533 research outputs found

    Haplotype-aware Diplotyping from Noisy Long Reads

    No full text

    Genome-wide inference of ancestral recombination graphs

    Get PDF
    The complex correlation structure of a collection of orthologous DNA sequences is uniquely captured by the "ancestral recombination graph" (ARG), a complete record of coalescence and recombination events in the history of the sample. However, existing methods for ARG inference are computationally intensive, highly approximate, or limited to small numbers of sequences, and, as a consequence, explicit ARG inference is rarely used in applied population genomics. Here, we introduce a new algorithm for ARG inference that is efficient enough to apply to dozens of complete mammalian genomes. The key idea of our approach is to sample an ARG of n chromosomes conditional on an ARG of n-1 chromosomes, an operation we call "threading." Using techniques based on hidden Markov models, we can perform this threading operation exactly, up to the assumptions of the sequentially Markov coalescent and a discretization of time. An extension allows for threading of subtrees instead of individual sequences. Repeated application of these threading operations results in highly efficient Markov chain Monte Carlo samplers for ARGs. We have implemented these methods in a computer program called ARGweaver. Experiments with simulated data indicate that ARGweaver converges rapidly to the true posterior distribution and is effective in recovering various features of the ARG for dozens of sequences generated under realistic parameters for human populations. In applications of ARGweaver to 54 human genome sequences from Complete Genomics, we find clear signatures of natural selection, including regions of unusually ancient ancestry associated with balancing selection and reductions in allele age in sites under directional selection. Preliminary results also indicate that our methods can be used to gain insight into complex features of human population structure, even with a noninformative prior distribution.Comment: 88 pages, 7 main figures, 22 supplementary figures. This version contains a substantially expanded genomic data analysi

    Haplotype estimation in polyploids using DNA sequence data

    Get PDF
    Polyploid organisms possess more than two copies of their core genome and therefore contain k>2 haplotypes for each set of ordered genomic variants. Polyploidy occurs often within the plant kingdom, among others in important corps such as potato (k=4) and wheat (k=6). Current sequencing technologies enable us to read the DNA and detect genomic variants, but cannot distinguish between the copies of the genome, each inherited from one of the parents. To detect inheritance patterns in populations, it is necessary to know the haplotypes, as alleles that are in linkage over the same chromosome tend to be inherited together. In this work, we develop mathematical optimisation algorithms to indirectly estimate haplotypes by looking into overlaps between the sequence reads of an individual, as well as into the expected inheritance of the alleles in a population. These algorithm deal with sequencing errors and random variations in the counts of reads observed from each haplotype. These methods are therefore of high importance for studying the genetics of polyploid crops. </p

    Error-prone polymerase activity causes multinucleotide mutations in humans

    Full text link
    About 2% of human genetic polymorphisms have been hypothesized to arise via multinucleotide mutations (MNMs), complex events that generate SNPs at multiple sites in a single generation. MNMs have the potential to accelerate the pace at which single genes evolve and to confound studies of demography and selection that assume all SNPs arise independently. In this paper, we examine clustered mutations that are segregating in a set of 1,092 human genomes, demonstrating that MNMs become enriched as large numbers of individuals are sampled. We leverage the size of the dataset to deduce new information about the allelic spectrum of MNMs, estimating the percentage of linked SNP pairs that were generated by simultaneous mutation as a function of the distance between the affected sites and showing that MNMs exhibit a high percentage of transversions relative to transitions. These findings are reproducible in data from multiple sequencing platforms. Among tandem mutations that occur simultaneously at adjacent sites, we find an especially skewed distribution of ancestral and derived dinucleotides, with GC→AA\textrm{GC}\to \textrm{AA}, GA→TT\textrm{GA}\to \textrm{TT} and their reverse complements making up 36% of the total. These same mutations dominate the spectrum of tandem mutations produced by the upregulation of low-fidelity Polymerase ζ\zeta in mutator strains of S. cerevisiae that have impaired DNA excision repair machinery. This suggests that low-fidelity DNA replication by Pol ζ\zeta is at least partly responsible for the MNMs that are segregating in the human population, and that useful information about the biochemistry of MNM can be extracted from ordinary population genomic data. We incorporate our findings into a mathematical model of the multinucleotide mutation process that can be used to correct phylogenetic and population genetic methods for the presence of MNMs

    FPGAs in Bioinformatics: Implementation and Evaluation of Common Bioinformatics Algorithms in Reconfigurable Logic

    Get PDF
    Life. Much effort is taken to grant humanity a little insight in this fascinating and complex but fundamental topic. In order to understand the relations and to derive consequences humans have begun to sequence their genomes, i.e. to determine their DNA sequences to infer information, e.g. related to genetic diseases. The process of DNA sequencing as well as subsequent analysis presents a computational challenge for recent computing systems due to the large amounts of data alone. Runtimes of more than one day for analysis of simple datasets are common, even if the process is already run on a CPU cluster. This thesis shows how this general problem in the area of bioinformatics can be tackled with reconfigurable hardware, especially FPGAs. Three compute intensive problems are highlighted: sequence alignment, SNP interaction analysis and genotype imputation. In the area of sequence alignment the software BLASTp for protein database searches is exemplarily presented, implemented and evaluated.SNP interaction analysis is presented with three applications performing an exhaustive search for interactions including the corresponding statistical tests: BOOST, iLOCi and the mutual information measurement. All applications are implemented in FPGA-hardware and evaluated, resulting in an impressive speedup of more than in three orders of magnitude when compared to standard computers. The last topic of genotype imputation presents a two-step process composed of the phasing step and the actual imputation step. The focus lies on the phasing step which is targeted by the SHAPEIT2 application. SHAPEIT2 is discussed with its underlying mathematical methods in detail, and finally implemented and evaluated. A remarkable speedup of 46 is reached here as well
    • …
    corecore