Keuper sandstone. At the foot of hills, the
hillslopes show a typical loess catena with erosion-derived Colluvic
Regosols, while at the top and in the middle parts of hills, mainly
Calcaric Regosols or Luvisols are present. More detailed information
on the Weiherbach catchment is provided in Plate and Zehe (2008).

3.4.1.2 Pesticides Isoproturon (IPU) and Flufenacet (FLU)

IPU is an herbicide which is commonly applied in crops to control
annual grasses and weeds. IPU has a moderate water solubility of 70.2
mg L−1 and is regarded as non-persistent (mean DT50 in field: 23 d)
and moderately mobile (mean K f = 2.83) in soils (see also typical K f
and DT50 value ranges in Tab. 3.2). IPU is ranked as carcinogenic, and
its turnover in soils forms, mainly, the metabolite desmethylisopro-
turon (Lewis et al., 2016).

FLU is an herbicide that can be applied for a broad spectrum of
purposes but is used especially in combination with other herbicides
to control grasses and broad-leaved weeds. FLU is regarded as moder-
ately soluble (51 mg L−1) and is not highly volatile (mean K f = 4.38)
but may be quite persistent in soils (up to DT50 in field: 68 d) under
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certain conditions. FLU is classified as moderately toxic to humans,
and its turnover in soils mainly forms the metabolites FOE sulfonic
acid, FOE oxalate, and FOE alcohol (Lewis et al., 2016).

3.4.1.3 Plot-scale experiments of Zehe and Flühler (2001a) at the well-mixed
site (site 5) and the preferential-flow-dominated site (site 10)

At site 5, the soil moisture and soil properties were initially measured
on a defined plot area of 1.4 m x 1.4 m. Before the irrigation, 0.5 g of
IPU was applied, distributed evenly, on the surface of the plot area.
After 1 d, the IPU loaded plot area was irrigated by a rainfall event
of 10 mm h−1 of water for 130 min with 0.165 g L−1 of bromide. After
another day, soil samples were taken along a vertical soil profile of
1 m x 1 m in a grid of 0.1 m x 0.1 m. Thus, 10 soil samples were
collected in each 10 cm depth interval down to a total depth of 1 m.
In subsequent lab analyses, the IPU and bromide concentrations of all
samples were measured. The soil at site 5 is a Calcaric Regosol (WRB,
2014), and flow patterns reveal a dominance of well-mixed matrix flow
without considerable influence of macropore flows. This is the reason
for using site 5 to evaluate our reactive solute transport approach
under well-mixed flow conditions. Tab. 3.1 provides all experimental
data.

The experiment at site 10 was conducted similarly with the ini-
tial application of 1.0 g of IPU on the soil plot and 1 d later a block
rainfall of 11 mm h−1 for 138 min. The soil at site 10 can be classified
as Colluvic Regosol (WRB, 2014) and shows numerous worm burrows
that can facilitate preferential flow. Hence, we select study site 10

for the evaluation of our reactive solute transport approach during
preferential flow conditions. The density and depth of the worm bur-
row systems were examined extensively at this study site. Horizontal
layers in different depths of the vertical soil profile were excavated
(cf. Zehe and Blöschl, 2004; van Schaik et al., 2013), and in each layer
the number of macropores was counted, and their diameters and
depths were measured. These detailed measurements provided an
extensive dataset of the macropore network. Tab. 3.1 again contains
all experimental data.

3.4.1.4 Plot- and field-scale experiments of Klaus et al. (2014)

Klaus et al. (2014) conducted irrigation experiments in the Weiherbach
catchment to corroborate the importance of macropore connectivity
to tile drains for tracer and pesticide leaching into surface waters. A
series of three irrigation experiments with bromide tracer, IPU, and
FLU were performed on a 20 m x 20 m field site, which also included
the sampling of these substances in different plot-scale soil profiles.
We focus first on the plot-scale experiment in which the field site was
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irrigated in three individual blocks with a total precipitation sum of
34 mm over 220 min. Additionally, a total of 1600 g of bromide was
applied on the field site. We concentrate on site P4 where soil samples
were collected in a 0.1 m x 0.1 m grid down to a depth of 1 m after 7

d and their corresponding bromide concentrations measured. Patterns
of worm burrows in the first 15 cm of the soil were also examined (Tab.
3.3). The present soil is a Colluvisol (WRB, 2014), with a strong gleyic
horizon present in a depth between 0.4 and 0.7 m, which causes a
decreasing soil hydraulic conductivity gradient with depth that leads
to almost stagnant flow conditions in the subsoil (Klaus et al., 2013).
In general, the experiment design, soil sampling, and data collection
are similar to the experiments of (Zehe and Flühler, 2001a). Initial soil
water contents and all further experiment parameters as well as the
soil properties at the field site are listed in Tab. 3.3.

Second, we focus on two other irrigation experiments of Klaus
et al. (2014) on the field scale in which FLU concentrations were
measured at the outlet of a tile-drain tube. The tube drained the entire
field site and was located 1 – 1.2 m below the surface. Before irrigation,
a total of 40 g FLU was applied on the surface of the 400 m2 field
site. In a first irrigation phase, the field site was irrigated in three
individual blocks with a total precipitation of 41 mm over 215 min,
and simultaneously, water samples were taken at the outlet of the
tile-drain tube. These samples were analysed for FLU as explained in
Klaus et al. (2014). After a period of 3 weeks, in which the field site
remained untouched without further irrigation and FLU application,
the field site was then again irrigated in two individual blocks with a
total precipitation of 40 mm over 180 min and the FLU concentration
in the tile-drain outflow measured. The objective was to examine the
breakthrough of remobilized FLU that was previously adsorbed in soil.

The soil of the field site is again a Colluvisol (WRB, 2014). Over-
all, the soil exhibits two ploughed layers between 0–10 and 10–35

cm above a third, unaffected Colluvisol layer (Klaus and Zehe, 2010).
Klaus and Zehe (2010) also found that 10 macropores/m2 reaching
into the depths of the tile-drain tube is a good estimate for simu-
lations at this study site. Initial soil water contents and all further
experimental parameters are listed in Tab. 3.4.

3.4.2 Model setups

To compare our 1-D simulation results to the observed 2-D concentra-
tion data of the plot-scale experiments, the latter are averaged laterally
in each of the 10 cm depth intervals. Note that the corresponding ob-
servations provide solute concentration per dry mass of the soil, while
the LAST-Model simulates concentrations in the water phase and
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adsorbed solute masses in the soil solid phase, respectively. We thus
compare simulated and observed solute masses and not concentrations
in the respective depths. Note that the experimental parameters in Tab.
3.1,3.3,3.4 are measured data from the above-described experiments
and can be used directly to parameterize the LAST-Model without
fitting. In Sternagel et al. (2019), we explain in detail how the observed
data are processed, particularly for the macropore domain, and ex-
plain the model sensitivity to the uncertainty range of observed data
(e.g. to the saturated hydraulic conductivity).

3.4.2.1 Model setups of simulations at the well-mixed plot site (site 5)

LAST-Model setup at the well-mixed site (site 5)

As site 5 is dominated by well-mixed matrix flow, we deactivate the
macropore domain of LAST and simulate IPU and bromide transport
solely in the matrix domain at this site. Without the influence of
macropores, we assume here only small penetration depths of solutes
through the first top centimetres of the soil, in line with previous
simulations at other well-mixed sites in the Weiherbach catchment
(Sternagel et al., 2019). This means that solutes may remain in the
upper part of the topsoil, so that a depth-dependent parameterization
of sorption and degradation (cf. Sect. 3.3.1, 3.3.2) appears, as a first
guess, not necessary at this site. Thus, we apply constant values of K f
and DT50 (Tab. 3.2) and use mean values under field conditions for
IPU from the Pesticide Properties Database (PPDB) (Lewis et al., 2016).
Consistent with the experiments, we use a matrix discretization of 0.1
m. Initially, the soil domain contains 2 million water particles but no
solute masses. All further experiment and simulation parameters are
shown in Tab. 3.1.

HYDRUS 1-D setup at the well-mixed site (site 5)

The simulation with HYDRUS 1-D at the well-mixed site (site 5) is
conducted with a single porosity model (van Genuchten–Mualem) and
an equilibrium model for water flow and solute transport, respectively,
with the Freundlich approach for sorption and first-order degradation.
At the upper domain boundary, we select atmospheric conditions
with a surface layer and variable infiltration intensities. At the lower
boundary, we assume free drainage conditions. In general, we use the
same soil hydraulic properties, model setups, initial conditions, and
reactive transport parameters as for LAST (cf. Tab. 3.1,3.2).
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3.4.2.2 Model setups of simulations at the preferential-flow-dominated plot
site (site 10)

LAST-Model setup for simulations at the preferential-flow-dominated site
(site 10)

We use an available, extensive macropore dataset to parameterize the
macropore domain at site 10. Tab. 3.1 provides the depth distribu-
tion of the macropore network, mean macropore diameters, and the
distribution factors. The study of Sternagel et al. (2019) explains in
detail how the macropore domain of LAST is parameterized based on
available field measurements. We vertically discretize the macropores
in steps of 0.05 m and assume that they initially contain neither water
particles nor solute masses. A maximum of 10,000 possible particles
that can be stored in a single macropore, and hence the total possible
number of particles in the entire macropore domain, is given by
multiplication with the total number of macropores. The studies of
Ackermann (1998) and Zehe (1999) provide further descriptions of site
10 and the macropore network.

As the heterogeneous macropore network allows for a rapid by-
passing of solutes, we expect a considerable penetration into different
soil depths. We use depth-dependent values of K f and DT50 for IPU
in the matrix and in the macropores to account for a depth-dependent
retardation and degradation (Tab. 3.2) for the simulations at site 10.
Furthermore, we here use different parameterization setups of the
reactive transport routine to account for the remarkably variable value
ranges of K f and DT50 reported in various studies (e.g. Bolduan and
Zehe, 2006; Rodrı́guez-Cruz et al., 2006; Bending and Rodriguez-Cruz,
2007; Lewis et al., 2016). To account for the related uncertainty range
of the reactive transport behaviour of IPU, we distinguish between
two parameter configurations for a rather weak reactive transport of
IPU and a strong reactive transport with enhanced retardation and
degradation of IPU (Tab. 3.2). To evaluate solely the impact of the K f
value on the model sensitivity, we furthermore perform a simulation
at site 10 only with activated sorption and deactivated degradation.
Tab. 3.1 provides all relevant simulation and experiment parameters.

HYDRUS 1-D setup at the preferential-flow-dominated site (site 10)

The simulations with HYDRUS 1-D at the preferential-flow-dominated
site (site 10) are performed with the same model setups, soil prop-
erties, and initial and boundary conditions, as well as reactive trans-
port parameters, as for the simulations with LAST (cf. Tab. 3.1,3.2).
In contrast, we select a dual-permeability approach for water flow
(Gerke and Genuchten, 1993) and solute transport (physical nonequi-
librium) at this site. These approaches distinguish between matrix
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and fracture domains for water flow and solute transport. It applies
the Richards equation for water flow in each domain, with domain-
specific hydraulic properties. The advection–dispersion equation is
used to simulate solute transport and mass transfer between both
domains, including terms for reactive transport with retardation and
degradation (Gerke and Genuchten, 1993). While we apply the same
soil hydraulic properties in the matrix (cf. Tab. 3.1) as for the LAST
simulations, the macropore domain in HYDRUS gets a faster character
with a Ks value of 10−3 m s−1. We also select the Freundlich approach
for sorption processes and first-order degradation.

3.4.2.3 LAST-Model setup of 7 and 21 d simulations at the plot site (site P4)

We perform simulations for conservative bromide tracer and reactive
IPU at site P4 for periods of 7 and 21 d using the parameters in Tab.
3, respectively. Based on examination of the macropore network, we
again derive the parameterization of the macropore domain (Tab. 3.3).
In line with the LAST-Model setups in Sect. 3.4.2.1 and 3.4.2.2, we
apply the same discretization of the matrix dz (0.1 m) and macropore
(0.05 m) domain as well as number of particles in both domains (2
million; 10 k per macropore grid element). Additionally, we perform
another 7 d simulation for bromide with a finer matrix discretization
dz of 0.05 m. Initially, macropores and matrix contain no solute masses,
and the macropores also contain no water.

For the simulation of reactive IPU transport, we again apply the
weak and strong reactive transport parameterizations with the depth-
dependent K f and DT50 values of the simulations at site 10 (cf. Tab.
3.2). Additionally, we apply here a mean reactive transport param-
eterization. An evaluation with observed IPU mass profiles is not
possible here because robust experimental data are missing. All rele-
vant parameters of the 7 and 21 d simulations at P4 are listed in Tab.
3.3.

3.4.2.4 LAST-Model setup of the FLU breakthrough simulations at the field
site

We perform a simulation of FLU concentrations, which migrate from
the soil surface into the depth of the tile-drain tube (1 m), over the
entire field site, in each of the two irrigation phases. After the first
irrigation phase, we assume steady-state flow conditions, as Klaus et al.
(2014) found that the flow in the tile-drain tube already approached its
initial value after roughly 500 min. This implies hydraulic equilibrium
between gravity and capillary forces and thus zero soil water flow in
the period of 3 weeks between the first and second irrigation phase.
Nevertheless, adsorption and degradation of FLU are still active and
simulated using mean K f and DT50 values in soil (Lewis et al., 2016,
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cf. Tab. 3.3) during the 3 weeks until the second irrigation phase starts.

The parameterization of the macropore domain with the number
and depth of macropores per square metre follows the recommenda-
tions of Klaus and Zehe (2010). In line with the previous LAST-Model
setups, we apply the same discretization of the matrix dz (0.1 m) and
macropore (0.05 m) domain as well as the number of particles in both
domains (2 million; 10 k per macropore grid element). Macropores
and matrix again contain no solute masses, and the macropores also
contain no water, initially. All further simulation parameters of the
FLU breakthrough simulations are listed in Tab. 3.4.
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Table 3.1: Parameters of IPU plot-scale experiments and simulations, as well
as soil hydraulic parameters according to van Genuchten (1980)
and Mualem (1976), at sites 5 and 10, where Ks is the saturated
hydraulic conductivity, θs the saturated soil water content, θr the
residual soil water content, α the inverse of an air entry value, n a
quantity characterizing pore size distribution, s the storage coef-
ficient, and ρb the bulk density. Further, mac. big, mac. med, and
mac. sml describe the lengths of big, medium, and small macro-
pores as well as fbig, fmed, and fsml are the respective distribution
factors to split the total number of macropores into these three
macropore depths (cf. Sect. 3.2.2.2). For further details on these
parameters, see Sternagel et al. (2019).

Parameter Site 5 Site 10

Experimental parameters

Irrigation duration (hh:mm) 02:10 02:18

Irrigation intensity (mm h−1) 10.70 11.00

Applied IPU mass (kg) 5 x 10−4
1 x 10−3

Recovery rate (%) 84.4 91

Initial soil moisture in 15 cm (%) 23.7 27.8

Soil type Calcaric Colluvic

Regosol Regosol

Ks (m s−1) 1 x 10−6
1 x 10−6

θs (m3 m−3) 0.46 0.46

θr (m3 m−3) 0.04 0.04

α (m−1) 4.0 3.0

n (-) 1.26 1.25

s (-) 0.38 0.38

ρb (kg m−3) 1300 1500

Number of macropores/m2 (-) - 92

Mean macropore diameter (m) - 0.005

mac. big (m) - 0.8

mac. med (m) - 0.5

mac. sml (m) - 0.2

fbig (-) - 0.14

fmed (-) - 0.37

fsml (-) - 0.49

Simulation parameters

Simulation time t (s) 172,800 (i.e. 2 d)

Time step ∆t (s) dynamic

Particle number in matrix (-) 2 million

Water mass of particle in matrix (kg) 1.9 x 10−4
2.2 x 10−4

Particle number in macropore domain (-) - 920 k

Water mass of particle in macropore domain (kg) - 1.6 x 10−6
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Table 3.2: Reactive transport parameters of IPU at sites 5, 10, and P4. The up-
per and lower value limits in the square brackets describe the value
ranges of the depth-dependent K f and DT50 parameters between
the soil surface and the starting depth of the subsoil (cf. Fig. 3.3,
Sect. 3.3.1.2, 3.3.2.2). At sites 10 and P4, we distinguish between
two parameter configurations for a rather weak reactive transport
of IPU and a strong reactive transport with enhanced retardation
and degradation of IPU. Exclusively at site P4, we additionally
apply a mean reactive transport parameter configuration for the 7

and 21 d simulations.

Parameter Site 5 Site 10 and P4 P4

weak strong mean

K f for IPU in soil matrix (–) [2.83; 2.83] [1; 0.26] [27; 3] [14; 1.63]

[upper limit; lower limit]

DT50 for IPU in soil matrix (d) [23; 23] [23; 44] [3; 12] [13; 28]

[upper limit; lower limit]

K f for IPU in macropores (-) - 5 10 7.5

DT50 for IPU in macropores (d) - 15.6 10 12.8

beta (-) 0.8
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Table 3.3: Parameters of 7 d bromide experiment at the plot-scale site (site P4)
(Klaus et al., 2014) and simulation parameters as well as soil hy-
draulic parameters according to van Genuchten (1980) and Mualem
(1976). For parameter definitions and further details on these pa-
rameters, see caption of Tab. 3.1 and (Sternagel et al., 2019). Note
that only one macropore depth of 15 cm was observed at this site.

Parameter P4

Experimental parameters

Irrigation duration (hh:mm) 03:40

Total irrigation sum (mm) 34.00

Applied bromide mass on 400 m2 field site (kg) 1.6

Recovery rate (%) ca. 100

Initial soil moisture in 10 cm (%) 24.8

Initial soil moisture in 20 cm (%) 27.1

Initial soil moisture in 30 cm (%) 27.0

Initial soil moisture in 40 cm (%) 28.44

Initial soil moisture in 60 cm (%) 33.11

Initial soil moisture in 100 cm (%) 29.6

Soil type Colluvisol

Ks in topsoil; gleyic horizon (subsoil) (m s−1) 1 x 10−5; 1 x 10−8

θs in topsoil; gleyic horizon (subsoil) (m3 m−3) 0.5; 0.4

θr in topsoil; gleyic horizon (subsoil) (m3 m−3) 0.04; 0.11

α in topsoil; gleyic horizon (subsoil) (m−1) 1.9; 3.8

n in topsoil; gleyic horizon (subsoil) (-) 1.25; 1.20

s (-) 0.38

ρb (kg m−3) 1500

Number of macropores/m2 (-) 68

Mean macropore diameter (m) 0.003

mac. big (m) 0.2

mac. med (m) -

mac. sml (m) -

fbig (-) 1.0

fmed (-) -

fsml (-) -

Simulation parameters

Simulation time t (s) 604,800 (i.e. 7 d)

Time step ∆t (s) dynamic

Particle number in matrix (-) 2 million

Water mass of particle in matrix (kg) 2.3 x 10−4

Particle number in macropore domain (-) 680 k

Water mass of particle in macropore domain (kg) 1.4 x 10−7



3.4 model application tests 81

Table 3.4: Parameters of field-scale FLU breakthrough experiment (Klaus
et al., 2014) and simulation parameters as well as soil hydraulic
parameters after van Genuchten (1980) and Mualem (1976). For
parameter definitions and further details on these parameters, see
caption of Tab. 3.1 and (Sternagel et al., 2019). Note that only one
macropore depth of 1 m reaching the depth of the tile-drain tube
is applied.

Parameter Field site

Experimental parameters

Irrigation duration (hh:mm) of 1. and 2. irrigation phase 03:35; 02:00

Total irrigation sum (mm) of 1. and 2. irrigation phase 41.00; 40.00

Applied FLU mass on field site (kg) 0.04

Initial mean soil moisture (%) 28.0

Soil type Colluvisol

Ks in 0–10 cm; 10–35 cm; below 35 cm (m s−1) 5 x 10−4; 2 x 10−5; 5 x 10−5

θs in 0–10 cm; 10–35 cm; below 35 cm (m3 m−3) 0.46; 0.43; 0.4

θr in 0–10 cm; 10–35 cm; below 35 cm (m3 m−3) 0.1; 0.11; 0.04

α in 0–10 cm; 10–35 cm; below 35 cm (m−1) 2.4; 3.8; 1.9

n in 0–10 cm; 10–35 cm; below 35 cm (-) 1.22; 1.2; 1.25

s (-) 0.38

ρb (kg m−3) 1500

Number of macropores/m2 (-) 10

Mean macropore diameter (m) 0.005

mac. big (m) 1.0

mac. med (m) -

mac. sml (m) -

fbig (-) 1.0

fmed (-) -

fsml (-) -

K f (–) for FLU in soil matrix 4.83

DT50 (d) for FLU in soil matrix 54

K f (–) for FLU in macropores 4

DT50 (d) for FLU in macropores 19

beta (-) 0.92

Simulation parameters

Simulation time t (s) 1,814,400 (i.e. 3 weeks)

Time step ∆t (s) dynamic

Particle number in matrix (-) 2 million

Water mass of particle in matrix (kg) 2.9 x 10−4

Particle number in macropore domain (-) 680 k

Water mass of particle in macropore domain (kg) 1.96 x 10−6
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3.5 results

In the following sections, we present simulated vertical mass profiles
of bromide and IPU at the different plot-scale study sites (sites 5, 10,
and P4), as well as breakthrough time series of FLU concentrations at
the field site (cf. Sect. 3.4.1).

3.5.1 Simulation results at the well-mixed plot site (site 5) after 2 d

3.5.1.1 IPU transport simulated with LAST

In Fig. 3.4a, the reference simulation treating IPU as conservative (red
profile) overestimates the transport of IPU into soil depths lower than
10 cm, with a maximum penetration depth of 40 cm. This leads in
turn to simultaneous underestimation of masses in shallow depths
near the soil surface (root mean square error, RMSE: 0.064 g, 12.8 %
of applied mass). In the case of the simulation with retardation and
no degradation (yellow profile), the simulated mass profile matches
the observed profile in the first 10 cm because retardation causes mass
accumulation. With additional degradation (light blue profile), the so-
lute masses in the first 10 cm are then slightly reduced. The influence
of degradation is relatively small, due to the moderate DT50 value
of 23 d and the short simulation period of 2 d, but it is nevertheless
detectable. Overall, we find that there are indeed noticeable differences
(RMSE difference of 7.3 %) between the IPU profiles of the conserva-
tive, reference simulation and the reactive transport simulation with
retardation and degradation, which is also in better accord with the
observed mass profile, reflected by a smaller RMSE value of 0.027 g
(5.5 % of applied mass). At the end of the simulated period of 2 d, a
total IPU mass of 0.014 g is degraded, while the observed profile has a
mass deficit of 0.078 g corresponding to a recovery rate of 84 %. This
observed mass deficit cannot be explained exclusively by degradation.
It might be the result of additional mass losses in the experiment
execution and lab analyses.

3.5.1.2 IPU transport simulated with HYDRUS 1-D

The IPU mass profile simulated with HYDRUS 1-D (Fig. 3.4b), with
activated reactive transport, shows similar mass patterns compared
to LAST and the observed profile with a RMSE value of 0.036 g (7.3
% of applied mass). While HYDRUS overestimates the IPU masses at
the soil surface, considering a stronger retardation compared to the
observation and the LAST results, it simulates the observed masses in
10–20 cm soil depth quite well. In these depths, LAST overestimates
masses with a maximum penetration depth of 30 cm, which is 10

cm deeper than observed. Overall, the results of HYDRUS and LAST
are in comparable agreement with the observed profile. HYDRUS



3.5 results 83

simulates a total, degraded IPU mass of 0.017 g, which is in the range
of the LAST results (cf. Sect. 3.5.1.1). This means that in both models,
the total degradation is similar, but the distribution of the remaining
IPU masses over the soil profile differs.

3.5.1.3 Bromide transport simulated with LAST

Bromide slightly percolates into greater depths during the short-term
irrigation experiment (Fig. 3.4c) compared to the retarded and de-
graded IPU (cf. Fig. 3.4a). The results generally underline that the
Lagrangian approach is able to simulate conservative solute transport
under well-mixed conditions, as we have already shown in our pre-
vious study (Sternagel et al., 2019). The results further show that the
approach is capable of treating both conservative tracers and reactive
substances.

Figure 3.4: (a) LAST-Model results of reactive IPU transport simulations at
the well-mixed site (site 5) after 2 d with regarding IPU as conser-
vative without reactive transport which serves as reference (red
profile), with activated retardation but without degradation to ex-
clusively show the effect of the sorption processes (yellow profile)
and with fully activated reactive transport (light blue profile). (b)
Comparison with HYDRUS 1-D results and (c) exemplary results
of a conservative simulation with LAST for bromide.

3.5.2 Simulation results at the preferential-flow-dominated plot site (site
10) after 2 d

3.5.2.1 IPU transport simulated with LAST

Fig. 3.5a and b present results of different simulation setups compared
to the observed IPU mass profile at site 10 after 2 d. Both figures com-
prise the observed profile as well as a profile of a reference simulation
treating IPU as conservative. Fig. 3.5a focuses on the mass profiles
resulting from simulations only with activated retardation, using low
and high K f values. Fig. 3.5b shows results for simulations performed
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with full reactive transport subject to retardation and degradation,
comparing parameterizations for weak and strong reactive transport.
The shaded area between these profiles represents the corresponding
uncertainty ranges.

In general, the typical “fingerprint” of preferential flow through
macropores is clearly visible in the observed IPU mass profile. The
observed mass accumulations and peaks fit well to the observed
macropore depth distribution (cf. Tab. 3.1), which implies that water
and IPU travelled through the macropores and infiltrated into the
matrix in the respective soil depths where the macropores end. The
observed mass profile shows a strong accumulation of IPU masses in
depths between 70–90 cm, which cannot be explained by the relatively
low number of macropores (ca. 13) in this depth. One reason for
this could be particle-bound transport of IPU at this study site, as
proposed by Zehe and Flühler (2001a). They suggested that IPU is
adsorbed to mobile soil particles or colloids at the soil surface, which
then travel rapidly through macropores into greater depths at this site.
In comparison, the simulated conservative reference profile depicts
the observed mass distribution quite well on average, although less
well the heterogeneous profile shape with a RMSE value of 0.076 g (7.6
% of applied mass). The mass peaks in the depths of the macropore
ends (cf. Tab. 3.1) are relatively weak because solute masses leaving
the macropores are not retarded in the matrix but instead flushed out
by the water flow into deeper soil depths, resulting in a smoothed
mass profile. In the near-surface soil depths between 0–10 cm, the con-
servative reference simulation clearly overestimates the IPU masses.

The range of simulated mass profiles, corresponding to the weak and
strong reactive transport parameterization (Fig. 3.5b), matches the
observed profile in terms of both mass amounts and shape, with a
RMSE value of 0.038 g (3.8 % of applied mass). Hence, at this site,
LAST performs better with activated reactive transport compared to
the conservative reference setup. The mass accumulations, which are
detectable in those depths where the macropores end, arise from ad-
sorption and retardation of solutes that infiltrated the soil matrix out
of the macropores. While the simulation with full reactive transport
also overestimates the IPU masses in the upper 10 cm, the simulated
and observed mass profiles coincide well in the lower depths. The
observed mass peak at 70–90 cm cannot be reproduced completely.
Furthermore, the wider ranges between the simulated profiles for
weak and strong reactive transport in the topsoil reflect the depth-
dependent parameterization of the DT50 values especially. The higher
IPU amounts and lower DT50 values in the topsoil cause a faster
degradation than in underlying soil depths. In subsoil, degradation
is slower and uniform, and due to smaller IPU amounts, there is no
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difference between the two parameterizations. The total degraded
IPU masses are between 0.026 and 0.131 g for the weak and strong
reactive transport simulations, respectively. With an IPU input amount
of 1 g, up to 13 % of IPU is degraded in just 2 d. This shows the
relevance of the degradation process, even on these short timescales.
The relatively high observed IPU mass recovery of 0.908 g (ca. 91 %)
implies a possible degraded total mass of 0.092 g, which is consistent
with our simulated range.

The simulation only with retardation (Fig. 3.5a) reveals hardly any
sensitivity to the variation of K f values. This implies that the amounts
of adsorbed masses are almost equal for different K f values at the end
of the simulation and thus independent of the K f value. This might
be due to nonlinear adsorption, which establishes an equilibrium
state between water and the adsorbing phase after a certain time (cf.
Sect. 3.3.1). Hence, independent of the magnitude of K f , no further
adsorption occurs unless degradation is activated, which would lead
to mass loss in the soil solid phase and a renewed adsorption capacity
(cf. Fig. 3.5b). Higher K f values lead only to a shorter time to reach this
equilibrium state; the final adsorbed masses are similar for different
K f values due to the inactivated degradation in this special case.

3.5.2.2 IPU transport simulated with HYDRUS 1-D

In contrast to the findings at site 5, IPU mass profiles simulated with
the dual-permeability approach of HYDRUS 1-D (Fig. 3.5c) do not
match the observed profile at site 10, resulting in a RMSE value of
0.079 g (7.9 % of applied mass). In the first 35 cm, HYDRUS simulates
a strong retardation and overestimation of masses with a maximum
penetration depth of only 50 cm. In comparison, simulations with
the Lagrangian approach in the LAST-Model match the observed
profile better (cf. Sect. 3.5.2.1). However, the total degraded IPU masses
of 0.028 and 0.183 g resulting from the weak and strong reactive
transport parameterizations simulated with HYDRUS are similar to
those resulting from LAST simulations.
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Figure 3.5: LAST-Model results of reactive IPU transport simulations at the
preferential-flow-dominated site (site 10) after 2 d. (a) The sim-
ulation is performed only with active retardation and with low
and high values for K f . (b) The simulation is performed with
activated retardation and degradation. The shaded area between
the profiles with weak and strong reactive transport (cf. Tab. 3.2)
shows the uncertainty area of the empirical K f and DT50 values.
(c) Comparison with HYDRUS 1-D simulation results.

3.5.3 Simulation results of LAST at the plot site (P4)

3.5.3.1 Bromide transport in 7 d

Fig. 3.6a shows the simulated and observed bromide mass profiles at
site P4 after 7 d. Note that a model evaluation directly at the surface
is not meaningful because the soil sampling in the experiment started
at a depth of 5 cm.

The observed mass profile is characterized by two distinct mass
peaks. One peak, at 15–30 cm, probably originates from solute masses
entering the matrix from the macropores in 15 cm depth, which are
subsequently displaced by water movement into this depth range
within the 7 d. The second peak in a depth around 60–70 cm likely
originates from an accumulation of water and solutes above the less
permeable gleyic horizon in this depth. In comparison, the simulated
bromide mass profile simulated with a finder discretization dz of 0.1 m
(red solid profile) is generally shifted to greater depths, although the
shape corresponds quite well to the observed profile. Between 5–30

cm, the simulated masses are underestimated, and conversely, they are
overestimated between 30–55 cm depth. Obviously, LAST simulates a
solute displacement that is too strong and fast into these deeper soil
depths (“deep shift”), compared to the observed mass accumulation
(15–30 cm), after solute masses leave the macropores and enter the
matrix in 15 cm depth. The simulated mass accumulation in the gley
horizon coincides quite well with the observed data but with long
tailing. Despite the almost stagnant conditions in the gley horizon, we
simulate too strong a displacement of solutes into soil depths even
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deeper than 1 m (Fig. 3.6a) with the setup in LAST. This behaviour is
also visible in the simulated bromide mass profile with a refined dz
of 0.05 m (red dashed line), but the effect is less pronounced as more
bromide remains in the upper 30 cm.

3.5.3.2 IPU transport in 7 and 21 d

Fig. 3.6b shows simulated IPU mass profiles after 7 d, for 6.3 g of
IPU initially applied to the soil surface. These results provide insights
to a possible temporal development of IPU leaching for different
reactive transport parameterizations. Note that comparable observed
data are unavailable (cf. Sect. 3.4.2.3, Tab. 2.2). The depth transport
of IPU is limited compared to bromide and the reference simulation,
treating IPU as non-reactive conservative solute (red profile), which
reflects IPU retardation and degradation in the topsoil. However, we
observe two clear mass peaks at the end of the 15 cm deep macropores
and above the gley horizon, as for bromide. In topsoil, the range
between the two profiles simulated with a weak and strong reactive
transport parameterization is largest. This is caused by the enhanced
retardation and degradation potential and the high amount of IPU
in the topsoil. The decreased potential for sorption and degradation
in the subsoil leads to negligible differences between the profiles in
greater soil depths. In total, the degraded IPU masses for the two
parameterizations lie between 0.514 and 2.618 g.

After 21 d, the resulting IPU mass profiles show remarkable dif-
ferences compared to the profiles after 7 d (Fig. 3.6c). We observe a
deeper penetration and greater range of profiles simulated with the
weak and strong RT parameterization in subsoil. The mass peaks are
barely detectable and mostly smoothed out along the 15 cm deep
macropores and in the depth of the gley horizon. The total degraded
IPU masses for the strong and weak reactive transport parameteriza-
tions range between 1.345 and 4.625 g. Furthermore, despite applying
mean reactive transport parameters, the resulting IPU mass profile
(black profile) is not centred in the light blue shaded profile range due
to the non-linear character of sorption and degradation.
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Figure 3.6: (a) LAST-Model results of 7 d simulation with bromide and dif-
ferent soil domain discretization dz at site P4. Panels (b) and (c)
show hypothetical results of a 7 and 21 d simulation with a weak
and strong reactive transport configuration for IPU (cf. Tab. 3.2,
Sect. 3.4.2.3) at site P4. The bright blue range between the two
profiles demonstrates a hypothetical and possible range of IPU
mass profiles under the influence of retardation and degradation
during 7 and 21 d at this site, respectively. The black profiles addi-
tionally show results with a mean reactive transport configuration
(cf. Tab. 3.2).

3.5.4 Simulation results of FLU breakthrough on field site

During the first irrigation phase, the simulation shows deficiencies
to reproduce the observed temporal dynamics and peaks of FLU
concentrations (Fig. 3.7a). The first breakthrough peak, probably
originating from FLU bypassing the matrix through macropores, is
simulated after 50 min with a subsequently slight decrease. After 100

min, the simulation shows a steady increase of FLU concentrations
due to delayed breakthrough of FLU through the soil matrix. The clear
underestimation of the second concentration peak after ca. 280 min
can be partly explained by the fact that about 20 % of FLU was subject
to rapid particle-bound transport (Klaus et al., 2014). This mechanism
is not considered in our approach.

The simulation of FLU remobilization during the second irriga-
tion phase reveals similar results. The simulated remobilization is
too early (75 min) and followed by a second peak after 175 min.
Both peaks originate again from a first breakthrough of FLU through
macropores and subsequent leaching through the matrix (Fig. 3.7b).
Nevertheless, the results underpin the finding that the presented
reactive transport method within the Lagrangian approach is able to
reproduce the remobilization of FLU into the tile drain during the
second irrigation. This implies that the approach was also capable
to estimate properly the adsorption and degradation of FLU during
the 3 weeks. Despite the limited match with the observed temporal
changes of FLU concentrations, the amount of cumulated FLU masses
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is at the end of both irrigation phases in good agreement with the
observations (Fig. 3.7c and d).

Figure 3.7: LAST-Model results of FLU breakthrough simulations with FLU
concentrations Cw in the tile-drain tube of the field site. (a) and (b)
show FLU concentration changes over time and (c) and (d) present
cumulated FLU masses in the two irrigation phases, respectively
(cf. Sect. 3.4.1.4 and 3.4.2.4).
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3.6 discussion

The key innovation of this study is a method to simulate reactive
solute transport in the vadose zone within a Lagrangian framework.
In this context, we extend the LAST-Model (Sternagel et al., 2019) with
the presented method for reactive solute transport to account for non-
linear sorption and first-order degradation processes during transport
of reactive substances such as pesticides through a partially saturated
soil matrix domain and macropores. For the sorption process, we
develop an explicit mass transfer approach based on the Freundlich
isotherms because the usual method of using a retardation factor
(cf. Sect. 3.3.1.1) is not applicable in the particle-based approach of
LAST. Model evaluations with data from irrigation experiments, that
examined plot-scale leaching of bromide and IPU under different flow
conditions on various timescales as well as FLU breakthrough on a
field site, corroborate the suitability of the approach and its physically
valid implementation. Comparisons to simulations with HYDRUS 1-D
reveal furthermore that an explicit representation of macropores and
their depth distribution is favourable to predict preferential transport
of solutes.

3.6.1 Sorption and degradation in the Lagrangian framework

3.6.1.1 Reactive transport under well-mixed conditions

The 2 d simulations of IPU transport at the well-mixed site (site 5)
corroborate the validity of the Lagrangian approach and the pro-
posed method for sorption and degradation, implemented into the
Lagrangian framework of LAST (Fig. 3.4a). Adsorption causes an
expected accumulation of IPU in topsoil layers (0–10 cm) and, con-
sequently, reduced percolation into greater soil depths. Although
degradation only has a small impact at this short timescale, due to
the moderate DT50 value of 23 d, we nevertheless observe a total
degradation of 0.014 g IPU in 2 d that occurs especially in the shallow
soil areas where IPU accumulates. The mass profile simulated with
retardation and degradation is more consistent with the observations
than the reference simulation treating IPU as a conservative solute.
Such a fast reaction and degradation of IPU in the topsoil can be ex-
plained by its general non-persistent and moderately mobile character,
as well as an obviously very short duration of a lag phase near the
soil surface, which was also discovered by several field studies (e.g.
Bending et al., 2001, 2003; Rodrı́guez-Cruz et al., 2006). The simulated
mass profiles of the benchmark simulations with the commonly used
HYDRUS 1-D model are also in accord with the observations and
corroborate our results; in particular, the total degraded masses are in
a similar range (Fig. 3.4c, Sect. 3.5.1). This suggests that the developed
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reactive transport method in our Lagrangian approach performs simi-
larly to that implemented in HYDRUS 1-D at this well-mixed site (site
5). This finding is in line with our previous study, which revealed that
both approaches yielded similar simulations of conservative tracer
transport at matrix-flow-dominated sites (cf. Sternagel et al., 2019).

3.6.1.2 Impact of the macropore domain on reactive transport under preferen-
tial flow conditions

The simulation results at the preferential-flow-dominated site (site
10) show that the Lagrangian approach is capable of reproducing
the observed heterogeneous IPU mass profile. The implemented
depth-dependent sorption and degradation processes are particularly
helpful in this context (cf. Fig. 3.5). However, in the entire context of
this study, it should be recognized that mean values of K f and DT50

(cf. Tab. 3.2, Sect. 3.4.2.1) from the PPDB were determined empirically
at other field sites. Measurements of these variables are laborious and
not straightforward, as controls on sorption and degradation vary in
space and time (Dechesne et al., 2014). The use of literature values for
these parameters introduces considerable uncertainty into pesticide
fate modelling (Dubus et al., 2003). We explore this uncertainty by
varying the K f and DT50 values for IPU at site 10 in the ranges
provided by the PPDB and further literature (cf. Tab. 3.2, Sect. 3.4.2.2).

The results corroborate the importance of a structural represen-
tation of macropores and their depth distribution, as implemented
in the LAST-Model, consistent with the results of Sternagel et al.
(2019). This is also reflected by the fact that the simulated IPU masses
in the topsoil between 10–30 cm, and particularly the mass accu-
mulations at the depths where macropores end (cf. Tab. 3.1), match
the observations, compared to the reference simulation treating IPU
as conservative tracer and to simulations with HYDRUS 1-D. We
conclude that an explicit representation of the macropore system with
its connectivity, diameter, and depth distribution, and treatment of
macropore flow and exchange with the matrix, is crucial to reproduce
solute bypassing of the topsoil matrix and subsequent infiltration into
the subsoil matrix.

HYDRUS 1-D does not match the heterogeneous shape of the observed
mass profile at site 10, despite the use of a dual-permeability approach
and the same parameterization as LAST. HYDRUS 1-D barely ac-
counts for IPU bypassing and breakthrough to greater depths, and
it overestimates retardation in topsoil, which results in a high mass
accumulation in the first 10 cm of soil. The total degraded IPU masses
are similar in both models and in accord with the observed data, as
both models rely on first-order degradation (Gerke and Genuchten,
1993). These results hence corroborate the findings of Sternagel et al.
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(2019), who concluded that HYDRUS is effective under well-mixed
conditions but is limited in terms of simulating preferential flow
and partial mixing between matrix and macropore flow regimes (e.g.
Beven and Germann, 1982; Šimůnek et al., 2003; Beven and Germann,
2013; Sternagel et al., 2019). We propose that incorporating a similarly
structured macropore domain into HYDRUS would likely improve
simulations under such conditions.

However, all simulated IPU mass profiles at site 10 overestimate
the observed masses within the upper 10 cm of the soil. This may be
due to an additional photochemical degradation at the soil surface,
surface losses due to volatilization, or even plant uptake (Fomsgaard,
1995). Such processes are difficult to detect and parameterize. A
possible reason for the mismatch of the observed and simulated mass
profiles in 70 cm soil depth at site 10 could be a facilitated pesticide
displacement due to particle-bound transport (Villholth et al., 2000;
De Jonge et al., 2004).

3.6.1.3 Sensitivity to variations of sorption and degradation parameters

The ranges of the K f and DT50 values for the case of a weak and
strong reactive transport parameterization cause differences in the
resulting mass profiles (cf. shaded areas in Fig. 3.5). These differences
are generally stronger in topsoil and gradually decrease with depth.
This is because sorption and degradation rates are (i) due to the
higher IPU masses, larger in topsoil than in the subsoil, and (ii) due
to the depthdependent parameterization (cf. Sect. 3.3). The results
of the simulation with only sorption, and no degradation (Fig. 3.5a),
suggest a moderate to low model sensitivity to the K f parameter. This
may be due to the establishment of an equilibrium state between
water and soil solid phase during the simulation time of 2 d. In LAST,
the amount of adsorbed masses depends mainly on the substance
concentration in water and the soil solid phase. As long as the solute
concentration in the water phase is higher than in the solid phase,
solutes are adsorbed until an equilibrium concentration between both
phases is achieved (cf. Sect. 3.3.1). This means that sorption is also
dependent on factors that can disturb this equilibrium state, to enable
further sorption. One such factor could be solute mass loss in the soil
solid phase due to degradation, which, if not accounted for as in this
special case, leads to a stable equilibrium state once it is achieved.
Thus, at the end of the simulations with different parameterizations,
the amount of solute masses and their distribution are almost always
equal, independent of the K f value. The magnitude of the K f value
alone only determines how fast the equilibrium state arises. For the
simulation with small K f values, an equilibrium state in all soil depths
is reached approximately 1 d after pesticide application, while only
about 144 min is required for the simulation with the high K f values.
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Simulations with both retardation and degradation (Fig. 3.5b) re-
veal that degradation is dependent on sorption and the K f value.
This is because we assume that degradation only occurs as long as
solutes are adsorbed in the solid phase. This shows the general mutual
dependence of sorption and degradation processes.

3.6.2 Indicators for solute over-mixing from the 7 d plot-scale simulations

Despite a reasonably good match of simulated and observed bro-
mide mass profiles after 7 d (Fig. 3.6a), we find indications that an
over-mixing of solutes (cf. Sect. 3.2.2.2) could occur in LAST over
longer timescales. While the described deep shift and accumulation
of bromide masses in soil depths between 30–55 cm (cf. Sect. 3.5.3.1)
could reflect the uncertainty of soil hydraulic properties like the
saturated hydraulic conductivity Ks, the long mass tail underneath the
mass accumulation in the gleyic subsoil around 70 cm depth probably
results from artificial over-mixing. Note that the low-permeable gley
horizon in this depth has a Ks value of the order of 10−8 m s−1, which
implies highly stagnant conditions and thus strongly reduced advec-
tive particle movement. Nevertheless, particle diffusion (driven by the
random walk; Eq. 3.5) still occurs due to the particle density and thus
water content gradient in this depth originating from the particle ac-
cumulation above the gley horizon. Particle diffusion entails diffusive
transport of solute masses into deeper soil depths. However, this mass
transport might be too strong in our model, as the perfect mixing of
solute masses between all water particles in a grid element (Sternagel
et al., 2019) leads to small, systematic errors in each time step. These
errors accumulate on the 7 d scale and result in over-predictions of the
displaced solute masses transported by the diffusing water particles
(Green et al., 2002). In particular, the subsequent infiltration of pure
water particles with zero solute concentration has the potential to
“flush out” solutes, leading to the clear tailing of bromide masses
even deeper than 1 m (Fig. 3.6a). Also, the second simulation with
a refined soil domain discretization dz of 0.05 m entails this solute
displacement that is too strong, which shows that over-mixing cannot
be simply avoided in our model by using a finer vertical Euler grid
discretization as sometimes suggested (e.g. Boso et al., 2013). An even
finer discretization would lead to huge, excessive simulation times
because the finer soil discretization has the consequence that also
the time steps become smaller to fulfil the Courant criterion, and a
much higher number of water particles would be needed. Without a
higher particle number, there would be too few particles in the single
soil layers to distribute them to the bins properly and to ensure a
numerically and statistically valid random walk.
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We argue that in natural soils, solutes spread diffusively across
water stored in different pore sizes (Kutı́lek and Nielsen, 1994). Hence,
diffusive movement into and out of these pores, as well as their entrap-
ment, depends strongly on the pore size. This implies a timescale for
solute mixing among waters in different pore sizes and a flushing-out
process that is significantly larger than assumed in our perfectly
mixed approach.

The results of the 7 and 21 d simulation with exactly the same
model setup but with activated reactive transport for IPU does not
show any indication for over-mixing (Fig. 3.6b). This is probably due
to the retardation and degradation processes that hinder, or mask,
a possible over-mixing as solute masses are adsorbed to the soil
solid phase and degraded. Based on the previous findings, we can
only assume that the resulting 7 and 21 d IPU mass profiles are also
deep-shifted due to over-mixing; but comparable data are required
for analysis, especially on larger timescales of several weeks.

3.6.3 Comparison of plot-scale simulations over different periods and simu-
lation of FLU breakthrough on the field site

Comparing the plot-scale mass profiles of the 2, 7, and 21 d periods
reveals remarkable differences. Regarding bromide transport, the
longer drainage phase after irrigation during the 7 d period implies
that water and dissolved bromide have more time to redistribute
and diffuse through the soil, compared to the 2 d period. This is
reflected in the mass accumulation above the gley horizon observed
in the plot-scale experiments at site P4 (cf. Fig. 3.5a). Furthermore,
as mentioned in Sect. 3.4.2.2, IPU can indeed exhibit DT50 values of
just a couple of days in natural soils, which is surely relevant when
comparing periods of 2, 7, and 21 d. This is reflected in the higher
relative IPU degradation amount of 41.5 % in the 7 d period (cf. Fig.
3.6b) and 73.3 % in the 21 d period (cf. Fig 3.5c) compared to just
13 % in the 2 d period (cf. Fig 3.4b) for the strong reactive transport
parameterization (cf. Tab. 2.2). Bending and Rodriguez-Cruz (2007)
found in their experiments a remaining mean IPU mass, relative to
input amount, of around 65 % in soil samples between 0–80 cm depth
after 20 d. The 21 d simulations for IPU (Fig. 3.6c) result in relative,
remaining IPU masses between approximately 30 %–90 % in the depth
0–80 cm for the strong and weak RT parameterization, respectively.
Additionally, Bending et al. (2003) found in further experiments a
remaining mean IPU mass of around 39 %–55 % of input mass in
the first 15 cm of soil at four sites after 21 d. LAST in turn simulates
relative, remaining IPU masses between 31 %–94 % in the depth 0–15

cm for the strong and mean RT parameterization, respectively. Hence,
the 21 d simulations of IPU transport produce relative, remaining IPU
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mass ranges in different soil depths, which seem to be reasonable as
they include these observed results.

The results of the FLU breakthrough simulations reveal the general
difficulty of simulating the temporal dynamics of the breakthrough
curve observed in the tile drain (cf. Fig. 3.7a and b). This confirms
that the use of one single parameter configuration in this study (cf.
Tab. 3.4) for the simulation of FLU breakthrough on the entire field
site is too simple to capture the obviously much higher spatial hetero-
geneity of the 400 m2 field. This is in line with experimental findings
of Klaus et al. (2014), who reported a strongly variable transport
within five distributed soil profiles, which they have examined on
this field. Nevertheless, the selected average parameterization of K f
and DT50 (cf. Sect. 3.4.2.4, Tab. 3.4) allows for reasonable simulation
of (i) adsorption of FLU, especially during the first, rainfall-driven
phase when water with FLU infiltrates and redistributes, as well as (ii)
degradation of FLU, particularly during the period of 3 weeks between
the two irrigation phases. This is reflected in the remobilization of
FLU in the second irrigation phase. As LAST was previously able to
calculate adsorption and degradation of FLU to a suitable magnitude,
the remobilized, cumulative FLU masses are in turn in the range
of observations in the second irrigation phase (cf. Fig. 3.7d). The
steady-state assumption after the first irrigation phase (cf. Sect. 3.4.2.4)
is in line with the observation of Klaus et al. (2014) that the initial
background runoff in the tile-drain tube is approximately regained
after 500 min.

We thus conclude that the reactive transport method implemented
in LAST, with the simple parameter configuration, is sufficient to
reproduce FLU concentrations and masses that leached into the tile
drain and the observed remobilization during the second irrigation
phase, 3 weeks after FLU application. Klaus and Zehe (2011) obtained
similar results by using the 2-D model CATFLOW to simulate ob-
served breakthrough of bromide and IPU into a tile drain at a nearby
site in the Weiherbach catchment.

3.6.4 General reflections on Lagrangian models for solute transport

In line with other Lagrangian models using particle tracking for solute
transport (e.g. Delay and Bodin, 2001; Berkowitz et al., 2006), our
approach shares common assumptions and characteristics. Either
particles represent solutes or, as in LAST, water parcels, which carry
solute masses through the soil domain; and simultaneously, the parti-
cles are not independent but interact with each other as well as with
the soil domain by sorption and degradation.
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However, LAST has important differences compared to some other
particle-based models (e.g. Engdahl et al., 2017, 2019; Schmidt et al.,
2019), which have been published recently as an alternative to the
common solute transport approaches discussed in the introduction.
These models calculate mass transfers between particles of different
substance species to represent mainly chemical reactions, while our
Lagrangian approach calculates the mass transfer of a single substance
species among water particles, as well as between water particles and
the adsorbing soil phase to represent solute mixing and chemical
sorption, respectively. However, by just comparing the implementation
of mass transfers in the other models and LAST, regardless of the
different application purposes, there is an important difference. These
other particle-based models do not use a spatial discretization of
the soil domain (Euler grid) to determine the spatial proximity or
affiliation of particles and to describe mass transfers between them.
Instead, they use a co-location probability approach, which describes
solute particle interactions like mass transfer based on a reaction
probability dependent on the distance between particle pairs. This
approach has advantages in simulating transport and reactions of
multiple substances on larger spatial scales of geochemical systems
like aquifers, compared to the use of an Euler grid. It also offers
advantages to overcome the described artificial over-mixing problem
of Eulerian control volumes (cf. Sects. 3.1, 3.6.2). However, this ap-
proach also has drawbacks. For example, one drawback of the miRPT
algorithm of Schmidt et al., 2019 is related to its transfer process of
solutes. In this process, all eligible solute masses must ultimately
be transferred from mobile particles (i.e. water phase) to immobile
particles (i.e soil solid phase) to calculate degradation. Subsequently,
the residual, non-degraded masses are again transferred back to the
water phase for further transport. This implies that masses move be-
tween the phases without being subject to degradation or adsorption,
which is computationally less efficient because a sufficient spatial
distribution and a large number of immobile particles is necessary. In
both approaches, miRPT and LAST, solute reactions like degradation
are calculated only for the immobile particles. However, due to the
use of a spatially discretized soil domain, the reactive solute transport
method in LAST is, in contrast, able to perform specific calculations
for the partial mass transfer between water and soil solid phase.
This is more efficient for transport simulations at the 1-D plot scale
and is less time-consuming and computationally intensive than the
approach of the miRPT algorithm. Furthermore, these Lagrangian
particle tracking approaches ultimately require a spatial discretization
to calculate solute concentrations, which they achieve by grouping
adjacent particles within a specifically defined radius. This approach
is thus similar to soil domain discretization of Eulerian methods,
which justifies the Euler grid in LAST.
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In general, the extended LAST-Model with an accounting for re-
active solute transport requires only a moderate increase in simulation
times compared to the originally published model version Sternagel et
al. (2019). A total simulation time of only 20 to 30 min on a moderately
powerful PC (Intel Core i7, 3400 MHz, 32GB RAM) is required for
simulations at the heterogeneous site 10 over 2 d, which we consider
reasonable relative to the improved model functionality and physical
soundness.
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3.7 conclusions and outlook

Overall, the main findings of this study are as follows:

• Simulation results demonstrate the feasibility to simulate reactive
transport of solutes, through partially saturated soils, within a
Lagrangian model framework (cf. Sect. 3.6.1.1).

• Comparisons to results of HYDRUS 1-D underline that the struc-
tural macropore domain is an asset of LAST, which enables an
accounting of preferential bypassing and re-infiltration of solutes
(cf. Sect. 3.6.1.2). This is also crucial for predicting preferential
leaching of reactive substances under the influence of the effects
of sorption and degradation.

• LAST shares common assumptions with other alternative
particle-based models but has beneficial characteristics for
the simulation of reactive solute transport in partially saturated
soil plots (cf. Sect. 3.6.4).

• The 7 d plot-scale simulations show that, while the current for-
mulation yields reasonably good results for bromide transport,
some over-mixing of solutes via diffusion is present (cf. Sect.
3.6.2).

• The 21 d plot-scale simulations reveal a reasonable behaviour of
reactive IPU transport on larger timescales, also quantitatively
compared to results of experiments (cf. Sect. 3.6.3).

• FLU breakthrough simulations prove the ability of the La-
grangian approach to estimate the remobilization of adsorbed
reactive substances on a field site in a second irrigation phase 3

weeks after application (cf. Sect. 3.6.3).

Taken together, these findings verify the relevance and innovation
of the presented reactive solute transport method in a Lagrangian
approach. To the best of our knowledge, no other particle-based
Lagrangian framework has applied reactive transport in this way
before to simulate sorption and degradation processes at the transport
of reactive substances through partially saturated soil plots, even
under preferential flow conditions, as well as the breakthrough and
remobilization of pesticides on a field site.

In future work, we intend to address possible improvements to
the LAST formulation, to better quantify solute transport over longer
timescales. One option would be to perform long-term soil column
experiments to examine how tracers and pesticides diffusively enter
and leave different pore sizes. Based on such experiment results, one
could improve the solute transport routine to better account for mixing



3.7 conclusions and outlook 99

between water particles that are stored in pores of different size. The
Lagrangian approach offers promising opportunities in this regard, as
it distinguishes particle movements in different velocity bins, which
represent water in different pore sizes (cf. Sect. 3.2). In this way, it may
be possible to simulate, in each time step and grid element, the solute
mass exchange between water particles using a specific diffusive
transfer rate that is dependent on the pore size or bin in which the
particles are stored. With this approach, we would overcome the
perfect mixing assumption and may apply pore-size-specific sorption
with a bin-dependent gradient of K f values.
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abstract

A recent experiment of Bowers et al. (2020) revealed that diffusive
mixing of water isotopes (δ2H and δ18O) over a fully saturated soil
sample of a few centimetres in length required several days to equili-
brate completely. In this study, we present an approach to simulate
such time-delayed diffusive mixing processes, on the pore scale, be-
yond instantaneously and perfectly mixed conditions. The diffusive
pore mixing (DIPMI) approach is based on a Lagrangian perspective
on water particles moving by diffusion over the pore space of a soil
volume and carrying concentrations of solutes or isotopes. The idea of
DIPMI is to account for the self-diffusion of water particles across a
characteristic length scale of the pore space using pore-size-dependent
diffusion coefficients. The model parameters can be derived from
the soil-specific water retention curve, and no further calibration is
needed. We test our DIPMI approach by simulating diffusive mix-
ing of water isotopes over the pore space of a saturated soil volume
using the experimental data of Bowers et al. (2020). Simulation re-
sults show the feasibility of the DIPMI approach for reproducing the
measured mixing times and concentrations of isotopes at different
tensions over the pore space. This result corroborates the finding that
diffusive mixing in soils depends on the pore size distribution and
the specific soil water retention properties. Additionally, we perform
a virtual experiment with the DIPMI approach by simulating mixing
and leaching processes of a solute in a vertical, saturated soil column
and compare the results against simulations with the common perfect
mixing assumption. The results of this virtual experiment reveal that
the frequently observed steep rise and long tailing of breakthrough
curves, which are typically associated with non-uniform transport in
heterogeneous soils, may also occur in homogeneous media as a result
of imperfect subscale mixing in a macroscopically homogeneous soil
matrix.
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4.1 introduction

Water isotopes are widely used as tracers to investigate a variety
of hydrological processes (Sprenger et al., 2016). While they were
originally used to separate pre-event and event water contributions
to storm runoff (Bonell et al., 1990; Sklash et al., 1996), they are now
more frequently considered as a continuous source of information
to infer the travel time distributions of water through hydrological
systems (e.g. McGlynn et al., 2003; McGlynn and Seibert, 2003; Weiler
et al., 2003; Klaus and McDonnell, 2013). Early analyses often relied
on time-invariant transfer functions, whereas some of the more recent
approaches are time-dependent and, for example, use an age-ranked
storage as a “state” variable in combination with StorAge Selection
(SAS) functions for streamflow and evapotranspiration to infer their
respective travel time distributions (Harman, 2015; Rodriguez and
Klaus, 2019; Rodriguez et al., 2021). This inference of transit times
from water isotopes commonly implies a distinct relation between
water age and its isotopic composition.

However, recent laboratory and field experiments suggest that this
relation and the fate of water isotopes in the soil-plant-atmosphere sys-
tem may in fact be more complex than frequently assumed. Mennekes
et al. (2021), for example, used in situ probes to measure isotopic
signatures of water in soil and tree xylem, during tracer irrigation
experiments on the plot scale, and discussed that the travel times
of water fractions in soils and plants may be distinctly different.
This is in line with the findings of Benettin et al. (2021), who per-
formed lysimeter experiments with isotopic-labelled waters to not
only close, but also trace, all fluxes in the water balance. They found
that the isotopic composition of transpiration fluxes was significantly
different compared to breakthrough fluxes in soil drainage. On the
pore scale, Orlowski and Breuer (2020) investigated how the isotopic
composition of water depends on the retention characteristic of a soil.
Their experimental results highlight “a need to better characterize
processes that govern isotope fractionation with respect to soil water
retention characteristics” because they found fractionation of δ2H and
δ18O isotopes during their diffusive movement over different pore
sizes, especially under high tensions in small pores. In this context,
Bowers et al. (2020) performed an experiment using a combination
of extraction methods to sample isotopically defined water fractions
from a saturated soil sample over the complete water retention curve
to explore how fast water isotopes (δ2H and δ18O) mix diffusively
over the entire pore size distribution. They showed that mixing and
fractionation processes of water isotopes depend on different tensions
at which water is held in pores of different size. The most interesting
insight of the experiment was that the isotope tracer required up to
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3-4 d until it was distributed uniformly over the entire pore space,
even though the studied soil sample was only a few centimetres in
length.

In particular, the experimental findings of Bowers et al. (2020) suggest
that ignoring self-diffusion processes of water isotopes within the
soil pore space can result in incorrect estimates of water ages and
travel times, which emphasizes the requirement for including these
pore-scale processes into soil hydrological models. Common soil
hydrological models average over pore-size-dependent differences
in the flow field and concentration gradients in control volumes
(Berkowitz et al., 2016) to describe diffusive mixing of water and
solutes. This implies that incoming “new” event water and “old”
pockets of pre-event water in soil mix perfectly and instantaneously
over the subscale pore size distribution in a single time step. This
common perfect mixing assumption is, thus, not in line with the
recent experimental findings (e.g. Bowers et al., 2020; Orlowski and
Breuer, 2020). Further studies also have shown that these different
pockets of water may indeed co-exist, even in close spatial distances,
without perfect mixing and that water and solutes repeatedly travel
through the same pathways (memory effect), even after several infiltra-
tion cycles of new precipitation (Gouet-Kaplan and Berkowitz, 2011;
Kapetas et al., 2014). In this way, the establishment of stable water
pockets in soils is possible, which may comprise significantly different
isotopic and chemical compositions depending on the properties
of infiltrating water. This imperfect mixing of water and solutes in
the pore space is frequently discussed rather in the context of rapid
preferential flow in macroporous structures (Beven and Germann,
1982; Beven and Germann, 2013), which is also commonly assumed to
be the main reason for the characteristic steep rise and long tailing
of corresponding breakthrough curves (e.g. Berkowitz et al., 2006;
Edery et al., 2014). Based on the findings of Bowers et al. (2020), we
hypothesize that imperfect mixing of water and solutes over the pore
sizes of a macroscopically homogeneous and saturated soil matrix will
also yield such typical shapes of breakthrough curves, even without
the presence of macroporous soil structures.

To account for subscale diffusive mixing of solutes or water iso-
topes over pore sizes, in line with the findings of Bowers et al. (2020),
we propose that the recent particle-based Lagrangian approaches (e.g.
Berkowitz et al., 2006; Zehe and Jackisch, 2016; Jackisch and Zehe,
2018; Engdahl et al., 2017; Engdahl et al., 2019; Schmidt et al., 2019)
offer a series of new possibilities in this regard. Zehe and Jackisch
(2016) showed that the conceptualization of fluid flow in partially sat-
urated soils as a Lagrangian advective-diffusive random walk of water
particles is feasible for successfully reproducing observed soil water
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dynamics and distinguishing explicitly pre-event and event waters.
The key was to account for a variable, pore-size-dependent mobility
of water particles, which was achieved by discretizing the pore space
into pores of different sizes with specific hydraulic conductivities and
water diffusivities (cf. Sect. 4.2.1). In follow-up studies (Sternagel et al.,
2019; Sternagel et al., 2021), we extended this model approach and
developed the Lagrangian Soil Water and Solute Transport (LAST)
Model for simulations of (reactive) solute transport combined with
water motion in heterogeneous, partially saturated 1-D soil domains.
These former versions of the LAST-Model, however, assumed in-
stantaneous, perfect mixing of solutes among water particles in a
control volume, which implied that the model may have smoothed
out concentration gradients too quickly (Sternagel et al., 2021).

In this study, we eliminate this perfect mixing assumption and
introduce the diffusive pore mixing (DIPMI) approach to provide a
Lagrangian method to improve our ability to describe diffusive mixing
processes on the pore scale. The idea of DIPMI is to account for the
self-diffusion of water particles across a characteristic length scale of
the pore space using pore-size-dependent diffusion coefficients. Its
model parameters can be derived from the soil-specific water retention
curve, and no further calibration is needed. We initially test the
DIPMI approach by simulating the experiment of Bowers et al. (2020),
using the respective dataset. Furthermore, we implement the DIPMI
approach into our LAST-Model framework and perform a virtual
experiment to test our hypothesis. To this end, we simulate diffusive
mixing and the breakthrough of a representative solute in a vertical
1-D soil column during a steady-state saturated flow and compare the
results to simulations using the perfect mixing assumption.
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4.2 lagrangian approach for soil hydrological and sub-
scale diffusion processes

4.2.1 Underlying concept of the LAST-Model

The Lagrangian perspective describes a mobile observer travelling
along the trajectory of a fluid particle through a system (Currie, 2002).
As mentioned above, we have applied the Lagrangian perspective
before in our LAST-Model (Sternagel et al., 2019; Sternagel et al.,
2021) to describe vertical displacement of water particles with related
(reactive) solute transport in interacting domains of soil matrix and
macropores. Water particles are defined discretely by constant water
mass and volume. They additionally carry time-dependent informa-
tion about, for example, their vertical position in both domains and
solute concentrations. The two flow domains of soil matrix and macro-
pores are vertically subdivided into layers. This vertical discretization
is required to quantify and translate the number of water particles,
in combination with the water particle mass and density, into a soil
water content per vertical soil layer. The soil water content in turn
corresponds to the sum of volume fractions of soil water, which
are stored in soil pores of different sizes. Water particles travel at
different velocities in these pore fractions that are characterized by
the shape of the water diffusivity and hydraulic conductivity curve.
These curves are partitioned into a certain number of pore size classes
or bins (“binning”) between the residual and saturated water content.
Depending on the pore size class/bin in which a water particle is
located, it experiences different displacements in the vertical direction
by means of pore-size-specific advection and diffusivity, i.e. water
particles in smaller pores experience a smaller vertical displacement
step than in coarser pores. Hence, this approach accounts for the
combined effects of gravity and capillarity on water flow in partially
saturated soils, as well as the subscale variability in flow velocities
across different pore sizes (Zehe and Jackisch, 2016). However, in
former versions of LAST (Sternagel et al., 2019; Sternagel et al., 2021),
we assumed that the timescale for diffusive mixing is smaller than the
simulation time step and hence, solutes perfectly and instantaneously
mix over all pore size classes/bins in a soil layer. Thus, after the
non-uniform, vertical movement of particles, solute concentrations
were averaged over all present water particles within a vertical soil
layer per time step (perfect mixing assumption). Furthermore, the
LAST-Model allows for the simulation of sorption and degradation
processes during the transport of reactive substances. Non-linear ad-
sorption and desorption processes are realized by an explicit transfer
of dissolved solute mass between water particles and surrounding
sorption sites of the soil phase in a certain depth. Adsorbed solute
masses are then degraded by means of first-order kinetics.
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Previous test simulations revealed that the LAST-Model effectively
describes solute concentration profiles and leaching behaviours of
both conservative tracers and reactive substances, on the plot and
field scale under various flow conditions. In particular, the structural
macropore domain of LAST is an asset in the capturing of the typical
pattern of preferential bypassing of solutes in macroporous soils.
Despite these promising results, we also showed that our former
assumption of perfect mixing of solutes within a vertical soil layer
was a strong simplification that could lead to smoothing of pore-size-
dependent differences in the flow field and concentration gradients,
called over-mixing (Sternagel et al., 2021).

4.2.2 The DIPMI approach: concept to represent subscale diffusion in a
Lagrangian model

In this study, we step beyond the use of the perfect mixing assumption
by developing a Lagrangian approach to simulate self-diffusive mixing
of water and solutes over the pore space. We explain this diffusive
pore mixing (DIPMI) approach based on the schematic sketch in Fig.
4.1.

The rectangle in the left box at t0 schematically illustrates a con-
trol volume with height dz (e.g. a soil layer) of a 1-D vertical soil
profile with total depth z. The width of this rectangle illustrates the
entire subscale extent of pore space LD in which fluid particles can
move by self-diffusion. LD represents a characteristic flow length in the
pore space, which is related to tortuosity of flow paths, the subscale
distribution of pore sizes and thus, to the soil-specific water retention
curve (see right box at t0). The extent of pore space LD and the soil
water retention curve are subdivided equally into a certain number
N of bins i, which represents water storage in different pore size
classes with corresponding matric potentials ψ. N generally depends
on soil-specific properties (Talbot and Ogden, 2008; Ogden et al.,
2017), and we assign N = 200. This value of N is in line with Talbot
and Ogden (2008), who used a comparable method and suggested
that the soil moisture domain of most soil types can be discretized
sufficiently by 200 bins. Furthermore, Zehe and Jackisch (2016), who
used a similar Lagrangian approach to simulate soil water dynamics,
performed an analysis of the sensitivity of N and found that N > 50

is favourable for producing good simulation results compared to a
Richards solver.

Based on the Young-Laplace equation and the subdivided (“binned”)
soil water retention curve, we can determine the total subscale extent
of the pore space LD (L) by the integral (Eq. 4.2) over the correspond-
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ing distribution of pore radii ri (Eq. 4.1), as follows:

ri =
−2 · σ

g · ρ · ψ(i) , (4.1)

LD =
∫ N

i=1
ri , (4.2)

where ri (L) is the radius of a pore size class, σ (F L−1) the surface
tension of fluid, g (L T−2) the gravitational acceleration of the Earth, ρ

(M L−3) the fluid density, ψ(i) (L) the matric potential of a pore size
class/bin, derived from the soil water retention curve. Hence, the
Young-Laplace equation represents a connection between measurable
matric potentials and corresponding pore radii of each pore size class.

Each bin is defined by a constant width δLD = LD · N−1 (L) and
a corresponding location within LD. In our example, each bin is
saturated by fluid particles carrying two different isotopic signatures
(illustrated by the green and dark yellow particles). These fluid par-
ticles have a position within LD and accordingly, they are located
within a certain bin (i = 1. . . N). This means that, at t0, the pore space
is filled by fluid particles with different isotopic signatures: coarse
and medium pore size classes/bins (on the left) are filled by particles
with one isotopic signature (green particles), while small pore size
classes/bins (on the right) are filled by particles with another isotopic
signature (dark yellow particles). Hence, fluid particles with different
isotopic signatures are distinctly unmixed in the pore space before
self-diffusive mixing starts at t1.

At t1, self-diffusive mixing of particles with different isotopic signa-
tures begins. For each particle, a displacement step ∆dLD (L) along LD

is calculated using a random walk equation (Eq. 4.3), which is then
subtracted from the current position of the particle.

∆dLD = Z
√

2 · D(i) · dt−
(

δD(i)
δLD

)
, (4.3)

where Z [-1,1] is a random number drawn from a standard normal
distribution, D(i) (L2 T−1) the diffusion coefficient in a certain bin
or pore size class and dt (T) the time step. The last term δD(i)

δLD
is a

correction term to avoid artefacts in case of spatially variable diffusion
coefficients (see explanation below).

The random number between -1 and 1 enables the displacement
of particles in the positive as well as in the negative direction along
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LD, representing the undirected process of molecular self-diffusion
due to Brownian motion. In this diffusion process, particles are not
displaced by the same diffusion coefficient D. Depending on the bin or
pore size class in which a particle is located, it experiences a specific
diffusivity. Each bin/pore size class has its own D(i) value, which is
determined by its proportion on the total soil porosity (proportion
factor), multiplied with the molecular diffusion coefficient of free
water = 2.272 x 10−9 m² s−1 (after Mills, 1973) (Eq. 4.4), as follows:

D(i) = 2.272 x 10−9 ·
(

θ(i)− θr

φ

)
, (4.4)

where the proportion factor comprises the respective water content of
a specific bin θ(i) (-) according to the binning of the water retention
curve (cf. Fig. 4.1), the residual water content θr (-) and the total soil
porosity φ (-).

In this way, larger pores/bins have higher D values and thus, particles
experience a larger diffusive displacement in these pores/bins, while
particles in smaller pores/bins with lower D values experience a
smaller diffusive displacement. This reflects the decline of the free
path length for Brownian motions in smaller pores. With this approach
of variable, pore-size-dependent diffusion coefficients, we account
for the general controls on the diffusion rate in soil solution, e.g. the
diffusion coefficient of a certain fluid or substance, pore size or water
content and tortuosity of flow paths (Chou et al., 2012). With these
variable diffusivities in pore size classes, we add a correction term
δD(i)
δLD

(Zehe and Jackisch, 2016) to the random walk equation (Eq. 4.3)
to avoid artificial particle accumulation in the smallest pores/bins,
as stated by Uffink (1990). The random number Z in Eq. 4.3 is either
positive or negative and determines in this way in which direction
a fluid particle is displaced along LD, i.e. if it moves diffusively in
the direction of smaller or coarser pore size classes/bins (minus-sign:
in direction of coarse pores, plus-sign: in direction of small pores).
At the same time, the correction term has a constant negative-sign
and thus, the diffusive displacement steps ∆dLD of particles in the
direction of coarse pores are enhanced, while they are diminished in
the direction of smaller pores. In this way, calculated displacement
step lengths of particles are corrected with different strength. The
overall, greater displacement lengths of particles in coarser pores (due
to higher D values) in the direction of smaller pores are balanced
and, consequently, artificial particle accumulations in the smallest
pores are prevented. According to its displacement step, a particle is
assigned a new position within LD, and if ∆dLD > δLD, the particle
is also assigned a new bin number. At the left and right boundary of
the entire pore space LD, particles are reflected into the pore space to
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avoid particle accumulation at the boundaries.

Finally, after a certain mixing time t2, the pore space LD in our
example has reached a final equilibrium state with an uniform iso-
topic signature in all bins. The subscale separation (“binning”) of
the pore space allows for the calculation of mixing concentrations in
single bins or tension areas (i.e. certain number of adjacent bins/pore
size classes within defined ranges of matric potentials).
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Figure 4.1: Schematic sketch of the diffusive pore mixing (DIPMI) approach.
See descriptions of Eqs. 4.1-4.4 in Sect. 4.2.2 for further informa-
tion on the parameters.
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4.3 testing the dipmi approach

We test our DIPMI approach by simulating the experiment of Bowers
et al. (2020) with diffusive mixing of water isotopes over the pore
space of a fully saturated soil volume. Furthermore, we perform a
virtual experiment by simulating mixing and leaching processes of a
representative solute in a vertical, saturated soil column, and compare
results of the DIPMI approach against simulations that employ the
common perfect mixing assumption.

4.3.1 Simulating the experiment of Bowers et al. (2020)

4.3.1.1 Original experiment

Bowers et al. (2020) used a combination of extraction methods to
quantify time-dependent mixing of different water isotopes (δ2H and
δ18O) held at different tensions in fully saturated soil samples over
the entire water retention curve. Their objective was to analyse how
separate soil water fractions, stored in different pore sizes, interact
by self-diffusion. They took oven-dried, homogenized soil samples
(18-30 g) of a sandy loam (cf. Tab. 4.1) and initially wetted them with
isotopically light water (δ2H = -130 ‰ and δ18O = -17.6 ‰) to a relative
saturation of about 16-17 %. This water fraction represented an initial
water content stored at high matric potentials in the smallest pores.
The remaining free pore space was then completely saturated with
isotopically heavy water (δ2H = -44 ‰ and δ18O = -7.8 ‰) representing
new incoming water. Soil samples were then placed into horizontal
cylinders and different equilibration time periods of 0 h, 8 h, 1 d, 3 d
and 7 d were applied to enable mixing of the two isotopically distinct
waters over the pore space by pure self-diffusion (no advection). After
each time period, soil water samples were sequentially extracted from
the soil samples at three subsequent tensions: (i) centrifugation at ∼
< 0.016 MPa for waters in low-tension areas, (ii) centrifugation at
∼ 0.016 – 1.14 MPa for waters in mid-tension areas, and finally (iii)
cryogenic vacuum distillation (CVD) at 100 MPa to capture residual
waters in high-tension areas (∼ > 1.14 MPa). Isotopic compositions
of extracted water samples were then analysed to assess differences
between the diffusive mixing behaviour in the three tension areas
over 7 d. All experimental data with detailed information about soil
hydraulic properties of the sandy loam are freely accessible via an
Open Science Framework (Bowers and Mercer, 2020).

4.3.1.2 Simulation with the DIPMI approach

For our simulations with the DIPMI approach, we assume a repre-
sentative, saturated soil layer volume with the same soil hydraulic
properties and soil water retention characteristics as the sandy loam
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used by Bowers et al. (2020). From the given soil water retention curve
in the study of Bowers et al. (2020), it is possible to infer the pore
diameters corresponding to the respective matric potential ranges of
the sandy loam (cf. Eq. 4.1, Sect. 4.2.2). The representative soil layer
is defined only by the extent of the pore space LD (cf. Sect. 4.2) and
has no vertical extent, as we simulate pure diffusion over the pore
space without any vertical displacement of particles in this case. For
saturation of the pore space, we generally use the same saturation
procedure but we do not use the pure isotopically light and heavy
waters as in the experiments (cf. Sect. 4.3.1.1). Instead, we use the
upper and lower standard deviation (SD) values of isotopic concentra-
tions, which Bowers et al. (2020) measured after the first extraction
time at 0 h. This is necessary to enable an equal initial condition
of isotopic concentrations in simulations compared to observation;
we thus perform simulations with differing initial isotopic values
for light and heavy water (cf. Tab. 4.1). First, we use the upper SD
values for light water (δ2H = -79 ‰ and δ18O = -9.3 ‰) and heavy
water (δ2H = -46 ‰ and δ18O = -7.2 ‰). Second, we use the lower
SD values for light water (δ2H= -99 ‰ and δ18O = -12.3 ‰) and
heavy water (δ2H = -48 ‰ and δ18O = -7.8 ‰). After both simulation
runs, isotopic concentrations are averaged over the respective tension
areas at each time point, resulting in the mean and SD values of our
simulations (cf. 4.2). We use given experimental data of the soil water
retention curve and Eqs. 4.1 and 4.2 to quantify the total extent of
pore space LD of the soil volume by 21,000 µm and subdivide it into
200 bins or pore size classes (cf. Sect. 4.2.2). Additionally, we repeat
the simulations with the (i) constant diffusivity D of 2.272 x 10−9

m² s−1 (diffusion coefficient of free water) in all bins, and (ii) linearl
pore-size-distributed diffusivities D over all bins calculated by Eq.
4.4 (cf. Sect. 4.2.2). Pore-size-distributed D values thus range from ∼
1.9 x 10−9 m² s−1 in bin 1 (i.e. largest pore in low-tension area) to ∼
9.0 x 10−9 m² s−1 in bin 200 (i.e. smallest pore in high-tension area).
We do not distinguish between specific diffusion coefficients for δ2H
and δ18O, as Hasegawa et al. (2021) recently found generally equal
diffusion properties of both isotopes in artificial and natural porous
media.

We use a total of 105 particles, which corresponds to 500 parti-
cles per bin at full saturation. A high number of particles is needed to
enable a stochastically valid random walk process (cf. Eq. 4.3) (Zehe
and Jackisch, 2016). Initially, all particles are distributed randomly
over all bins in LD and thus, each particle is assigned an exact position
and bin number within the pore space prior to the start of the mixing
process. To saturate the pore space with the two isotopically distinct
waters, we further initially define the particles in each bin that contain
the isotopically light or heavy water concentrations. According to
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the binning of the water retention curve (cf. Sect. 4.2.2), we identify
that the bins 168-200 correspond to a relative saturation of 16-17 %
(cf. Sect. 4.3.1.1). Thus, these bins are filled with particles carrying
the light water concentration mimicking the initial water content
stored at high matric potentials in the smallest pores. The residual
bins 1-167 are filled accordingly with particles carrying the heavy
water concentration representing new input water. Furthermore, we
also link the three tension areas to bin numbers, with bins 1-143 as
low-tension area, bins 144-177 as mid-tension area and bins 178-200 as
high-tension area. Isotopic concentrations in these tension areas are
calculated by averaging concentrations of all particles present in the
corresponding bin numbers.

Table 4.1: Experimental and simulation parameters as well as soil hydraulic
parameters (van Genuchten, 1980; Mualem, 1976) of sandy loam,
where θs is the saturated soil water content, θr the residual soil
water content, α the inverse of an air entry value, n a quantity
characterizing pore size distribution.

Parameter Value

Soil type Sandy loam

θs (m3 m−3) 0.41

θr (m3 m−3) 0.065

α (m−1) 7.5

n (-) 1.89

Clay (%) 9

Silt (%) 32

Sand (%) 59

δ2H (‰) of light water at t = 0 h -89 ± 10

δ18O (‰) of light water at t = 0 h -10.8 ± 1.5

δ2H (‰) of heavy water at t = 0 h -47 ± 1

δ18O (‰) of heavy water at t = 0 h -7.5 ± 0.3

Low-tension area range (MPa) ∼ < 0.016

(bins 1-143, LD : 21,000-5,985 µm)

Mid-tension area range (MPa) ∼ 0.016 – 1.14

(bins 144-177, LD : 5,880-2,415 µm)

High-tension area range (MPa) ∼ > 1.14

(bins 178-200, LD : 2,310-0 µm)

Simulation time step (s) 600

Total number of particles 105

Total number of bins 200

LD (µm) 21,000

δLD (µm) 105
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4.3.2 Setup of virtual experiment: simulating diffusive pore mixing and
leaching of solute during steady state, saturated flow in a soil column

The virtual experiment serves as an additional evaluation of the
capability of the DIPMI approach to simulate pore-scale mixing in
a more complex setting. We use the term virtual to emphasize that
these numerical simulations do not rely on real, existing experiments,
which is in contrast to the experiments of Bowers et al. (2020) in the
first part of this study.

For the virtual experiment, we assume a vertical 1-D soil column of
length z = 1.0 m, which is subdivided into vertical layers of dz = 0.1
m length (cf. top of Fig. 4.1). The (fully water-saturated) soil column
contains the same, macroscopically homogeneous sandy loam with a
saturated hydraulic conductivity Ks of 10−6 m s−1, and has all other
hydraulic properties and the definition of the three tension areas in
each soil layer, as used in the experiment of Bowers et al. (2020). All
other experimental and simulation parameters are also the same (cf.
Tab. 4.1). Water particles initially located in the pore space of the
surface soil layer (0-0.1 m) carry a concentration C = 100 M L−3 of a
representative conservative solute, while water particles in the other
(lower) soil layers carry a zero solute concentration. The soil column
is then irrigated by pure water without any solute. A steady-state
flow through the soil domain is established for 7 days driven by a free
drainage condition at the bottom boundary, neglecting any evapora-
tion effects at the soil-atmosphere interface. For the virtual experiment,
the vertical displacement routine of LAST is used, assuming pure
matrix flow without the influence of macropores or reactive transport
processes (cf. Sect. 4.2.1, Zehe and Jackisch, 2016; Sternagel et al., 2019;
Sternagel et al., 2021). It calculates a vertical displacement step, by
means of advection and dispersion, for each fluid particle in all soil
layers, starting from the bottom to the surface layer. Thus, a certain
number of particles initially leaves the soil domain via the bottom
boundary and to maintain the saturation state, missing numbers of
particles in soil layers are gradually refilled by particles from overlying
layers until the soil domain is, at the top, finally re-saturated by adding
new event particles to the surface soil layer (steady state). The length
of a vertical displacement step is therefore also dependent on the
bin/pore size (cf. Sect. 4.2.1). Particles in coarse pores experience a
larger vertical displacement than particles in smaller pores due to
higher advective velocities and diminished capillary effects. Hence,
particles in coarse pores/bins are more likely to travel into the next
underlying soil layer.

We simulate this virtual experiment setup with our LAST-Model
with (i) the DIPMI approach, with constant and pore-size-distributed
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diffusivities D (cf. Sect. 4.2.2) over bins, respectively, and (ii) the
common perfect mixing assumption used in the former versions of
LAST (cf. Sect. 4.2.1, Sternagel et al., 2019; Sternagel et al., 2021).
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4.4 results and discussion

In Sects. 4.4.1 and 4.4.2, we present and discuss the results of the
DIPMI simulations of the experiment of Bowers et al. (2020), followed
by the presentation and discussion of the results of the virtual experi-
ment in Sects. 4.4.3 and 4.4.4.

4.4.1 DIPMI simulations of the experiment of Bowers et al. (2020)

Tab. 4.2 contains the mean and standard deviation of isotopic concen-
trations in each tension area and time point for each simulation with
constant and pore-size-distributed D values, respectively. Values high-
lighted in bold are within the measured standard deviation range of
the experimental values of Bowers et al. (2020), which are additionally
given. It is obvious that most of the simulated isotopic values are in
accordance with the observation. Deviations mainly occur in the high-
tension area after 8 h, as simulations over-predict the degree of mixing
(i.e. mixing is too fast) in this high-tension area. All three tension areas
require different times to reach a mean equilibrium concentration δe

of around -54 ‰ for δ2H and -8.0 ‰ for δ18O. These equilibrium con-
centrations are reached in the simulation with pore-size-distributed
D values after (i) 8 h to 1 d in the low-tension area, (ii) ∼ 1 d in the
mid-tension area, and (iii) 3 d in the high-tension area. Thus, our
DIPMI approach simulates complete isotope mixing somewhat faster
than Bowers et al. (2020), who found that complete mixing is achieved
after around 4 d. However, mixing times and isotopic concentrations
of our simulations, with pore-size-distributed D values in particular,
are generally consistent with the measured values. Comparing results
of simulations with constant and pore-size-distributed D values re-
veal differences in the mid- and, especially, high-tension areas, while
isotopic concentrations in the low-tension area are quite similar. All
tension areas reach the equilibrium state already between 8 h and 1 d
when simulating with constant D values in all bins.
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Table 4.2: Mean and standard deviation of isotopic concentrations in each
tension area and time point for simulation with constant (const.)
and pore-size-distributed (distr.) D values, respectively. Bold values
are within the standard deviation range of the measured values of
Bowers et al. (2020).

Tension Time Mean δ2H (‰) Mean δ18O (‰)

area point

const. D distr. D Bowers const. D distr. D Bowers

Low tension 0 h -47 ± 1 -47 ± 1 -47 ± 1 -7.5 ± 0.3 -7.5 ± 0.3 -7.5 ± 0.3

∼ < 0.016 MPa 8 h -53 ± 2 -50 ± 2 -53 ± 1 -8.0 ± 0.5 -7.7 ± 0.4 -7.8 ± 0.2

1 d -54 ± 3 -53 ± 3 -56 ± 1 -8.0 ± 0.5 -8.0 ± 0.5 -8.0 ± 0.2

3 d -54 ± 3 -54 ± 3 -56 ± 1 -8.0 ± 0.5 -8.0 ± 0.5 -7.8 ± 0

7 d -54 ± 3 -54 ± 3 -55 ± 1 -8.0 ± 0.5 -8.0 ± 0.5 -7.3 ± 0.3

Mid tension 0 h -59 ± 4 -59 ± 4 -65 ± 4 -8.5 ± 0.7 -8.5 ± 0.7 -9.2 ± 0.6

∼ 0.016 - 1.14 MPa 8 h -56 ± 4 -61 ± 4 -63 ± 5 -8.3 ± 0.5 -8.6 ± 0.7 -8.6 ± 0.4

1 d -55 ± 3 -57 ± 3 -60 ± 0 -8.1 ± 0.5 -8.3 ± 0.5 -8.3 ± 0.2

3 d -54 ± 2 -55 ± 3 -57 ± 1 -8.0 ± 0.5 -8.1 ± 0.6 -7.9 ± 0.2

7 d -54 ± 2 -54 ± 2 -55 ± 0 -8.0 ± 0.5 -8.1 ± 0.6 -7.0 ± 0.2

High tension 0 h -89 ± 10 -89 ± 10 -89 ±10 -10.8 ± 1.5 -10.8 ± 1.5 -10.8 ± 1.5

∼ > 1.14 MPa 8 h -57 ± 3 -71 ± 6 -79 ± 3 -8.3 ± 0.5 -9.4 ± 1.0 -9.5 ± 0.4

1 d -55 ± 3 -60 ± 4 -72 ± 4 -8.1 ± 0.5 -8.5 ± 0.7 -8.4 ± 0.2

3 d -54 ± 3 -55 ± 3 -65 ± 2 -8.0 ± 0.5 -8.1 ± 0.5 -7.6 ± 0.6

7 d -54 ± 3 -54 ± 3 -62 ± 2 -8.0 ± 0.5 -8.1 ± 0.5 -6.5 ± 0.5

Additionally, Fig. 4.2 shows the isotopic concentrations, simulated
with pore-size-distributed D values and the observations, for each
tension area and time point in a dual-isotope space. The isotopic
concentrations in the three tension areas gradually converge towards
the mean equilibrium concentrations over time. Simulated concen-
trations in low- and mid-tension areas are in accordance with the
observations, indicated by the overlapping of simulated and mea-
sured standard deviation ranges. An exception is the high-tension
area, where measured isotopic concentrations of especially δ2H have
lower values compared to our simulations after 8 h; these findings
show that the actual mixing process in the smallest pores is delayed.
Furthermore, there are also differences between the two isotope
species. For δ18O, simulated concentrations are consistent with the
observations in all tension areas over the entire period, except the
7 d concentrations in the mid- and high-tension areas. However,
these measured concentration values were unexpectedly high in
the experiments of Bowers et al. (2020) as further discussed in Sect.
4.2.2. The value range of δ18O is also generally larger compared to δ2H.
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Figure 4.2: Isotopic concentrations in dual-isotope space for each tension
area and time point, simulated (red) by the DIPMI approach with
pore-size-distributed D values and measured (black) by Bowers
et al. (2020). Note that at t = 0 h the simulated and measured
isotopic values in the low- and high-tension areas are identical.

4.4.2 Analysis of simulations of the experiment of Bowers et al. (2020)

The simulation results (cf. Sect. 4.4.1) indicate that our diffusive pore
mixing (DIPMI) approach is capable of reproducing the experiment of
Bowers et al. (2020). The results in Sect. 4.4.1 show that our approach is
suitable for (i) simulating the measured mixing time (∼ 3 d) required
to reach an equilibrium concentration δe in the entire pore space and
(ii) resolving most of the isotopic concentrations in all tension areas
with time (cf. Sect. 4.4.1, Tab. 4.2 and Fig. 4.2).

In general, the concept of DIPMI is consistent with other studies,
which usually observe a lag time in isotopic mixing of waters stored
initially in different pore sizes (e.g. Adams et al., 2020; Bowers et al.,
2020; Orlowski and Breuer, 2020), proving that diffusive mixing over
an entire pore space is far from being a perfect, instantaneous process,
even on the (small) scale of a few centimetre long soil sample. A
realistic description of diffusive mixing processes is especially crucial
for interpreting studies examining origins of plant water (e.g. Sprenger
et al., 2016; Penna et al., 2020), water ages (e.g. Hrachowitz et al.,
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2013; Sprenger et al., 2019), travel times (e.g. Klaus et al., 2015; van
der Velde et al., 2014) or even groundwater (e.g. Berkowitz et al., 2016).

Our calculated extent of LD = 21,000 µm (cf. Eqs. 4.1 and 4.2) appears
to feasibly resolve the internal pore space of the sandy loam soil
volume used in the experiment of Bowers et al. (2020). The distributed,
bin-dependent diffusivities D (cf. Eq. 4.4) facilitate a realistic sim-
ulation of measured isotopic concentrations, which is superior to
simulations with constant D values (cf. Tab. 4.2). The latter results in
an over-prediction of the degree of mixing, which reaches the equilib-
rium state almost simultaneously in all tension areas after just 8 h to 1

d. A constant diffusivity of 2.272 x 10−9 m² s−1 seems feasible only in
coarser pores. The smaller a pore size class. the greater the capillary
forces and friction caused by interactions between solid surfaces and
the thin water layers directly adjacent to them. Both, capillary forces
and friction, decrease significantly water movement in the smallest
pores. This effect corroborates our calculation of pore-size-dependent
diffusivities. However, D values in the high-tension area are still
too high because measured concentrations are not matched to the
same extent as for the case in the low- and mid-tension area. This
implies that our approach still simulates overly strong mixing in the
high-tension area.

The high-tension area of the water retention curve probably bears the
highest uncertainty. In this area of the pore space, water is held at
tensions � 1.0 MPa and is usually extracted by cryogenic vacuum
distillation (CVD). This method, however, may be prone to producing
artefacts when analysing isotopic concentrations of soil and plant
water (Orlowski et al., 2013; Adams et al., 2020; Orlowski and Breuer,
2020; Allen and Kirchner, 2021). Beside possible uncertainties in
the measurement procedure, specific subscale processes can be the
reason for discrepancies between simulation and observation in the
high-tension area. Bowers et al. (2020) suggested that interactions/ad-
sorption of water ions with clay minerals within smaller pores can
have a significant effect on the mixing behaviour. This might also be
the reason for the discrepancies between simulated and measured
δ18O concentrations in mid- and high-tension areas after 3-7 d, as
measured values are higher than expected as stated by Bowers et al.
(2020). Such δ18O enrichment was also reported in other studies (e.g.
Oerter et al., 2014). Orlowski and Breuer (2020) further suggested
that isotopic fractionation may occur during diffusive mixing, espe-
cially in high-tension areas. Reasons for such isotopic fractionations
are difficult to define and in addition to adsorption effects, further
subscale processes may play a role, such as adhesion or evaporation
effects. Evaporation is often regarded as a main driver for isotopic
fractionation, especially at the interface of the soil-atmosphere system
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(Sprenger et al., 2016; Sprenger et al., 2018b). However, it may also
result in a fractionation effect on the pore scale during the water
extraction process in experimental studies when a phase change from
liquid to gaseous occurs at the interface of saturated and unsaturated
pores, which in turn may lead to vapour-pressure-controlled adsorp-
tion of water on soil surfaces (Lin and Horita, 2016; Lin et al., 2018).

Such detailed subscale processes are not incorporated specifically
in the current version of our DIPMI approach. We focus on the
abstraction of physical properties, which we think generally have the
greatest influence on the diffusion process inside of soil domains,
e.g. the diffusion coefficient of certain fluid or substance, distinct
water pockets in soil pores of different sizes, and tortuosity of flow
paths (Chou et al., 2012; Bowers et al., 2020). We lump these physical
properties into the two main assets of our DIPMI approach, i.e. (i) the
extent and characteristic flow length of the pore space LD and the (ii)
variable diffusivities D in different pore size classes, both of which can
be directly derived from the soil water retention curve (cf. Sect. 4.2.2).

The results of Bowers et al. (2020) and our simulations both highlight
that mixing processes in soils are by no means instantaneous or
perfect, even in very small and fully saturated control volumes. Rather,
the diffusive spreading of water depends on the pore size distribution
and specific soil water retention properties. With this insight, it is of
interest to examine, in the following virtual experiment (Sects. 4.3
and 4.4), how pore-size-dependent and non-instantaneous mixing
affect simulations of water flow through a saturated soil column on a
larger scale, and to delineate their effects on solute breakthrough and
redistribution in soil.

4.4.3 Simulation of the virtual experiment

Solute breakthrough curves exhibit a clear difference between simula-
tions with the DIPMI approach and the perfect mixing assumption
(Fig. 4.3). Simulation with the perfect mixing assumption results in
a breakthrough curve that is shaped like an approximately normal
distribution with a concentration peak of 13 M L−3 after ∼ 42 h,
followed by a sharp decrease converging a zero solute concentration
after ∼ 105 h. Thus, all solute stored initially in the surface soil layer is
eluted completely from the entire soil column by ∼ 2.3 pore volumes,
when simulation is performed with the perfect mixing assumption. In
contrast, simulation with the DIPMI approach and constant D values
results in a breakthrough curve that exhibits a right-skewed distribu-
tion. The peak concentration of ∼ 7 M L−3 is reached after around
38 h and is followed by a long tailing of solute breakthrough, which
converges the zero concentration only after 7 days, corresponding
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to 3.5 pore volumes. Hence, significantly more time is required to
elute all solute from the soil column. The simulation with the DIPMI
approach and pore-size-distributed D values generally results in a
breakthrough curve with a similar shape, as the breakthrough curve
with constant D values, with comparable peak concentration and
long tailing behaviour. However, it needs a shorter time to peak (∼
22 h) and the solute breakthrough tailing does not converge to zero
concentration at all, not even after the simulation period of 7 d. Thus,
more than 3.5 pore volumes are needed to leach all solute from soil in
the case of pore-size-distributed D values.

Figure 4.3: Solute breakthrough curves over 7 d, simulated with (i) the DIPMI
approach and constant D (const.) values (blue), (ii) DIPMI ap-
proach and pore-size-distributed D (distr.) values (red), as well as
(iii) the perfect mixing assumption (black).

Fig. 4.4 further shows the mean solute concentrations in the three
tension areas per vertical soil layer at different points in time. Com-
paring the results of simulations with the DIPMI approach (with
pore-size-distributed D values) and the perfect mixing assumption
generally supports the previous insights of the breakthrough curves.

There is no difference in concentration between tension areas when
using the perfect mixing assumption, as this approach averages solute
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concentrations over the entire pore space of a soil layer (cf. Sect.
4.2.1). Consequently, solute gradually propagates, in the form of a
fast wave, through all soil layers resulting in a complete elution of
solute in all soil layers within the first 3-4 days. The results of the
simulation with the DIPMI approach and pore-size-distributed D
values exhibit a different and more heterogeneous picture (red shaded
symbols and lines), especially regarding solute propagation behaviour
and concentrations in different tension areas. Due to the imperfect
mixing, a large fraction of solute preferentially propagates vertically
through the low-tension areas (dark red) of the soil layers. This vertical
leaching process is faster than the diffusive mixing over the tension
areas within a soil layer, leading to the fast breakthrough of solute
during the first 12 h (cf. Fig. 4.3). Hence, only smaller amounts of
solute enter the mid- and high-tension areas (light red and orange)
in deeper soil layers (0.1-1.0 m). In contrast, the initially solute-filled
mid- and high-tension areas in the surface soil layer only release
their solute slowly. This mechanism entails a retardation effect, which
results in the persistence of solute in soil over the entire period of 7 d
and the long breakthrough curve tailing with incomplete elution of
solute (cf. Fig. 4.3).
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Figure 4.4: Vertical concentration profiles of a solute with mean concentra-
tions in three tension areas over 7 d, simulated by the DIPMI
approach with pore-size-distributed D values (red shades) and
the perfect mixing assumption (black), respectively. Note that
the black line and crosses illustrate the same mean concentration
in all three tension areas per soil layer, as the perfect mixing
assumption averages out pore-size-dependent differences.
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4.4.4 Analysis of the virtual experiment

The use of the perfect mixing assumption shows two effects in our
virtual experiment: (i) a longer time to first breakthrough and peak (cf.
Fig. 4.3) and (ii) a steeper and shorter tailing of solute breakthrough
concentration after the peak with a complete leaching of solute within
105 h (cf. Fig. 4.4). These effects can be explained by the fundamental
assumption that solutes always perfectly and instantaneously mix
over the entire pore space in each soil layer during passage of the soil
domain. Consequently, solute spreads uniformly over the pore spaces
of initially solute-free soil layers (0.1-1.0 m) before reaching the bottom
boundary, which leads to dilution and the delayed breakthrough
front arrival. Thereafter, the perfect and instantaneous mixing of pure
infiltrating event water with solute-containing, pre-event water causes
the rapid and complete elution of all solute, especially out of the
surface soil layer, also with a relatively high peak concentration. These
dilution and elution effects are characteristic of over-mixing phenom-
ena (e.g. Green et al., 2002; Boso et al., 2013) and may be problematic
for assessing the risk of contaminant leaching by potentially giving
wrong predictions regarding breakthrough times and persistence in
soil, for example.

Using the DIPMI approach with pore-size-distributed D values
(cf. Eq. 4.4) for simulation of the virtual experiment bears opposite
effects: (i) a faster initial breakthrough (cf. Fig. 4.3) and (ii) a long tail-
ing of solute breakthrough concentration with an incomplete elution
of solute (cf. Fig. 4.4). The timescale for diffusive mixing over pore
sizes is significantly larger than the timescale for vertical transport
of solute. This leads to an early arrival of the breakthrough front, as
solute travels downward mainly through the pores of low-tension
areas without spreading uniformly over soil layers. The smaller
peak concentration and long tailing of the breakthrough curve are,
thereafter, caused by a retardation effect of pores in the mid- and
high-tension areas. These pores, with smaller diffusivities and higher
capillary tensions, bind solute for a longer time (cf. Fig. 4.4) before
they are mixed diffusively with pure infiltrating water and leached
out. Regarding these effects, it is important to recall that the vertical
displacement of fluid particles also depends on the different pore
size classes/bins in our LAST-Model (cf. Sect. 4.2.1, Sternagel et al.,
2019; Sternagel et al., 2021). Particles in coarse pores of low-tension
areas are more mobile and displaced vertically by a higher advective
velocity compared to particles in smaller pores. Consequently, water
and solute flow mainly through these pores in low-tension areas,
with a limited diffusive exchange with smaller pores and thus, the
mid- and high-tension areas are essentially bypassed. This behaviour
implies that the saturated flow system is dominated by preferential
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bypassing flow through the low-tension area.

In the low-tension area, the mean D values of the constant D method
(2.272 x 10−9 m² s−1) and the pore-size-distributed D method (1.243

x 10−9 m² s−1) are (relatively) similar, leading to breakthrough be-
haviours of both methods that are comparable in an early phase of
breakthrough (cf. Fig. 4.3). However, the overall higher and constant
D value causes a stronger leaching of retarded solute over time in
later phases of breakthrough, especially from mid- and high-tension
areas, with a complete elution after the period of 7 d. This implies
that during early phases of fast, bulk leaching of solute the influence
of pore-size-dependent diffusive mixing is less significant due to
preferential bypassing. Nevertheless, pore-size-dependent diffusive
mixing becomes highly relevant in later phases of the breakthrough
when residual amounts of solute, stored and retarded in small pores,
are gradually moved back into coarser pores by diffusive mixing with
infiltrating water and hence, remobilized. Note that we perform our
simulations in saturated media because in a fully saturated pore space,
differences of the diffusivities between the largest, saturated pore
size class and the smallest, saturated pore size class are more distinct
than in a partially saturated pore space. Thus, simulations under
saturated conditions are more suitable for highlighting the influence of
diffusive mixing with pore-size-distributed D values, also in compari-
son to the use of constant D values and the perfect mixing assumption.

The breakthrough curves (cf. Fig. 4.3) also show the sensitivity
of the DIPMI approach to variations of the diffusion coefficient value.
The simulations are performed with significantly different D values
in the setups with distributed (i.e. mean D of 9.7 x 10−10 m² s−1) and
constant (i.e. mean D of 2.272 x 10−9 m² s−1) D values (i.e. range of 57

%), as well as with the instantaneous, perfect mixing assumption (i.e.
infinite D of 10∞ m² s−1). We can infer that (i) higher D values result
in breakthrough curves with shorter tailings, which gradually ap-
proaches the shape of the curve of the perfect mixing assumption, the
higher D values are; and (ii) smaller D values result in breakthrough
curves with increasingly longer tailings. The latter situation is the case
when simulating the diffusive spreading of common solute tracers (e.g.
bromide or chloride) in porous media, because diffusion coefficients
of the dissolved solute molecules are usually smaller compared to
those of pure water or stable water isotopes (Hasegawa et al., 2021).

Overall, the results of the virtual experiment reveal a different
behaviour in the solute leaching and redistribution in soil for sim-
ulation with the DIPMI approach, compared to simulations that
invoke the perfect mixing assumption. In particular, the long tailing of
breakthrough curves is in line with common observations of several
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studies (e.g. Zinn and Harvey, 2003; Willmann et al., 2008; Edery et al.,
2014). Zinn and Harvey (2003) linked the long tailing of breakthrough
curves to mass transfer between regions of different mobility, e.g. pore
size classes in different tension areas. Edery et al. (2014) also simulated
solute breakthrough in saturated, porous media by a Lagrangian par-
ticle tracking approach. They showed that the broadness and tailing
of breakthrough curves increase with a generally higher heterogeneity
of pore space and flow paths. Our subdivision of the pore space into
different pore size classes with pore-size-dependent diffusivities in
the DIPMI approach is in line with this finding and adds, furthermore,
an important aspect to account for imperfect subscale mixing in soil
hydrological modelling.

Moreover, our results highlight that these typical shapes of break-
through curves are not exclusively caused by explicit hydraulic (e.g.
macropore flow) or chemical (e.g. adsorption and desorption) het-
erogeneity in soil, but that early breakthroughs and long tailing may
also be a result of imperfect diffusive mixing within the pore space
(Willmann et al., 2008), even when the flow domain is fully saturated
and its soil properties are macroscopically homogeneous. Hence,
we can verify our proposed hypothesis (cf. Sect. 4.1) and state that
imperfect mixing across soil pores with different hydraulic properties
within the soil matrix may entail an implicit heterogeneity of flow
causing typical shapes of breakthrough curves, even in the absence of
explicitly defined preferential flow paths.
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4.5 conclusions and outlook

The main findings of this study are as follows:

• Simulation results show the feasibility of the DIPMI approach
for reproducing the findings of the experiment of Bowers et
al. (2020) by correctly capturing the measured diffusive mixing
times and concentrations of water isotopes over the pore space
of a fully saturated soil sample (cf. Sects. 4.4.1, 4.4.2).

• A virtual experiment highlights that imperfect mixing in a macro-
scopically homogeneous soil matrix can produce breakthrough
patterns that are usually associated with preferential flow in
heterogeneous soil structures such as macropores (cf. Sects. 4.4.1,
4.4.2).

• The DIPMI approach is physically based in the sense that its
model parameters can be derived from the soil water retention
curve, and no further calibration is needed (cf. Sect. 4.2.2).

In the future, in situ 1-D column experiments are planned to analyse
the influence of the microstructure of partially saturated soils on the
temporal and spatial mixing of isotopes over the pore space. The
experimental results may provide a representative dataset serving
as a reference to further extend and test the DIPMI approach, as
comparable data on pore-scale mixing processes remain scarce.





Part V

S U M M A RY A N D D I S C U S S I O N

In the following chapter, I condense the key findings and
results I obtained in this thesis. Furthermore, I propose
opportunities for further research and discuss the key find-
ings and their general relevance for soil hydrological mod-
elling.





5
S U M M A RY A N D D I S C U S S I O N

5.1 conclusions and summary of the key findings

In the previous Sects. 2 – 4, I present the development of the LAST-
Model framework. I describe how the model incorporates various soil
hydrological processes to simulate preferential transport of (reactive)
solutes and subscale diffusive mixing in the pore space. In the Sects.
5.1.1 – 5.1.4, I give a short summary of the key findings of the respec-
tive parts of my thesis and draw conclusions from these findings for
soil hydrological modelling.

5.1.1 Part II: Simulating preferential soil water flow and tracer transport
using the Lagrangian Soil Water and Solute Transport Model

The results of Sect. 2 reveal the feasibility of the LAST-Model to
simulate well the redistribution of a solute tracer in the subsoil. Re-
sults are compared to observations and to simulation results of the
HYDRUS 1-D model (based on the Darcy-Richards equation and the
ADE). While LAST and HYDRUS perform equally well at sites with First simulation

successes of LAST.homogeneously structured soils (cf. Fig. 2.5), LAST better matches
the observed tracer profile at sites with a heterogeneous soil structure
and macropores (cf. Fig. 2.6). Solute accumulations in deeper soil
layers are captured by the LAST-Model. The structural macropore
domain allows for a rapid, matrix-bypassing flow of water and solutes,
infiltrating the macropores at the soil surface and re-infiltrating the
soil matrix in greater depths. The results of sensitivity analyses un- Sensitivity analyses

show the physical
validity.

derpin the physical validity and robustness of the underlying model
concept. They reveal the highest sensitivity of the model towards
the soil hydraulic conductivity and to the depth-distribution of the
macropore network (cf. Figs. 2.7 and 2.10).

The key findings of Sect. 2 are:

• A main asset of LAST is the structural macropore domain with Structural macropore
domain is key.geometrically defined macropores and the explicit, vertically

distributed exchange between the soil matrix and the macropore
domain.

• The particle-based, Lagrangian approach is a novel concept to
simulate water and solute dynamics as a coupled process. It is
superior suitable to capture the patterns of preferential flow in
comparison to a Darcy-Richards (+ ADE) model.

133
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5.1.2 Part III: Simulation of reactive solute transport in the critical zone: a
Lagrangian model for transient flow and preferential transport

The results of Sect. 3 highlight that the LAST-Model with the new
reactive solute transport routine is capable to match the vertical mass
distribution of two herbicides observed in natural soils. In line withSimulation of

transport and
leaching of reactive

solutes.

the results of Sect. 2, the performances of LAST and the benchmark
model HYDRUS 1-D are equal under homogeneous soil conditions (cf.
Fig. 3.4). However, LAST reveals again advantages in the prediction of
herbicide mass profiles in soils with macropores (cf. Fig. 3.5). A new
insight is that LAST performs also well on larger spatial (field site)
and temporal (several weeks) scales (cf. Fig. 3.7).

The key findings of Sect. 3 are:

• The reactive processes of retardation, degradation and re-Assets and
drawbacks of LAST

at simulating
(reactive) solute

transport.

mobilization have a significant impact on the preferential by-
passing and the depth-accumulation of reactive solute masses.
In this context, the Lagrangian approach with the structural
macropore domain proves again its suitability for the correct
simulation of heterogeneous transport dynamics.

• On larger time scales, simulation results reveal the occurrence
of artificial over-mixing effects in the LAST-Model. Reason for
that is the assumption of perfect diffusive mixing of solutes
between water particles in a control volume. This may lead
to the simulation of a too strong mixing and a smoothing of
concentration gradients over the vertical soil profile (cf. Sect.
3.6.2; Green et al., 2002).

5.1.3 Part IV: Stepping beyond perfectly mixed conditions in soil hydrolog-
ical modelling using a Lagrangian approach

The results of Sect. 4 highlight that the new routine for the simulation
of diffusive pore mixing processes (DIPMI) produces more reasonable
mixing behaviours than the previous perfect mixing assumption. The
DIPMI approach is capable of reproducing the experimental results
of Bowers et al. (2020). It simulates correctly (i) the measured mixingDIPMI simulations

of isotopic mixing
and solute

breakthrough.

times needed to reach an equilibrium concentration over the pore
space of a soil sample, and (ii) the concentrations of δ2H and δ18O
isotopes in different tension areas (cf. Tab. 4.2 and Fig. 4.2). A virtual
experiment reveals that solute breakthrough simulations with DIPMI
generate more reliable breakthrough curve (BTC) shapes compared to
ones simulated with the perfect mixing assumption.

The key findings of Sect. 4 are:
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• The new DIPMI approach properly represents diffusive (imper-
fect) mixing processes on the pore scale. The approach is physi-
cally based as all model parameters can be derived from the soil
water retention curve and no further calibration is needed.

• Pore-size-dependent, imperfect mixing of different water frac- Imperfect mixing in
homogeneous soils
may have same effect
on breakthrough like
preferential flow.

tions over a macroscopically homogeneous soil matrix can cause
non-uniform BTC shapes with steep rises and long tailings after
peak (cf. Fig. 4.3). These shapes are commonly observed but
usually associated with preferential flow in heterogeneous soil
structures.

5.1.4 What can we learn from these findings?

There are some essential lessons that we can learn from the key find-
ings of this thesis for soil hydrological modelling in general:

• The particle approach allows to describe fluxes in and between
the matrix and macropore domain by a consistent combination
of physics and stochastic (statistical mechanics).

• A structural, physically defined macropore domain can ben- Lessons learned from
the findings of this
thesis.

efit the simulation of preferential flow patterns. Flow in the
macropore domain is driven by advection, independent from
the capillary-flow conditions in the soil matrix. In principle, any
kind of physical flow law could be applied to describe flow in
the macropore domain, e.g. Stokes flow.

• Caution when applying the perfect mixing assumption in a soil
hydrological model. Potential over-mixing phenomena must be
considered in the model setup. They can be a significant source
of simulation uncertainties and errors.

• Subscale pore processes matter. Diffusive mixing in the pore
space has a crucial influence on macroscopic leaching behaviours
and chemical/isotopic compositions of soil water fractions. This
must be taken into account.

5.2 outlook

In the following sections, I propose possibilities for extending the
scope of the LAST-Model framework in future research. In Sect. 5.2.1,
I discuss how the approach can be used to simulate water ages and
related travel time distributions of different water fractions in the
subsoil. In Sect. 5.2.2, I present ideas on model extensions for eco-
hydrological applications, such as simulating evapotranspiration and
its associated pore-scale processes (e.g. root water uptake, capillary
rise).
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5.2.1 Water ages and travel times

The quantification of ages and travel times of different water fractionsHydrological focus
on water ages and

travel times.
in soils is crucial to assess the generation of runoff fluxes, groundwater
recharge and rainfall-runoff responses of hydrological systems. The
distribution of different water fractions reaching the outlet of a hydro-
logical system reflects the internal hydraulic properties of the partially
saturated soil zone as well as the spatio-temporal heterogeneities
of flow paths and velocities. Over the last years, the focus of the
hydrological research has been extended from simply quantifying the
magnitude of rainfall-runoff responses to analysing the age and travel
time distributions (TTD) of water fractions that contribute to runoff
and storage in different hydrological compartments.

Tracer experiments are a common tool to infer information about
water ages and TTDs. They are, however, restricted to rather small
spatio-temporal scales. For studies on larger scales, experiments need
to be supported by the additional use of models. Many of these modelsApproaches for

describing travel
time distributions.

comprise different stores to represent the different compartments of a
hydrological system (e.g. soil water storage, groundwater aquifers, sur-
face waters), and they are linked by water exchanges. The distribution
of water ages and travel times in these linked storage elements can
be derived from measured input-output relationships under different
assumptions. Common assumptions use (i) steady-state conditions,
applying a pre-defined, time-invariant distribution of travel times
(McGuire and McDonnell, 2006) or (ii) StoreAge Selection (SAS)
functions for time-variant, storage-volume-dependent distributions
of travel times (Rinaldo et al., 2015). While these approaches have
a more conceptual nature, the more physically based concepts of
particle-tracking approaches particularly allow for a linking of TTDs
with soil physical processes (e.g. Davies et al., 2013; Engdahl et al.,
2016).

In the LAST-Model framework, this can be realised by an age-tagging
of water particles. In line with the tagging of particles with concentra-
tions (cf. Sects. 2.2 and 4.2), a particle can carry a time through theLAST-Model: Age

tagging of particles
for simulating travel

times.

system. When infiltrating the soil domain, a water particle gets the
current simulation time as an age-tag. During its passage through
the subsoil, a particle keeps its age-tag unchanged until it breaks
through the outlet boundary of the domain. The difference between
the individual breakthrough time and age gives the travel time of each
particle. In this way, overall TTDs and average ages of different water
storage fractions can be determined at each location and time.

The temporal entrapment of water particle fractions inside of lo-
cal soil water pools, that are hydraulically detached from the main
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flow area, can increase overall travel times. Preferential flow processes
in contrast can decrease TTDs. To resolve these kinds of subscale 2D: Extending the

spatial dimension of
the LAST-Model.

processes in more detail, an extension of the LAST-Model framework
to 2D would be an innovation step. The implementation of a second
flow dimension is theoretically straightforward by assigning each
particle a position in horizontal direction and solving the random
walk equation a second time for displacements in horizontal direction.
However, in practice an extension to 2D has the potential to cause
unreasonable simulation times as a much higher number of total
particles would be needed to resolve properly the random walk in
two dimensions (cf. Jackisch and Zehe, 2018).

5.2.2 Root water uptake for evapotranspiration

Evapotranspiration (ET) induces the upward transport of water out
of the soil zone via capillary rise and plant root uptake. It is then
released, in the form of water vapour, into the atmosphere at the inter-
faces of soil surfaces (evaporation) and plant surfaces (transpiration)
(Dingman, 2015). Simulations of its associated subsoil processes (capil-
lary rise, root water uptake) are an essential part of soil hydrological
models. Common model approaches apply rather simple and coarsely
resolved representations of these processes. Root water uptake is Only macroscopic

representation of root
water uptake in
common models.

usually described macroscopically on the scale of a control volume,
by adding an extraction/sink term to the Darcy-Richards equation
that acts contrary to the main downward flux (Kutı́lek and Nielsen,
1994; Šimůnek et al., 2008). The extraction term is assumed to be a
lumped representation of all microscale processes that are involved
in the water uptake by plant roots and which cannot be resolved by
these model approaches.

The concept of the LAST-Model, with its specific treatment of different
pore size classes (cf. Sects. 2.2 and 4.2), allows for the consideration
of root water uptake processes on the pore scale. It enables an exact
process simulation from which regions and pore sizes plant roots
extract water from the soil for transpiration:

Plants have a water potential that is similarly defined as the wa-
ter potential in soils. Due to this water potential, plant roots have
the ability to apply an underpressure to absorb water against gravity
and the matric potential of the surrounding soil pores. If the water
potential balance between plant roots and soil pores is in equilibrium,
no water is extracted by the plant. The transpirational loss of water The process of root

water uptake on the
pore scale.

vapour via the leaf stomata induces a replacement water flux through
the entire plant, with water being transferred from the roots to the
leafs. Lower plant water contents lead to increased water potentials in
the roots and ultimately, to the establishment of a potential gradient
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between roots and soil. Along this gradient, a water flux from the soil
into the roots develops, whereby the plant preferably extracts water
from those soil pores that have the largest water supply and thus, the
smallest matric potentials (energetic optimum). The quantification of
this flux can be derived from Sap-flow measurement data or calcu-
lated by a mass-transfer equation driven by atmospheric conditions
(Dingman, 2015).

For a realization in the LAST-Model, water fluxes from soil pores into
plant roots are converted into corresponding particle numbers per
time step. They are then removed out of these pore size classes that
have the lowest matric potential at a given soil water content in a soil
layer. The process can be further refined by assuming depth-dependentParticles and pore

sizes benefit the
simulation of root
water uptake with
the LAST-Model.

extraction intensities of plants following a depth-distribution of root
densities. Removed particles are in the following not considered
anymore for the processes in the soil domain. They are then part of a
new flow continuum that describes the plant water flux from the roots
to the leafs, where they are finally transpired. For the simulation of
this flux, an explicit plant domain can be implemented into the model,
which is independent but interacts with the soil domain (similar
to the macropore domain). In this way, the entire sequence of the
atmosphere-soil-plant interactions could be simulated (rainfall infiltra-
tion < leaching < root uptake < plant transport < transpiration).

The root uptake method could be in general extended from wa-
ter to all kind of substances or information that roots can extract out
of the soil solution, e.g. isotopic species, nutrients or even energies.
The particle-based concept of LAST makes it possible to connect, and
treat simultaneously, any number of information with a water particle.

5.3 discussion : why are darcy-richards models still

preferably used?

In Sect. 1.2.1, I introduce the limitations of the Darcy-Richards and
ADE theory. Throughout the thesis, I present evidences that these
common theories struggle to describe preferential flow and transport
processes in heterogeneous soils. My findings are in accordance
to other studies that provide alternative model concepts (cf. Sect.
1.2.1) and that doubt the applicability of Darcy-Richards models to
more natural conditions (in the following, Darcy-Richards models =
Darcy-Richards equation + ADE). In light of all these evidences andQuestion: Reasons

why Darcy-Richards
models are still

preferably used?

the existence of promising alternative model concepts, it raises the
question: Why are Darcy-Richards models still preferably used in physically
based, soil hydrological modelling?

Possible reasons cannot only be found at the Darcy-Richards models
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themselves but also at the new, alternative concepts. In the following,
I go further into this question and discuss relevant aspects.

Reasons regarding the Darcy-Richards models

One reason is the historical evolution of the underlying Darcy-
Richards equation. The experiment of Richards (1931) and the theoret-
ical formulation of the equation have been highly recognized by the
hydrological community at that time. In the following decades, the
research mainly remained within the Darcy-Richards framework as
the focus of soil hydrologists shifted away from questioning theoretical
concepts (Beven, 2018). Only by the late 1980s, the topic of subsurface Reason 1: Historical

evolution and shifted
research focus
favoured
manifestation of
Darcy-Richards
theory.

flow started to regain increased attention. An increasing number of
experimental studies reported unexpectedly strong leaching of pollu-
tants through soils into water bodies, which could not be predicted by
models relying on the Darcy-Richards theory. As a consequence, soil
hydrologists intensified the research on preferential flow processes
and became aware of the theoretical limitation of the Darcy-Richards
equation in these cases (Gish and Shirmohammadi, 1991). However,
the quite long time period until this awareness emerged allowed for a
strong manifestation of the theory in the minds of several generations
of soil hydrologists.

Instead of looking for a novel physical description, it is today tried
to adapt and modify the Darcy-Richards + ADE approach to make
it applicable to preferential flow. The applicability and functional-
ity of Darcy-Richards models are more favoured than the general
correctness of the underlying theory. In this context, dual-domain Reason 2: Adapted

dual-models are
widespread and easy
to use but still on the
basis of
Darcy-Richards
theory.

or dual-permeability models are frequently used. They assume two
distinct domains for well-mixed matrix flow and preferential flow,
respectively. Both domains are not explicitly defined in a geometrical,
physical manner but they are characterized by different soil hydraulic
properties. A specific fraction of water is assumed to move at the
saturated hydraulic conductivity to represent preferential flow. The
bulk fraction of matrix water is, at the same time, either assumed to be
immobile or follows a smaller, soil-moisture-dependent conductivity.
However, flow in both domains still relies on the Darcy-Richards
equation and is hence mainly capillarity controlled. I have shown in
this thesis that simulations with such a dual-approach (+ ADE) can
account for an overall faster solute leaching, but the detailed heteroge-
neous patterns of vertical solute mass distributions are represented
incompletely (cf. Sects. 2.4.3 and 3.5.2). Nevertheless, dual-models
like MACRO (Jarvis and Larsbo, 2012) or HYDRUS (Šimůnek et al.,
2008) are extensive and freely accessible model frameworks with
user-friendly graphical interfaces. They comprise a broad range of
application fields and for parameterization, several degrees of free-
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dom allow for a rigorous calibration of model setups. Continuous
developments have led to model codes that are performant and well
documented. In this way, these dual-models are attractive for a broad
range of users in research, economy and administration.

The subject itself and its scale-dependency are other reasons for
the widespread use of the Darcy-Richards models. A complete de-
scription of all the complex, interacting physical processes in the
partially saturated zone is in fact only hardly realisable. In many cases,
this would be also not reasonable as models should be entitled to bal-Reason 3: Often

necessary to use
Darcy-Richards

models with
simplifications for

description of highly
complex processes on

larger scales.

ance necessary complexity with the highest possible simplicity (Zehe
et al., 2014). While a complete process description is maybe useful on
smaller plot or pore scales over a few hours to days (Bowers et al., 2020;
Orlowski and Breuer, 2020), it is on larger scales (hillslope to catch-
ment, months to years) only feasible in a more qualitative or lumped
manner. Many subscale properties lose their importance for model
quality or cannot be adequately parameterized on larger temporal
and spatial scales (e.g. exact macropore geometries, preferential flow).
To maintain efficiency, it is a crucial ability of many Darcy-Richards
models (e.g. dual-permeability approaches) to simplify subscale pro-
cesses for larger scales applications. This is an advantage compared
to some alternative model concepts that are restricted to small scale
applications as their physical sophistication may hinder an efficient
use on larger temporal and spatial scales (e.g. Jackisch and Zehe, 2018).

Reasons regarding the new, alternative model concepts

Further aspects can be found by focusing on the alternative model ap-
proaches and the modern hydrological research landscape in general.
In line with almost every research discipline (Ioannidis et al., 2018),
in hydrology the tendency is obvious that more and more studies
are published in an ever increasing number of scientific journals.
For a single researcher, it is nowadays almost impossible to surveyReason 4: New

model concepts get
lost in multitude of

publications and stay
invisible for
community.

completely the vast supply of publications and to identify relevant
studies. This tendency leads to the effect that many of the newly
proposed model concepts get lost in the multitude of publications.
This makes it significantly difficult for them to become visible for a
broad community. Without a network or an active promotion, even
maybe by using social networks like Researchgate or Twitter, many
studies and model concepts do not gain adequate attention. This lack
of attention seems to be true even for a model approach of such a
famous hydrologist like Peter F. Germann. Despite his great reputation
in hydrology, his viscous film flow approach (Germann, 2018) seems
to have also only minor impact on the community, which is indicated
by relatively low citation numbers of the respective studies compared
to his usual outreach. Addor and Melsen (2019) further argue that ”the
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legacy, rather than the adequacy, drives the selection of hydrological models”.
They found evidences for regional preferences in the model selection.
Hydrologists obviously tend to use preferably models from their own
affiliation, which they are experienced with, although external models
may be more adequate in specific cases.

The lack of freely accessible digital materials (model codes, data,
guidelines) complicates the public distribution of models. These
additional materials are still not standardly provided with a model
publication but often only available upon request. This reduces the Reason 5: Lack of

freely accessible
model codes and
documentation.

chances that a model is ever used, or published results can be vali-
dated and reproduced by a third-party. If model codes are accessible,
a proper organisation and documentation of the codes play further a
decisive role whether a model is used or not. Especially for physical
models, comprising a number of complex mathematical formulations
and several degrees of freedom, the provision of a tutorial or manual
may be inevitable for the application of new users. In this context,
Stagge et al. (2019) developed a survey tool to check the availability
of digital materials of published studies and the reproducibility of
results. They found for 360 hydrology-related studies in 2017 that
only 44 % provide any kind of digital materials at all. Only in 1.6 % of
cases, results were reproducible using the provided materials.

The performance of a model is important for its usage. Well-coded Reason 6:
Non-performant
codes hinder users to
become acquainted
with models.

and efficient models with short run times are favourable used. It
allows users to try out models and to become acquainted with them.
Physical soil hydrological models with a complicated, non-performant
code structure can require several hours to days for simulation, even
on smaller plot scales. This is inappropriate for testing multiple sce-
narios and thus, they may be less attractive than some easy-to-apply
Darcy-Richards models.

Conclusive remarks

In conclusion, there are some options that could help to improve the Suggestions for
improving the
shortcomings of new
approaches.

visibility and to strengthen the influence of new approaches in soil
hydrological modelling:

• The establishment of a more rigorous validating of new model
approaches. Testing several hypotheses and application cases,
also with the option for a falsification of hypotheses, can
strengthen the reliability of models. Many currently published
models seem to be not properly evaluated but only statistically
tested against one observation, which increases the vulnerability
to error-prone measurements (Beven, 2010; Beven, 2018).

• The generation of a comprehensive database that contains several
datasets from lysimeter and tracer experiments. Such a database
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could serve to validate and compare consistently soil hydrologi-
cal models with standard benchmark tests. Similar evaluation
databases already exist for hydro-meteorological and land sur-
face models on larger scales, e.g. CAMELS (Newman et al., 2015)
or PLUMBER (Best et al., 2015).

• The publication of one collective study instead of splitting it up
to several small studies. This could help to decrease the large
number of publications and to increase the visibility of single
studies.

• The obligation to provide model codes and additional materials
(data, documentations, simulation examples etc.) in a freely
accessible online repository when publishing a model study.

• Active promotion of models. Besides the classical ways for pre-
senting your work on scientific conferences and workshops, mod-
ern tools like social networks are promising for promotion and
gaining outreach. It is also meaningful to include own model ap-
proaches into the teaching of students. They could perspectively
transfer new ideas to future research and practice.

In terms of the LAST-Model framework, some of these suggestions
are realised. Model codes and relevant data are provided on GithubSuggestions in terms

of LAST-Model. (Sternagel, 2022) and hypotheses are tested against several observa-
tions, benchmark models and sensitivity analyses. LAST is part of
a student’s exercise. However, the LAST-Model would benefit from
further validations and a proper re-structuring of the code to make it
more user-friendly.

If at all, it will probably still need several years to decades until
real model alternatives become prevalent and challenge the Darcy-
Richards models in the practice. This requires a renewed thinking of
present hydrologists and the transfer of novel knowledge to the next
generations of researchers. My thesis should be part of this knowledge
transfer and serve as stimulus for future research on soil hydrological
modelling.
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a.1 appendix of part ii

A 1: Further sensitivity analyses with time series

We performed additional sensitivity analyses to determine the effect
of different ks values and macropore diameters on the temporal devel-
opment of the solute concentration profile. We moved the results of
these time series to the Appendix as they generally provide no new
insights but confirm the findings presented in the results section.

Figure A.1: Time series of bromide tracer concentration profiles and centres
of mass at different ks values during the rainfall event (a, b),
shortly after it (c) and at the end of simulation (d).

Fig. A.1 generally confirms the findings of the sensitivity analyses
with different ks values (cf. Sect. 2.4.4.1). The four temporal snapshots
show the development of the concentration profiles at low (1 x 10−6 m
s−1), medium (2.5 x 10−6 m s−1) and high (1 x 10−5 m s−1) ks values

145
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throughout the simulation time with (a) and (b) during the rainfall
event and (c) and (d) shortly after it and after 1 d, respectively. It is
obvious how rapidly solute concentrations increase, especially in the
upper soil part at high ks values. Shortly after the rainfall event almost
all of the water and solute masses have infiltrated the matrix due to
the higher infiltration capacity. At low ks values, water and solutes
notably need more time to infiltrate completely. The differences of
the centres of mass and the deeper shift of the mass centre at low ks

values confirm the increased macropore infiltration and penetration
of solutes through them to greater depths (cf. Fig. 2.7).

Figure A.2: Time series of bromide tracer concentration profiles and centres
of mass at different macropore diameters (dmac) during the
rainfall event (a, b), shortly after it (c) and at the end of simulation
(d).

Moreover, the temporal development of the concentrations is similar
for all macropore diameters, with just marginal differences arising
shortly after the rainfall event (Fig. A.2). While the macropore diam-
eter has a minor influence in the initial phase, stronger differences
occur at the end of the simulation when the residual water and solute
amounts of the fictive surface storage have finally infiltrated. Thus,
mainly at the end of the simulations the influence of the macropores
on the infiltration and the macropore–matrix mixing processes are
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remarkable, because the storage volume of the preferential flow do-
main is small and hence it can only collect small amounts of water
and solutes in relation to the matrix domain. The centres of mass
corroborate the results of Fig. 2.9a, b in a way that the big macropores
have the tendency to transport more solute masses into the subsoil.

a.2 appendix of part iii

A 2: Detailed description of the macropore domain of LAST

The following descriptions and the equations in Tab. A.1 should
complement the presentation of the macropore domain of LAST in
Sect. 3.2.2.2 and Fig. 3.2 as well as serve to understand better the
model theory. In this context, it is important to recall that we have
already introduced the macropore domain of LAST in our previous
study (Sternagel et al., 2019).

A 2.1: Structure of the macropore domain

LAST offers a structured macropore/preferential flow domain (pfd)
consisting of a certain number of macropores. Each macropore has the
shape and structure of a straight circular cylinder with a predefined
length LM (m) and diameter dmac (m) containing spherically shaped
particles (cf. Fig. 3.2a) (Sternagel et al., 2019). The parameterization
of the preferential flow domain is based on observable field data,
such as the mean numbers of macropores of certain diameters, their
hydraulic properties, and length distribution. These structural data
can be directly obtained from field observations or inverse modelling
with tracer data but must not be spatially resolved because LAST
operates on the 1-D scale. From these observable parameters, it is
further possible to calculate additional pfd parameters like the total
volume, stored water mass at saturation, the circumference C (m),
and the flux rate. The total number of macropores at a study site is
classified and distributed over three depth classes (big, medium, or
small) to allow for a depth-dependent mass exchange with the matrix
domain. To calculate water contents and tracer concentrations, the
macropores of the pfd are vertically subdivided into grid elements of
certain length dzp f d (m). Similar to the matrix domain, water contents
and solute concentrations are also regarded as averaged over these grid
elements (Sternagel et al., 2019). Within a grid element of a macropore,
a certain number of particles is packed, each having a mass and being
geometrically defined by a diameter and volume. These properties
can be derived from the total water mass and predefined number of
maximum possible particles stored in a fully saturated macropore as
well as the water density.
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A 2.2: Infiltration and macropore filling

At the upper boundary of the soil domain a variable flux condition
dependent on the incoming precipitation intensity prevails. First, the
incoming precipitation water mass (mrain) accumulates in a fictive sur-
face storage from which, subsequently, infiltrating water masses into
the matrix (mmatrix) and the pfd (mp f d) and related particle numbers
are calculated (cf. Eqs. A1–A3 in Tab. A.1). The presented equations
refer to masses and not fluxes as LAST generally works with discrete
particles and their masses. The actual water content and the flux densi-
ties of the topsoil control infiltration and distribution of water particles
to both domains. The two processes are further determined by the
matric potential gradient and hydraulic conductivity of the topsoil
matrix (following principles of Darcy’s law), together with the friction
and gravity within the macropores. After the infiltration, macropores
are filled from the bottom to the top, comparable to the filling of an
empty bottle with water (cf. Fig. 3.2b), by assuming purely advective
flow in the macropore domain as we assume a steady-state balance be-
tween gravity and dissipative energy loss by friction at the macropore
walls. This advective macropore flow is determined by the hydraulic
conductivity kp f d (m s−1) in a macropore. Zehe and Flühler (2001a)
measured the velocity of water flow in undisturbed soil samples from
the Weiherbach catchment (cf. Sect. 3.4.1) dominated by macropore
influence. They found a clear proportionality of macropore flux rate
and the square of macropore radius dmac

2 (m), which can be described
by a linear relationship. This leads to the calculation of kp f d (m s−1) (cf.
Eq. A5 in Tab. A.1) under the assumption that the macropore flux rate
and hydraulic conductivity as well as the advective velocity of a water
particle in a macropore are equal as we presume purely gravity-driven
flow.

A 2.3: Exchange between macropores and the matrix

Interactions at the interface between the pfd and the matrix with the
exchange of water particles and thus also solutes are assumed to be
mainly driven by matric potential gradients and hydraulic conductiv-
ity of both domains, which depend on an exchange length and flow
velocities in the respective domains. We assume that exchange is only
possible from the saturated parts/grid elements of the pfd into the
matrix as it is expected that the purely advective downward flow of
water in macropores is much larger than lateral exchange fluxes.

As described above, the total observed number of macropores nmac
at a study site is distributed over three depth classes. Hence, the total
macropore number is multiplied by a distribution factor f for big
( fbig), medium ( fmed), and small ( fsml) macropores, respectively (cf.
Fig. 3.2c). The saturated grid elements (blue filled squares in Fig. 3.2c)
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of the respective three macropore classes are coupled due to their
depth order. For instance, the red and black framed grid elements of
the three macropore classes are respectively coupled because they are
saturated and have the same position in depth order. The coupling
thereby enables the simultaneous calculation of diffusive water fluxes
qmix (m s−1) (cf. Eq. A4 in Tab. A.1) out of the respective grid elements
of all three macropore classes.

In the current version, LAST works with a no-flow condition at
the lower boundary of the pfd. For the lower matrix boundary, how-
ever, we actually assume a soil domain of 1.5 m length in total,
which is larger than the soil space (0–1 m) we concentrate on in the
simulations to avoid boundary effects. That means water particles
may freely pass the lower boundary depth of 1 m.

Table A.1: Relevant LAST-Model equations and related parameters.

Name Equation Parameters

Eq. (A1): incoming mrain = qrain · ρw · ∆t · A qrain (m s−1): precipitation flux

precipitation mass density; ρw (kg m−3): water density;

mrain (kg) ∆t (s): simulation time step;

A (m2): soil plot area

Eq. (A2): infiltrating mmatrix =
(

km1+ks
2

)
·
(

ψ1−ψ2
dz + 1

)
· A · ρw · ∆t km1 (m s−1): hydraulic conductiv-

water mass into ity of first matrix grid element; ks

matrix mmatrix (kg) (m s−1): saturated hydraulic conduc-

tivity of matrix; ψ1 - ψ2 (m): matric

potential difference between the sur-

face and first matrix grid element; dz

(m): matrix grid element length

Eq. (A3): infiltrating mp f d = kp f d · π ·
(

dmac
2

)2
· ρw · ∆t · nmac kp f d (m s−1): hydraulic conductivity

water mass into of a macropore; dmac (m): diameter

pfd mp f d (kg) of a macropore; nmac (-): total num-

ber of macropores within pfd

Eq. (A4): mixing flux qmix = 2·ks ·kmi
ks+kmi

· ψi
dmac · C · dzp f d ks (m s−1): saturated hydraulic con-

between pfd and ductivity of matrix; kmi (m s−1):

matric qmix (m s−1) current hydraulic conductivity of the

respective matrix grid element; ψi

(m): matric potential of the ac-

tual matrix grid element; dmac (m):

macropore diameter; C (m): circum-

ference of a macropore grid element;

dzp f d (m): length of macropore grid

element

Eq. (A5): hydraulic kp f d = 2884.2 ·
(

dmac
2

)2 dmac
2 : macropore radius

conductivity pfd kp f d (m s−1)
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Köhne, J. M., S. Köhne, and J. Šimůnek (2009a). “A review of model
applications for structured soils: a) Water flow and tracer trans-
port.” In: Journal of Contaminant Hydrology 104.1-4, pp. 4–35. doi:
10.1016/j.jconhyd.2008.10.002.

Köhne, J. M., S. Köhne, and J. Šimůnek (2009b). “A review of model
applications for structured soils: b) Pesticide transport.” In: Journal
of Contaminant Hydrology 104.1-4, pp. 36–60. doi: 10.1016/j.jconhyd.
2008.10.003.

Leistra, M. (1977). “A model for the transport of pesticides in soil
with diffusion-controlled rates of adsorption and desorption.” In:
Agriculture and Environment 3.4, pp. 325–335. doi: 10.1016/0304-
1131(77)90028-5.

Lewis, K. A., J. Tzilivakis, D. J. Warner, and A. Green (2016). “An
international database for pesticide risk assessments and manage-
ment.” In: Human and Ecological Risk Assessment: An International
Journal 22.4, pp. 1050–1064. doi: 10.1080/10807039.2015.1133242.

Liess, M., R. Schulz, M.H.-D. Liess, B. Rother, and R. Kreuzig (1999).
“Determination of insecticide contamination in agricultural head-
water streams.” In: Water Research 33.1, pp. 239–247. doi: 10.1016/
s0043-1354(98)00174-2.

Lin, Y. and J. Horita (2016). “An experimental study on isotope frac-
tionation in a mesoporous silica-water system with implications
for vadose-zone hydrology.” In: Geochimica et Cosmochimica Acta
184, pp. 257–271. doi: 10.1016/j.gca.2016.04.029.

Lin, Y., J. Horita, and O. Abe (2018). “Adsorption isotope effects of
water on mesoporous silica and alumina with implications for the
land-vegetation-atmosphere system.” In: Geochimica et Cosmochim-
ica Acta 223, pp. 520–536. doi: 10.1016/j.gca.2017.12.021.

Liu, Y.-J., A. Zaprasis, S.-J. Liu, H. L. Drake, and M. A. Horn (2010).
“The earthworm Aporrectodea caliginosa stimulates abundance
and activity of phenoxyalkanoic acid herbicide degraders.” In: The
ISME Journal 5.3, pp. 473–485. doi: 10.1038/ismej.2010.140.

Loritz, R. et al. (2017). “Picturing and modeling catchments by repre-
sentative hillslopes.” In: Hydrology and Earth System Sciences 21.2,
pp. 1225–1249. doi: 10.5194/hess-21-1225-2017.

McGlynn, B. L. and J. Seibert (2003). “Distributed assessment of con-
tributing area and riparian buffering along stream networks.” In:
Water resources research 39.4. doi: 10.1029/2002WR001521.

https://doi.org/10.1029/95wr02994
https://doi.org/10.1029/95wr02994
https://doi.org/10.5194/hess-14-585-2010
https://doi.org/10.1016/j.jconhyd.2008.10.002
https://doi.org/10.1016/j.jconhyd.2008.10.003
https://doi.org/10.1016/j.jconhyd.2008.10.003
https://doi.org/10.1016/0304-1131(77)90028-5
https://doi.org/10.1016/0304-1131(77)90028-5
https://doi.org/10.1080/10807039.2015.1133242
https://doi.org/10.1016/s0043-1354(98)00174-2
https://doi.org/10.1016/s0043-1354(98)00174-2
https://doi.org/10.1016/j.gca.2016.04.029
https://doi.org/10.1016/j.gca.2017.12.021
https://doi.org/10.1038/ismej.2010.140
https://doi.org/10.5194/hess-21-1225-2017
https://doi.org/10.1029/2002WR001521


bibliography 159

McGlynn, B., J. McDonnell, M. Stewart, and J. Seibert (2003). “On
the relationships between catchment scale and streamwater mean
residence time.” In: Hydrological Processes 17.1, pp. 175–181. doi:
10.1002/hyp.5085.

McGuire, K. J. and J. J. McDonnell (2006). “A review and evaluation of
catchment transit time modeling.” In: Journal of Hydrology 330.3-4,
pp. 543–563. doi: 10.1016/j.jhydrol.2006.04.020.

Mennekes, D., M. Rinderer, S. Seeger, and N. Orlowski (2021). “Eco-
hydrological travel times derived from in situ stable water isotope
measurements in trees during a semi-controlled pot experiment.”
In: Hydrology and Earth System Sciences 25.8, pp. 4513–4530. doi:
10.5194/hess-25-4513-2021.

Mills, R. (1973). “Self-diffusion in normal and heavy water in the range
1-45. deg.” In: The Journal of Physical Chemistry 77.5, pp. 685–688.

Mualem, Y. (1976). “A new model for predicting the hydraulic conduc-
tivity of unsaturated porous media.” In: Water Resources Research
12.3, pp. 513–522. doi: 10.1029/wr012i003p00513.

Nadezhdina, N. et al. (2010). “Trees never rest: the multiple facets of
hydraulic redistribution.” In: Ecohydrology 3.4, pp. 431–444. doi:
10.1002/eco.148.

Neuweiler I., D. Erdal and M. Dentz (2012). “A non-local Richards
equation to model unsaturated flow in highly heterogeneous me-
dia under nonequilibrium pressure conditions.” In: Vadose Zone
Journal 11.3. doi: 10.2136/vzj2011.0132.

Newman, A. J. et al. (2015). “Development of a large-sample watershed-
scale hydrometeorological data set for the contiguous USA: data
set characteristics and assessment of regional variability in hydro-
logic model performance.” In: Hydrology and Earth System Sciences
19.1, pp. 209–223. doi: 10.5194/hess-19-209-2015.

Nimmo, J. R. (2016). “Quantitative Framework for Preferential Flow
Initiation and Partitioning.” In: Vadose Zone Journal 15.2, pp. 1–12.
doi: 10.2136/vzj2015.05.0079.

Oerter, E. et al. (2014). “Oxygen isotope fractionation effects in soil
water via interaction with cations (Mg, Ca, K, Na) adsorbed to
phyllosilicate clay minerals.” In: Journal of Hydrology 515, pp. 1–9.
doi: 10.1016/j.jhydrol.2014.04.029.

Ogden, F. L. et al. (2017). “The soil moisture velocity equation.” In:
Journal of Advances in Modeling Earth Systems 9.2, pp. 1473–1487.
doi: 10.1002/2017MS000931.

Orlowski, N. and L. Breuer (2020). “Sampling soil water along the pF
curve for δ2H and δ18O analysis.” In: Hydrological Processes 34.25,
pp. 4959–4972. doi: 10.1002/hyp.13916.

Orlowski, N., H.-G. Frede, N. Brüggemann, and L. Breuer (2013).
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