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1
Introduction

The horse saw the camel,
Uttered with laughter hoarse:

“Such a monstrous freak of a horse!”
The camel rejoined:

“You, a horse?
Not nearly, for sure!

An immature camel, that is what you are.”
Only God knew, omniscient indeed

That they were mammals
Of different breed

Vladimir Mayakovsky (1893-1930)
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2 1. Introduction

Sexual reproduction is the main mechanism for maintaining biodiversity in higher
organisms, including plants, as an offspring receives at random half of the genes of each
parent. Many organisms are diploids, that is they contain two copies of each chromo-
some representing their maternal and paternal ancestry. Polyploidization is a natural
or artificial process that leads to an increase in the number of chromosomal copies to
k > 2, which is a major force in plant diversification and has yielded many important
and widely used agronomic species such as wheat, potato, ryegrass, alfalfa, cotton and
ornamental flowers. However, the same phenomenon dramatically adds to the genetic
and genomic complexity and has caused a lag in the analysis of these important plants.
The advent of modern molecular technologies and powerful computational resources
has changed this situation in recent years and led to the development of novel methods
for the genetic and genomic analysis of polyploid crops [15]. In particular, the increas-
ing prevalence of high-throughput DNA sequencing technologies proves to be an asset
for deciphering polyploid genomes. The challenge is to deal with the computational
complexity of analysing these data and the associated noise, as well as in combining the
genomic measurements with other sources of information, most notably genetic data.

This thesis focuses on the estimation of polyploid haplotypes from DNA sequence
and genetic data. Below, I first clearly define haplotypes and explain their importance
(Section 1.1). Polyploidy and its consequences are discussed in Section 1.2, with an em-
phasis on the relevance for plant breeding. The problem of haplotype estimation from
DNA sequence reads is introduced in Section 1.3 and several estimation algorithms are
introduced for diploids and polyploids. This chapter is concluded by providing an out-
line of the remaining chapters (Section 1.4).

1.1. Background
The nuclear DNA in eukaryotes is stored and packed in the form of chromatin, i.e. a set of
often linear chromosomes wrapped around histones. In diploid organisms, the chromo-
somes can be divided into pairs that consist of one maternal and one paternal chromo-
some, hosting the same set of genes at the same loci. The chromosomes in each pair are
called homologous chromosomes, which have very similar nucleotide sequences with
nonetheless potentially important allelic or structural variations. The number of chro-
mosomes in a somatic cell is denoted by 2n and the number of chromosomes in a diploid
cell denoted by 2x, where x is the basic or haploid chromosome number equal to the
number of homologous groups. The nucleotide sequence of each chromosome is called
its haplotype.

To quantify the inheritance patterns of a phenotype it is important to take into ac-
count that the genes (and DNA segments in general) located on the same chromosome
tend to be inherited together unless recombination events occur, the frequencies of
which depend on the distance between the genes (or the DNA segments) and their po-
sitions on the chromosome. This fact is used to construct genetic linkage maps and
to identify genomic markers associated with a phenotype and located within proxim-
ity of the unknown actual causative loci, by investigating the co-segregation of the ge-
netic markers with the phenotype [33, 74]. With the advent of single nucleotide poly-
morphism (SNP) markers, which can be determined by high-throughput assays such as
SNP arrays [43, 72], high resolution genetic maps have been constructed that landmark
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(a) (b) (c)

s1 A/G : 0/1 0 0 0 1 0 1

s2 G/C : 0/1 0 0 0 0 0 0

s3 T /A : 0/1 0 0 0 1 1 0

Figure 1.1: (a) Two normal haplotypes of a gene containing 3 bi-allelic SNPs with the variant nucleotides coded
by 0/1. (b) Two mutations (red) on the same haplotype render one copy of the gene dysfunctional. (c) One
deleterious mutation on each copy of the gene renders both copies dysfunctional.

the whole genome and can narrow associated genomic regions down to a few centiMor-
gans. The power of genetic studies is, however, highly dependent on the informativeness
of the employed genetic markers as well as the strength of their linkage to the causative
loci.

While haplotypes can be defined as the nucleotide sequence of each chromosome
at a genomic locus, a more general definition is as the set of ordered genomic variants
over each chromosome that are transmitted together from a parent to the offspring. The
application of the latter definition is not limited to sequencing experiments, as genotyp-
ing experiments can use the same definition in which context haplotypes correspond to
ordered genotype alleles over each chromosome. Also, in statistical genetics and breed-
ing applications the interest often lies in the variant genomic positions, which are rep-
resented by a set of genomic markers, rather than by the whole DNA sequence. The
problem of determining the order of marker alleles on each chromosome is called hap-
lotyping or phasing.

Knowing the haplotypes of the parents and the offspring allows the unambiguous
following of meiotic transmission through generations, which is a great advantage in
studying trait inheritance [60, 79]. Haplotypes cover the genetic diversity in a popula-
tion and can be used as powerful multi-allelic markers in genetic studies [6, 36, 53]. In
addition, phasing information is often helpful in estimating missing SNP alleles using
the other alleles in a haplotype, an approach known as genotype imputation [16, 49].

Haplotypes are also of direct biological importance, as both gene expression and pro-
tein function can be affected by a single variant allele being in cis or trans with other
alleles [86] (Figure 1.1). Besides, haplotypes can determine epigenetic features of the
genome, such as DNA methylation [11, 32]. In plant and animal breeding, haplotypes
are invaluable tools to assist selecting the best varieties and races, or parents for crossing.
Molecular selection, compared to the traditional selection approaches, provides a means
to select desirable individuals very early in the breeding cycle, hence reducing the time
and the cost needed to end up with efficient animal breeds or plant cultivars [20, 45, 61].
In short, haplotypes are essential units of inheritance and therefore of prime interest in
genetic analysis.

In case the homologous haplotypes are the same in an individual (except maybe at a
single marker position) with the same allele on each homologous chromosome, i.e. all of
the SNPs (except maybe just one) are homozygous, knowing the SNP genotypes imme-
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diately leads to the determination of the haplotypes. In this situation, the phasing prob-
lem is reduced to finding markers that are in tight linkage. To find such markers, one
has to look into the inheritance of distinct alleles at a set of segregating loci, in a popu-
lation of homozygous mosaic lines derived from crosses between homozygous founders
that each contain one of the non-identical alleles at each locus. This approach been
successfully applied for quantitative trait locus (QTL) analysis and diversity profiling of
recombinant inbred lines (RIL) [66, 98], advanced intercross recombinant inbred lines
(AI-RIL) [8] and multi-parent advanced generation intercross (MAGIC) lines [41, 68], as
well as in homozygosity mapping [78].

However, if the two alleles are different at more than one SNP site, i.e. at least two
SNPs are heterozygous, various haplotypes may be deduced from the same set of geno-
types for an individual and hence the determination of the haplotypes will not be triv-
ial. This situation is often encountered with outcrossing plants, e.g. those that are not
self-compatible such as turnip (Brassica rapa), or vegetatively propagated plants such as
potato (Solanum tuberosum) and banana (Musa acuminata) which are propagated by
tubers and by division, respectively. In this situation, the phasing should usually be in-
directly estimated by statistical methods based on observations and assumptions about
haplotype diversity, segregation pattern and, if sequence data is available, sequencing
information. I will return to this problem in Section 1.3.

1.2. Polyploidy and its consequences
The replication of DNA, the migration of the chromatids to opposite poles and the dis-
junction of homologous chromosomes (during anaphase I) or sister chromatids (during
anaphase II) are not error free. While errors in the former process yield novel struc-
tural and allelic variants in the genome, errors in the latter can result in the formation
of gametes with more than one copy of some or all of the chromosomes. In case such
a gamete manages to get fused with another gamete, the result will be a zygote with
more than 2 copies of some or all of the chromosomes. This cellular state is known as
partial or complete polyploidy, respectively. Polyploidy can also occur by a failure of
cell division after mitotic doubling during early cleavage of a fertilised egg as well as by
polyspermy [69].

In humans, even partial polyploidy is usually lethal to the embryo, with a few excep-
tions such as trisomy 21, i.e. the possession of an extra copy of (part of) chromosome 21,
also known as Down’s syndrome. While this trisomy also enhances embryonic mortality,
surviving individuals often suffer from congenital malformations and mental retarda-
tion and have a reduced life expectancy. Sex chromosome aneuploidies are usually less
detrimental compared to autosomal anomalies and occur in at least 1 in 400 births [50],
with well-known examples being monosomy X (45, X) or Turner syndrome [51], trisomy
X (47, XXX) [85] and Klinefelter syndrome (with the most widespread karyotype being
47, XXY) [28]. Complete polyploidy has indeed very rarely been reported in live-born
infants [81].

In general, polyploidy is considered a rare event within the animal kingdom [31],
the reason of which remains a subject of debate. While in contrast to humans, many
lower animals are equally viable with diploid and polyploid chromosome numbers (a
well-known example of which is Drosophila melanogaster [62]), polyploidy seems to in-
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terfere with the animal sex-differentiating process which is often based on the diploid
mechanisms such as the determination of sex in “XX/XY” and “WZ/ZZ” forms [63]. As
a result of this, triploid individuals (2n = 3x), which are considered usual intermediate
bridges towards higher ploidy levels, are unlikely to express the sex-determining genes
in the proper ratios and therefore become infertile or can be fertile as only male or as
only female, i.e. with no genetically compatible mate [63]. Nevertheless, important ex-
amples of viable polyploidy are observed among animals, such as the Salmonidae family
considered to be tetraploid (2n = 4x) [7], and several tetraploid species of African clawed
frog (Xenopus spp.) [40].

Within the plant kingdom, polyploidy is very frequent and presumably a central fea-
ture in plant diversification and speciation [93], facilitated by self-compatibility and asex-
ual propagation. The incidence of polyploid species within flowering plant genera (the
angiosperms) has been estimated to be 30 to 80% [57], while polyploidy is considered
rare in gymnosperms [38]. Wood et al. [93] report that 15% and 31% of speciation events
in angiosperms and in ferns, respectively, are accompanied by an increase in the ploidy
level.

In plants, polyploidization can also be initiated at the sporophytic stage because of
mitotic irregularities in apical meristems [22], yielding polyploid chimeras with up to
70% polyploid cells in some species [27]. Some studies have even suggested that poly-
ploidy is present in a majority of the somatic cells comprising the body of Arabidopsis
thaliana (2n = 2x = 10), which is an important model plant [12]. This somatic polyploidy
can also be, and has been, introduced artificially by radiative or chemical treatments in
some species in order to help study polyploidy. Several sustainable polyploid cultivars in
the Poaceae grass family have also been obtained by this so-called neopolyploidization
process [18, 64]. It is worth mentioning that somatic polyploidy occurs also in animal
tissues and is a distinguishing feature of anaplastic cancer cells [75, 96].

Among polyploids, it is important to recognise two distinct modes of chromosomal
segregation: segregation through preferential bivalent pairing between specific chromo-
somes or disomic segregation versus segregation through the formation of multivalent
chromosome crossings or non-preferential bivalent crossings of randomly pairing chro-
mosomes, known as polysomic inheritance. The disomic mode is often observed when
genomes of rather distant species have come together in a polyploid hybrid, a very well
known example of which is bread wheat (Triticum aestivum), a hexaploid (2n = 6x = 42)
composed of three homoeologous sets, i.e. A, B and D subgenomes each with 2 copies
(AABBDD) [35, 56]. The polysomic mode is in contrast observed often in polyploids that
consist of multiple copies of the same genome, with the well known example of culti-
vated potato (S. tuberosum), which is a tetraploid (2n = 4x = 48) with 4 copies of the
same genome (AAAA) [59, 71].

In case the polyploidization has occurred due to duplication/multiplication of the
same original species genome, the resulting polyploid is called an autopolyploid. In
case two (or more) different genomes came together, most likely as a result of acci-
dental or intended crossing between different species, the polyploid species is called
an allopolyploid1. While disomic segregation and preferential bivalents (between the
homologous chromosomes originating from the same species) are usually expected for
allopolyploids, even in a well-known allopolyploid such as wheat loci have been de-
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tected whose deletion enhances meiotic homoeologous pairing and hence non-disomic
behaviour [77]. In contrast, polysomic inheritance patterns are usually expected for
autopolyploids, such as potato. Segmental allopolyploids are formed by hybridisation
of parental genomes with heterogeneous divergence, leading to a meiotic situation in
which certain chromosomes or segments of chromosomes pair randomly as homologs,
while others pair separately as homoeologs [80]. An example of this class is cultivated
chrysanthemum (Chrysanthemum×morifolium Ramat.), for which evidence has been
found of both disomic segregation [70] and polysomic segregation [70, 88] at different
crosses and loci.

Sybenga (1996) presents segmental allopolyploidy as a transient state in the evolu-
tion of neopolyploids, and occasionally as a stable state in which some sets of chromo-
somes are well differentiated and behave as in allopolyploids while the others behave
as in autopolyploids [83]. Bourke et al. [14] suggest that pairing affinities may vary along
chromosome arms and demonstrate segmental allopolyploidy in a cross of tetraploid cut
rose (Rosa hybrida). As we will see in Section 1.3, the segregation mode should be taken
into account for the correct phasing estimation of heterozygous markers in polyploids.

1.2.1. Consequences of polyploidy in plants
The duplication of genes, which is the direct consequence of polyploidization, exposes
a recent polyploid species to a period of instability after which a successful polyploid
emerges adapted to survive and to compete with its diploid relatives [21]. During this
adaptation process, some of the duplicated genes are either eliminated or silenced while
others might change their function. This diploidization process may finally result in
novel diploid species [65, 99], contributing to evolution and biodiversity [87]. The sur-
viving duplicated genes can also offer extra plasticity to individual organisms by mask-
ing recessive deleterious mutations and by diversifying gene function and gene regula-
tion [21, 89] that eventually yields novel phenotypes [2].

Besides the mentioned evolutionary advantages, polyploidization has major impor-
tance for plant breeding. The increased heterozygosity and the buffering of deleterious
alleles, as well as the increment in plant organs such as tubercles, flowers and seeds (the
so-called “gigas” effects) have traditionally led to thriving land races and in the modern
era to increasingly improved cultivars [76]. The repression of meiotic division in poly-
ploids with an odd number of chromosomes, such as banana (2n = 3x = 33), results in
sterility and hence seedless fruits that have consumption appeal.

Table 1.1 lists several polyploid crops and their commercial use, among which staple
crops such as potato (S. tuberosum) and wheat (T. aestivum and T. turgidum), as well as
crops of industrial value such as cotton (Gossypium hirsutum and G. barbadense) and
tobacco (Nicotiana tabacum). According to 2006 FAO statistics, 58.9% of the total area
under cultivation (corresponding to 47.7% of the agricultural mass production) in the
European union and the United Kingdom is occupied by polyploids, underlining the

1This nomenclature dates back to Kihara and Ono [39]: “Unter Polyploidie müssen wir heute zwei ver-
schiedene Erscheinungen unterscheiden, nämlich die Autopolyploidie und die Allopolyploidie. Unter Au-
topolyploidie versteht man die Verdoppelung desselben Chromosomensatzes; unter Allopolyploidie die
durch das Zusammenkommen verschiedener Chromosomensätze auf dem Wege der Bastardierung erfolgte
Chromosomenvermehrung.”
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Table 1.1: Examples of commercially important polyploid crops and their classification.

Crop name ploidy level and
chromosome number

Dominant form
Commercial

interest
Origin

Bread wheat (Triticum aestivum L.) 6x = 42 Allopolyploidy Grain Natural
Durum wheat (Triticum turgidum L.) 4x = 28 Allopolyploidy Grain Natural
Potato (Solanum tuberosum L.) 4x = 48 Autopolyploidy Tuber Natural
Leek (Allium ampeloprasum L.) 4x = 32 Autopolyploidy Vegetable Natural
Coffea (Coffea arabica L.) 4x = 44 Allopolyploidy Beverage Natural
Peanut (Arachis hypogaea L.) 4x = 40 Allopolyploidy Nuts and Oil Natural
Banana (Musa acuminata Colla) 3x = 33 Autopolyploidy Fruit Natural
Kiwi fruit (Actinidia chinensis Planch., A. deliciosa A.Chev.) 4x = 116, 6x = 174 Autopolyploidy Fruit Natural
Sweet potato (Ipomea batatas (L.) Lam.) 6x = 90 Segmental Allopolyploidy Tubercle Natural
Alfalfa (Medicago sativa subsp. sativa L.) 4x = 42 Autopolyploidy Forage Natural
Rapeseed (Brassica napus L.) 4x = 38 Allopolyploidy Oil Natural
Tobacco (Nicotiana tabacum L.) 8x = 56 Allopolyploidy Industrial Natural
Strawberry (Fragaria × ananassa Duchesne) 8x = 56 Allopolyploidy Fruit Natural
Rye (Secale cereale L.) 4x = 28 Autopolyploidy Grain and Forage Synthetic
Ryegrass (Lolium perenne L.) 4x = 28 Autopolyploidy Forage Synthetic
Alstroemeria (Alstroemeria × hybrida L.) 3x = 24, 4x = 32 Autopolyploidy Ornamental Natural
Sugarcane (Saccharum officinarum L.) 8x = 80 Allopolyploidy Industrial Natural
Cut rose, Garden rose (Rosa × hybrida L.) 4x = 28 Segmental Allopolyploidy Ornamental Natural
Cotton (Gossypium hirsutum L., G. barbadense L.) 4x = 52 Allopolyploidy Industrial Natural

importance of polyploids in present day agriculture.

1.3. The problem of haplotype estimation from sequence data
Ideally, the phasing of SNP markers will be directly known if one can separate chromo-
somes before genotyping or sequencing. However, current approaches that allow for
this are expensive and labor intensive, hence low-throughput [26, 34, 55]. Therefore,
haplotype estimation algorithms are often used to indirectly obtain the phasing from
the unphased high-throughput SNP array or sequence-based genotypes [17].

Phasing methods that only consider genotypes usually aim to maximise the like-
lihood of the observed genotypes in a population using a likelihood function that re-
lates an a priori set of compatible haplotypes to the observed population allele frequen-
cies [1, 19, 25, 82]. These methods can usually handle only a limited number of markers
and work best with large populations. Besides, they are mostly designed for diploid pop-
ulations. Only recently methods have been developed for polyploids, such as TetraOri-
gin [101] (targeting recombinant markers in tetraploid bi-parental F1-populations with
a known linkage map) and HaplotypeR (unpublished, Voorrips et al.), which are bound
by similar limitations to a greater extent compared to the diploid algorithms.

With the advent of shotgun and next generation sequencing technologies, individual
phasing has become a possibility by using the sequence reads of a single individual. Cur-
rent high-throughput sequencing technologies shatter the DNA into small pieces rang-
ing in length from a few hundred base pairs, e.g. with Illumina sequencing-by-synthesis
technology, to several kilo base pairs, e.g. with nanopore sequencers. Thus, one obtains
a large number of sequence reads each originating from a random position along the
target DNA, whose average length and depth of coverage depend on the employed li-
brary preparation and sequencing approaches. To retrieve the haplotypes, it is therefore
necessary to first align the obtained reads according to their genomic coordinates, either



8 1. Introduction

by de novo assembly [48, 54] or by mapping the reads to a reference sequence [46, 47],
and to detect genomic variations and determine the genotypes by comparing the bases
called by the overlapping reads at the same genomic position [24, 29].

After determining the coordinates of the reads and detecting the alleles within the
reads, the reads can be assigned to the k haplotypes of an individual (with k the ploidy
level) using the fact that the reads of the same haplotype must contain the same alleles
at their overlapping sites. Considering only bi-allelic SNPs and discarding the homozy-
gous SNP sites of an individual (as all the haplotypes contain the same allele at these
sites), one has to deal with two complementary haplotypes for a diploid, i.e. each hap-
lotype can be derived from the other by converting the reference/alternate alleles of the
other haplotype to alternate/reference alleles. This drastically simplifies the problem
and theoretically allows perfect retrieval of the haplotypes. In polyploids, however, the
k haplotypes of an individual need not to be complementary, as a haplotype can have a
dosage up to k −1 (discarding the dosage k which corresponds to a completely homozy-
gous region). In reality, one has also to deal with sequencing errors, the rate of which
varies from around 0.1-2% of the called bases for Illumina to around 10-30% for Oxford
Nanopore Technology (ONT). The read alignment, variant calling and genotyping steps
are of course influenced by the sequencing errors, as well as by the sequencing depth,
read length and the complexity of the target DNA. These errors can result in the false de-
tection of more distinct haplotypes than actually present and hamper the naive phasing
explained above. Therefore, it is necessary to estimate the phasing using optimisation
approaches that deal with ploidy levels k > 2, as well as with sequencing errors.

In the remainder of this section, I introduce several read-based phasing approaches
which have been so far developed, for both diploids (Section 1.3.1) and polyploids (Sec-
tion 1.3.2), using the notations and concepts introduced for the diploids also in the poly-
ploid case.

1.3.1. Haplotype estimation for diploids
As only those DNA fragments that include at least two heterozygous SNP sites contain
phasing information, homozygous SNP sites and the fragments containing just a single
SNP can be discarded in the outset from the data. Assuming to have m aligned DNA frag-
ments over a region including n heterozygous SNP sites, the sequence information can
be stored in the SNP-fragment matrix Mm×n, in which each row represents a fragment
and each column represents a heterozygous site. The elements of each fragment could
be labeled by the alphabet 0/1/2/3 and −, in which 0 and 1/2/3 represent the wild and
mutant alleles, respectively, and ‘−’ represents the uncalled bases or holes.

In case a paired-end or mate pair sequencing library has been used, each fragment
should consist of two sequence reads split by a gap corresponding to consecutive holes
(Figure 1.2). Recently, 10X Genomics has released its Chromium system that piggybacks
on Illumina technology to generate long fragments (with a typical average length of 50
kb) composed of many short sequence reads with holes in between. It is also possible to
have holes within a single sequence read as a result of discarding low quality base calls
(Figure 1.2).

With the above definition, two fragments fi and fj are said to be in conflict at position
s if:
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fi (s) 6= f j (s), fi (s) 6= −, f j (s) 6= − (1.1)

which means that both fi and fj are non-missing, but contain different alleles at po-
sition s. Accordingly, two fragments are conflict-free if they are not in conflict at any
overlapping position. The phasing algorithm is thus based on dividing the rows of M
into k = 2 conflict-free groups, so that the haplotypes can be determined by the consen-
sus of the reads within each group. With no error in the reads and only bi-allelic SNPs
allowed (reducing the alphabet to {0,1,−}), a trivial clustering algorithm could accom-
plish the task in O(mn) time (provided that the sequencing coverage is enough so that
at least one fragment covers each of the n −1 adjacent SNP pairs) and M is called feasi-
ble. In presence of errors, however, the aforementioned partition would not be possible
and therefore M would be infeasible. An example of a feasible and an infeasible SNP-
fragment matrix is given in Figure 1.2.

A practical phasing algorithm must therefore (minimally) manipulate the fragments
in order to make M feasible. As intuitively inspired by Figure 1.2, to make M feasible one
may think of: (1) discarding fragments (corresponding to omitting rows in M), (2) dis-
carding SNPs (corresponding to omitting columns in M), or (3) flipping alleles within the
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Figure 1.2: A feasible (left) and an infeasible SNP-fragment matrix (right). Sequencing errors are
denoted by red letters. Consensus haplotypes are given in boxes. For the infeasible matrix, only
the first two SNPs have been phased.
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reads (corresponding to converting a presumably wrong letter in M to another letter). By
considering a cost function for any of the mentioned manipulations, haplotype recon-
struction is translated into an exponentially bounded optimisation problem of making
M feasible at minimum cost.

This formulation has been formally treated in Lancia et al. [44], Rizzi et al. [73] and
Lippert et al. [52] by building fragment conflict graphs or SNP conflict graphs corre-
sponding to M and then applying graph theoretic algorithms to obtain perfect graphs at
a minimum pruning cost. Specifically, they discuss Minimum Fragment Removal (MFR),
Minimum SNP removal (MSR) and Minimum Error Correction or Minimum Letter Flip
(MEC or MLF) approaches, corresponding to the three types of manipulation discussed
above.

Lancia et al. [44] prove that the MFR and MSR are polynomially solvable for gapless
fragments, i.e. fragments containing no holes, with only 0 and 1 alleles corresponding
to bi-allelic SNPs, but are NP-hard in general and do not have a polynomial solution.
Nonetheless, the exact algorithms they suggest are bounded by too high-degree polyno-
mials even for the usually unrealistic gapless case, and are therefore by no means practi-
cal [73]. Approximate algorithms are introduced by Rizzi et al. [73], which are polynomial
in terms of m and n, but exponential in terms of the maximum number of holes mak-
ing them impractical for paired end and mate pair technologies. Moreover, ignoring a
whole fragment or SNP could often cause too much information loss, unless one deals
with a very low quality fragment or SNP. However, such fragments and SNPs are usually
discarded by preprocessing of the sequence reads or during the alignment and variant
calling steps. Wang et al. [90] discuss the more applicable MEC criterion, and prove that
the exact algorithm is NP-hard, even for the gapless case. Zhao et al. [100] investigate
the weighted version of MLF (WMLF) where a weight matrix is assigned to M by, for in-
stance, weighing each fragment letter by its associated base calling quality (Phred score)
and prove the NP-hardness of the exact solution.

Iterative hill-climbing and heuristic procedures have therefore been the premise of
practical phasing methods. Examples are found in complete weighted MLF (CWMLF),
in which fragment and SNP removal operations are applied in addition to weighted let-
ter flip to improve the clustering of the fragments [100], genetic algorithm (GA) based
MEC [90], MEC models with two distance functions [92], MEC using an iterative max-
cut algorithm on the SNP graph with weighted edges that reflect the difference between
the number of reads consistent and inconsistent with the current phasing between the
vertices of the edge [9], particle swarm optimisation (PSO) [94] and self organising map
(SOM) [95] algorithms for the MEC model and a greedy fragment clustering algorithm
with refinement based on a fuzzy conflict graph (FastHap) [58]. Wang et al. [91] suggest
a Markov Chain (MC) model for assembling haplotypes, which follows a dynamic pro-
gramming (DP) approach to extend d-meric haplotypes by choosing the most probable
extension whose probability is calculated from the SNP-matrix and the d-letter overlap
between consecutive d-mers. The sequencing errors are here implicitly dealt with by
preferring the most frequent, i.e. compatible, extensions. A more general graphical ap-
proach is discussed in Kuleshov [42], applying the max-sum message passing algorithm
to the two-dimensional Bayesian network that relates the reads to putative haplotypes.
Bansal et al. [10] suggest a Metropolis algorithm called HASH to obtain the empirical
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posterior distribution of the haplotypes from the SNP-matrix and the base calling qual-
ities. As the exhaustive Monte Carlo update over the set of all possible haplotypes is
computationally prohibitive, they perform a local search by modifying the haplotypes at
the most conflicting SNP sites at each iteration, followed by the Metropolis accept-reject
rule. The set of these conflicting SNP sites is chosen by applying a min-cut partitioning
algorithm to the SNP graph (weighted in a modified similar approach as in Bansal and
Bafna [9]) and is updated regularly during the run of the Monte Carlo algorithm.

I end this section by discussing in some detail two diploid phasing algorithms, Hap-
Compass [3] and SDhaP [23], that have been generalised to the polyploid case (Sec-
tion 1.3.2). Aguiar and Istrail [3] introduce a Minimum Edge Removal (MER) algorithm,
based on resolving conflicting cycles in a special SNP-graph, called the Compass graph,
by removing a set of edges with a total weight closest to zero. Their algorithm would cor-
respond to discarding parts of the erroneous fragments to make M feasible. The Com-
pass graph G = (V ,E,W ) has the heterozygous sites as nodes, V = {s1, s2, ..., sn}, and each
edge ei j is weighted by the number of fragments F that cover both si and s j and suggest

a
si s j

h1 1 1
h2 0 0

phasing, minus the number of fragments that suggest a
si s j

h1 1 0
h2 0 1

phasing:

wi j = ∑
f ∈F

C ( f , i , j )

C ( f , i , j ) =
{

1
(
f (i ) = 1∧ f ( j ) = 1

)∨ (
f (i ) = 0∧ f ( j ) = 0

)
−1

(
f (i ) = 1∧ f ( j ) = 0

)∨ (
f (i ) = 0∧ f ( j ) = 1

) (1.2)

Obviously, zero weighted edges are indecisive about the phasing between the two
sites, and are therefore omitted from the graph. Every path in the Compass graph corre-
sponds to a phasing for its end nodes, and a Compass graph is called happy if all paths
between si and s j suggest the same phase. Each pair of paths between si and s j forms
a simple cycle in the Compass graph, and it is easy to show that a cycle is conflicting,
i.e. indicates conflicting phasings between si and s j , if and only if the number of its neg-
ative edges, i.e. ei j with wi j < 0 as calculated by Equation 1.2, is odd. The HapCompass
algorithm removes a minimum weight set of edges through an iterative local search in
the cycle basis of the Compass graph in order to make the graph happy, and the maxi-
mum spanning tree of the resulting happy Compass graph gives the desired phasing for
the n SNPs.

Das and Vikalo [23] consider the MEC optimisation problem as an NP-complete
quadratic integer programming problem, which can be reformulated as a standard semi-
definite problem which is approximately solvable in polynomial time using Goemans-
Williamson algorithm [30]. They implement an efficient version of this algorithm, called
SDhaP, by factorising the sparse SNP-fragment matrix and refining the final solution by
greedy flipping of the haplotype alleles to further reduce the MEC, if possible.

1.3.2. Haplotype estimation for polyploids
The estimation of haplotypes from sequence data is much more complicated for poly-
ploids than for diploids. Due to the nature of polyploid genomes, even the read align-
ment and genotype calling steps are challenging compared to the diploid case. Tang
et al. [84] implemented a naive haplotype extension method based on minimum over-
lapping and clustering requirements in order to improve the quality of SNP calling from
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de novo assembled contigs, which approach was extended by Nijveen et al. [67] to ac-
commodate short NGS fragments. However, their haplotyping scheme is heuristic and
inefficient, in the sense that it discards many fragments and is sensitive to the order of
the input fragments. The most well-known optimisation based polyploid algorithms de-
veloped so far include polyploid HapCompass [4, 5], HapTree [13], polyploid SDhaP [23]
and H-PoP [97] which I present here.

Aguiar and Istrail [4] extend their graphical haplotype estimation approach for
diploids [3] by introducing a modified version of the Compass graph (Section 1.3.1) that
has k nodes for each SNP site si in a k-ploid, corresponding to the k alleles. To represent
the k haplotypes, k edges are drawn between each SNP pair’s nodes (si , s j ) weighted ac-
cording to a maximum likelihood model for the phasing between si and s j conditional
on the sequence fragments that cover si and s j . A global minimum weighted edge re-
moval (MWER) algorithm is applied to detect and eliminate edges with conflicting phas-
ing information with the aid of auxiliary chain graphs. Each chain graph takes a set of
SNPs that make a cycle in the Compass graph and detects phasing conflicts within the
cycle, if present. The MWER algorithm then tries to resolve the conflicts by eliminating
a number of edges with minimum total weight corresponding to the phasings the least
likely conditional on the sequence fragments. At the end, HapCompass reports the most
likely haplotypes over the complete set of n SNPs from the conflict-free Compass graph,
by finding k disjoint maximum spanning trees through an efficient greedy algorithm [5].
It is worth noting that the current version of HapCompass can handle multi-allelic SNPs
for polyploids, although the original algorithm is presented for bi-allelic markers. Be-
sides, HapCompass has been popular compared to other methods, as it accepts input in
the conventional alignment (BAM) and variant calling (VCF) formats and it has a user
friendly command line interface [37].

The HapTree algorithm developed by Berger et al. [13] extends the phasing SNP by
SNP from s1 to sn , keeping only the most likely phasings at each extension step up to si

when proceeding to include si+1 in the phasing. An ordered tree is used to represent the
extensions, in which the nodes at level i correspond to the phasing extensions that in-
clude s1, s2, . . . , si and the degree of each node equals the number of extensions possible
for its associated phasing. To obtain the phasing of n SNPs in polynomial time, HapTree
performs a greedy branching and pruning step at each extension level by removing child
vertices whose extension probabilities fall below a preset threshold 0 É ρ É 1 (branching)
as well as children whose relative extension probability with respect to the maximum
extension probability at the current level is below a preset threshold 0 É κ É 1 (prun-
ing). The current version of HapTree handles only bi-allelic SNPs, although extensions
to multi-allelic markers are also discussed by Berger et al. [13].

The polyploid version of SDhaP [23] starts with random phasings (considered points
in the metric phasing space), and finds the local optimum of MEC by implementing a
gradient-descent method. To this purpose and in order to overcome the singularities
caused by the countable phasing space, the phasing space is reformulated by represent-
ing each phasing as a k-simplex in a connected n-dimensional space subject to semidef-
inite constraints. To obtain the MEC phasing, a greedy best solution is first obtained by
relaxing the semidefinite constraints. The projection of each sequence fragment on the
k-simplex representing this preliminary phasing assigns it to one of its vertices (based
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on minimum distance), and the haplotype corresponding to each vertex is determined
by the consensus of its associated sequence fragments. The estimated haplotypes are
subsequently refined by greedy flipping of their alleles to further reduce the MEC, if pos-
sible. Also, SDhaP makes use of the sparseness of the SNP-fragment matrix to provide a
fast and efficient implementation in polynomial time.

The last method that I discuss here, H-PoP developed by Xie et al. [97], tries to parti-
tion the sequence fragments into k groups, so that the similarity is maximised between
the fragments within each group while the difference is maximised between the frag-
ments that are assigned to different groups. Xie et al. [97] introduce a heuristic dynamic-
programming algorithm called Polyploid Balanced Optimal Partition (PBOP) to obtain
the k groups. The haplotype of each group is afterwards determined by consensus.

1.4. Outline of this thesis
The research described in this thesis is motivated by several research questions focusing
on sequence-based haplotype estimation of polyploid crops. As various methods have
been proposed to estimate the haplotypes from noisy sequence data, the first challenge
is to develop a uniform framework to evaluate and compare these methods in different
situations. Considering the single individual nature of most of the so far proposed meth-
ods, another main challenge is to develop algorithms for sequence-based phasing in a
population.

In Chapter 2, we develop a simulation pipeline for polyploid genomes with given
heterozygosity rated and dosage distributions, from which sequencing data can be gen-
erated using the available technology specific sequence read-simulators. We use this
pipeline to evaluate several state-of-the-art single individual haplotyping (SIH) algo-
rithms by comparing their estimates to the original haplotypes. We show that the con-
ditional log-likelihood is a better score for polyploid haplotyping compared to the MEC,
at the cost of computational complexity, and that all of the SIH methods suffer perfor-
mance issues at ploidy levels higher than four (k > 4), as well as at low sequencing depths
and with short-length DNA fragments.

In Chapter 3, we introduce TriPoly, a novel haplotyping approach for polyploid trios.
We compare TriPoly to SIH methods and demonstrate its better performance with both
short-read and long-read sequencing, especially at low sequencing depths. For this com-
parison, we extend the simulation pipeline of Chapter 2 to generate offspring from sim-
ulated parental genomes, taking a simplified model of meiotic recombination and chro-
mosome segregation into account. In Chapter 4, we introduce a family-based approach,
called PopPoly, that specifically targets moderate to large F1-families and short-read se-
quence data. Through simulations, we show that PopPoly outperforms SIH methods
and TriPoly provided that the population size is sufficient (more than 5 offspring, say).
Besides, PopPoly improves the genotypes obtained from sequence data by conventional
tools (such as FreeBayes [29]) that do not consider pedigree information. We also apply
both TriPoly and PopPoly to different F1-populations of tetraploid potato.

In Chapter 5, we address the question of extracting the partial phasing information
in the reads to obtain haplotype marker scores for genetic association analysis. We intro-
duce a latent Poisson model for the read count of each haplotype containing a few SNP
markers, the rate of which we estimate by the expectation-maximisation (EM) method.
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This approach has been implemented in the command line tool AcroPoly. Finally, the
thesis is concluded by Chapter 6 with a discussion of the main findings and the current
haplotyping perspective for polyploids.
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Abstract
Haplotypes are the units of inheritance in an organism, and many genetic analyses de-
pend on their precise determination. Methods for haplotyping single individuals use
the phasing information available in Next Generation Sequencing reads, by matching
overlapping SNPs while penalizing post hoc nucleotide corrections made. Haplotyping
diploids is relatively easy, but the complexity of the problem increases drastically for
polyploid genomes, which are found in both model organisms and in economically rel-
evant plant and animal species. While a number of tools are available for haplotyping
polyploids, the effects of the genomic makeup and the sequencing strategy followed on
the accuracy of these methods have hitherto not been thoroughly evaluated.
We developed the simulation pipeline haplosim to evaluate the performance of three
haplotype estimation algorithms for polyploids: HapCompass, HapTree and SDhaP, in
settings varying in sequencing approach, ploidy levels and genomic diversity, using
tetraploid potato as the model. Our results show that sequencing depth is the major de-
terminant of haplotype estimation quality, that 1kb PacBio CCS reads and Illumina reads
with large insert-sizes are competitive, and that all methods fail to produce good haplo-
types when ploidy levels increase. Comparing the three methods, HapTree produces the
most accurate estimates, but also consumes the most resources. There is clearly room
for improvement in polyploid haplotyping algorithms.
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2.1. Introduction
The advent of sequencing technology has had tremendous impact in genomics and ge-
netics over the last years. The human (Homo sapiens) genome, published in 2003 [15],
formed the basis for large-scale efforts to catalogue sequence variation found between
individual genomes, in particular single nucleotide polymorphisms (SNPs) [49]. Subse-
quently, the international HapMap project [21] sequenced a large number of individu-
als to discover haplotype blocks, i.e. genomic regions containing co-segregating SNPs.
These haplotype blocks and their so-called haplotype tagging SNP markers, heterozy-
gous SNPs whose alleles predict the presence of a certain haplotype, formed the basis
for the development of high-density SNP arrays [18, 34], capable of determining rare or
less-frequent genotypes in a population, which were used in a large number of studies
relating SNPs to phenotypes such as ecological traits, diseases and disorders [52].

Following the success of the human genome project, many animal and plant species
were sequenced and genotyped, notably mouse ear cress (Arabidopsis thaliana [30], fruit
fly (Drosophila) [14], chicken (Gallus gallus) [27], pig (Sus scrofa) [24], potato (Solanum
tuberosum) [20], tomato (S. lycopersicum) [16] and hot pepper (Capsicum annuum) [31]
(the last three being plant genera within the Solanacea family). This has impacted not
only fundamental genetics research, but has also revolutionized the fields of animal and
plant breeding, by relating thousands of previously unknown genomic variants to phys-
iological, morphological and economically important traits such as yield per generation
and disease resistance [23, 41].

The introduction of high-throughput, relatively cheap and reliable next-generation
sequencing (NGS) technologies made it possible to determine most of the variants di-
rectly within a single genome rather than using a pre-defined set of marker variants as
proxies for the other variants [8]. Efficient tools have been developed to call variants
based on NGS data, e.g. FreeBayes [19] and GATK [42], and also to link variants on the
same homologous chromosome, so-called haplotype phasing. However, while phasing
of nearby variants occurring within the average NGS read length is relatively straightfor-
ward, long-range haplotyping using NGS data remains a challenge. Nevertheless hap-
lotyping is important in many areas: in fundamental biology, to improve our under-
standing of genome structure, recombination and evolution [12]; in medicine, to obtain
a full picture of the genetic variation in a population potentially linked to diseases and
traits [22] and to investigate the effect of compound heterozygosity [11]; and in animal
and plant breeding, to move from phenotype-based to genotype-based crossing and se-
lection of individuals [25, 40]. Moreover, the knowledge of haplotypes can help reveal the
linkage disequilibrium pattern in a population and hence increase the power and cov-
erage of genetic analysis by allowing the imputation of a large number of alleles using a
limited set of genotyped loci [26, 28] .

In the diploid case, haplotyping algorithms aim to divide the aligned reads into two
complementary sets, each covering a specific region of, say, n heterozygous sites, so that
the nucleotides are the same at the overlapping sites of the reads within each set, but
different between the sets. The algorithmic challenge then is to take the occurrence of
sequencing and variant calling errors into account [35, 38, 48]. Minimum Error Correc-
tion (MEC), the most prevalent approach, uses single base-flips for reads that conflict
with both of the read sets, presumably due to sequencing or variant calling errors, to
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assign them to one of these. The aim is to find a configuration that requires a minimal
number of such base flips [48, 54]. This strategy is the basis of several diploid haplotyp-
ing algorithms [4, 5, 33, 55–58, 60]. Recently, diploid aware genome assemblers based on
long reads, produced for instance by PacBio and Nanopore technologies [43], have also
been developed. These algorithms use the overlap-layout-consensus approach to con-
struct the assembly graph and obtain the primary contigs from the raw reads, and try to
resolve the haplotypes by calling heterozygous SNPs within the contigs. These SNPs are
used to separate the long reads into two groups, the so called "haplotigs", from which
consensus sequences are obtained to determine the phasing [13].

For polyploid genomes, the problem could be formulated as dividing the reads into
k > 2 groups, but the generalization from the diploid case is not straightforward. Specif-
ically, polyploids can be classified as allopolyploids, autopolyploids or mixture types,
i.e. so-called segmental allopolyploids. In the allopolyploid case, the constituent sub-
genomes of the polyploid are derived from adequately distant diploid ancestors that do
not usually recombine with each other, a situation observed among several species in
the plant kingdom such as tetraploid and hexaploid wheat [45]. Under specific circum-
stances, one may treat the sub-genome haplotypes as separate diploids and an ad hoc
phasing solution could be still achievable using the algorithms developed for diploids. As
an example, this strategy has been successfully applied to pasta wheat Triticum turgidum
[32], which is a self-fertilizing allotetraploid for which the ancestral diploid genomes are
also known, to determine the variation on each sub-genome by dividing the transcrip-
tome reads into two groups using HapCut [4]. In the case of (partial) autopolyploids,
however, recombination is observed between homologues belonging to different sub-
genomes and unlike for the diploid case, knowledge of one haplotype does not automat-
ically determine the phasing of the others. Besides, some haplotypes may be (locally)
identical and thus several configurations could have the same MEC score. Moreover,
the computational complexity of haplotype reconstruction increases rapidly with an in-
crease in ploidy [2, 17]. The diploid approaches are therefore in general not applicable
to polyploids.

Still, haplotype assembly for polyploids is highly relevant, as many interesting organ-
isms have polyploid genomes and haplotyping will help unravel the range of the com-
plex recombinations allowed by such genomes. Within the animal kingdom, triploidy
and tetraploidy are observed in treefrog (Xenopus laevis) [53] and zebrafish (Danio re-
rio) [59], both important model organisms in evolutionary biology. Moreover, many
economically important crops and ornamentals are polyploid, including tetraploid al-
falfa (Medicago sativa), triploid banana (Musa acuminata × M. balbisiana), tetraploid
leek (Allium ampeloprasum), tetraploid potato (S. tuberosum), tetraploid hard wheat (T.
durum), hexaploid bread wheat (T. aestivum), tetraploid, hexaploid and octoploid straw-
berry species including Faragaria moupinesis (k=4), F. moschata (k=6), F. × ananassa
(k=8) and several hybrid cotton (Gossypium, tetraploid or hexaploid) and rose (Rosa,
tetraploid) species.

Here we review three state-of-the-art haplotyping algorithms for polyploids: Hap-
Compass [2, 3], HapTree [7] and SDhaP [17], and evaluate their accuracy through ex-
tensive simulations of random genomes and NGS reads. Using the highly heterozygous
tetraploid potato (S. tuberosum) as a model, we generated random genomes using a real-
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istic stochastic model with parameters SNP density and distribution of SNP dosages, i.e.
the number of alternative alleles at each SNP site, derived from a recent genomic study
of potato [51]. In addition, we simulated genomes at higher levels of ploidy with the
same SNP density, as well as tetraploid genomes with different SNP densities and hap-
lotype dosages, in order to investigate the effects of genome characteristics on the es-
timation. Moreover, we considered various sequencing depths, paired-end insert-sizes
and sequencing technologies to quantify the impact of these parameters on the haplo-
typing. We provide guidelines to apply the haplotyping methods in practice, and show
the characteristics of each method in various situations.

The pipeline used is available as software package haplosim, which allows simulation
for various sequencing approaches, genomic characteristics and variation models.

2.2. Material and Methods
While several studies have used experimental data, e.g. the human haplotype panels and
sequence reads, to evaluate the efficiency of diploid haplotyping algorithms [1], exper-
imentally obtained haplotypes are often not available for polyploids at a scale enabling
insightful statistical comparison. Therefore, the evaluation of polyploid haplotyping al-
gorithms has been based on artificial data sets [2, 3, 7, 17]. Here we also rely on simu-
lation to evaluate the performance of these methods. Compared to the previous stud-
ies, our approach has the advantage of simulating all parts of a practical haplotyping
pipeline, encompassing the careful simulation of genomes and sequence reads based
on real data and the application of standard software for read alignment and genotype
calling. In contrast, previous studies relied on the direct simulation of SNP-fragment ma-
trix using simplifying assumptions. An additional advantage of our simulation approach
is that it allows to investigate the effects of SNP-density, similarity between homologues,
ploidy level, sequencing depth, sequencing technology and DNA library size on the qual-
ity of haplotype estimates, which is usually not feasible using real data.

We developed a multi-stage pipeline, haplosim, to simulate polyploid individuals,
with various genomic characteristics, that are sequenced in silico. After individual SNP
detection and dosage estimation, the haplotypes are estimated, separately for each indi-
vidual, by the available algorithms: HapCompass [2, 3] , HapTree [7] and SDhaP [17] in
the next steps. In the last step of the pipeline., the estimated haplotypes are compared
to the originally simulated haplotypes using quantitative measures (Figure 2.1).

For the first step (Figure 2.1-A), polyploid genomes are produced from a reference
DNA sequence by introducing heterozygous regions containing bi-allelic SNPs, using the
command-line tool haplogenerator that we developed to this purpose. Next, NGS reads
are simulated for each produced individual using ART [29] and PBSIM [44] for Illumina
and PacBio, respectively, and the reads are mapped back to their reference genome using
bwa-mem [36] (with the settings recommended in its manual for Illumina and PacBio
reads). The alignments are pre-processed to generate BAM files and remove duplicates
by samtools [37] and Picardtools [9], after which SNPs are called using FreeBayes [19]
(Figure 2.1-B). The processed alignments, the reference and the VCF files are used in
the haplotyping step by HapCompass [2, 3], HapTree [7] and SDhaP [17] (Figure 2.1-C)
and the obtained haplotype estimates are compared to the original haplotypes by the
command line tool hapcompare that we developed using several measures of estimation
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quality (Figure 2.1-D). These steps are explained in detail below.

Figure 2.1: Haplosim pipeline to generate, estimate and evaluate haplotypes. Random genomes and
haplotypes are produced by Haplogenerator, from which NGS reads are simulated and mapped
backed to the reference. SNPs are called at the next step and the haplotypes estimated by HapTree,
HapCompass and SDhaP. The estimates are compared to the original haplotypes by hapcompare.

2.2.1. Polyploid haplotyping software
Currently, three optimization based haplotyping algorithms are available for polyploids
that make use of the sequence reads of a single sample: HapCompass [2, 3], HapTree [7]
and SDhaP [17] (Table 2.1). Among these three algorithms, HapTree and SDhaP have
separate software releases for diploids and polyploids, which may have major perfor-
mance differences not discussed here. We explain each method assuming a genomic
region containing l heterozygous SNP sites s1, s2,...,sl , a ploidy level k > 2 and an NGS
dataset containing m (paired-end) reads. We define a “fragment” as the sequence of the
determined alleles at the heterozygous sites within a (paired-end) read. For simplicity,
we focus on the most prevalent type of SNPs, bi-allelic SNPs, for which the alleles can be
represented by ’0’ (the reference) and ’1’ (the alternative).

a) HapCompass: Aguiar and Istrail (2013) extended their graphical haplotype esti-
mation approach for diploids [2], by constructing the polyploid compass graph, which
has k nodes for each variant site si in a k-ploid corresponding to the k alleles at that
site [3]. To each SNP pair (si , s j ) covered by at least one of the m fragments, the phas-

Table 2.1: Summary of the polyploid haplotype estimation algorithms using sequence reads

Algorithm Principle Release Version Separate diploid release

HapCompass (Aguiar and Istrail 2013) Graph based using Weighted Minimum Edge Reduction criterion HapCompass v0.8.2 No

HapTree (Berger et al. 2014) Using Bayesian probability tree with Maximum Relative Likelihood criterion HapTree_v0.1 Yes

SDhaP (Das and Vikalo 2015) Minimum Error Correction criterion with Semi-Definite approximation SDhaP_poly Yes
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ing with the largest likelihood is assigned by a polyploid likelihood model, conditional
on the covering fragments and assuming a fixed base calling error rate. k edges are ac-
cordingly added to the compass graph between the nodes at si and s j sites, representing
the k homologues covering si and s j and weighted by their likelihoods. A global mini-
mum weighted edge removal (MWER) algorithm is applied to detect and eliminate edges
with conflicting phasing information from the compass graph with the aid of auxiliary
chain graphs. Each chain graph takes a set of variants that make a cycle in the compass
graph and detects phasing conflicts within the cycle, if present. The MWER algorithm
then tries to resolve the conflicts by eliminating a number of edges with minimum total
weight corresponding to the least likely phasings. Finally, the most likely haplotypes are
found over the full set of SNPs from the conflict-free compass graph by finding k disjoint
maximum spanning trees through an efficient greedy algorithm, corresponding to the k
most likely homologues covering the l SNP sites.

b) HapTree: The HapTree algorithm, developed by Berger et al. (2014) [7], builds a
tree representing a subset of likely phasing solutions for l heterozygous sites and tries
to find the most probable path from s1 to sl in the tree as the best phasing, by calculat-
ing the probability of each phasing conditional on the m fragments, assuming a fixed
base calling error rate. Nevertheless, as an exhaustive search over the full tree of all so-
lutions would be computationally prohibitive, the tree is built and extended site by site
with branching and pruning to greedily eliminate the (relatively) low probability paths
from the final tree. In doing so, HapTree calculates the relative probabilities of the hap-
lotypes at each extension using the relative probabilities of the haplotype at the previous
extension that survived the branching and pruning, taking the error model into account.

c) SDhaP: The third algorithm, polyploid SDhaP designed by Das and Vikalo (2015),
is a semi-definite programming approach that aims to find an approximate MEC solu-
tion by a greedy searching of the space of all possible phasings from s1 to sl [17]. The
algorithm starts with random initial haplotypes, and tries to find the MEC solution by
making changes to these initial haplotypes according to a gradient-descent method. To
this end, the MEC problem is reformulated as a semi-definite optimization task and pre-
liminary solutions are obtained in polynomial time by exploiting the sparseness of over-
laps between fragments for efficient implementation. These preliminary estimates are
subsequently refined by greedy flipping of the alleles in the estimated homologues to fur-
ther reduce the MEC, if possible. By this flipping, SDhaP allows making changes to the
dosages of the alternative alleles estimated during variant calling, which could some-
times lower the error correction score. Therefore, the dosages of corresponding SNPs in
the SDhaP estimates and original haplotypes could differ, in contrast to the estimates
produced by HapTree and HapCompass.

2.2.2. Simulation of polyploid genomes and NGS reads
a) Haplotype generation
We developed the command line tool haplogenerator for generating artificial genomes
and their haplotypes with desired characteristics. Specifying an indexed fasta file as in-
put, haplogenerator applies random insertions, deletions and mutations to the input se-
quence according to a chosen stochastic model to produce modified fasta files for each
of the k-genomes of a k-ploid individual. A separate haplotype file is also made con-
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taining the phasing of the generated variants. In the haplotype file, the reference and
alternative alleles are numerically coded, assigning 0 to the nucleotide present in the in-
put reference and the following integers to the alternative alleles. The coordinate of each
variant on its contig is also specified within the haplotype file.

The random indel and mutation sites are scattered across the input genome accord-
ing to a selected built-in stochastic model for the distance between consecutive varia-
tions, or alternatively by sampling with replacement from a given empirical distribution
for this distance. At each position i , possible alternative alleles are generated: for indels,
an inserted or deleted nucleotide; for mutations, nucleotides other than the reference
(or just one nucleotide for obtaining bi-allelic SNPs). Next, a dosage di is assigned to
the alternative allele based on the ploidy si , according to user-specified probabilities for
di =1 to di = k, and di out of k homologues are selected randomly to get their allele at
si changed to an alternative. To account for linkage disequilibrium, we imposed an ad-
ditional step after this dosage assignment to reassign the alternative alleles at each si+1,
i = 1, 2, ..., n−1, to the homologues containing the alternative alleles at si (as much as the
numbers of alternative alleles, i.e. the dosages, at si and si+1 allow), with a reassignment
decision made independently for each site from s2 to sn with an arbitrary probability set
to 0.4.

b) Simulation of NGS reads
We used the technology specific simulator ART [29] to generate paired-end reads from
Illumina MiSeq and HiSeq 2500 technologies [43, 46], and PBSIM [44] to simulate Cir-
cular Consensus Sequencing (CCS) and Continuous Long Reads (CLR) from Pacific Bio-
Science [39, 46]. The average length of single Illumina reads was set to the maximum
allowed by ART (125bp and 250bp for HiSeq 2500 and MiSeq, respectively). For PBSIM,
the average read length was set to 1kb and 5kb with CCS, and to 10kb with CLR. Set-
ting these averages, both softwares generated reads with random lengths following the
built-in distributions derived from empirical data for each technology.

Each homologue was “sequenced” separately, and the reads were combined to simu-
late the output of real sequencing apparatus. Average sequencing depths were specified
for each homologue to obtain the desired average total depth equal to k times the per
homologue depth, with k being the ploidy. Both ART and PBSIM consider a discrete uni-
form distribution with the user-set mean for the depth at each position, and hence the
standard deviation of the total depth was dependent on the average depth per homo-

logue, c, and equal to
√

kc(c+2)
12 for a k-ploid.

The choice of the sequencing strategies in our study was based on the efficiency and
performance of the available techniques [46], as well as their practical convenience. In
particular, we did not consider single-ended reads of Illumina as preliminary assessment
showed that they produce low quality estimates with a large number of gaps in the solu-
tion.

c) Simulation of polyploid datasets
In order to simulate realistic polyploid genomes, we chose tetraploid potato (S. tubero-
sum) as the model organism, due to the availability of a reference genome [20] as well
as NGS data containing genomic variation of 83 diverse cultivars [51]. The sequence of
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chromosome 5 from PGSC v4.03 DM draft genome [20] was used as the template se-
quence for haplogenerator. We selected random contiguous regions with 20kb length
from this template to be used as references for simulating genomes. In selecting the
references, we rejected 20kb regions of the template that contained more than 20% un-
determined nucleotides, and omitted these undetermined sites (denoted by ’N ’ in PGSC
v4.03 DM sequence) before introducing mutations in the accepted regions. As the length
of many genes falls below 20kb, choosing references with this size allows us to evaluate
haplotype estimation for amplicon sequences covering a complete gene. Random bi-
allelic SNPs were introduced in each reference to produce synthetic tetraploid genomes
according to the built-in lognormal model of haplogenerator, with the mean and the
standard deviation of the log-distance between the SNPs being set to 3.0349 and 1.293,
respectively, corresponding to an expected SNP frequency of 1 per 21bp with a standard
deviation of 27bp. The distribution of the dosages, di , was similarly set equal to that
from [51], with percentages equal to 50%, 23%, 14% and 13% of simplex (di = 1), duplex,
(di = 2), triplex (di = 3) and quadruplex (di = 4) SNPs.

In order to investigate the effect of library preparation, we considered various insert-
sizes for paired-end Illumina reads, namely end-to-end insert-sizes of 235, 300, 400, 500,
600 and 800bp with HiSeq 2500 and 400, 450, 500, 600 and 800bp with MiSeq. For evalu-
ation of the effect of sequencing depth on haplotyping, 2×, 5×, 8×, 10×, 20×, 22×, 25×,
28×, 30× and 35× average coverages were considered per homologue for each of these
insert-sizes.

To investigate the effects of genome characteristics, the ploidy level, the dosage of
different homologues and the SNP density on the quality of haplotype estimation, ad-
ditional genomes were generated in a similar way by haplogenerator. Considering the
same proportion of simplex and duplex SNPs, i.e. SNPs with dosages equal to 1 and 2,
respectively, as in [51] and considering equal proportions for the dosages higher than 2,
we simulated genomes with 3n, 4n, 6n, 8n, 10n and 12n ploidy levels to investigate the
effect of the ploidy, and simulated modified tetraploid genomes that contained only two
distinct homologues with simplex and triplex dosages to investigate the effect of similar-
ity between the homologues on haplotype estimation. While these scenarios assume a
SNP-density model valid for S. tuberosum, they still can show the pattern by which ploidy
level and similarity between the homologues influence the quality of haplotyping.

Finally, tetraploid genomes with SNP densities lower than that of the highly heterozy-
gous S. tuberosum [51] were simulated to observe the effect of SNP density, with average
frequencies of 1 per 22bp to 1 per 110bp.

In total, 250 individuals were simulated for each of the above mentioned scenarios
by choosing 25 random references from the template and generating 10 genomes with
randomly distributed bi-allelic SNPs for each selected reference (Figure 2.2).

2.2.3. Evaluation of the estimated haplotypes
As several types of error occurring in different steps of the haplotyping pipeline could
cause differences between the actual haplotypes and their estimates, we needed several
measures of consistency to be able to capture all of them, as summarized in Table 2.2.
These errors include the absence or wrong dosage of original SNPs in the estimates, pres-
ence of spurious SNPs, discontinuity of the estimated haplotypes, i.e. presence of gaps
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between estimated haplotype blocks, and finally wrong extension of homologues lead-
ing to incorrect phasing. We also included an extra measure, the failure rate (FR) for each
algorithm, regardless of the quality of haplotype estimation, as it could happen that the
haplotyping tools failed to produce any estimate for some of the individuals.

Figure 2.2: The schematic diagram of simulation for each considered scenario. 10 references of
length 20kb are chosen from the draft sequence chromosome 5 [20], from each 10 polyploid
genomes are simulated containing bi-allelic SNPs randomly distributed according to the lognor-
mal distance model, to obtain datasets of size 250.

Table 2.2: Summary of the measures used to asses the quality of haplotyping

Measure Description Limitation

PAR The average accuracy of phasing for any possible SNP pair SNPs present in both original haplotypes and estimates, no account of gaps

VER> Number of wrong extensions of homologues with (parts of) other homologues SNPs present in both original haplotypes and estimates with same dosages, no account of gaps

SMR Proportion of original SNPs missing in the estimates No account of phasing, false positive SNPs in estimates and dosages

IDR Proportion of SNPs with an incorrect dosage in estimated haplotypes SNPs present in both original haplotypes and estimates, no account of phasing

PPV Proportion of true SNPs in the estimated SNPs No account of phasing, missing SNPs, and wrong dosages

NGPS> Number of gaps (interruptions) introduced in the estimated haplotype No account of phasing, missing, wrong dosages and false positives

FR Rate of failure for an algorithm No account of the quality of the estimates

> measure normalized by the size of original haplotypes, i.e. the number of original SNPs
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Some of the SNPs originally simulated were absent in the output set of each simula-
tion, either due to mapping and variant calling errors or due to their not being phased
by the algorithms, and therefore could not be included in the comparisons of true and
estimated phasings. Instead, their proportion was calculated as SNP missing rate (SMR)
and considered as the first measure of estimation quality. Similarly, spurious SNPs in the
estimates were not included in the comparisons and the Positive Predictive Value (PPV )
or the precision of the estimated SNPs was calculated as the proportion of genuine SNPs
among the estimated SNPs as the next measure of estimation accuracy. The incorrect
dosage rate (IDR) was also calculated as the proportion of SNPs that had an incorrect
dosage in the estimated haplotypes in the set of SNPs that were common between the
original haplotypes and the estimates.

Having excluded the missing and spurious SNPs, the Pairwise Phasing Accuracy Rate
(PAR) [10] was computed as the proportion of all heterozygous SNP pairs for which the
estimated phasing was correct. This measure captures the errors caused by chimeric
elongation of the homologues during haplotype estimation, i.e. the elongation of a ho-
mologue by (part of) another homologue, as well as errors caused by incorrect dosage
estimation.

One way to calculate the accuracy of phasing for more than just two SNPs is to con-
sider the phasing accuracy rate for groups of three SNPs, four SNPs, etc. However, the
phasing accuracies will no longer be independent for the groups of SNPs that have more
than one SNP in common, leading to biased estimates of the accuracy rates. Instead,
we calculated the Vector Error Rate (VER), also called the switch error rate, defined as the
number of times a homologue is erroneously extended by part of another homologue [7].
Such erroneous extensions are also called switches between homologues, and the mea-
sure is equal to two times the number of wrong phasings for pairs of consecutive SNPs
for diploids. For polyploids, the measure is calculated by finding the minimum number
of crossing-overs needed to reconstruct the true haplotypes from the estimates [7]. To
be able to compare of VER for different ploidy levels, genome lengths and SNP densities,
we normalized it by the number of originally simulated SNPs as well as the ploidy level
for each individual. The SNPs with a wrong estimated dosage of the alternative allele
were omitted before applying this measure, as otherwise the true haplotypes could not
be reconstructed by simple switching of the estimated homologues without considering
allele flips from 0 to 1 or vice versa.

The last measure of estimation quality that we used was the number of gaps per SNP
(NGPS) in the estimates, as the simulated continuous haplotypes can be broken into sev-
eral disconnected blocks, causing gaps in the estimated haplotypes. This phenomenon
happens if the connection between SNPs is lost due to low sequencing coverage or se-
quencing/variant calling errors at certain sites. Therefore, we calculated the number of
break points, i.e. gaps, in the estimates (equal to the number of disjoint blocks minus
one), and normalized it by the total number of simulated SNPs for each individual for
the same reasons as for VER. In case gaps were present in the estimates, we calculated
the other measures separately for each estimated block and reported the weighted aver-
age of the block-specific measures, weighted by the number of compared SNPs in each
estimated block, or the number of possible pairwise phases in case of PAR.

Finally, the computational complexity of each of the haplotyping algorithms was
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considered as a function of sequencing coverage, insert-size, ploidy, SNP density and
homologue dosages. The applied haplotyping methods are memory intensive methods,
increasingly consuming system resources with time, sometimes up to tens of gigabytes
of virtual memory. To run the methods on a system with shared resources, and con-
sidering the fact that the algorithms require an increasing amount of virtual memory
with time, a time limit of 900 seconds (2000 seconds for the analysis with various lev-
els of ploidy) was imposed on each haplotyping algorithm, after which the algorithms
were externally halted and the estimation considered a failure. This amount of time was
deemed reasonable considering the 20kb length of the simulated genomic regions, and
the number of time-out events was added to the number of times each algorithm failed
to estimate any haplotypes due to the occurrence of internal errors. Total FRs are thus
also reported for each haplotyping scenario.

2.2.4. Comparison of haplotyping algorithms
In order to compare the overall performance of the three haplotype estimation methods,
we built three linear regression models with the mentioned quality measures as response
and the haplotyping method as predictor, considering sequencing depth, sequencing
technology and the (paired-end) library size as covariates in the model. As each of the
simulated genomes was haplotyped simultaneously by the three estimation methods,
the effect of the genome on the estimation quality was incorporated as a random effect
in the model. Similarly, as 10 genomes were generated from each of the 25 randomly
selected references, the effect of the common reference was added as the second random
component to the model.

For each quality measure, a complete-case analysis was performed, including only
the results of those simulations for which all the three estimation methods reported
some value. The models were estimated by Restricted Maximum Likelihood (REML) [50]
using the lmer function from the package lme4 [6] in R 3.2.2 [47].

2.3. Results and Discussion
2.3.1. Haplogenerator produces realistic genomes
In order to investigate the compatibility of the simulated 20kb S. tuberosum genomic re-
gions with the real regions sequenced by Uitdewilligen et al.(2013) [51] in terms of the
density of bi-allelic SNPs, we obtained quantile plots (QQ-plots) of the distances be-
tween consecutive SNPs si , si+1, generated by the applied lognormal model versus the
distances between consecutive bi-allelic SNPs (within the same RNA-capture region) in
the combined data of 83 diverse cultivars from [51]. As shown in Figure 2.3, the two em-
pirical distributions match well enough, although the distribution of real SNPs seems to
have a heavier tail than lognormal (accounting for less than 2% of the total number of
real bi-allelic SNPs). This heavier tail is plausibly explained by the presence of highly
conserved regions in real genomes, subject to natural and artificial selection pressure,
as well as the use of genome-wide RNA-baits to reduce the complexity of genome in [51]
which can result in the exclusion of some SNPs in target regions that had poor capture
success.

The proportions of simplex to quadruplex SNPs, i.e. the dosage proportions, were
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Figure 2.3: Quantile plots for the distances between successive SNPs obtained from simulation by
haplogenerator using the lognormal distance model (horizontal axis) versus the one obtained from
the data of 83 potato cultivars of Uitdewilligen et al. (2013) [51]. The two distributions match well,
though a heavier tail is observed for the data of Uitdewilligen et al. (2013), accounting for less than
2% of the SNPs.

also almost identical as those obtained from Uitdewilligen et al. (2013) [51] (Section
2.2.2-c).

2.3.2. Sequencing depth is the major determinant of haplotyping quality
An important goal of the simulations was to observe to what extent sequencing strate-
gies influence haplotyping results, because of the practical importance in setting up ex-
periments and choosing a technology. As different technologies rely on different library
preparation and nucleotide calling methods, their output is often different in terms of
the average read length and sequencing error profile. Besides, the sequencing depth,
average read length and paired-end insert-size can vary according to the user’s require-
ments with the same technology. We found that the performance of all three haplotyping
methods was considerably affected by the sequencing strategy, most notably by the se-
quencing depth.

Regardless of the used sequencing technology and the insert-size, a sequencing depth
between 5-20× per homologue is required to obtain results satisfactory in terms of hap-
lotype accuracy (PAR) and completeness (SMR) (Figure 2.4-a, b). Both improve continu-
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ously with sequencing depth, but flatten out at 15×. A notable exception is HapTree, of
which the increased failure rate (FR) at higher depths is reflected in a worse complete-
ness (increasing SMR). Other quality measures (VER, PPV, IDR, NGPS) were not substan-
tially influenced by sequencing depth at depths higher than 5× per homologue.

HapTree’s failure rate (FR, Figure 2.4 c) was rather high for low and high sequencing
depths. At lower depths, less than 2× per homologue, there is not enough information
available for effective branching and pruning of the solution tree and time-out errors
result in failures. In contrast, for high sequencing depths the relative likelihood values
often become very small, due to the presence of many terms in the likelihoods of par-
tial haplotypes, making a meaningful comparison impossible. This problem will be dis-
cussed further in Section 2.3.10.
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Figure 2.4: Plots of haplotype estimation quality measures: (a) SMR, (b) PAR and (c) FR as a function
of sequencing depth per homologue using HapCompass (black), HapTree (gray) and SDhaP (light
gray), for simulated 20kb tetraploid S. tuberosum genomes. Sequencing was performed in silico
for paired-end MiSeq (triangle) and HiSeq 2500 (rhombus) with 800bp insert-size, as well as for
PacBio-CCS of 1kb length (circle).
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As sequencing depth is an important factor in determining the total cost of sequenc-
ing, these results show that extra cost can be avoided by choosing a moderate sequencing
depth without sacrificing considerable haplotyping accuracy.

2.3.3. Large insert paired-end reads are competitive with long reads
In addition to sequencing depth, the insert-size of paired-end reads and the employed
sequencing technology can have an impact on the estimation quality. These are also
important factors to specify when designing a sequencing experiment, as they influence
cost, throughput and quality. To quantify their effects, we simulated NGS reads for HiSeq
2500, MiSeq and CCS technologies at each sequencing depth, and simulated paired-end
reads with various insert-sizes for HiSeq 2500 and MiSeq (Section 2.2.2-b).

Our results show that at the same sequencing depth, increasing the insert-size of
paired-end reads was not markedly influential on the overall quality of haplotyping (Supp.
Figure 1), except for the number of gaps that was expectedly reduced with larger in-
serts. Moreover, similar estimation qualities were obtained using the 1kb CCS reads
and paired-end Illumina reads with a large insert-size (800bp) (Figure 2.4). At the same
depth, the paired-end reads contain basically the same phasing information as the long
reads.

Although libraries with large inserts are costly and difficult to obtain, they may be
still easier to generate than long continuous reads and therefore can be a competitive
option for designing haplotyping experiments.

2.3.4. HapTree is the most accurate method, but often fails
Different haplotyping algorithms yield different estimates for the same individual. With
simulated individuals, it is possible to compare the quality of these estimates as the hap-
lotypes are known a priori. To this end, we used linear regression models relating the
performance measures to the algorithms used (Section 2.2.4). Because of the substantial
difference between the estimation results using CLR compared to the other sequencing
methods (Section 2.3.9), those results were excluded from the regression analysis.

Table 2.3 shows the 99% confidence intervals for the effects of estimation method
and sequencing technology on the haplotyping accuracy for the tetraploid genomes,
with HapCompass on CCS data taken as the baseline. HapTree is significantly more ac-
curate (higher PAR and lower VER) than the other methods, but less complete (higher
SMR) due to its frequent failure (Figure 2.4-c). SDhaP yields slightly, but significantly,
worse dosage estimates (higher IDR). There was no significant relation between the hap-
lotyping method and the continuity of haplotype estimates (NGPS) or precision of the
SNPs (PPV).

Finally, the results were not significantly different using Illumina MiSeq reads and
PacBio CCS, except for PPV which was slightly higher with MiSeq. On the other hand,
HiSeq 2500 reads resulted in significantly higher VER, SMR and NGPS at α=0.01 com-
pared to the other sequencing methods, with the most noticeable effect being on the
number of gaps, which was expected considering the short single-read length of HiSeq.

Overall, these results confirm that HapTree is the most accurate method when it does
not fail, and that Illumina and PacBio reads offer very similar performance.
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Table 2.3: Point estimates and 99% confidence intervals for the effects of haplotyping and sequencing methods
on the haplotyping quality measures

Paramter\Quality Measure PAR VER SMR IDR PPV NGPS

Intercept> 0.33(0.308;0.356) 0.25(0.206;0.285) 0.06(0.022;0.090) 0.20(0.178;0.222) 0.97(0.970;0.971) 0.01(0.007;0.013)

HapTree 0.23>(0.226;0.230) -0.1>(-0.1;-0.09) 0.27>(0.263;0.270) 0.00(0.003;0.005) 0.00(0.000; 0.000) 0.00(-0.002;-0.001)

SDhaP 0.08>(0.079;0.082) -0.01>(-0.014;-0.005) 0.00(-0.003;0.004) 0.01>(0.012;0.013) 0.00(0.000;0.000) 0.00(0.000;0.000)

HiSeq 2500 -0.005(-0.026;0.016) 0.06>(0.024;0.1) 0.04>(0.011;0.072) 0.01(-0.011;0.028) 0.03>(0.025;0.026) 0.01>(0.008;0.013)

MiSeq -0.002(-0.023;0.019) -0.02(-0.051;0.02) 0.02(-0.008;0.052) 0.01(-0.013;0.026) 0.02>(0.023;0.025) 0.00(0.001;0.006)

> Statistically significant at α=0.01

Point estimates and 99% Wald-type confidence intervals for the effects of haplotyping meth-
ods: HapTree, SDhaP and HapCompass (the reference) and the sequencing technologies: MiSeq,
HiSeq2500 and CCS (the reference), on 5 measures of haplotyping quality: Phasing Accuracy Rate
(PAR), SNP Missing Rate (SMR), Incorrect Dosage Rate (IDR), Positive Predictive Value of the called
SNPs (PPV) and the Number of Gaps in estimates per SNP (NGPS).

2.3.5. Similarity between homologues eases haplotyping with Illumina
Similarity between homologues can have a large effect on haplotyping. This similar-
ity often occurs when random mating is violated, e.g. in inbred or isolated populations.
To investigate this, we simulated simplex-triplex individuals, i.e. tetraploid individuals
consisting of two different genomes with dosages of 1 and 3. We generated paired-end
MiSeq and HiSeq 2500 reads (800bp insert-size), as well as 1kb CCS read of PacBio, and
evaluated the estimated haplotypes.

On this data, the performances of HapTree (with Illumina reads) and HapCompass
improve over the original simulation, while the performance of SDhaP deteriorates sig-
nificantly (Figure 2.5). In particular, the similarity between homologues resulted in a
decreased accuracy for SDhaP (Figure 2.5-a, PAR around 0.2) and incorrect dosage es-
timates for more than half of the SNPs (Figure 2.5-c, IDR of 0.55), regardless of the se-
quencing method.

These results demonstrate the differences between the MEC (Minimum Error Cor-
rection) approach to haplotyping and other approaches. MEC is sensitive to (local) sim-
ilarities between homologues, as they lead to approximately identical MEC scores for
several different phasings, causing SDhaP to report a suboptimal solution. In contrast,
the performances of HapCompass (MWER approach) and HapTree (relative likelihood
approach) improve, at least when using Illumina sequencing (Figure 2.5-a, b). Having
more similar fragments simplifies construction of the maximum spanning tree in the
Compass graph and makes the branching and pruning of the solution tree of HapTree
more accurate by enhancing the relative likelihoods of correct partial phasings. No im-
provement was observed, however, with HapTree using CCS reads, due to increasing fail-
ure rates (FR, Figure 2.5-e) caused by time-out errors.
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Figure 2.5
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Figure (cont.) 2.5: Plots of haplotype estimation quality measures: (a) PAR, (b) VER, (c) IDR, (d) SMR
and (e) FR as a function of ploidy level using HapCompass (black), HapTree (gray) and SDhaP (light
gray), for simulated 20kb simplex-triplex tetraploid genomes (circle) compared to genomes with
random haplotype dosages (square). Sequencing was performed in silico for paired-end HiSeq
2500 reads with 800bp insert-size.

These results show that the underlying algorithms lead to different sensitivities to
homologue similarity, with MEC-based approaches yielding incorrect results and other
methods demanding increasing computation time.

2.3.6. SNP density mainly influences continuity of haplotype estimates
In genomes with a lower SNP density than the highly heterozygous potato, S. tuberosum,
fragments will overlap less often, which can influence the quality of haplotyping. To
determine the effect of SNP density, we simulated tetraploid genomes with average SNP
densities ranging from 1 SNP per 22 base pairs, the average density for potato, to 1 SNP
per 110 base pair, and estimated the haplotypes using Illumina paired-end reads with
an insert-size of 800bp, as well as 1kb CCS reads of PacBio, at a sequencing depth of
15× per homologue. Increasing numbers of gaps (NGPS, Figure 2.6-a) and a decrease in
completeness (SMR, Figure 2.6-b) were observed in the estimated haplotypes at lower
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densities for all three haplotyping methods. The effect of the SNP density was, however,
not manifest on the other haplotyping quality measures (Supp. Figure 5).
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Figure 2.6: Plots of haplotype estimation quality measures: (a) NGPS, (b) SMR as a function of
SNP density (at logarithmic distance scale) using HapCompass (black), HapTree (gray) and SD-
haP (light gray), for simulated 20kb tetraploid S. tuberosum genomes. Sequencing was performed
in silico for paired-end MiSeq (triangle) and HiSeq 2500 (rhombus) with 800bp insert-size, as well
as for PacBio-CCS of 1kb length (circle), at a depth of 15×.

2.3.7. At higher ploidy levels, HapCompass is the best method to use
In order to investigate whether our findings for tetraploid genomes hold for other ploidy
levels, we performed simulations with ploidy levels of 3-12 (Section 2.2.2-c). We simu-
lated paired-end HiSeq 2500 reads with an insert-size of 800bp, as it gave high quality es-
timates in tetraploids and was more practical than the competitive sequencing options,
at 5×, 15× and 20× sequencing depths per homologue.

The accuracy of HapTree and SDhaP decreases markedly with increasing ploidy level,
up to 30% for 12n (PAR, Figure 2.7-a), while the performance of HapCompass remained
stable. Likewise, the completeness of HapTree decreased (SMR, Figure 2.7-b) and failure
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rates for both HapTree and SDhaP increased (Figure 2.7-c). Although the performance
of the methods at each ploidy level was relatively better at higher sequencing depths,
the deterioration of the haplotype estimation quality followed a similar pattern with the
increase in ploidy, regardless of the depth.
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Figure 2.7: Plots of haplotype estimation quality measures: (a) PAR, (b) SMR and (c) FR as a function
of ploidy level using HapCompass (black), HapTree (gray) and SDhaP (light gray), for simulated
20kb 3n, 4n, 6n, 8n, 10n and 12n genomes. Sequencing was performed in silico for paired-end
HiSeq 2500 with 600bp insert-size. Three sequencing depth were used per homologue: 5x (circle),
15x (triangle) and 20x (rhombus).

Overall, none of the haplotyping methods is equipped to deal with high levels of
ploidy: either they break down (HapTree, SDhaP) or are inaccurate (HapCompass).

2.3.8. SDhaP yields best results using long reads
Among the 3 tested haplotyping methods, SDhaP is the only method relying on MEC to
select the best estimate. While MEC is an efficient criterion for diploid haplotyping, it
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may not be able to distinguish the estimates in presence of more than two homologues
as several estimates can have the same error correction score. This situation can espe-
cially occur when the homologues have local similarities and the SNP-fragment lengths
are small. HapTree and HapCompass try to surmount this problem by considering com-
plex criteria that result in more accurate estimates with short reads of Illumina and even
1kb reads of CCS. Nevertheless, these criteria lose their advantage with long sequence
reads, 5kb CCS and 10kb CLR in our study. These longer reads also increase the failure
frequency of HapTree. The MEC criterion of SDhaP performs in contrast very well when
the reads are long enough to distinguish the homologues, requiring the least computa-
tion time (Figure 2.9-a) and providing accurate results using 5kb CCS (Figure 2.8-a).

2.3.9. Erroneous long reads lead to low accuracy, high SNP missing rate
and many false SNPs in the estimates

Recently, the generation of very long reads spanning tens of thousands of nucleotides
has become a reality using technologies such as Oxford Nanopore and PacBio, at the ex-
pense of the precision of base calling [43]. Such lengthy reads are potentially ideal can-
didates for haplotyping as they can cover many variants and provide enough overlaps
for accurate haplotype reconstruction [2]. However, our simulations using 10kb CLR
reads of PacBio, with an average accuracy of 82%, show that these reads lead to inferior
estimates for polyploids compared to paired-end Illumina reads and CCS reads. In par-
ticular, many spurious SNPs will be present (Figure 2.8-d) and many of the original SNPs
will be missing in the estimates (Figure 2.8-e). In addition, wrong dosages abound in the
estimated haplotypes (Figure 2.8-c). While increasing the coverage helps improve the
estimation to some extent, especially with SDhaP (Figures 2.8-a, c, e), our results do not
encourage the use of erroneous long reads for the estimation of polyploid haplotypes as
achieving the extremely high coverages needed is usually not practical.

2.3.10. HapTree requires most resources
Computational efficiency is an important feature of every complex algorithm, such as
the haplotyping algorithms discussed in this paper. Therefore, we measured the mem-
ory and time consumption of each algorithm for various ploidy levels, sequencing cover-
ages and genome lengths. Using HiSeq 2500 and paired-end libraries with an insert-size
of 800bp for the simulation of sequencing, we tested the effect of sequencing depth with
tetraploid individuals and genomes of length 10kb, and the effect of genome length with
tetraploid individuals sequenced at an average depth of 10× per homologue. Other set-
tings were the same as for S. tuberosum (Section 2.2.2), for each condition generating 50
individuals from 50 randomly selected regions, i.e. one individual per region, with a time
limit of 7200 seconds. Fixing the depth to 10× per homologue and the genome length to
10kb, the effect of ploidy was also investigated in a similar manner.

The analyses were run on multicore 2.6 GHz Intel-Xeon processors. For each run,
the total CPU-time and physical memory consumption was measured using the Unix
getrusage routine. HapTree clearly consumed most time and memory resources (Fig-
ure 2.10), increasing with genome length (Figure 2.10-a, b) and ploidy level (Figure 2.10-
c, d). This increase was much less for HapCompass and SDhaP.

While sequencing depth was less influential, HapTree used much more time and
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Figure 2.8
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Figure (cont.) 2.8: Plots of haplotype estimation quality measures: (a) PAR, (b) VER, (c) IDR, (d)
SMR, (e) PPV and (f) FR as a function of sequencing depth per homologue using HapCompass
(left), HapTree (middle) and SDhaP (right), for simulated PacBio read: CCS 1kb (black), CCS 5kb
(gray) and CLR 10kb (light gray).

memory at the lowest sequencing depth, 5× per homologue, falling rapidly with an in-
crease in depth up to 10× per homologue and remaining almost constant afterwards up
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to a depth of 20× per homologue (Figure 2.10-e, f). At depths of higher than 20× per
homologue, the computation time fell rapidly again due to the premature failure of the
algorithm as discussed in Section 2.3.2.
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Figure 2.9: (a) Computation time (in seconds) (b) Physical memory consumption (in Megabyte) as
a function of sequencing depth per homologue with three haplotype estimation softwares: Hap-
Compass (black circle), HapTree (gray square) and SDhaP (light gray rhombus), using 10kb con-
tinuous longs reads of PacBio for tetraploid genomes of length 20kb.

2.4. Conclusion
We evaluated three algorithms for single individual haplotype estimation in polyploids:
HapCompass, HapTree and SDhaP, and investigated the effects of SNP density, similarity
between homologues, ploidy level, sequencing technology, sequencing depth and DNA
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library size on the estimation quality using several measures of quality (Table 2.2) and
through extensive simulation experiments. This yielded insight about the performance
of haplotype estimation methods in practical situations. For this purpose, we have de-
veloped a realistic pipeline that can be used as basis for the benchmarking of single in-
dividual haplotyping softwares in future.

Our results show that HapTree can produce the best triploid and tetraploid haplotype
estimates, followed by SDhaP and HapCompass. HapCompass is the best method to use
with ploidy levels over 6n, although its performance is not good in an absolute sense.
We showed that sequencing depth was the most important factor determining the qual-
ity of haplotype estimation, and paired-end short reads of Illumina with a large insert
can perform as well as long CCS reads of the same total size now possible with PacBio.
For accurate haplotyping, we therefore suggest an average depth of between 5-20× per
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Figure 2.10: Plots of physical memory consumption (in Megabyte) with: length of genome (in base-
pair) (a), ploidy (c) and sequencing depth (e), and plots of computation time (in seconds) with
length of genome (in base-pair) (b), ploidy (d) and sequencing depth per homologue (f), for three
haplotype estimation softwares: HapCompass (black circle), HapTree (gray square) and SDhaP
(light gray rhombus). Sequencing was based on HiSeq 2500 paired-end technology with 800bp
insert-size.
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homologue with paired-end reads and an insert-size of 600-800bp.

In addition to the estimation quality, we investigated computation time and memory
consumption of each algorithm under various settings to compare their efficiency. We
showed that on average, HapTree requires the most computation time and memory, and
its use of resources is highly dependent on the length of the genomic region, the ploidy
level and the sequencing depth. Combined with the frequent failure to complete the
estimation, this raises difficulties for applying HapTree on practical problems where the
aim is to reconstruct long-range haplotypes.

Our findings show that while state-of-the-art single individual haplotype estimation
algorithms produce promising results for triploid and tetraploid organisms over a lim-
ited genomic region, their performance rapidly decreases at higher ploidy levels and
their resource use prohibits application to large genomic regions. The probability-based
algorithm of HapTree produces the most accurate estimates but also requires the most
computation time and memory. We believe it is worth investigating whether the Hap-
Tree approach can be made robust when faced with larger problems while maintaining
its accuracy, e.g. using a divide-and-conquer approach or by adjusting the branching
and pruning parameters according to the length of the genome, the ploidy level and the
sequencing coverage. The variant calling error model could also be upgraded to be spe-
cific to the applied sequencing strategy and technology.

Finally, the performance of haplotyping methods on individual organisms could be
greatly improved if it could also incorporate parental and sib information if available,
e.g. in mapping populations relevant to plant and animal breeding studies. While the
evaluated algorithms ignore these information, it can be extremely helpful to increase
the precision of genotype calling when the average sequencing depth is low or to fa-
vor/disfavor some of the haplotypes a priori based on their expected frequency in the
population. Such enhancements will prove essential to help understand the complex
genetics found in many polyploid organisms and, in the long run, to better understand
the rules governing genome organization.

Software
The simulation pipeline and its components can be downloaded at the software page of
the Bioinformatics group, Wageningen University & Research: http://www.bif.wur.
nl

Supplementary Figures and Data
The supplementary figures and data referenced in this chapter are available online at:
https://doi.org/10.1093/bib/bbw126
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Abstract
Knowledge of haplotypes, i.e. phased and ordered marker alleles on a chromosome, is es-
sential to answer many questions in genetics and genomics. By generating short pieces
of DNA sequence, high-throughput modern sequencing technologies make estimation
of haplotypes possible for single individuals. In polyploids, however, haplotype esti-
mation methods usually require deep coverage to achieve sufficient accuracy. This of-
ten renders sequencing-based approaches too costly to be applied to large populations
needed in studies of Quantitative Trait Loci (QTL).
We propose a novel haplotype estimation method for polyploids, TriPoly, that combines
sequencing data with Mendelian inheritance rules to infer haplotypes in parent-
offspring trios. Using realistic simulations of both short and long-read sequencing
data for banana (Musa acuminata) and potato (Solanum tuberosum) trios, we show
that TriPoly yields more accurate progeny haplotypes at low coverages compared to
existing methods that work on single individuals. We also apply TriPoly to phase SNPs
on chromosome 5 for a family of tetraploid potato with 2 parents and 37 offspring
sequenced with an RNA capture approach. We show that TriPoly haplotype estimates
differ from those of the other methods mainly in regions with imperfect sequencing
or mapping difficulties, as it does not rely solely on sequence reads and aims to avoid
phasings that are not likely to have been passed from the parents to the offspring.
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3.1. Introduction
Haplotypes are defined as sequences of consecutive nucleotides over a chromosome,
which normally shares high similarity with k −1 other chromosomes in diploid (k = 2)
and polyploid (k > 2) organisms. These k homologous chromosomes can nevertheless
have important differences in the form of nucleotide substitutions or insertions and
deletions, leading to genotypic (and phenotypic) diversity within an outcrossing pop-
ulation, e.g. of the diploid (k = 2) human (Homo sapiens), tetraploid (k = 4) African
clawed frog (Xenopus laevis) or tetraploid potato (Solanum tuberosum), or between in-
bred lines of autogamous species, e.g. hexaploid (k = 6) wheat (Triticum aestivum). The
assignment of these variant forms, i.e. alleles, to the chromosomes is called phasing or
haplotyping. In this context, phasing may also refer to the set of phased homologues,
H = {h1,h2, ...,hk } with k being the ploidy level and hi (i = 1, ...,k) being the haplotype
corresponding to the i th homologue.

As phasing is uninformative at genomic positions with identical nucleotides over all
the homologous chromosomes, i.e. at homozygous sites, haplotypes are usually defined
as sequences of alleles at heterozygous sites over a chromosome. By this definition, 2n

haplotypes are theoretically possible for a region covering n bi-allelic Single Nucleotide
Polymorphisms (SNPs), which is the most abundant form of genomic variation among
individuals of the same species [25]. However, often far fewer haplotypes are actually
found in a population.

While high-throughput genotyping assays, such as SNP arrays, exist for efficient
determination of unphased SNPs, direct determination of haplotypes is much more
complicated and usually requires laborious and expensive techniques such as bacte-
rial cloning, chromosome microdissection or allele-specific PCR [11, 22, 29]. However,
unphased SNPs provide less knowledge about an individual’s phenotype compared to
phased SNPs, as both gene expression and protein function can be affected by the het-
erozygous variants being in cis or trans with other variants [28]. Besides, haplotypes can
be used as multi-allelic markers, offering more statistical power compared to single SNPs
for genetic linkage and association studies [26].

Several computational methods have therefore been proposed to indirectly infer the
phasing from available genotype data. These can be divided into three main categories.
Methods in the first category, such as Merlin [1] and TetraOrigin [31], target pedigrees
and aim to determine the most likely haplotypes using the segregation of marker alleles,
taking into account the genetic distances between the marker loci. These methods can
be applied to SNPs that are far enough apart to be informative about linkage, and are es-
pecially useful with large pedigrees. Methods in the second category, such as Beagle [6],
SHAPEIT [9] and Eagle [20] target populations with unknown pedigrees and are based on
coalescence theory, trying to obtain a set of highly frequent haplotypes in the population
compatible with the genotype data. Methods in the third category, such as HapCut [3],
HapCompass [2], HapTree [4] and SDhaP [8], use sequence read data and target single
individuals, exploiting the fact that a sequence read that contains at least two SNPs re-
veals the phasing of the homologue from which it has originated at the contained SNP
sites. The aim of these methods is therefore to assign the reads of a single individual to
k groups, corresponding to the homologues of a k-ploid, and to obtain the consensus
sequence of the reads within each group to reconstruct the haplotypes.
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All of these approaches have limitations in terms of the ploidy level (k) and the re-
quired marker density. For the methods in the third category, sequencing depth and
read length are also limiting factors. As an example, Merlin, Beagle, SHAPEIT, Eagle and
HapCut can only phase diploids (k = 2) and the TetraOrigin algorithm is only applicable
to bi-parental tetraploid populations (k = 4) for which a linkage map is available. Also,
HapCompass, HapTree and SDhaP can fail to reconstruct haplotypes with high quality
at low sequence depths or at ploidy levels higher than k = 4 [23].

In case parent-progeny relations exist in a sequenced population, it is possible to
improve the quality of haplotype estimation by combining the information used in the
first and the third categories under a unified scheme. With sequencing experiments be-
coming cheaper and more efficient, such an approach is of high practical importance as
often whole populations are sequenced rather than only genotyped at specific marker
loci. An implementation of this unifying framework, called PedMEC, has recently been
reported by [15] for diploid trios, i.e. families with two parents and one offspring. Specif-
ically, PedMEC extends the partial-phasing of sequence reads using their overlaps while
penalising meiotic recombination events in each trio. However, the exact dynamic pro-
gramming approach of [15] rapidly becomes intractable for polyploids, i.e. with k > 2, as
its complexity increases exponentially with an increase in the ploidy level (Section 3.2).

Here we present a greedy algorithm, TriPoly, for phasing a set of SNPs connected by
the sequencing reads in parent-offspring trios. Starting at the SNP site with the smallest
genomic coordinate, TriPoly extends the phasing one SNP at a time, keeping only the
most likely extended phasings to be worked out in the subsequent extension step. In
determining the likelihood of each extension, TriPoly considers its compatibility with the
sequence reads, as well as the number of recombination events observed by comparing
the parental extensions with that of the offspring.

Using quantitative measures, we investigated the quality of haplotype estimates ob-
tained by TriPoly in parent-offspring trios simulated under realistic assumptions with
tetraploid × diploid and tetraploid × tetraploid parents. By comparing our results with
those obtained using single individual haplotyping methods, we show that TriPoly yields
substantially better estimates for the haplotypes of the progeny, especially at low se-
quencing depths.

Finally, we apply TriPoly to phase SNPs on chromosome 5 for a family of tetraploid
potato with 2 parents and 37 offspring, sequenced with an RNA capture approach by
paired-end Illumina HiSeq-2000 technology. We show that TriPoly phasings differ from
those obtained by the other methods mainly in regions with imperfect sequencing or
mapping difficulties, as TriPoly does not rely solely on sequence reads and aims to avoid
phasings that are not likely to have been passed from the parents to the offspring.

3.2. Method
3.2.1. A Bayesian approach to obtaining phasing probabilities from se-

quence reads
In order to establish a probabilistic model for haplotypes, with the sequence reads as
data and the base call error and recombination rates as parameters, we must first deter-
mine which reads are informative about the phasing. Informative reads need to cover at
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least two variants, e.g. SNP sites which are heterozygous for at least one of the trio mem-
bers (m, f ,c), corresponding to mother, father and the offspring (child). As sites that are
homozygous in all trio members retain no phasing information, we discard them from
the sequence reads and keep only the base-calls corresponding to the variation posi-
tions. Therefore in the first step, the SNP sites, s = 1, 2, ..., l , are detected over a genomic

region and the genotypes Gs = (Gm
s ,G f

s ,Gc
s ) are estimated at these sites, using efficient

algorithms such as FreeBayes [16]. The raw reads of each trio member are then replaced
by the so-called SNP fragments of length l (Figure 3.1) that each correspond to a read and
contain the numerically coded alleles, i.e. 0, 1, 2 or 3 representing the reference and alter-
native nucleotides, at the SNP sites covered by that read and ’-’ at positions not called or
not covered. To reduce sequencing noise, the positions at which the base-calling quality
is lower than a desired threshold can be set to ’-’ as well. Hereafter, by using the term
sequence read, r , we refer to SNP fragments that contain at least two determined posi-
tions.

In the next step, one should assign the reads to k compatible sets in which all of the
reads have the same allele at their overlaps, and obtain the consensus sequence of each
set as the phasing. As shown in Figure 3.1, this process is straightforward for diploids
in the absence of sequencing errors. With sequencing errors, however, such an assign-
ment of reads to homologues will be possible only if mismatches are allowed. However,
allowing mismatches at sites with no error can lead to incorrect haplotype estimates.
Polyploidy results in further complexity, as there may be more than one way to assign
the reads to k > 2 sets even when no error is present. This can happen for instance when
several haplotypes are identical in a phasing solution, e.g. in a 3 SNP tetraploid phas-

ing consisting of 4 homologues:

(1 0 0
1 0 0
1 0 0
0 1 1

)
in which three identical ( 1 0 0 ) haplotypes are

present. In this example, the reads will be compatible with any phasing as long as it con-

tains both ( 1 0 0 ) and ( 0 1 1 ) haplotypes regardless of their dosages, for example

(1 0 0
1 0 0
0 1 1
0 1 1

)
.

Therefore, probabilistic models must take the uncertainty caused by the presence of sev-
eral phasing possibilities and sequencing errors into account.

To build the probabilistic model, we assume an independent binomial error model
at each SNP site [4] and assign an error vector, ~εr , of length l to each read containing
the probability of erroneous base-calling at the SNP sites in that read. Using these error
rates, the probabilities of possible maternal, paternal and offspring phasings in a trio,
represented by Hm , H f and Hc , respectively, can be derived from the set of sequence
reads associated with the trio, R (consisting of maternal read Rm , paternal reads R f and
offspring reads Rc ). In addition to the reads, we consider meiotic recombination prob-
abilities, θs , between SNP s −1 and SNP s, represented by vector~θ for all s > 1 to adjust
the probability assigned to each phasing using Mendelian inheritance rules as follows:

P (Hm , H f , Hc |R,ε,~θ) = P (Hm |Rm ,εm)· (3.1)

P (H f |R f ,ε f ) ·P (Hc |Rc , Hm , H f ,εc ,~θ)
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SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6 SNP 7 SNP 8 SNP 9 SNP 10 SNP  11 SNP 12 SNP 13
0 0 0 0 0 0 0 0 0 0 0 0 0  REF

0 1 0 1 - - - - - - - - - →   h 1

- 1 0 1 0 - - - 0 1 - - - →   h 1

- 0 1 0 - - - - - - 1 1 - →   h 2

- - - - 1 1 - - - - - - - →   h 2

- - - - - 0 1 0 - - 0 0 0 →   h 1

0 1 - - - - - 0 0 1 0 - - →   h 1

- - 1 0 1 - - - - - 1 1 - →   h 2

- - - - - 0 1 0 - - - 0 0 →   h 1

- - 1 0 1 1 0 1 1 0 - - - →   h 2

1 0 1 - - - - - - - - - 1 →   h 2

- 1 0 1 0 0 1 - - - - - - →   h 1

0 1 0 1 0 0 1 0 0 1 0 0 0 h 1
1 0 1 0 1 1 0 1 1 0 1 1 1 h 2

Figure 3.1: A set of SNP fragments aligned to a reference and the homologues, h1 and h2, from
which the fragments originated. Fragments that have identical variants, specified by 0 (reference)
and 1 (alternative), at their overlapping sites are assigned to the same homologue.

R = Rm
⋃

R f
⋃

Rc

ε= εm
⋃
ε f

⋃
εc

where εm , ε f and εc are sets of error vectors associated with Rm , R f and Rc , re-
spectively. Assuming exchangeability of the offspring, it is straightforward to generalise
Equation 3.1 to include n offspring as:

P (Hm , H f , Hc1 , ..., Hcn |R,ε,~θ) = (3.2)

P (Hm |Rm ,εm)P (H f |R f ,ε f )
n∏

i=1
P (Hci |Rci , Hm , H f ,εci ,~θ)

R =
n⋃

i=1
Rci

⋃
Rm

⋃
R f

ε=
n⋃

i=1
εci

⋃
εm

⋃
ε f

By calculating the righthand side of Equation 3.2, one can determine the likelihood
of each possible phasing for a trio conditional on its sequence reads. However, as it is
instead more convenient to calculate the probability of observing the reads conditional
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on a phasing [4], we obtain each element of this equation using Bayes’ formula according
to:

P (Hp |Rp ,εp ) = P (Rp |Hp ,εp )P (Hp )∑
H ′

p

P (Rp |H ′
p ,εp )P (H ′

p )
, p ∈ {m, f } (3.3)

P (Hci |Rci ,εci , Hm , H f ,~θ) = P (Rci |Hci ,εci )P (Hci |Hm , H f ,~θ)∑
H ′

ci

P (Rci |H ′
ci

,εci )P (H ′
ci
|Hm , H f ,~θ)

where P (Hp ) is the prior probability of the parental phasing Hp and P (Hci |Hm , H f ,~θ)
is the prior probability of the phasing Hci for offspring ci conditional on the parental

phasings (Hm , H f ) and the recombination probability~θ (see Appendix A for the calcula-
tion of the read likelihoods and priors).

3.2.2. The TriPoly method
Following the Bayesian approach explained in Section 3.2.1, one has to calculate the like-
lihood of the reads conditional on every phasing possible. The computational cost of
this brute-force approach, calculated in Appendix E, grows linearly with the sequenc-
ing depth but exponentially with the number of SNPs, l , rapidly rendering the solution
intractable. To overcome this problem, we perform SNP-by-SNP reconstruction of hap-
lotypes, starting from the leftmost SNP in the target region and keeping only a few most
likely phasing extensions to the next SNP at each step (Figure 3.2, Appendix A: Equa-
tions 1-5). Following this approach, one will end up with a limited number of phas-
ings that have passed the selection criteria during the extension procedure from s = 1 to
s = l . Assuming the selection procedure effectively keeps the number of accepted solu-
tions at each extension step bounded above by Em and E f for the mother and the father,
respectively, the number of trio phasings at each extension will be bounded above by(km

km
2

)(k f
k f
2

)
EmE f and the total complexity will be O

(
lkmaxΩmax

(km
km

2

)(k f
k f
2

)
EmE f

)
, with kmax

and Ωmax denoting the maximum ploidy level and the maximum sequencing coverage
in the trio, respectively. This greedy method is therefore linear in terms of the number
of SNPs, l . With parental ploidy levels, kp (p ∈ {m, f }), in the range of 2 to 12 (covering

most of the naturally occurring cases of polyploidy),
(kp

kp
2

) < kp
2.75. Therefore, the com-

putational complexity grows at a rate of k6.5
max with the ploidy level.

To implement this greedy method, which we call TriPoly, we employ branching and
pruning steps similar to those in the HapTree algorithm [4] (Supplementary Figure S1).
Starting at SNP site s = 1, the k alleles of each parent and the offspring are used as the
base parental and offspring phasings, Hbp and Hbc . The base phasings are then extended
step by step from SNP s −1 to SNP s for s ≥ 2, until all of the SNPs have been phased as
outlined in Appendix A. At each extension step, branching and pruning (Appendix: Pro-
cedure 3 and Appendix: Procedure 4) allow the algorithm to work with a limited number
of possible phasings. This approach can be easily extended to include several offspring
at the same time using Equation 3.2, a detailed description of which is given in Appendix
A.
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Base phasing solution 
(Hbm , Hbf , Hbc) for 

SNPs: 1,..., s-1

Most likely extensions Hef
for father using its reads Rf

for SNPs: 1,..., s-1, s

Most likely extensions Hem
for mother using its reads Rm

for SNPs: 1,..., s-1, s

Most likely extensions Hec for the offspring taking 
its reads Rc , Hem ,Hef and recombination 

probability into account, for SNPs: 1,..., s-1, s

Hbm Hbf

Hbc

s=l

Filter the most likely extensions of the trio (Hem , Hef , Hec)

No

Yes

s← s +1
(Hbm , Hbf , Hbc) ← (Hem , Hef , Hec)

Consider the most likely 
extension (Hem , Hef , Hec) as 

the final phasing estimate

Figure 3.2: Overview of the SNP-by-SNP haplotyping method implemented in TriPoly for a trio con-
sisting of two parents and one offspring, over a region containing l SNPs.

Note that this approach assumes working on the so-called phasing blocks, i.e. ge-
nomic regions in which each SNP, s, is connected to at least one other SNP, s′, through at
least one of the reads in R. In case the sequencing reads do not satisfy this condition for
the whole set of SNPs in the region, it is straightforward to divide the SNP set into blocks
prior to the phasing and phase each block separately, with the phasing being interrupted
between the blocks.

3.3. Experimental setup
3.3.1. Simulation of polyploid trios
Before evaluating the performance of TriPoly through realistic simulations, we tested
it on directly simulated SNP fragments to determine the upper bounds of its accuracy
and to clearly show factors that influence its estimation quality. The advantage of this
approach is bypassing of the intermediate base-calling, read alignment and variant call-
ing steps that occur in reality and each add an undetermined amount of noise to the
haplotyping process. Therefore, the direct simulation of SNP fragments lets us mea-
sure the accuracy in ideal situations and focus on the effects of sequencing depth, SNP
fragment length and actual error rate in the SNP fragments. For this purpose, we sim-
ulated parental haplotypes corresponding to 1 kb regions according to the potato het-
erozygosity model [23], and randomly selected half of the haplotypes of each parent to
simulate the offspring. The lengths of the SNP fragments, i.e. the number of SNPs con-
tained in each fragment, was randomly chosen from uniform distributions within the
ranges [2,3] and [2, l ] (l being the total number of SNPs), resulting in average fragment
lengths of 2.5 and l

2 +1, respectively. Alleles at randomly selected SNP sites on a haplo-
type were included in each fragment and sufficient SNP fragments were generated to as-
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sure the specified per homologue sequencing depths, 5-5-2, 5-5-5, 15-15-2 and 15-15-5
(maternal-paternal-offspring). Considering error rates of 0 (no error), 2% and 10%, SNP
alleles were flipped by chance to introduce errors in the fragments. For each scenario,
100 trios were simulated and phased by TriPoly.

In the next step, we evaluated the performance of TriPoly, as well as three state-of-
the-art single individual haplotyping algorithms: HapCompass, SDhaP and HapTree, by
simulating realistic genomes and sequence data and following the read alignment and
variant calling steps to obtain the SNP fragments for haplotype estimation. To this end,
maternal and paternal genomes were independently simulated from a common refer-
ence using Haplogenerator [23], and offspring genomes were generated by passing re-
combinant parental chromatids at random considering a Poisson stochastic model for
meiosis (see Appendix B for the details). In our simulations, we set the crossover rate (λ
in Appendix B: Equation 9) to 3.07 cM/Mb, corresponding to the average recombination
rate in potato [5, 13]. Using this approach, genomic regions of length 10 kb were simu-
lated for 100 independent trios of tetraploid (km = k f = kc = 4) potato (Solanum tubero-
sum, 2n = 4x = 48), based on 100 regions randomly selected from PGSC-DM genome,
chromosome 5 (release version 4.03) [7] using a lognormal model to simulate genomic
variation [23]. To fit the lognormal model, the SNP density of each parent was deter-
mined from empirical data [30] as described in [23], resulting in a mean distance of 21
bp between neighbouring SNPs with a standard deviation of 27 bp. The proportion of
each parental marker type: simplex, duplex, triplex and quadruplex, in the total set of
markers was also determined from [30] to be 0.5, 0.23, 0.14 and 0.13, respectively.

We also simulated crosses of tetraploid and diploid banana (Musa acuminata) yield-
ing triploid offspring (kc = 3), with the female parent being the tetraploid (km = 4) and
the male parent being the diploid (k f = 2), as the pollen of tetraploid banana is hardly vi-
able [14]. In practice, commercial triploid bananas (2n = 3x = 33) are produced by such
hybridisations, which have high consumer preference as their parthenocarpic fruits lack
the large, hard seeds of fertilisation-induced fruits of diploid and tetraploid sorts. We
used the sequence of chromosome 10 from the reference genome of DH-Pahang (a dou-
bled haploid M. acuminata) [10], release version 2 [21], to simulate banana trios, ap-
plying the lognormal model to generate SNPs. To fit the model, we set the average SNP
frequency to 1 per 200 bp with a standard deviation of 1194 bp. In the absence of pop-
ulation data like the one used for potato, we chose these compromise values so that we
do not get many uninformative reads due to SNP sparsity (Section 3.2), while the aver-
age distance of 1394 bp reported for DH-Pahang SNPs [12] lies one standard deviation
away from our used average distance and thus could still frequently occur in the sim-
ulations. As 1% recombination rate has been reported to correspond to 100 to 400 kb
physical distance for banana (except at regions close to the centromere) [24, p. 130], we
applied an average recombination rate of 0.04 cM/Mb for the simulation of meiosis. The
proportions of parental marker types were set the same as that of potato.

For each simulated individual, sequence data were simulated according to Illumina
HiSeq-2000 and PacBio CCS technologies, and the read alignment and variant calling
steps were performed using conventional tools as explained in Appendix C.
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3.3.2. Application to potato candidate gene sequencing data
We used TriPoly, HapCompass, SDhaP and HapTree to estimate the haplotype blocks
of chromosome 5 in a mapping population of tetraploid potato consisting of 2 parents
and 37 offspring (Appendix D). We used 1417 RNA capture probes for re-sequencing
candidate genes by paired-end Illumina HiSeq-2000 technology with a median insert
size of 316 bp per sample and a median absolute deviation (MAD) of 58 bp among the
insert sizes of each sample’s reads. The single reads within the paired fragments were
101 bp long. On average, the sequencing coverage for each sample was 58× (SD=15) on
the captured regions. However, the coverage varied markedly with genomic position as
expected with an RNA capture approach [27], with standard deviations from the mean
over all of the positions ranging from 25.5 to 122 among the samples.

The sequence reads were mapped against the PGSC-DM genome (version 4.03) using
bwa-mem [19], and 9762 SNPs were jointly called for all samples using FreeBayes [16].
A filtering step removed SNPs whose segregation ratios significantly violated those pre-
dicted by Mendelian rules according to Pearson’s χ2 test. In the end, 7994 SNPs were
considered for phasing by each haplotyping approach.

3.3.3. Measures of phasing estimation quality
Knowing the true haplotypes in simulations, one can evaluate the performance of haplo-
typing methods by using measures that directly compare the estimates to the true haplo-
types. We used the reconstruction rate (RR) [17] and the pair-wise phasing accuracy rate
(PAR) [23] to evaluate the accuracy, and the SNP missing rate (SMR) [23] as well as the
number of gaps per SNP (NGPS) to evaluate the completeness and continuity of haplo-
typing.

The first measure, RR, has been defined for diploids as the proportion of correctly
phased markers in the phasing estimate of the target region [17]. However, to apply it
for polyploids we have to generalise its mathematical formulation as haplotypes are not
necessarily complementary in polyploids, making multiple correspondences possible
between the original and estimated haplotypes.

Let Ĥ = {ĥ1, ..., ĥk } be the estimated phasing and H = {h1, ..., hk } be the correct
phasing of a region containing l SNPs. We define RR as:

RRĤ ,H = 1−min
p∈Sk

1

kl

k∑
i=1

D
(
hi , ĥϕ(p,i )

)
(3.4)

where Sk represents the permutation group on {1, ..., k} and ϕ denotes the group
action on {1, ...,k}. In this definition, D

(
hi , ĥϕ(p,i )

)
is the Hamming distance:

D
(
hi , ĥϕ(p,i )

)= l∑
s=1

d(hi , ĥϕ(p,i ), s) (3.5)

d(hi , ĥϕ(p,i ), s) =
{

1 hs
i 6= ĥs

ϕ(p,i ), ĥs
ϕ(p,i ) 6= "-"

0 otherwise

where ĥs
ϕ(p,i ) = "-" means that SNP s has not been phased in Ĥ .

As an alternative measure of estimation accuracy, PAR is defined as the proportion
of all SNP pairs for which the inferred phasing is correct. It is important to note that PAR
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takes into account phasings between any two SNPs and is not restricted to pairs of con-
secutive SNPs. While RR is an overall measure of accuracy based on the Hamming dis-
tance between the original haplotype and its estimate, PAR primarily shows the accuracy
of long range phasing as it is highly affected by chimeric elongations of the haplotypes
during estimation, i.e. the elongation of a homologue by part of another homologue. As
the true haplotypes were not known for the empirical dataset (Section 3.3.2), we used
RR and PAR to quantify the similarity between the haplotypes obtained by the various
methods.

As haplotyping methods sometimes report phasings with high SNP exclusion, which
nevertheless can have high RR and PAR, the average proportion of SNPs left out in the
phasing estimates of each method (SMR) was calculated, measuring phasing complete-
ness. Besides, in order to learn how fragmented the phasing estimates are for each
method, which is not reflected in RR, PAR or SMR, the average number of interruptions,
i.e. the number of blocks minus one, in the estimates of each method was calculated
and normalised by the number of SNPs, l , as NGPS. Defined in this way, NGPS measures
the continuity of phasing. All of the calculations to obtain these quality measures were
performed using hapcompare [23].

In order to quantify the differences in haplotyping quality of the methods, we built
regression models with the measures of haplotyping quality (RR, PAR, SMR and NGPS)
as the dependent variables and the haplotyping method as the factor variable. To take
the effect of sequencing depth into account, this was added as covariate to the regression
models. We accounted for random variation among the simulated families by including
a random intercept in the regression models.

3.3.4. Computational settings
All of the analyses were run using 2.90 GHz Intel Xeon processors. A time-limit of 1500
seconds was set for each haplotyping method during simulations, not to consume too
much of the shared computational resources in case estimation became prohibitively
difficult [23]. To achieve time-memory efficiency without losing much accuracy, we set
the branching threshold of TriPoly, ρ, to 0.2 and its pruning threshold, κ, to 0.94, based
on the results of pilot simulations. Besides, we forced TriPoly to keep no more than 11%
of all possible phasing extensions at each step in case the pruning had not been able to
discard as many with the value chosen for κ.

3.4. Results
To obtain the upper bounds of accuracy for TriPoly and to clearly observe the effects of
SNP fragment length, sequencing depth and sequencing errors on its accuracy, we sim-
ulated SNP fragments with different lengths and error rates at various depths. We used
the reconstruction rate (RR) and the pairwise phasing accuracy rate (PAR) (Section 3.3.3)
to measure the accuracy of TriPoly in these simulations.

In order to assess the performance of TriPoly in practical situations and to compare it
to HapCompass, HapTree and SDhaP, we next simulated realistic genomes and sequence
reads for trios of tetraploid-diploid-triploid banana and tetraploid potato, and estimated
the haplotypes by first aligning the reads and calling variants using conventional soft-
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ware. In addition to the measures RR and PAR used with SNP fragment simulations, we
used the number of gaps per SNP (NGPS) in each estimate as measure of phasing con-
tinuity and the fraction of unphased SNPs, the SNP missing rate (SMR), as measure of
phasing completeness in the realistic simulations (both measures were zero in the SNP
fragment simulations).

The mentioned haplotyping methods were also applied to a mapping population of
tetraploid potato with 2 parents and 37 offspring, sequenced with paired-end Illumina
HiSeq-2000 technology (Section 3.3.2). We compared the phasing estimates obtained by
TriPoly to those of the other methods using PAR, RR, NGPS and SMR to detect agree-
ments and conflicts. We also investigated which genomic regions are likely to be as-
signed to different phasings by different methods.

3.4.1. Performance on simulated data
TriPoly yields almost perfect haplotypes in ideal situations and improves
the overall quality of phasing in practice
Figure 3.3 shows the performance of TriPoly with the simulated SNP fragments at various
coverages and with different error rates and fragment lengths. As seen in Figure 3.3 (a),
(b), the reconstruction rate (RR) and the pairwise phasing accuracy rate (PAR) are very
close to 1 with an average of l

2 +1 SNPs per fragment with low error rates (≤2%), hence
a high phasing information content in the fragments, indicating the precision of TriPoly
method in ideal situations. However, it is also evident from Figure 3.3 (c), (d) that with
small fragment lengths (occurring in practice due to limited heterozygosity and restricted
read lengths), the precision substantially drops, especially at high error rates, although
higher sequencing coverages can compensate for this to some extent.

Through the realistic simulations of genomes and HiSeq-2000 reads, we showed 11%
and 24% increases in reconstruction rate (RR) by using TriPoly compared to the other
methods for the banana and potato offspring, respectively (Figure 3.4, Supplementary
Tables S1-S2). The obtained average increases in accuracy were 15% and 28% for the
simulations with PacBio CCS reads, with RR scores of over 95% with these long reads
(Supplementary Figures S5-S6, Supplementary Tables S3-S4). These observed improve-
ments in the overall phasing show that parental transmission is informative even for
phasing between nearby SNPs, in which case the SNPs can be contained within a sin-
gle read. However, TriPoly did not increase RR for the parents, especially compared to
HapTree (Supplementary Figures S2-S6).

TriPoly markedly increases the accuracy of phasing between distant SNPs
for the offspring
The realistic simulations with HiSeq-2000 reads showed 33% and 42% higher pair-wise
phasing accuracy rates (PAR) obtained by TriPoly for banana and potato offspring, re-
spectively, at the same SNP missing rates (SMR) compared to the other methods (Fig-
ure 3.5, Supplementary Figure S4, Supplementary Tables S1-S2). This increase was more
manifest at low sequencing depths (Figure 3.5), as the parental transmission informa-
tion used by TriPoly is especially advantageous when little information is provided by the
reads. By penalising recombination events through the considered small recombination
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Figure 3.3: Average reconstruction rates (RR) and pair-wise phasing accuracy rate (PAR) obtained by TriPoly
using the simulated SNP fragments for 100 trios with 0, 2% and 10% error rates at parent1-parent2-offspring
coverages: 5-5-2, 5-5-5, 15-15-2, 15-15-5. (a) and (b) show the results with SNP fragment lengths in the range
[2, l ] (l being the total number of SNPs), while (c) and (d) show the results for short fragment lengths in the
range [2,3].

probability (Appendix A: Equation 6), TriPoly tends to reduce the chance of chimeric ex-
tensions and markedly improves the precision of phasing between distant SNPs in the
offspring. However, TriPoly did not increase PAR for the parents (Supplementary Fig-
ures S2-S3).

With the simulated PacBio CCS reads, 31% and 45% increases in the average PAR
were obtained by TriPoly for the banana and potato trios with the average PAR scores of
TriPoly reaching 90% and 94%, respectively (Supplementary Tables S3-S4, Supplemen-
tary Figures S5-S6).

Fewer phasing interruptions are introduced in the haplotype estimates by
TriPoly
As explained in Section 3.3.3, in read-based haplotyping the phasing is interrupted be-
tween two SNPs if there is no read that connects the two by covering both. With TriPoly,
the blocks are determined once for the whole trio and therefore the SNPs can be con-
nected through reads of any member in the trio. In this manner, two SNPs can be phased
in an individual even if they are not connected by any reads of that individual as long as
the other members in the trio provide the phasing information through their reads. This
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Figure 3.4: Average reconstruction rates (RR) for the progeny in the 100 trios simulated for a) potato and b) ba-
nana, obtained by HapCompass, SDhaP, HapTree and TriPoly at various sequencing depths using HiSeq-2000
reads.

is especially beneficial for short Illumina reads, as PacBio reads contain more SNPs and
hence often yield uninterrupted haplotypes even with single individual methods.

The regression analysis of NGPS for HiSeq-2000 simulations showed that the hap-
lotypes obtained by TriPoly were significantly less interrupted compared to the other
approaches, notably for banana (Supplementary Tables S1-S2, Figure 3.6). At lower SNP
densities, as the average distance between subsequent SNPs will be larger a higher num-
ber of reads will be uninformative for phasing (Section 3.2) and therefore more inter-
ruptions can be introduced in the reconstructed haplotypes [23]. TriPoly proves to be
especially beneficial in such situations, explaining the notable decrease in NGPS for ba-
nana compared to the slight decrease in NGPS for potato. With PacBio reads, the NGPS
was (as expected) much lower on average (Supplementary Tables S3-S4) and even zero
with all of the methods at 5-5-5 coverage for potato (Supplementary Figure S6). How-
ever, a substantial improvement was still observed with TriPoly especially for banana
trios (Supplementary Table S3, Supplementary Figure S5).

Finally, the high standard deviation of NGPS for HapTree stands out in Figure 3.6 (a),
which is a reflection of its high failure rate at low sequencing coverages for tetraploid
potato [23]. As all of the SNPs belonging to a failed block are excluded from the final
phasing, NGPS varies more across the simulated trios due to chance failures.

TriPoly has the smallest memory consumption with similar running times
As processing large genomic regions usually requires considerable amounts of CPU time
and memory, it is important for a haplotyping algorithm to be efficient in terms of these
two resources. Therefore, we measured the computation time and memory consump-
tion of TriPoly for the simulated potato and banana trios at the applied sequencing depths
and compared it to those of HapCompass, HapTree and SDhaP. As shown in the Supple-
mentary Figures S7 and S8, TriPoly is the most memory-efficient algorithm compared to
the others, while it requires more time compared to HapCompass and SDhaP for potato
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Figure 3.5: Average pairwise-phasing accuracy rates (PAR) for the progeny in the 100 trios simulated for
a) potato and b) banana, obtained by HapCompass, SDhaP, HapTree and TriPoly at various sequencing depths
using HiSeq-2000 reads.

with HiSeq-2000 read and more time compared to all of the algorithms for both banana
and potato with PacBio CCS reads. However, the amount of time required by TriPoly was
still close to that needed by the other algorithms.

3.4.2. Analysis of candidate gene sequencing data
As the true haplotypes were not known for the real dataset, we evaluated the perfor-
mance of TriPoly by comparing its estimates to those obtained by HapCompass, SDhaP
and HapTree. The previously introduced measures, PAR and RR, were used for this pur-
pose by replacing the true phasing in the original definition of each with the estimates
of single individual haplotyping methods.

This comparison revealed about 82% agreement between the pairwise phasings ob-
tained by TriPoly and HapTree, and an overall similarity of 94% between the results of the
two methods. Whilst almost the same agreement was observed between the estimates
of HapCompass and TriPoly (PAR=80%, RR=93%), the phasings reported by SDhaP were
largely different with only 46% similarity of pairwise phasing and an overall similarity
score of 87% (Table 3.1).

Considering the SNP missing rate (SMR), HapTree suffered substantially higher rates
(Table 3.1) as a result of its failure to generate estimates for many blocks due to instability,
as reported before in a simulation study [23].

Among the applied methods, HapCompass, HapTree and SDhaP report the phas-
ing the most compatible or the most likely with regard to the reads of each single in-
dividual as its phasing estimate. In contrast, TriPoly attempts to find the most likely
haplotypes taking parental transmission probabilities into account in addition to the
reads (Appendix A). The large agreement between the phasing estimates of TriPoly and
HapTree (as well as HapCompass) suggests that TriPoly estimates are satisfactorily com-
patible with the reads, but are more accurate in presence of noise in regions with high
base-calling error or low mapping/variant calling quality, since TriPoly penalises wrong
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Figure 3.6: Number of Gaps per SNP (NGPS) in the phasing estimates of the progeny from the 100 trios sim-
ulated for a) potato and b) banana, using HapCompass, SDhaP, HapTree and TriPoly at various sequencing
depths using HiSeq-2000 reads.

PAR RR SMR NGPS

TriPoly — — 0.017 0.18

HapCompass 0.80 0.93 0.015 0.18

SDhaP 0.45 0.87 0.025 0.18

HapTree 0.82 0.94 0.14 0.19

Table 3.1: Comparison of the phasings estimated by TriPoly to those estimated by HapCompass, SDhaP and
HapTree for a family of tetraploid potato with 2 parents and 37 offspring.

extensions using the phasing information of the parents about the offspring. To test
this hypothesis, we considered for each haplotype block the number of reads that were
aligned back to its corresponding genomic region, as an indicator of sequencing depth
and mapping success (and so indirectly the variant calling quality) of that region. As
seen in Figure 3.7, the methods disagree mostly in regions with poor mapping, perhaps
because of genomic divergence from the used reference (which occurs often in plant
studies [18]), or in regions with poor capture success, where TriPoly is more reliable due
to its taking parental transmission information into account.

We found a positive association between the phasing agreement scores of each block
and its number of supporting reads, especially for distant SNPs as the minimum ob-
served PAR increases exponentially with the number of aligned reads, at a rate corre-
sponding at low coverages to 0.01 per 4 reads, i.e. one more read per chromosome for
potato (Figure 3.7). Although this result is only descriptive, it points out the impact of
sequencing depth and successful alignment on haplotype estimation.



3.5. Conclusion and discussion 67

Number of aligned reads

lo
g

(P
A

R
)

0 1000 2000 3000 4000 5000 6000−
1

0
−

8
−

6
−

4
−

2
0

Tripoly − HapCompass

Number of aligned reads

lo
g

(P
A

R
)

0 1000 2000 3000 4000 5000 6000−
1

0
−

8
−

6
−

4
−

2
0

Tripoly − HapTree

(a) (b)

Number of aligned reads

lo
g

(P
A

R
)

0 1000 2000 3000 4000 5000 6000−
1

0
−

8
−

6
−

4
−

2
0

Tripoly − SDhaP

(c)

Figure 3.7: Agreement in pairwise SNP phasing, measured by the logarithm of PAR, between Tripoly and (a)
HapCompass, (b) HapTree and (c) SDhaP at potato haplotype blocks against the number of aligned reads for
each block. The grey curve shows the exponential fit to the minimum log PAR score at each alignment count,
revealing an exponential increase in phasing agreement with an increase in the number of reads.

3.5. Conclusion and discussion
We propose a novel approach, called TriPoly, for estimating haplotypes in polyploid
parent-offspring trios using sequencing data, while taking haplotype transmission from
the parents to the progeny into account. TriPoly reconstructs the phasing of the SNPs
over a genomic region simultaneously for the parents and for the offspring, starting from
the SNP site with the smallest coordinate in the region, adding one SNP to the phas-
ing at each step and greedily selecting the most likely extensions for the next extension
step conditional on the sequence reads and recombination events. Through idealis-
tic simulations, we show that TriPoly yields almost perfect haplotypes if the reads are
long enough and accurate. Through realistic simulations of both short and long-read
sequence data, we show that TriPoly significantly improves the haplotyping accuracy
for the offspring compared to single individual approaches: HapCompass, SDhaP and
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HapTree. Besides, we show that TriPoly estimates are more continuous compared to the
other methods when the SNP density is low. TriPoly is also an efficient algorithm in terms
of the memory consumption and CPU time.

We used TriPoly and the other methods to estimate haplotypes in a mapping popula-
tion of tetraploid potato with 2 parents and 37 offspring sequenced using an RNA capture
complexity reduction approach. We argue that in regions with imperfect sequencing or
erroneous read mapping, TriPoly is more reliable compared to the other methods since
it takes parental transmission probabilities into account to correct misleading read in-
formation.

In contrast to HapCompass, SDhaP and HapTree, TriPoly provides an option to keep
homozygous or missing SNPs in the phasing estimates of individuals. In this way, hap-
lotypes can be compared over the same set of SNPs in an F1-population and segregation
patterns can be easily investigated. Moreover, haplotypes reported in this format can be
coded as multi-allelic markers to be used in genetic analyses. Besides, TriPoly accepts
input in the more convenient format of multi-sample BAM and VCF files, compared to
the other methods that either require one-sample BAM/VCF (HapCompass) or the SNP
fragment matrix (SDhaP and HapTree).

While TriPoly increases the accuracy of phasing for the offspring in a trio by incorpo-
rating parental recombination probabilities in the phasing likelihood (Equation 3.1), it
assumes exchangeability of the offspring in families with more than one progeny (Equa-
tion 3.2) and therefore ignores the phasing information conveyed by one offspring about
the others. By implementing more complex joint likelihood models, we can expect to
achieve an enhancement in haplotyping accuracy for larger families. However, the com-
putational burden is definitely a challenge in implementing such an approach. Another
potential improvement in TriPoly is the phasing of the parents, the accuracy of which
was shown to be inferior to that obtained by HapTree. An iterative approach of keeping a
few surviving TriPoly solutions for the whole target region as the starting point for an Ex-
pectation Maximisation (EM) routine can be a way to tackle this problem, resulting in a
refined set of most likely haplotypes in the population to which the reads of each individ-
ual can be mapped back to find its specific phasing. Like the joint likelihood approach,
the computational challenge will be an important consideration here.

Software
TriPoly was written in Python 2.7.0 and can be freely downloaded (under license) from
the software page of the Bioinformatics group, Wageningen University & Research: http:
//www.bif.wur.nl

Supplementary Figures and Data
The supplementary figures referenced in this chapter are available online at:
https://doi.org/10.1093/bioinformatics/bty442
The tetraploid potato DNA sequencing data described in this chapter is available at Se-
quence Read Archive (SRA) under the unique id 414303:
https://www.ncbi.nlm.nih.gov/sra/?term=414303

http://www.bif.wur.nl
http://www.bif.wur.nl
https://doi.org/10.1093/bioinformatics/bty442
https://www.ncbi.nlm.nih.gov/sra/?term=414303
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Appendix to Chapter 3
A) TriPoly algorithm

TriPoly is a greedy algorithm that aims to estimate haplotypes from DNA sequence
data in mother-father-offspring trios, using a Bayesian maximum-likelihood approach.
Starting with the first SNP site, s = 1, at the 5′ end of a target region that contains l SNPs,
haplotype phasings are extended from s −1 to s for 2 ≤ s ≤ l by a greedy approach that
only keeps the best extensions. The steps taken by the TriPoly algorithm are explained in
detail in this section. The pseudocode of the algorithm is given in Algorithm 1.

Branching

To extend the phasing from s −1 to s (2 ≤ s ≤ l ), the alleles at s are added to the base
phasing of each parent, Hbp (p ∈ {m, f }), to obtain parental extensions, Hep . As there
exist multiple possibilities to allocate the alleles to the homologues, several extensions
will be possible for each parent the probability of each is calculated conditional on the
parental reads, Rp , using Bayes’ formula:

P (Hep |Hbp ,Rp ,εp ) =
P (Rsp |Hep ,εp )P (Hep |Hbp )

Σ
H

′
ep∈{ Extensions of Hbp by G

p
s }

P (Rsp |H ′
ep ,εp )P (H

′
ep |Hbp )

, p ∈ {m, f } (1)

where Rsp is a subset of Rp containing reads that cover s and at least one SNP posi-
tion before s, and Gp

s denotes the genotype of parent p at position s. In other words,
Rsp is the set that contains only the reads informative for extension from s − 1 to s.
Assuming P (Rsp |Hep ,εp ) and P (Hep |Hbp ) are known (to which we shall return soon),
P (Hep |Hbp ,Rp ,εp ) can be obtained for each parent according to Equation 1. Having
these extension probabilities, only the phasings that have a probability greater than or
equal to a branching threshold, ρ, are considered for extending the offspring haplotypes
to s.

For extending the base phasing of the offspring, Hbc , all possible transmissions of
alleles are considered from the surviving parental extensions, Hem and He f , limiting the
transmissions to those compatible with the offspring genotype at position s, Gc

s . Without
loss of generality, we may assume that in the extended phasing of the offspring, Hec , the

left-part of the homologues, i.e. h1
ec , ..., h

km
2

ec have been transmitted from the mother and

the right-part, i.e. h
km

2
ec , ..., hkc

ec , are transmitted from the father. In case different parental
transmissions result in the same extension for the offspring, the number of recombi-
nations required by that extension is set to the minimum number inferred from those

71
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transmissions. For each trio, we take inheritance into account by assigning a probability,
0 ≤ θs ≤ 0.5, to each recombination event between s −1 and s and calculate the proba-
bility of each Hec in a Bayesian manner according to:

P (Hec |Hbc , Hem , He f ,Rc ,εc ,θs ) =
P (Rsc |Hec ,εc )P (Hec |Hbc , Hem , He f ,θs )

Σ
H

′
ec∈{Hec obtained from Hem ,He f ,Gc

s }
P (Rsc |H ′

ec ,εc )P (H
′
ec |Hbc , Hem , He f ,θs )

(2)

Having the probabilities for Hem , He f and Hec , a joint probability can be finally as-
signed to each trio extended to s using:

P (Hm , H f , Hc |R,ε,~θ) = P (Hm |Rm ,εm) (3)

P (H f |R f ,ε f )P (Hc |Rc , Hm , H f ,εc ,~θ)

R = Rm
⋃

R f
⋃

Rc

ε= εm
⋃
ε f

⋃
εc

Returning to the question of obtaining P (Rst |Het ,εt ) for each trio member t ∈ {m, f ,c},
i.e. the probability of the reads conditional on the extended haplotypes used in Equa-
tion 1 and Equation 2, it can be calculated based on the assumptions that: (a) the error
probabilities are independent at the positions within each read and (b) the reads can
originate from any of the homologues with equal a priori probabilities. Thus, one can
obtain P (Rst |Het ,εt ) according to:

P (Rst |Het ,εt ) = ∏
r∈{Rst }

∑
het∈Het

1

kt
P (r |het ) t ∈ {m, f ,c}

P (r |het ) = ∏
τ∈{SNP positions covered by r }

1

3
ετr d(r,het ,τ)+ 1−ετr

1− 2
3ε

τ
r

(
1−d(r,het ,τ)

)
(4)

d(r,het ,τ) =
{

1 r τ 6= hτet
0 r τ = hτet

where kt is the ploidy level of member t , r τ and hτet denote the alleles appearing in
read r and homologue het in Het at position τ, respectively, and ετr is the error rate as-
sociated with r at position τ. In obtaining Equation 1, we assume an erroneous base call
can be equally likely any of the 3 bases absent at each position. Hence is 1

3ε
τ
r the proba-

bility of calling the actually observed wrong allele. Accordingly, we adjust the correctness
probability, 1− ετr , with factor 1

1− 2
3 ε

τ
r

as correctness is conditional on having the allele

observed and the probability of observing the allele is qual to 1−ετr + 1
3ε

τ
r .

Having the probability of the reads conditional on phasing extensions, the last ele-
ments to be determined in Equation 1 and Equation 2 are the prior probabilities P (Hep |Hbp )
and P (Hec |Hbc , Hem , He f ,θs ), respectively. As these priors are conditional on the base
phasing at s −1, Hbt (t ∈ {m, f ,c}), we build them considering only SNP positions s −1
and s.

Since parental haplotypes are extended prior to those of the offspring, we must first
determine P (Hep |Hbp ) for p ∈ {m, f }. As changing the order of the homologues does not
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change a phasing, several permutations of the alleles at s − 1 and s can yield the same
Hep , determining the a priori weight of an extension at s. Therefore, we set P (Hep |Hbp )
proportional to the number of permutations that result in Hep :

P (Hep |Hbp ) =

(
kp !

msp
1 ! ... msp

u !

)

Π
p
s−1Π

p
s

(5)

whereΠp
s−1 andΠp

s are the number of possible permutations of the alleles at s−1 and
s, respectively, u is the number of distinct homologues, i.e. haplotypes, in Hep regarding
only positions s −1 and s, and msp

i for i ∈ {1, ...,u} denotes the number of times an iden-
tical haplotype (regarding only positions s−1 and s) is present in Hep . For example, with

kp = 4, Gp
s−1 = (1,1,0,0) and Gp

s = (1,0,0,0), we have Πp
s−1 = ( 4!

2!2!

) = 6 and Πp
s = ( 4!

3!1!

) = 4.

The a priori probability of an extension with phasing
(

s−1: 1 1 0 0
s: 0 0 0 1

)
will hence be

( 4!
2!1!1!

)
24 = 1

2 .

Similarly, we need to consider some value for P (Hec |Hbc , Hem , He f ,θs ) to extend Hbc . While
several models exist to describe the recombination process mathematically [12], we rely
on a model assuming independent recombination events on each homologue [2, 6]:

P (Hec |Hbc , Hem , He f ,θs ) = P (Hec |Hbc )θNσ
s (1−θs )No (6)

where Nσ is the number of recombination events at s and No = kc −Nσ is the num-
ber of linked transmissions of alleles at s − 1 and s. In this formulation, P (Hec |Hbc ) is
obtained in the same way as in Equation 5. To count the number of recombinations for
each transmission, we keep track of the homologues passed from each parent to the off-
spring and check whether the homologues transmitted at s are the same as those trans-
mitted at s −1. Each difference in the descent of the alleles at s −1 and s on an offspring
homologue indicates either a true recombination event or a so-called chimeric exten-
sion caused by appending alleles from a different homologue to the current one. Using
an assumed recombination rate, θs , this is translated into the prior probability for the
offspring extension, as in Equation 6. This completes the steps to calculate the probabil-
ities of extended trio phasings at each SNP site, s, conditional on the pedigree genotypes
and sequencing reads.

The pseudocode of branching is given by Procedure 1 for each parent and Proce-
dure 2 for the offspring. At the end, the obtained trio extensions are once more filtered
by comparing their joint probability (Equation 3) against ρ (Procedure 3).

With more than one offspring, the steps to calculate P (Hec |.) (Procedure 2) are re-
peated separately for each offspring, assuming the exchangeability of the offspring, and
the joint probability of the family phasing is calculated according to:

P (Hm , H f , Hc1 , ..., Hcn |R,ε,~θ) = (7)

P (Hm |Rm ,εm)P (H f |R f ,ε f )
n∏

i=1
P (Hci |Rci , Hm , H f ,εci ,~θ)
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R =
n⋃

i=1
Rci

⋃
Rm

⋃
R f

ε=
n⋃

i=1
εci

⋃
εm

⋃
ε f

Dealing with missing information

As sequencing coverage, base calling precision or mapping quality of some regions
might be insufficient to successfully call variants, missing genotypes can be reported for
one parent or both of the parents in some regions. In case variant calling misses one or
both of the parental genotypes at s, it is still possible to obtain the offspring extensions,
ignoring transmission from the missing parent(s).

Besides missing parental genotypes, it can occur that no parental transmission is
compatible with the called offspring genotype at s. In this case, we relax the restriction
of extending Hbc in agreement with Gc

s , i.e. the offspring phasing is extended by only
considering parental transmissions. It is noteworthy that in addition to sequencing and
variant calling errors, such incompatibilities can also occur due to natural phenomena
such as mutation or double reduction [13].

Pruning

After branching all of the base phasings, we proceed with pruning by setting the
pruning threshold, κ ≤ 1, and filtering out those family extensions whose joint proba-
bility (Equations 3, 8) is less than κ times the maximum probability among the whole
set of branched extensions. In other words, an extension for a family with n offspring is
accepted if:

P (Hem , He f , Hec1 , ..., Hecn ) ≥ (8)

κ max
(H

′
em , H

′
e f , H

′
ec1

, ..., H
′
ecn )∈{Accepted branches}

P (H
′
em , H

′
e f , H

′
ec1

, ..., H
′
ecn

)

where P (H
′
em , H

′
e f , H

′
ec1

, ..., H
′
ecn

) denotes the probability of the family extension

(H
′
em , H

′
e f , H

′
ec1

, ..., H
′
ecn

). The pseudocode for pruning is given by Procedure 4 for a
trio.

B) Simulation of meiosis

In order to simulate meiosis, we calculated the Haldane frequency of recombina-
tion [4],µ, over the genomic region of interest from its average genetic distance, δ (cM/Mb)
according to:

µ= 1

2
(1−e−0.02δ) (9)

δ=λ L

106
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where δ is obtained assuming a uniform crossover rate, λ, over the region of length
L bp. After determining µ, the number of recombination events for each parent, νp

for p ∈ {m, f }, was randomly drawn from a Poisson distribution with mean µ. To take
chiasma interference into account, we divided the target region of each parent into left-
closed segments of length L

νp
bp, so that one and only one chiasma is formed in each seg-

ment. In this way, νm and ν f recombination spots were specified over the region, each
placed in one of the segments according to a uniform spatial distribution over that seg-
ment. Finally, the genomic sequence from each recombination spot to the end of its con-
taining segment was exchanged between two randomly selected non-sister chromatids
to produce recombinants (corresponding to prophase I). To simulate the offspring, km

2

and
k f

2 chromatids were selected at random from the sets of maternal and paternal re-
combinants, respectively (corresponding to telophase II).

C) Simulation of sequence reads, read alignment and variant calling

For each simulated individual, sequence data were generated by simulating Illumina
HiSeq 2500 technology using ART [5] and PacBio cicular consensus sequencing (CCS) [11].
Aiming for practical and efficient haplotyping, we simulated paired-end Illumina reads
with an average end-to-end length of 600 bp (average single read length set to 125 bp)
and CCS reads of length 2 kb [10]. Sequencing was simulated at average depths of 5× per
homologue (moderate depth) for the parents, and at average depths of 2× per homo-
logue (shallow sequencing) as well as 5× per homologue for the offspring. The simulated
sequencing depths over each simulated genomic region followed a uniform distribution
in the range between 0 and 2 times the given average depth [10].

The in silico reads were next aligned to their reference genome using bwa-mem [7]
(with the default settings specified for Illumina and PacBio) and the alignments were
pre-processed to remove duplicates by samtools [8] and Picardtools. Finally, SNPs were
called by comparing the alignments to the reference using FreeBayes [3]. With equal
ploidy levels in the trios, as was the case for potato, the SNP calling was performed by
considering all trio members together. For banana trios, however, this was not possible
as the ploidy levels differed between the trio members. The SNPs were therefore sep-
arately called for each parent and for the offspring and were merged afterwards into a
multi-sample VCF file using a custom Python script. In this manually generated VCF
file, the SNPs called in one member but not in another were considered homozygous
reference calls for the missing member.

D) DNA extraction and sequencing

DNA was extracted from leaf samples of the parents and 37 F1 progeny derived from
a “Karaka” × “1021/1” potato cross. Total genomic DNA was isolated using a nuclear
lysis method with minor modifications [1]. Sequence capture services were provided
by “RAPiD Genomics” (Gainesville, Florida, USA). In summary, the DNA was mechani-
cally sheared to an average size of 300 bp. Next-Generation libraries were constructed
by repairing the ends of the sheared fragments followed by the ligation of an adenine
residue to the 3′-end of the blunt-end fragments. Next, barcoded adapters suited for
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Illumina Sequencing platform were ligated to the libraries. Finally, ligated fragments
were PCR-amplified for 9 cycles using standard cycling protocols (e.g. [9]). To prepare
for the hybridisation, 16 barcoded libraries were pooled in equimolar amounts to a total
of 500 ng. Target enrichment was performed using custom designed probes and proto-
cols as suggested by Agilent (Palo Alto, California, USA). After enrichment, samples were
re-amplified for additional 9 cycles. All enriched samples were sequenced using an Illu-
mina HiSeq 2000 with paired-end 100 bp reads.

E) Computational complexity of the brute-force Bayesian maximum like-
lihood approach

To determine the computational complexity of finding the maximum likelihood phas-
ing with a brute-force Bayesian approach taking all of the possible phasings into ac-
count, we begin by noting that the number of possible phasings for l SNPs in a k-ploid
is bounded in the range: (

max(1,b 1

k !

l∏
s=1
Πsc),

l∏
s=1
Πs

)
(10)

where Πs denotes the number of possible permutations of the k homologues at po-
sition s. The 1

k ! coefficient produces the lower bound, as the numbering of the homo-
logues is arbitrary and therefore each phasing can be obtained by up to k ! combinations
of the single SNP permutations (with k ! occurring when the phasing consists of k dis-
tinct haplotypes). As an example, for a tetraploid phasing that includes 3 SNPs (1 ≤ s ≤ 3)
with genotypes: G1 = 1/1/0/1,G2 = 0/0/1/0 and G3 = 0/0/1/0, Equation 10 gives lower

and upper bounds equal to b
(4

3

)(4
1

)(4
1

)
4! c = 2 and

(4
3

)(4
1

)(4
1

) = 64, respectively, while 5 dis-

tinct phasings:

(1 0 0
1 0 0
1 1 1
0 0 0

)
,

(1 0 0
1 1 0
0 0 0
1 0 1

)
,

(1 0 0
1 0 0
1 1 0
0 0 1

)
,

(1 0 0
1 0 0
0 1 0
1 0 1

)
and

(1 0 0
1 0 0
1 0 0
0 1 1

)
are actually possible, yielded

by 12,24,12,12 and 4 combinations of the single SNP permutations, respectively.
With parental ploidy levels km , k f and parental sequencing depthsΩm ,Ω f , calculat-

ing the probability of each parental phasing conditional on its reads requires O (kp lΩp )
computations for p ∈ {m, f }, as each determined allele in the reads must be compared
to the corresponding allele on each of the kp homologues and each SNP has been on

average called in Ωp reads. Assuming no recombination, at most
(km

km
2

)(k f
k f
2

)
distinct hap-

lotypes can be passed from the parents to the offspring through balanced meioses, yield-

ing an offspring ploidy level kc = km+k f

2 . Like the parental phasings, each offspring phas-
ing requires O (kc lΩc ) computations to calculate its probability conditional on the off-
spring reads at an average depth ofΩc . Therefore, from Equation 10 it follows that a total

computational cost of O
(
kmax lΩmax

(km
km

2

)(k f
k f
2

)∏l
s=1Π

m
s

∏l
s=1Π

p
s

)
is required to calculate

Equation 10 assuming no recombination, with kmax the maximum parental ploidy level,
i.e. max(km ,k f ), andΩmax the maximum sequencing depth for the trio members.

Allowing for recombination, different homologues may be passed to the offspring at
each SNP position. To take all possible transmissions into account, we have to enumer-
ate them separately at each SNP position. Thus, the order of computations increases to
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O
(
kmax lΩmax

(km
km

2

)l (k f
k f
2

)l ∏l
s=1Π

m
s

∏l
s=1Π

p
s

)
.
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Procedure 1 BRANCHPARENT

procedure BRANCHPARENT(s, Gp
s , Hbp , Rsp , εp , ρ)

Hbp ← estimated phasing for parent p ∈ {m, f } up to position s −1

Rsp ← semi-reads of parent p for position s
kp ← ploidy level of parent p
Π

p
s ← all possible phasings of parent p at s

Hep ← {}
for π ∈Πp

s
Hep ← Hbp +π
u ← number of unique phasings between s −1, s in Hep

msp
i ← number of times phasing i ∈ {1, ...,u} between s −1, s is repeated in Hep

P (Hep |Hbp ) ←
(

kp !

msp
1 ! ... msp

u !

)
|Πp

s−1||Π
p
s |

P (Hep |Hbp ,Gp
s ,Rsp ,εp ) ← P (Rsp |Hep ,εp )P (Hep |Hbp )

Σ
H

′
ep∈{Hbp+π′ ,π′∈Πp

s }
P (Rsp |H

′
ep ,εp )P (H

′
ep |Hbp )

if P (Hep |Hbp ,Gp
s ,Rsp ,εp ) ≥ ρ

Hep ← Hep ∪ {Hep }
end if

end for
return Hep
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Procedure 2 BRANCHOFFSPRING

procedure BRANCHOFFSPRING(s, Gc
s , Hbc , Hem , He f , Rsc , εc , ρ,~θ)

hm ← (1, ...,km)
h f ← (1, ...,k f )
~Hec ← [ ]
Hec ← {}
Nσ← [ ]
No ← [ ]
θ←~θ[s]
Πc

s ← all possible phasings of the offspring at s

for each (h1t , ...,h km
2 t

) ∈C hm
km

2

do

for each (h
( km

2 +1)t
, ...,hkc t ) ∈C

h f

kc− km
2

do

if (h1t , ...,hkc t ) 6=Gc
s

continue
end if
H

′
ec ← Hbc + (h1t , ...,hkc t )

No ←|{hi ∈ Hec | hs−1
i = hs−1

i t }|
if H

′
ec 6∈ ~Hec
~Hec ← ~Hec + [H

′
ec ]

No ← No + [No]
Nσ← Nσ+ [kc −No]

else
i nd x ← i : ~Hec [i ] = H ′

ec

No[i nd x] ← max(No[i nd x], No)
Nσ[i nd x] ← kc −No[i nd x]

end if
end for

end for
for n from 1 to |~Hec |

Hec ← ~Hec [n]
u ← number of unique phasings between s −1, s in Hec

msc
i ← number of times phasing i ∈ {1, ...,u} between s −1, s is repeated in Hec

P (Hec |Hbc ) ←
(

kc !

msc
1 ! ... msc

u !

)
|Πc

s−1||Πc
s |

P (Hec |Hbc ,Gc
s , Hbc , Hem , He f ,Rsc ,εc ,θ) ←

P (Rsc |Hec ,εc )P (Hec |Hbc )θNσ[n](1−θ)No[n]

Σn′P (Rsc |~Hec [n′],εc )P (~Hec [n′]|Hbc )θNσ[n′](1−θ)No[n′]

if P (Hec |Hbc ,Gc
s , Hbc , Hem , He f ,Rsc ,εc ,θ) ≥ ρ

Hec ← Hec ∪ {Hec }
end if

end for
return Hec
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Procedure 3 BRANCHTRIO

procedure BRANCHTRIO(s, Gm
s , G f

s , Gc
s , Hbm , Hb f , Hbc , Rsm , Rs f , Rsc , εm , ε f , εc , ρ, θ)

HeTr i o ← {}
for Hem ∈ BRANCHPARENT(s,Gm

s , Hbm ,Rsm ,εm ,ρ)

for He f ∈ BRANCHPARENT(s,G f
s , Hb f ,Rs f ,ε f ,ρ)

for Hec ∈ BRANCHOFFSPRING(s,Gc
s , Hbc , Hem , He f ,Rsc ,εc ,ρ,~θ)

P (Hem , He f , Hec | .) ← P (Hem | .)P (He f | .)P (Hec | Hem , He f , .)

if P (Hem , He f , Hec | .) ≥ ρ
HeTr i o ← HeTr i o ∪ {(Hem , He f , Hec )}

end if
end for

end for
end for
return HeTr i o

Procedure 4 PRUNE

procedure PRUNE(HeTr i o , κ)
Hpr uned ← {}

p ← max
H

′
eTr i o∈HeTr i o

P (H
′
eTr i o | .)

for H
′
eTr i o ∈ HeTr i o

if P (H
′
eTr i o | .) ≥ κp

Hpr uned ← Hpr uned ∪ {H
′
eTr i o}

end if
end for
return Hpr uned
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Algorithm 1 TRIPOLY

Input:

Gm
s ,G f

s ,Gc
s s = 1,2, ..., l

Rm ,R f ,Rc , εm ,ε f ,εc
~θ = (θ2, ...,θl )
κ, ρ

Output:
Hm , H f , Hc

HTr i o ← {}
for s from 1 to l

H
′
Tr i o ← {}

if s = 1
HTr i o ← HTr i o ∪ {(Gm

s ,G f
s ,Gc

s )}
else

for H
′
Tr i o ∈ HTr i o

H
′
Tr i o ← H

′
Tr i o ∪BRANCHTRIO(H

′
Tr i o)

end for
HTr i o ← PRUNE(H

′
Tr i o)

end if
end for
pmax ← max

HTr i o∈HTr i o
P (HTr i o)

for HTr i o ∈ HTr i o

if P (HTr i o) = pmax
Hm , H f , Hc ← HTr i o

break
end if

end for
return Hm , H f , Hc



RR PAR SMR NGPS
Intercept 0.813(0.803;0.823) 0.443(0.42;0.466) 0.624(0.613;0.636) 0.0412(0.0377;0.0448)

COV 5-5-5 0.008(0;0.015) 0.131(0.113;0.15) -0.256(-0.263;-0.249) -0.0035(-0.0057;-0.0013)
SDhaP 0.052(0.041;0.063) 0.128(0.102;0.155) 0.002(-0.008;0.011) -0.0004(-0.0035;0.0027)

HapTree 0.052(0.041;0.062) 0.075(0.049;0.101) 0.001(-0.008;0.011) -0.0003(-0.0034;0.0028)
TriPoly 0.113(0.102;0.123) 0.334(0.308;0.36) 0.012(0.003;0.022) -0.0094(-0.0125;-0.0063)

Supplementary Table S1: 95% Confidence intervals for regression of quality measures on haplotype estimation
variables for M. acuminata using HiSeq-2000 reads

RR PAR SMR NGPS
Intercept 0.628(0.622;0.635) 0.249(0.238;0.26) 0.399(0.388;0.411) 0.0006(0.0004;0.0008)

COV 5-5-5 0.016(0.01;0.023) 0.144(0.134;0.154) -0.114(-0.125;-0.103) -0.0002(-0.0004;-0.0001)
SDhaP 0.098(0.09;0.106) 0.056(0.043;0.069) 0(-0.014;0.014) 0(-0.0002;0.0002)

HapTree 0.2(0.19;0.209) 0.186(0.17;0.202) 0.08(0.062;0.097) 0(-0.0003;0.0002)
TriPoly 0.243(0.235;0.251) 0.418(0.405;0.431) 0.003(-0.011;0.017) -0.0002(-0.0004;0)

Supplementary Table S2: 95% Confidence intervals for regression of quality measures on haplotype estimation
variables for S. tuberosum using HiSeq-2000 reads

RR PAR SMR NGPS
Intercept 0.8(0.789;0.811) 0.496(0.468;0.525) 0.711(0.699;0.723) 0.00331(0.00248;0.00414)

COV 5-5-5 0.021(0.012;0.031) 0.144(0.12;0.168) -0.159(-0.167;-0.151) -0.00117(-0.00172;-0.00062)
SDhaP 0.091(0.077;0.104) 0.125(0.091;0.158) 0.002(-0.009;0.012) -0.00025(-0.00103;0.00053)

HapTree 0.119(0.105;0.132) 0.149(0.115;0.182) 0(-0.011;0.011) 0(-0.00078;0.00078)
TriPoly 0.146(0.132;0.159) 0.308(0.274;0.342) 0.016(0.006;0.027) -0.00098(-0.00176;-2e-04)

Supplementary Table S3: 95% Confidence intervals for regression of quality measures on haplotype estimation
variables for M. acuminata using PacBio CCS reads

RR PAR SMR NGPS
Intercept 0.66(0.655;0.665) 0.267(0.253;0.281) 0.477(0.472;0.482) 2e-05(0;3e-05)

COV 5-5-5 0.033(0.029;0.037) 0.189(0.177;0.202) -0.074(-0.077;-0.071) -1e-05(-3e-05;0)
SDhaP 0.156(0.15;0.161) -0.008(-0.025;0.01) 0(-0.004;0.004) -1e-05(-3e-05;1e-05)

HapTree 0.246(0.24;0.252) 0.26(0.242;0.279) 0(-0.005;0.004) 0(-2e-05;2e-05)
TriPoly 0.282(0.276;0.287) 0.446(0.429;0.464) 0.004(0;0.008) -1e-05(-3e-05;1e-05)

Supplementary Table S4: 95% Confidence intervals for regression of quality measures on haplotype estimation
variables for S. tuberosum using PacBio CCS reads
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Abstract
DNA sequence reads contain information about the genomic variants located on a single
chromosome. By extracting and extending this information using the overlaps between
the reads, the haplotypes of an individual can be obtained. Using parent-offspring re-
lationships in a population can considerably improve the quality of the haplotypes ob-
tained from short reads, as pedigree information can be used to correct for spurious
overlaps (due to sequencing errors) and insufficient overlaps (due to short read lengths,
low genomic variation and shallow coverage).
We developed a novel method, PopPoly, to estimate polyploid haplotypes in an F1-
population from short sequence data by taking into consideration the transmission of
the haplotypes from the parents to the offspring. In addition, this information is em-
ployed to improve genotype dosage estimation and to call missing genotypes in the pop-
ulation. Through simulations, we compare PopPoly to other haplotyping methods and
show its better performance. We evaluate PopPoly by applying it to a tetraploid potato
cross at nine genomic regions involved in tuber formation.
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4.1. Introduction
Genetic polymorphism is the key to understanding inheritance patterns of traits and to
identifying genomic regions that affect a trait. While the traits of interest usually have
medical importance in human genetics, in plant sciences these traits are often of impor-
tance for breeding and selection of the best varieties. Therefore, polymorphic genomic
loci are used as genetic markers to investigate co-segregation of genetic variants (alle-
les) with qualitative traits, e.g. flower colour, in populations from crosses or in natural
populations. These markers can also be used to investigate the genetic components of
quantitative traits such as yield and the degree of tolerance to biotic or abiotic stresses.

The sequence of DNA marker alleles along a single chromosome is called a haplo-
type, of which a diploid organism possesses k = 2 versions while a polyploid has k > 2.
To phase markers means to determine these k haplotypes, which might be identical (har-
bouring the same alleles) or different (having different alleles at some or all of the marker
positions).

Among various types of genetic markers, Single Nucleotide Polymorphism (SNP) mark-
ers [7] are the most abundant and extensively used in genetic studies [2, 6]. While high-
throughput assays such as SNP arrays exist for efficient determination of SNP alleles at
single loci, direct determination of haplotypes usually requires laborious and expensive
techniques such as bacterial cloning, allele-specific PCR or chromosome microdissec-
tion [9, 18, 27].

However, haplotypes can be used as multi-allelic markers in genetic studies offering
more statistical power than single SNPs [23, 31], as both gene expression and protein
function, i.e. the determinants of the phenotypes, can be affected by an allele being in
cis or trans with other alleles [26]. Moreover, a marker allele which is on the same haplo-
type as a favourable causative allele is likely to be inherited together with that favourable
allele, while the the co-transmission is unlikely if the alleles are on different haplotypes.
This is important for genetic association analysis as well as for marker assisted selection.

Single individual haplotyping (SIH) methods use DNA-sequence reads to phase the
SNPs of a single organism at positions covered by the reads, using the fact that the se-
quence of called alleles should be the same in the reads that originate from the same
chromosome. To deal with sequencing errors, which can cause spurious differences be-
tween reads of the same chromosome and therefore can influence variant calling and
haplotyping especially at low sequencing depths, these methods use probabilistic mod-
els or cost functions to prefer a certain phasing to others based on the observed reads [1,
3, 4, 8, 15, 30].

Recently, algorithms have been proposed that apply the rules of Mendelian inheri-
tance to combine the information of reads and transmission in a cross in a cost function
for diploids [11] or in a probabilistic model with arbitrary ploidy levels [20]. However,
both of these approaches focus on trios consisting of two parents and one offspring,
and therefore ignore the information provided by larger populations. In cross popula-
tions, the number of haplotypes is usually limited by the set of parental haplotypes, and
therefore it is expected that we detect multiple occurrences of each haplotype across
the population. This a priori information can be used to ease the estimation of hap-
lotypes [24], but is not taken into account by the current methods. In addition, these
methods accept recombinant haplotypes in the phasing estimate of the offspring (with
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the recombination cost/probability being preset as desired), while recombination events
have a very low probability between loci that are only a few thousands nucleotides apart,
i.e. in the typical range of haplotypes obtained from short sequence reads. Sequencing
and genotype calling errors can therefore be misinterpreted as recombination events by
these methods and thus result in spurious haplotypes, especially in polyploids.

Here we propose a new haplotype estimation algorithm, PopPoly, that specifically
targets larger F1-populations, which consist of two parents and several offspring, se-
quenced by short read sequencing technologies. Considering the short length of the
reads, and hence the limitation of read-based phasing to a few hundreds to thousands
of nucleotides, PopPoly is based on the assumption that all of the population haplotypes
must be present in the parents. Therefore, all of the population reads are combined to
estimate the parental haplotypes using a Bayesian probabilistic framework in the first
step, and the offspring haplotypes are selected from the estimated parental haplotypes
using the minimum error correction (MEC) criterion [17]. In addition, PopPoly uses the
inheritance information to detect and correct wrongly estimated SNP dosages and to
estimate missing genotypes in the population.

Through simulations of potato crosses with varying numbers of offspring and se-
quencing depths, we compare PopPoly to other haplotype estimation methods and show
that it improves phasing and variant calling accuracy. Furthermore, two parents and 10
offspring of a potato cross were sequenced and subsequently analysed by PopPoly for 9
loci. For one of these loci (StFKF1), we selected haplotype tagging SNPs (htSNPs) for the
eight haplotypes proposed by PopPoly and developed a KASP assay [22] to assess the seg-
regation in an offspring population of 181 individuals. Using genetic rules, we validated
the haplotype solution proposed by PopPoly.

4.2. Material and Methods
Short-read sequencing technologies, such as Illumina, produce high-quality sequence
reads of up to a few hundred bases in length, which are randomly positioned over the
target genomic region and together cover each target position multiple times. By align-
ing these reads to some consensus reference, genomic variations can be detected and the
variant alleles can be specified within each read. To resolve the succession of genomic
variants on each chromosome, haplotype estimation or haplotyping methods aim to
group the reads that have the same variants at the same positions as originating from
the same chromosome. This approach requires overlap of the reads at the variation sites
and the inclusion of at least two variation sites in a read, so that the flanking positions
can be connected by the overlaps in between.

However, some of the reads do not meet the criterion of containing at least two vari-
ation sites, and the connection between the variation sites can be therefore broken at
some positions. For this reason, current haplotyping algorithms start by detecting posi-
tions connected to each other through the sequence reads and aim to resolve the haplo-
types over each obtained set of connected positions, i.e. the so-called "haplotype blocks"
or solvable islands. With short sequence reads, haplotype blocks often include a few
hundred up to a few thousand bases.

In our approach, we use the fact that recombination events are usually extremely
unlikely over the short distances covered by the haplotype blocks obtained from short
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reads. This usually confines the haplotypes observed in an F1 generation of small to
moderate size to the haplotypes that exist in its parental cross. Assuming each parent
transmits half of its chromosomes at random to its progeny, we combine all of the reads
in an outcrossing F1-population that consists of two heterozygous parents and their F1
offspring, to estimate the haplotypes of the parents and determine the haplotypes of
each offspring by selecting the phasing most compatible with its reads from the set of
phasings offered by the transmission of the (already estimated) parental haplotypes.

To implement this method, we follow a greedy SNP-by-SNP extension approach (Fig-
ure 4.1), extending the base phasings Hbm and Hb f (for the mother and father, respec-
tively) at each step by one SNP and choosing the most likely phasing extensions Hem

and He f to continue with, as the base phasings of the next step, until all of the l SNPs
within a haplotype block have been phased. Starting by the first two SNP positions in
the block, the probabilities of the base and extended parental phasings, conditional on
the reads and taking the observed offspring genotypes into account, are calculated using
Bayes’ formula. We use s = 2 to s = l to denote the current extension SNP (as the starting
base phasing is just the SNP genotype at s = 1), and denote the phasing extensions and
called SNP genotypes by H s

m , H s
f , H s

ci
and G s

m , G s
f , G s

ci
for mother, father and offspring ci

(i = 1, · · · ,n) respectively. With these notations, the probability of each possible parental
extension at s is related to its base phasing at s −1 according to:
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where Rset denotes the set of all of the reads in the population and εset stands for
the set of base-calling error vectors, ε j , associated with each r j ∈ Rset (1 É j É |Rset |).
P (Rset |H s

m , H s
f ,εset ) denotes the conditional probability of observing the reads given a

pair of maternal and paternal extensions at s, (H s
m , H s

f ), and the base-calling error prob-

abilities given by εset .
The details of calculating Equation 4.1 are given in Appendix A. In order to get rid

of improbable extensions and keep the number of stored phasings (almost) constant at
each stage of the algorithm, at each s we discard those extensions that have a posterior
probability less than 0 < ρ ≤ 1, i.e. we apply branching with hard thresholding. We then
prune further the remaining extensions using a soft threshold 0 ≤ κ ≤ 1 by discarding
those with a posterior probability less than κPmax , where Pmax denotes the maximum
posterior probability among the branched extensions [4, 20]. The values of ρ and κ can
be given by the user, and were set to 0.2 and 0.94, respectively, in our simulations.

This Bayesian framework for phasing extension can also be used to detect erroneous
SNP genotypes, which result in zero probabilities for all extensions at a SNP position.
We use a similar Bayesian approach to re-estimate these erroneous genotypes, as well
as the uncalled SNP genotypes of the parents, by assigning probabilities to the possible
population genotypes at a SNP position conditional on the reads and the segregation of
parental alleles at the SNP position according to:
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P (G s
m ,G s

f ,G s
c1

, · · · ,G s
cn
|Rset ,εset ) = P (G s

c1
, · · · ,G s

cn
|G s

m ,G s
f ,Rset ,εset )P (G s

m ,G s
f |Rset ,εset )

(4.2)

In order to calculate Equation 4.2, we first obtain the posterior probabilities of the
parental genotypes, P (G s

m ,G s
f |Rset ,εset ), in a manner similar to that used in obtaining

extension probabilities (Equation 4.1). We then assume conditional independence of
the offspring genotypes given the parents, i.e. their exchangeability, to calculate:

P (G s
c1

, · · · ,G s
cn
|G s

m ,G s
f ,Rset ,εset ) = P (Gc1 |G s

m ,G s
f ,Rc1 ,εc1 ) · . . . ·P (Gcn |G s

m ,G s
f ,Rcn ,εcn ) (4.3)

The details of calculating Equations 4.2 and 4.3 are given in Appendix B. The set of
population genotypes with the highest likelihood is then assigned to each individual and
used in Equation 4.1 for phasing extension.

After obtaining surviving phasing extensions at the last SNP position s = l , a phas-
ing is chosen for each offspring from each set of parental phasing estimates by looking
into the possible transmissions of the parental l SNP haplotypes. Assuming each par-
ent transmits half of its haplotypes to each offspring, which of course requires balanced

meiosis and even ploidy levels,
( km

2
2

) · ( k f
2
2

)
offspring phasings will be possible from each

set of parental estimates, with km and k f being the ploidy levels of the mother and the
father, respectively. From this set of candidate phasings, we assign to each offspring the
phasing that yields the smallest minimum error correction (MEC) score with respect to
its individual sequence reads [17] (Appendix C).

Finally, each set of parental estimates and the offspring phasings deduced from them
is ranked according to the relative likelihood of the parental phasings (compared to the
other surviving phasings of the parents) and the sum of the MEC scores of the deduced
offspring phasings. Thus, the output of the algorithm consists of sets of ranked phas-
ing estimates for the whole population. In our simulations, we only kept the best set of
population estimates for evaluation and comparison with other methods.

To examine the computational complexity of PopPoly and to see how it scales with re-

spect to the maximum sequencing depth dmax = max(dm ,d f ,
n

max
i=1

dci ) (with dm , d f and

dci representing the sequencing depths of the mother, father and offspring ci , respec-
tively), population size n +2, and the number of SNPs l in the region of interest, we as-
sume that the number of surviving extensions is effectively constant at each stage of the
algorithm and denote it by η. Setting k = max(km ,k f ), for each of the η base phasings at
most (k !)2 extensions must be examined at each extension step. For each of these exten-
sions, Equation 4.1 requires O

(
(n +2)dmax

)
calculations. To call the genotypes at a SNP

position, Equation 4.2 requires calculations of the order O
(
(k+1)2d 2

max n
)
, as the dosage

of the alternative allele can vary from 0 to k in each parent (resulting in O
(
(k +1)2dmax

)
complexity for the number of possible parental genotypes) and for each candidate pair
of parental genotypes O

(
dmax

)
calculations are needed in each offspring to obtain the

likelihood of its genotype conditional on the sequencing reads and the pair of parental
genotypes (Equation 4.3). This adds up to:
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Base phasing solution 
(Hbm , Hbf) for 
SNPs: 1,..., s-1

Parental phasing extensions (Hem , Hef) 
using Rm ,Rf ,Rci (i = 1,...,n) 

for SNPs: 1,..., s-1, s

Filter the most likely extensions (Hem , Hef)

s=l

No

Yes
Determine all possible 

offspring phasings from the 
most likely (Hem , Hef) 

s ← s +1
(Hbm , Hbf) ← (Hem , Hef)

Sequence reads of  the 
parents: Rm ,Rf

Sequence reads of  the 
offspring: Rci (i = 1,...,n) 

For each offspring, ci (i =1,...,n), 
use Rci to choose the phasing with 

the lowest MEC as Hci

Figure 4.1: Summary of the PopPoly method to estimate haplotypes in an F1-population with two
parents, (m, f ), and n offspring, ci (i = 1, ...,n), using the sequence reads for a block including l
SNPs.

O
(
η(k !)2(n +2)d 2

max

)
(4.4)

complexity at each extension step. Multiplying the explained complexity by l , i.e. the
number of extension steps, leads to the computational complexity of estimating parental
phasings. The selection of offspring phasings using MEC scores at the end requires

O
(
n

( k
2
2

)2
ldmax

)
calculations for each surviving pair of parental estimates. Using

( k
2
2

)< k !
and n +2 ≤ 3n (as n ≥ 1), the total complexity is:

O
(
nηl (k !)2d 2

max

)
(4.5)

which increases linearly with the number of SNPs l and the number of offspring n
and quadratically with the sequencing depth dmax .

4.2.1. Performance evaluation by simulation
To evaluate the performance of PopPoly and compare it to other haplotyping methods,
we simulated genomic regions for bi-parental F1-populations of tetraploid potato, as
described in Motazedi et al. [20]. We simulated different scenarios, varying the number
of offspring from 1 to 30. For each scenario, we randomly selected 100 regions of length
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1 kb from the chromosome 5 sequence of the PGSC potato reference genome (release
version 4.04) [21]. The genomes of the two parents were independently obtained for
each region by introducing on average one bi-allelic SNP per 50 bp (SD=90 bp) according
to the lognormal SNP density model and the dosage distributions described in Motazedi
et al. [19], determined using data from a panel of tetraploid potato cultivars [28]. To
simulate each offspring, two chromosomes were randomly selected from each parent.
For the potato genome, typical ratios of genetic to physical distance vary in the range
of 3 to 8 cM/Mb in different regions [5, 10]. Therefore, the assumption of improbable
recombination holds for the simulated genomic regions and population sizes.

For each simulated population, paired-end Illumina HiSeq 2000 reads were gener-
ated in silico, with an average insert-size of 350 bp and single read length of 125 bp,
using the sequencing simulator ART [13]. The simulated sequencing depth was 5× per
homologue for each parent and 2× per homologue for the offspring. We also conducted
simulations of families with 2, 6 and 10 offspring with higher sequencing depths, up to
30× per homologue for each individual, in order to evaluate the performance at higher
coverages.

After mapping the simulated reads to their reference regions using BWA-MEM [16]
and calling SNPs using FreeBayes [12], we estimated the phasing of the parents and
the offspring in each F1-population using state-of-the-art SIH methods: SDhaP [8] and
H-PoP [30], for comparison to PopPoly. We chose these two methods because of their
computational efficiency and their allowing for SNP dosage correction, as well as the
shown higher accuracy of H-PoP compared to the other state-of-the-art SIH methods
[30]. We also estimated the haplotypes using the trio based method available for poly-
ploids: TriPoly [20], and compared the obtained estimates to those obtained by PopPoly
and the SIH methods.

We used several measures to compare the accuracy of haplotype estimation with the
used methods. These include the pair-wise phasing accuracy rate (PAR), defined as the
proportion of correctly estimated phasings for SNP-pairs [19], as well as the reconstruc-
tion rate (RR) defined to measure the overall similarity between the original haplotypes
and their estimates using the Hamming distance [20].

As the quality of haplotype estimation depends not only on the accuracy of the esti-
mated haplotypes, but also on the ability of the haplotyping method to phase as many
SNPs as possible and to efficiently handle missing SNPs and wrong dosages, we calcu-
lated the SNP missing rate (SMR) and incorrect dosage rate (IDR) in the estimated haplo-
types for each method.

Finally, to evaluate the continuity of phasing we measured the average number of
phasing interruptions, i.e. the number of haplotype blocks minus one, in the estimates
of each method and normalised it by the number of SNPs, l , as number of gaps per SNP
(NGPS). The number of haplotype blocks for a set of SNPs, S , is equal to the number
of connected components in the SNP-connectivity graph, GS = (S ,ES ), in which each
node represents a SNP (|S | = l ) and an edge is drawn between two SNP nodes, (s, s′), if
s and s′ are covered together by at least one sequence fragment.
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Table 4.1: S. tuberosum loci selected for haplotyping

Gene DNA sequence id Chromosome: coordinates Segregating bi-allelic SNPs

StCDF1 PGSC0003DMG400018408 chr05:4538880-4541736 38

StCDF2 PGSC0003DMG400025129 chr02:25588000-25591776 63

StCDF3 PGSC0003DMG400001330 chr02:46143998-46147444 75

StCDF4 PGSC0003DMG400033046 chr06:51598497-51601151 51

StCDF5 PGSC0003DMG400019528 chr03:55882564-55885296 100

StCO1 PGSC0003DMG401010056 chr02:45098374-45101578 57

StCO2 PGSC0003DMG402010056 chr02:45088023-45092647 66

StFKF1 PGSC0003DMG400019971 chr01:531784-536380 89

StGI1 PGSC0003DMG400001110 chr03:14265390-14266279 40

4.2.2. Haplotype estimation of tuberisation loci in potato
We used PopPoly to estimate haplotypes of the S. tuberosum loci involved in tuber forma-
tion reported by Kloosterman et al. [14], in an F1-population with 10 offspring obtained
from the crossing of two S. tuberosum cultivars: Altus × Colomba (A ×C ). The nine in-
vestigated loci (Table 4.1) belong mainly to the potato cycling DOF factor (StCDF) gene
family, but also include other genes, such as CONSTANS (CO) genes CO1 and CO2, that
are shown to be involved in StCDF regulation [14].

Sequence data for the parents and the offspring were obtained by whole genome se-
quencing (WGS) using Illumina HiSeq X Ten technology. Paired-end sequences were ob-
tained with an average insert size of 380 bp (single read length of 151 bp) and aligned to
PGSC-DM-v4.03 reference genome [21] using BWA-MEM [16]. Genomic variation within
the boundaries of the selected genes was detected from the aligned reads using Free-
Bayes [12], with an average read depth of 85× (sd=30×) at the target loci. The sequence
and variant calling data were used by PopPoly to estimate the phasing of the detected
bi-allelic SNP sites (including SNPs obtained by collapsing FreeBayes complex variants).

To evaluate the accuracy of the estimated haplotypes, we selected 9 haplotype tag-
ging SNPs (htSNPs) for the parents at the StFKF1 locus (Supplement B), and obtained
their genotypes by the KASP genotyping platform [22]. The reason for choosing this spe-
cific locus was that it had 8 distinct haplotypes which could be uniquely tagged by a sub-
set of the SNPs in the locus far enough from their neighbour variants, so that the KASP
primers could be properly designed. To choose the htSNPs, we considered those SNPs
whose dosages in combination were compatible with one and only one of the 36 possi-
ble transmissions of the parental haplotypes in the offspring, with some redundancy to
still be able to tag the haplotypes in case of low genotyping quality for some of the SNPs.
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Table 4.2: Average values and 95% confidence intervals for the quality measures of each haplotyping
method, obtained by simulation at the sequencing depth of 5-5-2× (mother-father-offspring) per
homologue

PopPoly TriPoly H-PoP SDhaP

PAR 0.81(0.39;1) 0.71(0.35;1) 0.6(0.02;1) 0.44(0.04;0.93)

RR 0.95(0.8;1) 0.92(0.79;1) 0.89(0.7;1) 0.85(0.73;0.98)

SMR 0.1(0;0.33) 0.19(0;0.44) 0.33(0.04;0.64) 0.19(0;0.44)

IDR 0.09(0;0.31) 0.13(0;0.33) 0.2(0;0.69) 0.31(0;0.73)

NGPS 0.0009(0;0.001) 0.0009(0;0.001) 0.01(0;0.08) 0.01(0;0.08)

Using the KASP assay, allele specific probe signals were obtained from the parents
and 181 offspring from the A×C cross (including the 10 re-sequenced offspring). To de-
termine the genotypes, we used the R package fitPoly (a modified version of the package
fitTetra [29]), which clusters the probe signals using a mixture of normal distributions
corresponding to the marker dosages, taking the segregation of parental alleles into ac-
count. The Pearson correlation coefficient between the KASP and PopPoly dosages at
these htSNPs was calculated in the parents and in the 10 resequenced offspring, as a
measure of the overall similarity between the true and the estimated haplotypes.

4.3. Results
4.3.1. Simulation study
To evaluate the performance of PopPoly, we simulated potato F1-populations with 1
to 30 offspring and estimated the population haplotypes using PopPoly as well as SD-
haP [8], H-PoP [30] and TriPoly [20]. The estimated haplotypes were compared to the
original haplotypes by hapcompare [19], using the measures introduced in Section 4.2.1.
The overall values for the haplotyping quality measures of each method, i.e. the average
of each measure over offspring sizes from 1 to 30, are given in Table 4.2 and the main
conclusions are summarised below.

PopPoly yields more accurate offspring haplotypes
The average haplotype reconstruction rate (RR), which is a measure of overall phasing
accuracy, obtained by PopPoly for the offspring was 0.96 (95% CI [0.87;1]) across dif-
ferent population sizes, which was higher than the other methods (Figure 4.2-a). The
second measure of accuracy, the pairwise-phasing accuracy rate (PAR) which is espe-
cially sensitive to the accuracy of phasing between distant SNPs, had an average value of
0.84 (95% CI [0.5;1]) by PopPoly for the offspring, which was the best among the applied
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methods (Figure 4.2-b). The improvement in PAR using PopPoly was, however, more
manifest compared to RR.

Number of offspring

R
R

Reconstruction rate in offspring

1 3 5 7 9 12 15 18 20 25 30

0
.8

0
0

.8
7

0
.9

4
1

.0
0

PopPoly

TriPoly

H−PoP

SDhaP

(a)

Number of offspring

P
A

R

Pairwise−phasing accuracy rate in offspring

1 3 5 7 9 12 15 18 20 25 30

0
.3

4
0

.4
7

0
.6

1
0

.7
4

0
.8

7

PopPoly

TriPoly

H−PoP

SDhaP

(b)

Figure 4.2: Haplotyping accuracy measures: (a) RR, (b) PAR in the offspring against the number
of offspring in the population using PopPoly (red), TriPoly (green), H-PoP (purple) and SDhaP
(yellow) for simulated tetraploid potato populations.

It was also noted that the accuracy of PopPoly depends on the population size, espe-
cially for distant phasing evaluated by PAR, although this dependence gradually dimin-
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ishes as the number of offspring grows. As seen in Figure 4.2-b, PAR increases rapidly for
PopPoly with an increase in the number of offspring from 1 to 3 and in fact, the highest
offspring score for a trio, i.e. with only one offspring, is reported by TriPoly. Since an in-
crease in the count of each parental haplotype in the population, through an increase in
the number of the offspring, results in an increase in the number of reads coming from
each haplotype (assuming no sequencing bias), the power of the PopPoly algorithm to
detect the parental haplotype is boosted with more offspring. With a tetraploid trio, how-
ever, there is a chance that some of the parental haplotypes are not transmitted to the
offspring, which causes the lower accuracy of PopPoly compared to TriPoly.

For the parents, the reported accuracy measures were very similar between the meth-
ods. However, H-PoP and PopPoly yielded the highest scores (Supplementary Figures
S1-S2), with average PAR values of 0.64 (95% CI [0.2;1]) and 0.67 (95% CI [0;1]), and RR
values of 0.89 (95% CI [0.73;1]) and 0.9 (95% CI [0.67;1]) for PopPoly and H-PoP, respec-
tively.

While increasing the per homologue coverage from 5-5-2× (mother-father-offspring)
to 30-30-30× yielded an average increase of 23-36% in PAR for TriPoly, H-PoP and SDhaP,
the increase was only 14% for PopPoly (Supplementary Figures S3-S5), as combining the
population reads already effectively augments the haplotyping coverage (the increase
was actually less than 5% with 10 offspring, Supplementary Figure S5). Similarly, the dif-
ference in RR between the lowest and the highest coverage was 3% for PopPoly compared
to 4-6% for the other methods (Supplementary Figures S6-S8).

Haplotype estimates of PopPoly include more SNPs than that of other
methods
As seen in Table 4.2, the average SNP missing rate (SMR) of PopPoly was around 10%,
which was 20% lower compared to H-PoP and around 10% lower compared to TriPoly
and SDhaP (Figure 4.3). The reason for this is that combining individual NGS reads in-
creases the chance to phase parental SNPs and choosing the offspring phasings from
the estimated parental haplotypes leads to the inclusion of SNPs not sufficiently covered
by the offspring reads, as well as to the imputation of SNPs uncalled in (some of) the
offspring.

The 10% SMR of PopPoly can be explained by the algorithm’s excluding a SNP posi-
tion if the offspring genotypes at that position (either given as input or estimated anew)
are incompatible with the surviving parental extensions. An example of this for a trio is
the extension at s = 2, if the only surviving parental extensions are H 2

m = H 2
f = h1 h2 h3 h4

s = 1: 0 0 1 1
s = 2: 1 1 0 0

 while the offspring genotypes at s = 1 and s = 2 are G1
c =

H 1
c = (

0,0,0,1
)

and G2
c = (

1,1,1,1
)
, respectively. In this case, G2

c is compatible with the
parental genotypes at s = 2 (and therefore is accepted by the point-wise dosage estima-
tion of PopPoly), but no H 2

c can be obtained whose genotype at s = 2 is G2
c , as haplotype hc

1
1

 cannot be transmitted to the offspring without meiotic recombination in either
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Figure 4.3: SNP missing rate (SMR) in the population against the number of offspring reported by
PopPoly (red), TriPoly (green), H-PoP (purple) and SDhaP (yellow) for simulated tetraploid potato
populations.

H 2
m or H 2

f . Since PopPoly is based on the assumption of no recombination (Appendix A),

it excludes the SNP site s = 2 from phasing.
Increasing the per homologue sequencing depth from 5-5-2× (mother-father-offspring)

to 30-30-30× decreased the SMR by 16-17% for SDhaP, PopPoly and TriPoly, and by 26%
for H-PoP (Supplementary Figures S9-S11).

PopPoly improves SNP dosage estimation
As shown in Table 4.2 and Figure 4.4, among the haplotyping methods PopPoly yielded
the lowest incorrect dosage rate (IDR) in the phased SNPs, which was 9% on average.

The differences in the IDR between the methods is due to the differences in each
algorithm’s approach to handle genotype dosages. Specifically, H-PoP attempts to obtain
an optimal partitioning of the reads into k groups corresponding to the homologues of
a k-ploid, so that the difference between the reads assigned to the same homologue is
minimised and the difference between the reads assigned to different homologues is
maximised. The haplotypes are determined by taking a consensus of the reads within
each group, and the dosages are determined by the estimated haplotypes. SDhaP on
the other hand employs a gradient descent scheme with Lagrangian relaxation to find
the best phasing (in the space of all possible phasings) according to the MEC criterion.
Thus, its MEC solution determines the dosages of the SNP alleles.

In contrast to H-PoP and SDhaP, TriPoly and PopPoly use the input dosages as basis
and make corrections to these based on parent-offspring relationships in the popula-
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Figure 4.4: Incorrect dosage rate (IDR) in the population against the number of offspring reported
by PopPoly (red), TriPoly (green), H-PoP (purple) and SDhaP (yellow) for simulated tetraploid
potato populations.

tion. Specifically, if the genotype of an offspring in a trio is not compatible with the
genotypes of the parents at position s, TriPoly obtains the offspring extension and hence
the offspring genotype at s by considering all of the possible allele transmissions from
the parents at s and by choosing the most likely trio extensions. The dosage correction
method of PopPoly is explained in Appendix B.

The simulation results show that the dosage correction scheme of PopPoly is the
most successful approach if there are at least two offspring in the population (Figure 4.4).
For a trio, however, the most accurate dosages are reported by TriPoly. As discussed for
the phasing accuracy, the ability of PopPoly to detect wrongly estimated dosages and to
correctly (re)estimate dosages depends on the haplotype counts in the population. Due
to the absence of some parental haplotypes in the offspring of a trio, the accuracy of Pop-
Poly drops below that of TriPoly, which relies less on the parental haplotypes and more
on the reads of the offspring to assign its dosages. With at least 6 offspring, the IDR of
PopPoly drops below 10% (∼7%).

Considering the sequencing coverage, SDhaP profited the most from the higher depths
with a 24% lower IDR at 30-30-30× compared to 5-5-2× (per homologue), while this
decrease in IDR was 12% for TriPoly and H-PoP and only 7% for PopPoly (Supplemen-
tary Figures S12-S14).
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Continuity of haplotyping is improved by PopPoly compared to single indi-
vidual methods
As shown in Table 4.2 and Figure 4.5, the expected number of phasing gaps (normalised
by the number of SNPs) is much lower in the estimates of TriPoly and PopPoly compared
to H-PoP and SDhaP, as a pair of SNPs has a higher chance of being connected when all
of the population reads are used for the phasing of each individual compared to the case
where for each individual only its own reads are considered. Sequencing coverage was
not a determining factor for this (Supplementary Figures S15-S17).
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Figure 4.5: Number of phasing gaps normalised per SNP (NGPS) in the haplotype estimates of Pop-
Poly (red), TriPoly (green), H-PoP (purple) and SDhaP (yellow) against the number of offspring in
the population for simulated tetraploid potato populations.

4.3.2. Haplotypes of tuberisation loci in the tetraploid potato population
Using PopPoly, we phased all of the 579 segregating SNPs at 9 loci in the potato genome
for a 10 offspring A ×C cross (Supplement A). For each locus, we used the estimated
haplotypes to calculate nucleotide diversity [25], i.e. the expected chance of a nucleotide
difference per site between two randomly chosen haplotypes in the population. While
the rather low nucleotide diversity values at the loci (mean=0.37, SD=0.06) showed high
local similarity between the haplotypes, the numbers of distinct haplotypes were rather
high, at 5 loci equal to the maximum of 8 (Table 4.3).

As evident from the median counts of the transmission of parental haplotypes to the
offspring in Table 4.3, around half of the 58 distinct parental haplotypes (over all of the
loci) were transmitted at least 5 times to the offspring. This is the expected transmission
count of a haplotype in a tetraploid cross with 10 offspring if all of the parental haplo-
types are distinct at the locus. However, larger sample sizes are needed to formally test
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Table 4.3: Summary of SNP phasing at the potato loci introduced in Table 4.1

Gene Number of distinct parental haplotypes Transmission counts of parental haplotypes> Nucleotide diversity

StCDF1 6 4-5-15 0.40

StCDF2 8 2-4.5-8 0.43

StCDF3 8 1-5-9 0.28

StCDF4 3 7-15-18 0.42

StCDF5 7 1-5-10 0.32

StCO1 3 8-11-21 0.40

StCO2 8 1-5-10 0.41

StFKF1 8 2-5-8 0.38

StGI1 8 1-4.5-9 0.29

> Minimum-Median-Maximum count of the distinct parental haplotypes observed in the offspring

whether the transmission patterns of the haplotypes are as expected under random seg-
regation (Appendix A).

4.3.3. Validation of PopPoly estimated haplotypes
Based on the htSNPs, a KASP assay was designed to investigate the eight distinct parental
haplotypes of the StFKF1 locus (Supplement B). We checked the segregation of these
haplotypes using the htSNPs in 181 offspring of the A ×C cross, including the 10 se-
quenced offspring previously used in the estimation of the haplotypes with PopPoly. The
obtained KASP signal ratios and the genotypes estimated by fitPoly are given in Sup-
plement C. The KASP data was used to 1) calculate the correlation between the htSNP
dosages estimated from the whole genome sequencing data and the KASP dosages and
2) assess the transmission of the eight haplotypes in the 181 offspring individuals accord-
ing to genetic rules, i.e. the expected transmission ratio of each maternal and paternal
haplotype.

A correlation of 0.94 was observed in the comparison between the dosages of the
htSNPs observed in the sequencing data and the KASP data (varying within the range
0.85 to 1 per individual), in the 10 offspring assessed with both technologies. As the SNP
dosages are estimated by fitting a probabilistic model for both the sequencing and the
KASP assay, both approaches are prone to estimation error. The differences between
the called dosages can also hinder choosing the transmitted parental haplotypes for the
offspring in the larger KASP genotyped population. Therefore, some inconsistencies be-
tween the chosen haplotypes for each offspring and its KASP dosages are to be expected.
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Within the larger KASP genotyped offspring population, we could assess the trans-
mission counts of the eight haplotypes for StFKF1 locus using genetic rules. 92% of the
181 offspring could be unambiguously phased, each consisting of two haplotypes from
each parent. The 8% failure rate in uniquely choosing the haplotypes could be mainly
attributed to the non-calling rate of around 2% observed for the htSNPs in these individ-
uals, as well as to inconsistencies between the dosage estimates of the htSNPs obtained
by the KASP assay and by PopPoly. As mentioned above, we therefore had to allow for
some difference between the haplotypes and the KASP genotypes. Specifically, for each
offspring we chose from the 36 possible parental transmissions the phasing that had the
highest match in terms of the SNP dosages with its KASP genotypes (after eliminating
SNP number 5, which had a very high inconsistency rate and was also redundant for
tagging).

Subsequently, we assessed the consistency of the uniquely estimated phasings with
the assumptions of random polysomic segregation. For this purpose, χ2 goodness-of-fit
tests were performed for the transmission of each haplotype from each parent, which
showed no significant deviation at α = 0.05. This suggests that the PopPoly prediction
for each of the eight StF K F 1 haplotypes is correct. However, the obtained results also
show that accurate SNP dosage calling is challenging in polyploids.

4.4. Conclusion and Discussion
We present a novel algorithm, PopPoly, to exploit parent-offspring relationships for the
estimation of haplotypes in an outcrossing F1-population that consists of two heterozy-
gous parents and their F1 offspring, using short DNA sequence reads and SNP genotypes
called in the population. In this approach, we first estimate the phasings of the parents
by combining the sequence reads of the whole population. If necessary, SNP genotypes
are also (re)estimated for the parents from the reads considering parent-offspring rela-
tionships. Having the parental phasings, we determine the phasing of each offspring
by choosing from the possible transmissions of the parental haplotypes, such that the
phasing chosen for each offspring has maximal compatibility with its individual reads.
A natural advantage of obtaining offspring phasings from the parents is that the SNP
genotypes uncalled in an offspring are imputed in its haplotypes, provided that these
SNPs are included in the parental phasings.

The polyploid haplotyping problem is NP-hard and practical solutions thus by neces-
sity depend on approximate optimisation methods. PopPoly takes a greedy approach
based on Bayesian probability, extending haplotype estimates one position at a time
starting from the leftmost position. While PopPoly is similar in this respect to TriPoly [20],
its underlying model is quite different. As such, PopPoly is to our knowledge the first
method that uses the information of siblings in estimating the haplotypes of each off-
spring.

Through simulations, we showed that PopPoly outperforms single individual hap-
lotyping methods, which ignore family relationships. Besides, PopPoly yields better es-
timates compared to the trio based haplotyping method TriPoly when there are more
than 2 offspring in the population. In addition, PopPoly uses Mendelian segregation
to improve variant dosage estimation in the population at the detected SNP sites. We
also show that the performance of PopPoly is influenced less by sequencing depth than
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competing methods. While PopPoly assumes no limitation on the size of the population,
computational resources become an important limitation when the number of offspring
exceeds a couple hundred, which might require the division of a large population into
smaller subpopulations for phasing. Also, the probability of observing recombinations
in the F1 generation increases as the number of offspring grows. However, with genomic
regions that are often at most 20 kb long, a typical maximum range for short read hap-
lotyping, at least 500 offspring are needed to expect 1 recombination event in potato F1
populations, even at relatively high recombination rates of around 8 cM/Mb. This is not
expected to have a substantial impact on the accuracy of the estimates of the parents
and the other offspring.

To demonstrate the utility of PopPoly, we used it to phase 579 SNPs segregating at 9
tuberisation loci in an F1 population of tetraploid potato, the A ×C cross, with 10 off-
spring. Using the KASP assay genotypes of a set of htSNPs to represent the true haplo-
types, we found a high correlation between the PopPoly estimates and the true haplo-
types in the A×C population. We were able to uniquely determine the haplotypes at the
tagged locus with a 92% success rate, using the parental haplotypes estimated by Pop-
Poly and the KASP genotypes at the htSNPs in 171 offspring of the A×C cross that had not
been sequenced. We demonstrated that by sequencing the parents and a few offspring
one can obtain the set of population (or family) haplotypes, from which the haplotypes
of each individual can be determined using a set of genotyped htSNPs. Such a strategy
can be suitably adopted in QTL studies, with typical sizes of a few hundreds to a few
thousands individuals, to increase the statistical power and to ease the interpretation of
results.

Software
PopPoly was developed in Python 2.7.0 and is freely available (under license) on the
software page of the Bioinformatics group, Wageningen University & Research: http:
//www.bif.wur.nl.

Supplementary Figures and Data
The supplementary figures and data referenced in this chapter are available online at:
https://doi.org/10.3389/fgene.2019.00335
The DNA sequencing data of the A ×C population described in this chapter is available
at the software page on http://www.bif.wur.nl.
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Appendix to Chapter 4

A) Estimation of parental haplotypes

Inspired by the approach of Berger et al. [1], we start at the first SNP position in the target
region (s = 1), and extend the maternal and paternal genotypes of this SNP, G1

m = H 1
m and

G1
f = H 1

f , respectively, to two-SNP phasings, H 2
m and H 2

f . We consider every possible

phasing between H 1
m and H 1

f and SNP position s = 2 in the region, and obtain the joint

conditional probability of each extension pair, (H s
m , H s

f ), at s = 2 given the sequence

reads of the population and the parental genotypes, (G s
m ,G s

f ), as well as the offspring

genotypes G s
ci

for i = 1, . . . ,n (with n representing the number of offspring). Keeping
only those parental extensions whose conditional probability exceeds or equals a pre-set
branching threshold, ρ ∈ (0,1], we eliminate further the extensions whose probability is
less thanκPmax , whereκ ∈ [0,1] is a pre-set pruning threshold and Pmax is the maximum
probability assigned to the candidate parental extensions. The surviving extensions at
s = 2 are used in the next step as base phasings to obtain the extensions at s = 3 in a
similar manner, and this procedure is iterated until the last SNP s = l has been added to
the parental extensions.

As it is not straightforward to directly calculate the conditional extension probabili-
ties [7], we calculate instead the probability of the sequence reads conditional on each
possible phasing and convert these probabilities to the desired extension probabilities
using Bayes’ formula:

P (H s
m , H s

f |H s−1
m , H s−1

f ,G s
m ,G s

f ,G s
c1

, . . . ,G s
cn

,Rset ,εset ) = (6)

P (Rset |H s
m , H s

f ,εset )P (H s
m , H s

f |G s
m ,G s
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c1

, . . . ,G s
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, H s−1
m , H s−1

f )∑
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(
Rset |(H s

m , H s
f )′,εset

)
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(
(H s

m , H s
f )′

∣∣G s
m ,G s

f ,G s
c1

, . . . ,G s
cn

, H s−1
m , H s−1

f )

where Rset denotes the set of all of the reads in the population and εset stands for
the set of base-calling error vectors, ε j , associated with each r j ∈ Rset (1 É j É |Rset |).
P (Rset |H s

m , H s
f ,εset ) denotes the conditional probability of observing the reads given a

pair of maternal and paternal extensions at s, (H s
m , H s

f ), and the base-calling error prob-

abilities given by εset .
To calculate P (Rset |H s

m , H s
f ,εset ), we assume conditional independence of each read,

r j ∈ Rset , from the other reads in Rset given εset , and use the fact that each read is either
directly obtained from one of the parental samples or belongs to an offspring ci (i =
1, ...,n), in which latter case the read may have originated from either parent with equal
probability. Under these assumptions, P (Rset |H s

m , H s
f ,εset ) is determined according to:
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P (Rset |H s
m , H s

f ,εset ) =
|Rset |∏
j=1

P (r j |H s
m , H s

f ,εset ) =

|Rset |∏
j=1

[
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)]
U (x, y) =

{
1 x = y
0 x 6= y

δ : Rset −→ {m, f ,c1, ...,cn}

where the function δ(r j ) returns the origin of read r j : mother (m), father ( f ), or one
of the n offspring (c1, ....,cn).

Assuming independence of the sequencing errors at the SNP positions within each
read, P (r j |H s

m) and P (r j |H s
f ) in Equation 7 can be calculated according to Motazedi et al.

[7]:

P (r j |H s
p ,ε j ) = 1

kt

∑
h∈H s

p

P (r j |h,ε j ) p ∈ {m, f }

P (r j |h,ε j ) =
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1−ετj
1− 2

3ε
τ
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1−d(r j ,h,τ)
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(8)

d(r j ,h,τ) =
{

1 r τj 6= hτ,r τj 6= "-",hτ 6= "-"

0 other wi se

where ε j assigns a base-calling error probability to every SNP position in r j , and h
stands for each of the kt homologues in the phasing extension H s

p (p ∈ {m, f }). In Equa-
tion 8, we use the superscript τ in r τj and ετj to represent the called base at SNP position

τ and its associated error probability, respectively. Likewise, hτ denotes the allele as-
signed to homologue h at SNP position τ. We use r τj = "-" and hτ = "-" to show that SNP

position τ has not been called in r j or is missing in h.
In obtaining P (r j |h,ε j ) in Equation 8, we assume that an erroneously called base can

with equal chance be any of the three wrong bases. Therefore, the probability of observ-
ing a specific wrong allele is 1

3ε
τ
j . Also, the probability of no error is actually the proba-

bility that no error occurs (1−ετj ), conditional on having observed either the reference or

the alternative allele (1− 2
3ε

τ
j ). Therefore, it is

1−ετj
1− 2

3 ε
τ
j

.

Equations 7 and 8 establish the procedure to calculate the likelihood in Bayes’ for-
mula in Equation 6. In order to solve Equation 6, one also needs to specify the prior,
P (H s

m , H s
f |G s

m ,G s
f ,G s

c1
, . . . ,G s

cn
, H s−1

m , H s−1
f ). While several ways can be thought of to spec-

ify this prior, we obtain it as follows. As the parental extensions (H s
m , H s

f ) are confined
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to those compatible with G s
m and G s

f , we set this prior to zero for every incompatible

extension. For the compatible extensions, we look into the possible transmissions of
the extended haplotypes (ignoring phenomena like aneuploidy [5], preferential chro-
mosome pairing [3], recombination and double reduction [2]) to the offspring and for
each offspring, ci , we count the number of transmissions that agree with its genotype at

s, G s
ci

. Dividing this number by the total number of possible transmissions,
(km

km
2

) · (k f
k f
2

)
,

gives us P (G s
ci
|H s

m , H s
f ). Calculating P (G s

ci
|H s

m , H s
f ) for i = 1, . . . ,n, we obtain the average

likelihood of an observed offspring genotype according to:

EH s
m ,H s

f
[P (G s

c |H s
m , H s

f )] =
n∑

i=1

P (G s
ci
|H s

m ,H s
f )

P (Gc1 |H s
m ,H s

f )+···+P (Gcn |H s
m ,H s

f ) P (G s
ci
|H s

m , H s
f )

= 1
n∑

i=1
P (Gci |H s

m ,H s
f )

n∑
i=1

(
P (G s

ci
|H s

m , H s
f )

)2 (9)

where P (G s
ci
|H s

m , H s
f ) is the likelihood and

P (G s
ci
|H s

m ,H s
f )

P (Gc1 |H s
m ,H s

f )+···+P (Gcn |H s
m ,H s

f ) is the

probability of observing offspring ci .
So far, we set the prior for each (H s

m , H s
f ) to be proportional to EH s

m ,H s
f
[P (G s

c |H s
m , H s

f )].

However, as changing the order of the homologues does not change a phasing, several
permutations of the alleles at s − 1 and s can yield the same (H s

m , H s
f ). Therefore, the

prior should also be proportional to the number of permutations that result in (H s
m , H s

f ).

It can be thus set to:

P (H s
m , H s

f |G s
m ,G s

f ,G s
c1

, . . . ,G s
cn

, H s−1
m , H s−1

f ) = EH s
m ,H s

f
[P (G s

c |H s
m , H s

f )]

(
km !

ωsm
1 ! ...ωsm

um
!

)

Πm
s−1Π

m
s

(
k f !

ω
s f
1 ! ... ωs f

u f
!

)

Π
f
s−1Π

f
s

(10)

where, for p ∈ {m, f },Πp
s−1 andΠp

s are the number of possible permutations of the al-
leles at s−1 and s, respectively, up is the number of distinct homologues, i.e. haplotypes,
in H s

p regarding only positions s −1 and s, and ωsp
i for i ∈ {1, ...,up } denotes the number

of times an identical haplotype (regarding only positions s − 1 and s) is present in H s
p .

Although it is possible to normalise the priors obtained this way over all of the possible
extensions (to obtain a proper prior mass function), one does not need to do so as the
discrete posteriors are normalised anyway at the end.

As an example, with tetraploid parents there will be
(4

2

) · (4
2

) = 36 possible haplotype
transmissions to each offspring. With maternal and paternal extensions at s = 3 be-

ing equal to H 3
m =


h1 h2 h3 h4

SNP 1: 1 1 0 0
SNP 2: 1 0 0 1
SNP 3: 1 0 1 1

 and H 3
f =


h5 h6 h7 h8

SNP 1: 0 1 0 0
SNP 2: 0 0 1 1
SNP 3: 0 0 0 1

, respectively, and two

offspring c1 and c2 with G3
c1
= (1 0 0 0) and G3

c2
= (1 0 1 0), only 9 out of 36 transmissions will

be compatible with the genotype of c1, while 18 transmissions will be compatible with
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c2. This results in EH s
m ,H s

f
[P (G3

c |H 3
m , H 3

f )] = 1
3
4

(
( 9

36 )2 + ( 18
36 )2

) = 5
12 for this extension. As

km = k f = 4, G2
m = (1,0,0,1), G3

m = (1,0,1,1), G2
f = (0,0,1,1) and G3

f = (0,0,0,1), we have

Πm
2 =Π f

2 = ( 4!
2!2!

)= 6 andΠm
3 =Π f

3 = ( 4!
3!1!

)= 4. Considering only SNPs at s−1 = 2 and s = 3,
in each parent there is one haplotype present twice. The a priori probability of (H 3

m , H 3
f )

is hence determined from Equation 10 to be 5
12 ·

( 4!
2!1!1!

)
24 ·

( 4!
2!1!1!

)
24 = 5

48 .
From Equations 7 and 10, the conditional probabilities of parental extensions at po-

sition s can be obtained using Equation 6 and the surviving extensions are used for the
extension to s +1, as explained above.

B) Estimation of missing and erroneous genotypes
The SNP-by-SNP extension of the parental haplotypes using the sequencing reads of an
F1-population is explained in Section A, assuming the SNPs have been accurately called
for all of the population members. However, in practice every haplotyping algorithm
has to handle missing and wrongly estimated SNP genotypes caused by sequencing and
variant calling errors.

In presence of wrongly estimated genotypes (wrong dosages), it can occur that all of
the offspring genotypes are incompatible with the parental extensions at some SNP po-
sition s. At these positions, the extension should either be skipped, as the prior weight
of all candidate phasings will be zero, or the genotypes must be estimated anew. The ex-
tension at s will also be impossible if one or both of the parental genotypes are missing at
s. To include these SNP positions in the extension, it is necessary to impute the missing
genotypes.

In order to estimate the population genotypes at the missing or incompatible po-
sitions, we assume that the parents come from an infinite-size population at Hardy-
Weinberg equilibrium. Limiting the attention to bi-allelic SNPs, the reference and alter-
native allele frequencies of the parents at position s can be estimated from the observed
reads under the above assumption. Assuming a fixed sequencing error rate for all of the
reads and nucleotide positions, 0 É ÊR < 0.5, the frequency of the alternative allele can
be obtained assuming a binomial model for the observed count of the alternative allele
according to:

ξ= |{r j ∈ Rset |r s
j = 1 ∨ r s

j = 0}|

ψ=
|{r j ∈ Rset |r s

j = 1}|
ξ

(11)

p̂ = ψ− ÊR

1−2ÊR

where ξ is the total sequencing coverage of the population at s and ψ is the propor-
tion of the alternative allele among the observed alleles. As this observed frequency, ψ,
depends on the latent true frequency, p̂, through ψ = (1−ÊR)p̂+ÊR(1− p̂), it is straight-
forward to show that p̂ can be obtained as shown in Equation 11, with a standard error

equal to 1
(1−2ÊR)

·
√

ψ(1−ψ)
ξ .
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In case a specific base-calling error rate εs
j is assigned at each position s to each read

r j , e.g. by using the integer-rounded Phred (quality) scores reported by the sequencer [4],
one can assume a Gaussian distribution for the probability of observing the alternative

allele at s in each read, fs
(
P (r j )|p̂, σ̂2

)= 1p
2πσ̂2

e−
(P (r j )−p̂)2

2σ̂2 , and obtain p̂ at each s accord-

ing to:

p̂ =

∑
{r j ∈Rset |r s

j =1 ∨ r s
j =0}

P (r j )

ξ
(12)

σ̂2 =
∑

(P (r j )− p̂)2

ξ−1

P (r j ) = (1−εs
j )r s

j +εs
j (1− r s

j )

Having p̂, a prior probability can be assigned to each of the 2km and 2k f theoreti-
cally possible genotypes for the mother and the father, respectively, assuming a binomial
model according to:

P (G s
p ) =

(
kt

ν

)
p̂ν(1− p̂)(kt−ν) (13)

where p ∈ {m, f } and 0 É νÉ kt is the dosage of the alternative allele in the candidate
genotype, G s

p . Assuming the parents have been independently chosen from a source
population, a prior can be assigned to each (G s

m ,G s
f ) pair using P (G s

p ) obtained from

Equation 13, according to:

P (G s
m ,G s

f ) = P (G s
m) ·P (G s

f ) (14)

Given (G s
m ,G s

f ), a prior probability can be assigned to each specific offspring geno-

type, G s
ci

, by counting the number of allele transmissions that result in that G s
ci

. For
example, with (G s

m ,G s
f ) = (

(0,1,1,1), (1,0,0,0)
)
, the prior P (Gc1 |G s

m ,G s
f ) will be equal

to 0, 9(4
2

)(4
2

) = 1
4 , 18(4

2

)(4
2

) = 1
2 , 9(4

2

)(4
2

) = 1
4 and 0 for the offspring genotypes: Gc1 = (0,0,0,0),

Gc1 = (1,0,0,0), Gc1 = (1,1,0,0), Gc1 = (1,1,1,0) and Gc1 = (1,1,1,1), respectively.
To estimate the population genotypes, (G s

m ,G s
f ,G s

c1
, · · · ,G s

cn
), we use the prior proba-

bilities obtained as explained above, and assign a posterior probability to each popula-
tion genotype by taking the sequencing reads into account. Noting that:

P (G s
m ,G s

f ,G s
c1

, · · · ,G s
cn
|Rset ,εset ) = P (G s

c1
, · · · ,G s

cn
|G s

m ,G s
f ,Rset ,εset )P (G s

m ,G s
f |Rset ,εset ) (15)



110 References

we separately obtain the posterior of the parental genotypes, P (G s
m ,G s

f |Rset ,εset ),

and the conditional posterior of the offspring P (G s
c1

, · · · ,G s
cn
|G s

m ,G s
f ,Rset ,εset ), from

which the population posterior is derived using Equation 15. The posterior
P (G s

m ,G s
f |Rset ,εset ) can be directly obtained from Equations 6 and 7 by substituting

(H s
m , H s

f ) with (G s
m ,G s

f ) in these equations and by using P (G s
m ,G s

f ) (obtained by Equa-

tion 14) as the prior in Equation 6. Assuming conditional independence of the offspring
genotypes given the parents, we obtain P (G s

c1
, · · · ,G s

cn
|G s

m ,G s
f ,Rset ,εset ) by:

P (G s
c1

, · · · ,G s
cn
|G s

m ,G s
f ,Rset ,εset ) = P (Gc1 |G s

m ,G s
f ,Rc1 ,εc1 ) · . . . ·P (Gcn |G s

m ,G s
f ,Rcn ,εcn )

Rci = {r j ∈ Rset | δ(r j ) = ci } (16)

εci = {ε j ∈ εset | δ(r j ) = ci }

where P (Gci |G s
m ,G s

f ,Rci ,εci ) is calculated according to:

P (Gci |G s
m ,G s

f ,Rci ,εci ) =
P (Rci |G s

ci
,εci )P (G s

ci
|G s

m ,G s
f )∑

G ′s
ci

P (Rci |G ′s
ci

,εci )P (G ′s
ci
|G s

m ,G s
f )

(17)

and:

P (Rci |G s
ci

,εci ) =
∏

(r j ,ε j ) ∈ Rci ×εci

P (r j |G s
ci

,ε j ) (18)

where Rci ×εci represents the Cartesian product of Rci and εci , and (r j ,ε j ) denotes
r j ∈ Rci with its matched error rate vector, ε j ∈ εci . In Equation 18, P (r j |G s

ci
,ε j ) is ob-

tained by replacing H s
p with G s

ci
in Equation 8.

After calculating P (G s
m ,G s

f ,G s
c1

, · · · ,G s
cn
| Rset ,εset ) from Equation 15, the most likely

population genotypes at s can be assigned to the population members as genotype esti-
mates.

C) Estimation of the offspring haplotypes
Having the set of all possible offspring phasings obtained by the possible transmissions
of the parental haplotypes (Section A), we assign to each offspring ci the phasing es-
timate Ĥci that yields the smallest number of required base-calling changes in the se-
quence reads, Rci , in order to assign each r j ∈ Rci to some homologue in Ĥci . For each
possible offspring phasing, Ĥ , this required number of base-calling changes equals the
so-called minimum error correction (MEC) score, defined as [6]:

MEC(Ĥ , Rci ) =
∑

r j ∈ Rci

min
ĥ∈Ĥ

D(r j , ĥ)
(19)

D(r j , ĥ) is the Hamming distance between read r j ∈ Rci and homologue ĥ ∈ Ĥ de-
fined according to:
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D(r j , ĥ) =
l∑

τ=1
d(r j , ĥ,τ) (20)

where τ and l represent the SNP positions and the number of SNPs in the target
region, respectively, and d(r j , ĥ,τ) is defined in Equation 8. Thus, for each ci we have
Ĥci = argmin

Ĥ

MEC(Ĥ ,Rci ). If Ĥci is the same as the true phasing of ci , its MEC score is

expected to be close to the number of actual base-call errors in Rci .
In case more than one set of parental haplotypes has the maximum probability (Sec-

tion A), we infer the offspring haplotypes for each of them as explained above and finally
choose the family whose total MEC score (summed over all offspring) is the smallest.
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Abstract
High throughput sequencing is becoming a convenient alternative to probe-based geno-
typing for finding loci associated with phenotypic traits in crop populations, also in poly-
ploids. However, in polyploids determining the precise number of copies of the alleles
(dosages) is challenging in the presence of sequencing noise.
We present an expectation-maximisation (EM) based approach, called AcroPoly, which
uses read coverage to assign accurate probabilistic dosage scores to the alleles of multi-
SNP haplotypes. Through simulations, we show that these scores reliably predict the
actual dosages and can be directly applied to detect genotype-phenotype associations,
providing more statistical power and precision compared to single SNP markers. For
validation on real data, we used AcroPoly to estimate probabilistic dosage scores and
to detect genotype-phenotype association to the genome-wide DNA sequence data of
a moderate-sized F1-population derived from two heterozygous tetraploid Alstroemeria
parents.



5.1. Introduction 115

5.1. Introduction
Haplotypes are defined as sets of genomic variants at ordered and highly linked positions
located on the same chromosome. For each set of positions there are k = 2 haplotypes
in diploid species (such as humans) and k > 2 haplotypes in polyploid species, such as
commercial potato (Solanum tuberosum L., 2n = 4x = 48) and ornamentals like Peruvian
lily (Alstroemeria spp. L., 2n = 4x = 32). In segregating populations obtained by crossing,
e.g. F1-populations with heterozygous parents, estimates of the phasing and recombi-
nation frequency are used to compute identity by descent (IBD) probabilities [51] for
finding quantitative trait loci (QTL). Due to the limited number of meioses in such gen-
erations, even markers that are far from the actual trait locus (e.g. 10 cM) often remain
strongly associated with it [32]. Besides, for outcrossing polyploids (such as potato) ob-
taining linkage maps is more complex than for diploids [7, 8].

Association mapping is an alternative approach to segregation mapping, which uses
a dense set of markers and their identity by state (IBS) scores, and takes advantage of
events that created correlations between causal variations affecting a trait and the marker
alleles in the relatively distant past. For outcrossing crops, it can be assumed that many
generations and therefore many meioses have elapsed since these events and thus asso-
ciations with the causative loci are only found for markers at close genomic distance [32].

Compared to unphased genetic markers, multi-allelic haplotypes are more likely to
uniquely associate with phenotypes and are therefore more powerful and robust for as-
sociation mapping [13, 28, 34, 57], especially when the genetic component of the trait
is determined by the interactions of a group of several variants [43, 45, 58]. Also, hap-
lotypes can better reflect genetic diversity within and between populations [27, 52] and
can help correct dosage calling errors using inheritance information [39, 47]. However,
molecular determination of haplotypes is often costly and laborious as it requires dif-
ferentiating between the chromosomes [29], while high-throughput methods exist to
determine unphased markers, in particular single nucleotide polymorphisms (SNPs),
using probe-based genotyping arrays or sequence data [23, 36, 49]. Therefore compu-
tational methods have been developed to estimate haplotype phasing from unphased
genotypes in families [1, 54] and in random mating populations [11, 18, 41], or from un-
phased genotypes and aligned sequence reads for single individuals [4, 6, 16, 55] or for
families [20, 47, 48].

Sequence-based methods have the advantage of being able to identify all of the vari-
ants that exist in a target genomic region, as well as providing phasing information for
variants covered by the same read. However, the obtained reads must be first aligned to
a common reference (either previously existing or obtained de novo), and true variations
must be distinguished from base-calling errors [31]. While it is relatively easy to detect
SNP positions by sequencing, accurate determination of SNP genotypes can be chal-
lenging in polyploids, as the number of possible allele dosages increases with the ploidy
level and presence of complex variations might result in errors in the alignment [21, 49].
The problem of haplotype estimation, or SNP phasing, is also more difficult in poly-
ploids. The available methods, which optimise either a likelihood [6, 47, 48] or a cost
function [2, 16, 55], can converge to local optima and result in non-existent haplotypes
or wrong haplotype dosages [46].

In association mapping, it is desirable to have a set of markers with accurate allele
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dosages or frequencies that can reliably tag the causal genetic variants [3, 40, 58]. For
a genomic region defined by l bi-allelic SNPs, 2l haplotype alleles are possible, whose

combinations and different possible dosages yield
(2l+k−1

k

)
theoretically possible phas-

ings for an individual with ploidy level k. These numbers grow quickly: regions of 4, 5
and 6 SNPs lead to 136, 528 resp. 2,080 possible phasings in diploids and to 3,876, 52,360
and 766,480 in tetraploids. This problem can be circumvented by breaking the region
into scanning windows that each include only a few SNPs, enumerating all haplotype
alleles in a window and assigning a dosage to each based on its read count. However, as
the chromosome of origin, or the haplotype, is not directly observed for sequence reads,
probabilistic models are needed to indirectly estimate the dosages from the number of
reads compatible with each haplotype allele. This is an example of latent class analy-
sis (LCA) or probabilistic clustering [5, 24], which yields fractional scores or probabilistic
dosages (in contrast to the discrete dosages limited to 0, 1, · · · , k) for each haplotype. Us-
ing these probabilistic dosages, decision can be made on the actual (categorical) dosage
of each haplotype in an individual or the frequency of haplotypes in a population. How-
ever, the probabilistic dosages can also be directly used in genetic analysis, as a way of
taking into account that the estimates of the unobserved haplotype dosages are uncer-
tain. Such an approach has successfully been used for genotype imputation [39] and for
genotype calling from messy sequence data [22].

Here we propose an expectation maximisation (EM) approach, called AcroPoly, to
determine probabilistic haplotype dosages of an individual using its aligned sequence
reads. After calling SNPs in a target genomic region, we use scanning windows that each
cover a fixed, small number of SNPs and assign probabilities to every possible haplotype
in each window based on the number of supporting reads. An important advantage of
this approach is that it can combine the sequence data of several individuals for dosage
estimation, without being restricted to a certain population structure [3, 9, 47] or impos-
ing a priori assumptions on the haplotypes present in the population [14, 33, 42].

We assess the accuracy of AcroPoly in predicting the actual dosages of haplotypes
through simulations of tetraploid (k = 4), hexaploid (k = 6) and octoploid (k = 8) random
mating populations, based on the reference genome of potato (S. tuberosum) cultivar
DM [15], and compare it with other state-of-the-art single individual haplotyping (SIH)
tools. Through simulations of continuous phenotypes and tetraploid loci, based on
S. tuberosum, with various degrees of heritability, we show that the probabilistic multi-
SNP haplotype dosages obtained by AcroPoly provide more statistical power than single
SNP markers obtained by the traditional polyploid variant caller FreeBayes [21]. Finally,
we apply AcroPoly to obtain multi-SNP haplotype markers in an F1-population with 82
offspring derived by the crossing of two heterozygous parents of tetraploid Alstroeme-
ria, a popular outcrossing ornamental native to South America with a large and complex
genome [25, 26]. We show that AcroPoly allows to detect scattered markers linked to the
trait locus involved in disease resistance.

5.2. Material and Methods
We propose an Expectation-Maximisation (EM) approach to obtain allele dosages for
haplotype alleles that consist of s bi-allelic SNPs using sequencing read depths. As the
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number of possible alleles grows exponentially with s, we limit s to 3 or 4 and scan a ge-
nomic region with l > s SNPs using windows of size s. The details of this EM approach,
called AcroPoly, are given in Section 5.2.1. We compare the accuracy of AcroPoly in pre-
dicting the actual haplotype dosages, with optimisation based approaches HapTree [6]
and SDhaP [16] (Section 5.2.2), and compare the power of testing for trait associations
using its multi-SNP markers, with using single SNP markers estimated by the polyploid
variant caller FreeBayes [21] (Section 5.2.3). Finally, we apply AcroPoly to detect genomic
positions associated with resistance to leaf scotch in an outcrossing F1-population of
tetraploid Alstroemeria with two heterozygous parents (Section 5.2.4).

5.2.1. Estimation of multi-SNP haplotype allele dosages from read depth
We assume a Poisson distribution for the unobserved read count of each possible haplo-
type in a window of size s, corresponding to N = 2s haplotype alleles with bi-allelic SNPs,
and aim to estimate the rates of these Poisson distributions using the sequence reads.
Within the window ωt , the estimated Poisson rates, µµµt = (µ1t ,µ2t , ...,µN t )T , are used to
assign a dosage score to each possible haplotype marker, hi t (i = 1, . . . , N ), according to:

P (hi t |µµµt ) = µi t

N∑
j=1

µ j t

(5.1)

Starting at the first SNP position in a region of interest, we can scan the whole region
of l SNPs by shifting (sliding) the window. One can get overlapping windows by shifting
the window by one SNP (or less than s SNPs) at a time, or non-overlapping windows by
shifting by s SNPs at a time. With a 1 SNP shift, the total number of windows will be
l -(s-1), while dl/se non-overlapping windows are required to cover the whole region.

For each window ωt , we determine µµµt using the Expectation-Maximisation (EM) al-
gorithm [17, 37]. To this end, we first construct its compatibility matrix MMM t indicating the
compatibility of each read with the possible haplotypes in ωt . We only consider those
reads that contain at least one SNP position within ωt , and call a read rx compatible
with a haplotype hi t if it contains the same alleles as hi t at the common SNP positions.
MMM t is accordingly defined as:

MMM t =


m1,1 m1,2 · · · m1,N

m2,1 m2,2 · · · m2,N
...

...
. . .

...
mct ,1 mct ,2 · · · mct ,N

 , mx,i =
{

1 rx ∈ hi t

0 rx 6∈ hi t
(5.2)

where ct denotes the total number of reads informative for ωt and the notation rx ∈ hi t

is used to denote the compatibility of rx with hi t . From MMM t , we derive ppp t = MMM tµµµt =
(p1t , p2t , ..., pct t )T and δδδt = MMM t diag(µµµt ), from which the count matrix AAAt is constructed
according to:

AAAt =


a1,1 a1,2 · · · a1,N

a2,1 a2,2 · · · a2,N
...

...
. . .

...
act ,1 act ,2 · · · act ,N

 , ax,i =
mx,iµi t

N∑
i=1

mx,iµi t

= δx,i

pxt
(5.3)
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where δx,i denotes the (x, i ) element of δδδt . The sum of the values in column i of AAAt ,
ct∑

x=1
ax,i , gives the number of reads compatible with hi t taking into account that a read

might be compatible with more than one haplotype. As an example, the read (s1 = 0, s2 =
1) is compatible with two haplotypes: (s1 = 0, s2 = 1, s3 = 0) and (s1 = 0, s2 = 1, s3 = 1) (as
the read does not include s3), hence adding 1

2 to the total read count of each haplotype.

With this definition, it is evident that
N∑

i=1

ct∑
x=1

ax,i = ct .

Defining kkk t = (k1t ,k2t , ...,kN t )T as the unobserved read counts of the haplotypes, we
use the notation presented above to formulate the log-likelihood of the reads using con-
ditionally independent Poisson distributions according to:

L (µµµT
t ; M) =

N∑
i=1

log
(
Poi s(ki t ; sµi t )

)
(5.4)

kkk t ∼ Mul t
(
ct ,

1

ct
JJJ 1,ct AAAt

)
where JJJ 1,ct denotes the 1× ct vector of ones. As the total number of reads that cover
ωt is fixed and equal to ct , the unobserved numbers of reads ki t originating from each
haplotype hi t follow a multinomial distribution with the probability corresponding to
each haplotype being related to the dosage of that haplotype according to Equations 5.3
and 5.4. However, it is difficult to directly maximise the log-likelihood L (µµµT

t ; M) in Equa-
tion 5.4, as kkk t is unobserved. Therefore, we start by some initial value for µµµt , such as
µµµ(0)

t = ( 1
N , · · · , 1

N )T , and try to maximise L (µµµT
t ; M) by replacing kkk t with E[kkk t |AAAt ] and max-

imising the modified log-likelihood:

Q(µµµT
t ;E[kkk t |AAAt ]) =

N∑
i=1

log
(
Poi s(

ct∑
x=1

ax,i ; sµi t )
)

(5.5)

It is straightforward to show (see Appendix) that ∇Q(µµµT
t ;E[kkk t |AAAt ]) =000 for:

µµµT
t = 1

s
JJJ 1,ct AAAt = 1

s
E[kkk t |AAAt ] (5.6)

and the maximisation is performed by updating µµµT
t according to Equation 5.6 using the

current value of AAAt at iteration z, AAA(z)
t . The E-step (Equation 5.6) and M-step (Equa-

tion 5.3) are iterated until the algorithm converges, i.e. if:∣∣∣Q(
µµµT (z+1)

t ;E[kkk t |AAA(z+1)
t ]

)−Q
(
µµµT (z)

t ;E[kkk t |AAA(z)
t ]

)∣∣∣< ε (5.7)

µµµT (z+1)

t = 1

s
JJJ 1,ct AAA(z)

t

with ε a preset convergence threshold. We used ε= 10−6 in our analyses.
In order to avoid uncertain marker scores at loci with low sequencing coverage, we

set a threshold on the required coverage ct for each window ωt and estimate no haplo-
types for ωt if ct falls below. In our analyses, we set this threshold equal to the ploidy
level k = 4.
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5.2.2. Evaluation of accuracy of haplotype dosages
We simulated 200 genomic loci of length 10 kb, considering ploidy levels k = 4, 6 and 8.
The reference sequence of each locus was randomly selected from chromosome 5 of the
PGSC potato genome [15], which is known to harbour important trait loci [35], and SNPs
were introduced at random positions in the selected reference as described in Motazedi
et al. [46]. For each simulated locus, we simulated paired-end Illumina HiSeq 2000 reads
with an average insert-size of 350 bp (single read length of 100 bp) at an average depth
of 15× per homologue (i.e. 60-120× per chromosome), according to a uniform distribu-
tion, using ART [30]. This average depth was chosen as it has been shown to yield high
accuracy for haplotyping [46]. The simulated reads were aligned to the reference using
bwa-mem [38]. After calling SNPs from the aligned reads using FreeBayes [21], we esti-
mated the haplotypes using AcroPoly, setting the scanning window size to s = 4 SNPs and
using non-overlapping phasing windows to scan the whole locus. For the sake of com-
parison, we also estimated the phasing of each simulated locus using the SIH methods
HapTree [6] and SDhaP [16].

To evaluate the accuracy of AcroPoly dosage scores in predicting the actual phasing
and to compare it with HapTree and SDhaP, we ranked its haplotype alleles upon their
probabilistic dosages, then multiplied the dosages by the ploidy level k and rounded to
the nearest integer. We determined the phasing by choosing haplotypes starting from the
top rank allele, until the dosages of the chosen haplotypes added up to the ploidy level k.
This procedure was followed for each scanning windowωt . If the sum of integer dosages
could not be set equal to k for a window, e.g. because of low probabilities for most of
the haplotype alleles due to insufficient sequencing coverage, some of the haplotypes
could not be clearly predicted in the phasing. In such cases, we considered the phasing
missing for the window.

As the length of the haplotype blocks in AcroPoly is limited to its preset window size,
i.e. 4 in our simulations, we used the reconstruction rate (RR) [48] to measure the overall
local similarity of the estimated blocks to the true phasings. To assess the accuracy of the
AcroPoly dosage scores in phasing prediction, we used the pair-wise phasing accuracy
rate (PAR) [46], which shows the fraction of correctly predicted haplotype dosages of SNP
pairs in a locus. We also compared the methods in terms of the ratio of SNPs that were
phased by each to the total number of simulated SNPs.

5.2.3. Use of AcroPoly multi-SNP haplotypes as markers for detecting as-
sociations to traits

To show how the multi-SNP haplotype alleles obtained by AcroPoly can be used for
detecting associations to traits in outcrossing polyploid populations, and to compare
their power and mapping precision with sequence-based single SNP markers estimated
by conventional polyploid variant callers, we simulated small populations of tetraploid
potato with 20 offspring from a cross of ‘Altus’ and ‘Colomba’ parents [47]. We considered
this small population size to demonstrate, with computational ease, the gain in power
by using multi-SNP haplotype markers compared to using single SNPs.

In each simulation, we generated a phenotype influenced by one and only one of the
9 loci with genomic coordinates and numbers of SNPs shown in Table 5.1, with no other
genotypic effects on the trait. For each of these loci, we had the phasing estimated in
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Table 5.1: S. tuberosum loci selected for quantitative trait locus simulation

Gene DNA sequence id Chromosome: coordinates Segregating bi-allelic SNPs Distinct haplotypes

StCDF1 PGSC0003DMG400018408 chr05:4538880-4541736 38 6

StCDF2 PGSC0003DMG400025129 chr02:25588000-25591776 63 8

StCDF3 PGSC0003DMG400001330 chr02:46143998-46147444 75 7

StCDF4 PGSC0003DMG400033046 chr06:51598497-51601151 51 3

StCDF5 PGSC0003DMG400019528 chr03:55882564-55885296 100 7

StCO1 PGSC0003DMG401010056 chr02:45098374-45101578 57 3

StCO2 PGSC0003DMG402010056 chr02:45088023-45092647 66 6

StFKF1 PGSC0003DMG400019971 chr01:531784-536380 89 8

StGI1 PGSC0003DMG400001110 chr03:14265390-14266279 40 8

‘Altus’ and ‘Colomba’ from a previous study using PopPoly [47]. To simulate the genetic
component of each phenotype, we randomly assigned two haplotypes at the causal locus
from each parent to each offspring. Sequence reads were simulated for each offspring
with an average depth of 10× per homologue and per locus, using the same approach as
described in 5.2.2. The reads were aligned to the potato reference using bwa-mem [38]
and SNP positions were identified using FreeBayes [21].

Quantitative phenotypes were generated by randomly selecting 5 causal SNPs with
equal probabilities from the set of SNPs at each locus in each simulation. With the num-
bers of SNPs and genomic region lengths as shown in Table 5.1, in this way we simulated
allelic heterogeneity with varying physical distances between the causal SNPs. The ge-
netic component of each phenotype was simulated according to two models of trait in-
heritance: 1) the haplotype interaction model, corresponding to local epistasis between
the SNPs [12, 53, 56] and 2) the independent SNP effect model, in which the effect of a
SNP allele is independent from its host haplotype [50]. The haplotype interaction model
represents situations where it is unlikely that a single marker SNP can perfectly tag the
causative haplotype allele, and the independent SNP effect model represents the oppo-
site, where it is likely that single marker SNPs can tag individual causative SNP alleles. As
the diversity of parental haplotypes ranges from low (3) to the highest (8) at the chosen
loci (Table 5.1), we believe that our simulations successfully reflect various degrees of
markers’ linkage disequilibrium with the causative alleles.

For simulating the haplotype interaction model, we randomly chose one of the oc-
curring haplotype alleles of the 5 causal SNPs and associated it with a positive effect on
the phenotype, while the other occurring haplotype alleles were assigned a negative ef-
fect of a magnitude equal to the positive effect. The genetic component of the phenotype
was determined by multiplying the effect assigned to each haplotype allele by its dosage
and then adding up the dosage effects of the occurring alleles in each individual. Gaus-
sian noise with zero mean and a variance of σ2

e was simulated for each individual and
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added to its genetic component to achieve the desired heritability h2 in the trait using:

h2 =
σ2

g

σ2
g +σ2

e
(5.8)

to determine σ2
e , where σ2

g is the variance of the simulated genetic component of the
trait. To evaluate the dependency of the method’s statistical power on trait heritability,
we considered h2 = 0.1,0.2,0.3,0.5,0.6 and 0.8. By setting σ2

g to zero, we also simulated

phenotypes with h2 = 0 to investigate the false positive rates of association tests. For
each value of h2, 15 populations were simulated for each locus (135 simulations in total).

For the independent SNP effect model, we assumed that at each of the 5 causal SNP
sites the causative allele, i.e. one of the two occurring alleles randomly chosen with equal
probability, has the same effect on the phenotype regardless of the haplotype on which
it is located. The genetic component was thus determined by multiplying the effect of
the causative allele at each SNP site by its dosage and then summing the dosage effects
of the 5 SNPs in each individual. For simplicity, we considered an equal effect size for the
causative alleles at all the SNP sites. For each value of h2, 15 populations were simulated
for each locus, as described for the haplotype interaction model.

Sequence reads were simulated for each individual as described in Section 5.2.2,
mimicking whole genome sequencing (WGS) or amplicon sequencing of the targeted
loci. To find back the genetic variants in each locus underlying the simulated quanti-
tative phenotypes, we called SNPs by aligning the sequence reads and applying Free-
Bayes [21], as described in 5.2.2.

To test for association of single bi-allelic SNP markers to a trait, we built regression
models per SNP site that related the simulated trait to the called dosage of the alternative
allele. The significance of the estimated regression coefficients was tested using a likeli-
hood ratio test (LRT) (compared to the null model) at α = 10−5, which is a significance
level close to what is often used with a large set of genome wide markers. For the tests,
we only considered those detected SNPs that had a minor allele frequency of at least 0.1,
and a dosage calling failure rate of at most 0.4 in the simulated population. Individu-
als were excluded from the analysis at each simulation/locus if they had a SNP missing
rate of more than 0.8 at the locus. These filtering steps are often taken in practice to en-
sure conclusions are made by only considering high quality polymorphic markers and
individuals [44].

We used the probabilistic dosage scores obtained by AcroPoly for each haplotype
allele in sliding windows of 3 SNPs to detect associations with the simulated traits at each
locus, shifting the sliding windows by one SNP to cover the whole locus. In comparison
to the simulations in Section 5.2.2, we set a smaller window size to obtain fewer, more
accurate haplotypes, hence fewer, more reliable predictors in the trait models. Shifting
windows one SNP at a time ensures that the density of haplotype markers becomes the
same as the single SNPs on each locus. The parameters of the EM algorithm were set as
in Section 5.2.2.

From the obtained haplotypes in each window, we filtered out from each trait model
those alleles that had a score of zero in more than 80% of the individuals. Using the
dosages of the remaining haplotype alleles in each individual, we built a multiple linear
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regression model for the trait for each haplotype marker and used an LRT to test the sig-
nificance of the marker-trait association (α = 10−5). By using the probabilistic dosages,
we down-weighted the effect of uncertain alleles on these associations, while still includ-
ing their information in the phenotype model.

While every association with a marker linked to the causative locus is a true posi-
tive in the genetic sense, we aimed to evaluate the precision of dense haplotype markers
and single SNPs in reaching close to the causative variants within a locus. This precision
is important in deciphering the mechanisms underlying a trait [10], and it is especially
desirable with WGS to detect the actually causative variations and loci. To measure the
precision on the simulated loci, which were relatively small (Table 5.1), we considered
a significant association a true positive if its upstream or downstream distance to one
of the causal SNPs was less than 500 bp, i.e. a distance on average equal to 20% of the
lengths of the simulated loci. For the single SNP markers, the distance to a causal SNP
was calculated from the marker positions, while for the haplotype markers this distance
was defined from the start or stop position of the haplotype, whichever was the closest.
The precision was obtained by dividing the number of true positive significant associa-
tions to the total number of significant associations. We also calculated the recall rate of
each marker type, as the ratio of causal SNPs for which a significant marker was found
within the 500 bp upstream or downstream distance, to the total number of causal SNPs.
To estimate and compare the false positive rates (FPR) of AcroPoly and FreeBayes mark-
ers, we calculated the ratio of the significant associations found with h2 = 0, which were
all false positives, to the total number of markers in each simulation.

5.2.4. Detection of trait loci in Alstroemeria using estimated haplotype
scores

Using AcroPoly, we estimated haplotype dosages from bait-capture exome sequence
data in a cross of two tetraploid Alstroemeria cultivars, named ‘ALS2’ and ‘ALS3’, with
82 offspring. The RNA baits for capturing single copy genes were designed using a de
novo assembly of independent RNA sequence data of the same cross, consisting of 5786
target contigs (with a median contig length of 1.474 kb). The DNA sequence reads were
obtained using paired-end sequencing by Illumina HiSeq 2000 technology. After map-
ping the reads back to the target contigs, we called SNPs using FreeBayes and estimated
haplotype markers using AcroPoly, requiring a sequencing coverage of at least 4×, i.e.
on average 1× per homologue, over a window to call the SNP dosages and haplotype
scores for an individual. We applied logistic regression using the probabilistic dosage
scores of AcroPoly as predictors to find haplotype markers linked to disease resistance
in a bi-parental population obtained from crossing a resistant parent with a susceptible
parent.

To obtain AcroPoly haplotype markers, SNP positions were detected by FreeBayes,
filtering out those with a calling failure rate of 0.3 or more in the population. This qual-
ity threshold was more stringent compared to the simulations (Section 5.2.3), as a much
larger number of SNPs had been called, with many suspected false positives due to insuf-
ficient sequencing depths at some contigs. Probabilistic haplotype dosage scores were
obtained over sets of 3 SNPs (yielding m3 haplotype alleles for m-allelic SNPs), and the
phasing window was shifted one SNP at a time to scan a whole contig. After obtaining
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Table 5.2: Reconstruction rates (RR) obtained by phasing methods at various ploidy levels

Estimation method k = 4 k = 6 k = 8

AcroPoly 0.91 0.96 0.96

HapTree 0.88 0.92 0.95

SDhaP 0.79 0.78 0.79

dosage scores of the haplotype alleles in all of the individuals, we kept only those alleles
that had a non-zero score in at least 20% of the individuals and a missing score rate at
most 0.4. We used multiple logistic regression per marker with haplotype allele dosages
as the predictors and tested the association of each haplotype marker with the resistance
trait using the LRT. We applied a Bonferroni correction for multiple testing and set the
significance level for each marker according to the number of markers that passed the
filtering steps, so that the genome-wide significance level α= 0.05 was maintained.

5.3. Results
We evaluated AcroPoly through simulations of polyploid genomes with various levels of
ploidy, as well as quantitative single locus phenotypes with various levels of heritabil-
ity in tetraploid populations. Two objectives were aimed for in this evaluation: 1) the
ability of AcroPoly to correctly predict multi-SNP haplotypes in polyploid individuals, 2)
the usefulness of its probabilistic haplotype markers in finding trait associations in poly-
ploid populations. For the first objective, we compared the performance of AcroPoly
with state-of-the-art optimisation-based haplotyping approaches HapTree and SDhaP.
For the second objective, we compared the precision and recall rates of linking traits to
AcroPoly markers and to single SNP markers obtained by FreeBayes. Finally, we used the
probabilistic scores of AcroPoly over genome-wide 3-SNP haplotypes to find loci associ-
ated with disease resistance in an outcrossing F1-population of Alstroemeria.

5.3.1. AcroPoly yields accurate dosage scores for multi-SNP haplotypes
Measuring the reconstruction rate (RR) of the true haplotypes showed that the phasings
obtained by AcroPoly are substantially more accurate compared to SDhaP and HapTree,
as shown in Table 5.2. While the accuracy scores of HapTree were still close to those of
AcroPoly, AcroPoly had the important benefit of steady performance, especially at ploidy
levels k ≥ 6. Actually, HapTree was unable to produce any phasing estimate due to nu-
merical instability at 15% and 40% of simulations at k = 6 and k = 8, respectively, and left
69% and 83% of the SNPs out of its estimates in the other cases. As a result, only 26% and
10% of the simulated SNPs were phased by HapTree at these ploidy levels, respectively,
compared to around 73% by AcroPoly and 90% by SDhaP (Table 5.3).

It must be noted, however, that the probabilistic scores reported by AcroPoly for



124 5. AcroPoly: accurate estimation of multi-marker haplotypes in polyploids

Table 5.3: Proportions of simulated SNPs phased by each method at various ploidy levels

Estimation method k = 4 k = 6 k = 8

AcroPoly 0.69 0.73 0.73

HapTree 0.73 0.26 0.10

SDhaP 0.87 0.89 0.90

each haplotype allele do not solely depend on the dosage of the haplotype alleles in the
genome, but also on the certainty of assigning sequence reads to each haplotype. If, for
example, a base is not called at a SNP position within a read, its ascription to a haplo-
type will not be unique as the read is compatible with several haplotype alleles. Such
uncertainties are reflected in the read-count rates estimated by AcroPoly, but not if the
estimated rates are rounded to predict the actual haplotype dosages in an individual.
The increase in RR observed at higher ploidy levels (Table 5.2) shows in fact that this
round-off error is less manifest at higher ploidy levels.

To assess the accuracy of the haplotype dosage scores predicted by AcroPoly, and to
compare it with HapTree and SDhaP, we used the pair-wise phasing accuracy rate (PAR)
which measures the fraction of correctly assigned haplotype dosages for SNP pairs lo-
cated on a locus (Table 5.4). The highest accuracy was obtained by HapTree, but its fail-
ure rate was high at k = 6 and k = 8 and, as noted above, most of the SNPs were left out
from its phasing at these ploidy levels. The dosage prediction accuracy of AcroPoly was
quite close to that of HapTree (Table 5.4). Overall, AcroPoly was the most stable and ac-
curate method for predicting haplotype dosages among the tested methods. Neverthe-
less, the haplotype estimates of AcroPoly are restricted in length, i.e. the number of SNPs
included in a haplotype block, 4 in these simulations, where haplotype blocks estimated
by HapTree and SDhaP often included 50 or more SNPs. While the higher accuracy of
AcroPoly is partly due to this restriction in the haplotype length, the main advantage is
that the restricted length allows AcroPoly to assign a score to every possible haplotype
allele instead of choosing only k alleles. In this way, genetic diversity in a population is
better reflected, especially for statistical analysis of phenotypes.

5.3.2. AcroPoly increases precision and recall rate of trait-locus association
detection

By simulating single locus phenotypes with levels of heritability ranging from 0 to 0.8,
we used the probabilistic scores obtained by AcroPoly for multi-SNP haplotypes to de-
tect associations between phenotypes and their underlying causal variants in small pop-
ulations of 20 individuals. We compared the results obtained by AcroPoly to the results
obtained by using single SNP marker dosages obtained by FreeBayes. We compared the
precisions of the two approaches in positioning causal variations within a locus, as well
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Table 5.4: Ratio of the correctly predicted haplotype dosages for SNP pairs at various ploidy levels

Estimation method k = 4 k = 6 k = 8

AcroPoly 0.67 0.71 0.71

HapTree 0.77 0.76 0.76

SDhaP 0.62 0.45 0.35

as their recall and false positive rates.
Figure 5.1-(a) and Figure 5.1-(c) show the precision of the AcroPoly and FreeBayes

markers in finding quantitative trait loci as a function of heritability. These results show
that markers found by AcroPoly detect the causal loci more precisely than single SNP
markers (estimated by FreeBayes), especially at low degrees of heritability. For both hap-
lotype interaction and independent SNP effect models, the precision of AcroPoly already
reaches around 0.8 for a heritability as low as 0.1, while FreeBayes reaches the same level
only for h2 > 0.3 with the independent SNP effect model and for h2 > 0.8 with the haplo-
type interaction model.

These results indicate the superiority of multi-allelic short haplotype markers in de-
tecting the causative variants, especially for the haplotype interaction model. When the
effect of a causal SNP allele is independent of its phasing, as in the independent SNP
effect model, bi-allelic SNP markers at close distances can still efficiently tag the causal
SNPs. This is reflected in Figure 5.1-(c), as the precisions of AcroPoly and FreeBayes
markers are both as high as around 80% when the heritability is more than 0.3. In con-
trast, in the haplotype interaction model the phasing of the causal SNPs’ alleles deter-
mines the genetic component of the trait, hence the precision of single SNP markers in
tagging the causal alleles substantially decreases and falls below that of the haplotype
markers (Figure 5.1-(a)).

The recall rates of AcroPoly and FreeBayes at various levels of heritability are also
shown in Figure 5.1. AcroPoly markers help detect more causal variants with both the
haplotype interaction model (Figure 5.1-(b)) and the model with independent SNP ef-
fects (Figure 5.1-(d)). Both AcroPoly and FreeBayes, however, perform better with the in-
dependent SNP effect model, with AcroPoly reaching a recall of around 0.95 at h2 > 0.6,
compared to the haplotype interaction model of inheritance for which the maximum re-
call at the same levels of heritability (h2 > 0.6) is around 0.6. This is to be expected, as
the haplotype markers estimated by AcroPoly are still local and do not span beyond a few
SNPs (s = 3), which means they may not be able to uniquely identify functional alleles
that span tens of SNPs.

Using the simulations of phenotypic traits without a genetic component (h2 = 0), we
obtained the average values and the 99% confidence intervals for the false positive rates
(FPR) of AcroPoly and FreeBayes to be 0.003(0;0.07) and 0.0005(0;0.039), respectively.
The FPR was therefore very small for both methods and not significantly larger than zero
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Figure 5.1: Precisions and recall rates, respectively, of AcroPoly and FreeBayes association analyses
for (a),(b) haplotype interaction and (c), (d) independent SNP effect phenotype model, at different
heritabilites in simulated populations of 20 individuals. The error bars indicate the standard errors
of the precision averages over 135 simulations at each level of heritability.

at α= 0.01, although it was on average slightly higher for AcroPoly.
These results show that the multi-allelic short haplotype markers scored by AcroP-

oly are more powerful compared to single SNP dosages and can also detect the causal
variants with higher precision. Therefore, AcroPoly markers are better candidates for
detecting trait associations.

5.3.3. Analysis of the Alstroemeria cross
We applied AcroPoly to paired-end Illumina sequence reads, obtained by a bait-capture
approach, to investigate the genetic background of disease resistance in an outcrossing
F1 population of Alstroemeria with heterozygous tetraploid parents and 82 offspring.
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Table 5.5: Significant associations with disease resistance in the Alstroemeria cross

Contig name Number of significant markers Markers spanning coordinates (bp) Average contig p-value>

Contig5481 2 980-989 2.16×10−8

Contig10910 1 397-442 4.21×10−8

conContig14495 3 1366-1389 2.29×10−8

singconContig29807 1 156-167 4.46×10−8

Contig8382 3 2851-2911 1.24×10−8

conContig9987 1 982-989 4.69×10−8

conContig21958 2 288-401 1.20×10−8

singconContig40243 3 101-248 8.07×10−9

conContig22185 1 325-333 2.91×10−8

Contig4019 1 1041-1074 1.78×10−9

> Geometric mean of the p-values of significant markers

After aligning the reads to the target contigs, the average sequencing coverage per indi-
vidual was found to be 16× (SD=26×) with an average insert-size of 220 bp (SD=17 bp).

To reduce the effect of incorrectly mapped reads, especially those that might origi-
nate from non-target regions, we set the minimum mapping quality, as well as the min-
imum base calling quality, to 10 for variant calling and limited the number of variant al-
leles to 6 in FreeBayes for its scanning window [21]. In total, 1,357,668 SNPs were called
using this approach. Haplotype dosages were estimated for 3-SNP haplotype windows,
shifting the window by 1 SNP at a time. After filtering haplotype markers found in only a
small subset of individuals (< 20%), 188,358 markers remained for regression analysis, as
explained in Section 5.2.4. With this number of markers ending up in the trait analysis,
we set the per marker significance level to α= 5×10−8 (Section 5.2.4).

Using the LRT, 18 AcroPoly markers, scattered on 10 contigs, were found significantly
associated with disease resistance (Table 5.5). For each contig with significant markers,
an average p-value was calculated as the geometric mean of the p-values of all signifi-
cant markers. The genetic distance between the 10 detected contigs was estimated from
the combined sets of their SNPs using polymapR [8], which showed that all of the contigs
were tightly linked and belonged to the same genomic locus, suggesting the resistance is
a monogenic trait (data not shown).

5.4. Conclusion and Discussion
We present AcroPoly, an expectation maximisation (EM) approach to assign probabilistic
dosages to multi-SNP haplotype alleles in polyploids. These dosages correspond to the
estimated rates of Poisson distributions for the number of reads originating from each
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haplotype allele. Through simulations, we showed that these probabilistic dosages can
reliably predict the actual dosages even at high ploidy levels (k ≥ 6) and can be used as
powerful multi-allelic markers for finding associations to traits, provided that the read
depth is sufficient to infer the latent Poisson rates and there is no sequencing bias af-
fecting the coverages of the haplotypes. We applied AcroPoly to the genome-wide DNA
sequence data obtained from an outcrossing F1-population of Alstroemeria with het-
erozygous tetraploid parents and 82 offspring, and found several haplotype markers sig-
nificantly associated with disease resistance in this cross.

However, there are situations where single SNPs could be just as effective as the hap-
lotypes, e.g. if the causal haplotypes are (almost) perfectly tagged by single SNPs or if the
trait is shaped by multiple SNPs at unlinked loci. In such situations, our proposed ap-
proach can still offer the advantage of yielding accurate marker dosages and effectively
taking the uncertainty of estimation into account, especially for polyploids, as it relies
on a probabilistic latent class model that exploits most of the information contained in
the read depth. Besides, the limit on the number of observed haplotypes at each locus in
some populations, e.g. those derived from bi- or multi-parental crosses, can be easily in-
corporated as prior information in our flexible model (by adjusting the number of latent
classes which correspond to possible haplotype alleles) and hence increase the dosage
estimation accuracy.

An important point to consider about AcroPoly is the trade-off between the accu-
racy of the haplotype dosages and the length of the haplotypes, i.e. the number of SNPs
included in each haplotype. While the limitation of computational resources usually
imposes a restriction on the achievable length, a more important limiting factor is the
length of the sequence reads and the heterozygosity rate of the organism, which deter-
mine the expected number of SNPs covered by each read. As the length of the haplotypes
exceeds the average number of SNPs included in a read, the efficiency of the EM ap-
proach will also decrease as each read can only partially be matched to the possible hap-
lotype alleles. Long read sequencing technologies, such as Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT), can produce reads that are tens of kb long,
which potentially allows for the estimation of dosage scores for much longer haplotypes
in comparison to short read (Illumina) sequencing. To achieve long haplotypes using
these technologies, however, the computational difficulties must still be overcome by a
quick (a priori) exclusion of unlikely haplotype alleles, e.g. by applying a simple filtering
step based on read counts or, if possible, by taking the population structure into account.

The accuracy of AcroPoly depends on the validity of its assumptions, notably the
Poisson distribution for the number of reads matched to each haplotype. These as-
sumptions might be violated for repetitive regions, as reads from other regions might be
incorrectly mapped to the region of interest. Also, the EM method can result in biased
estimates of the dosages if the library preparation and sequencing method artificially
increase (decrease) the number of reads generated from some of the haplotypes. Alter-
native distributions, such as the negative binomial or Gamma, can replace the Poisson
distribution in such cases, although this can render the implementation and the conver-
gence of the EM algorithm more difficult.

While we applied AcroPoly to assign probabilistic dosages to individuals, its use is not
limited to individuals as the EM algorithm can also estimate the frequencies of haplotype



References 129

alleles in pools of individuals. This application is especially important for crops that are
bred, genetically studied and selected as family pools, such as ryegrass [19]. Genetic
associations can be thus tested using the obtained haplotype frequencies as predictors
of the desired phenotypes.

Appendix
Proof of Equation 5.6:
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6
General Discussion

A large part of the work presented in this thesis focused on the development of haplotype
estimation algorithms and the evaluation of these algorithms. However, it is also impor-
tant to investigate how these methods could obtain a wider applicability and which im-
provements are necessary for this purpose. In this closing chapter, I discuss the impact
of emerging sequencing techniques on haplotyping for both diploids and polyploids, as
well as the use of haplotype estimation methods in polyploid genetics and genomics,
considering autopolyploids as well as allopolyploids. I conclude this chapter by men-
tioning prospective validation approaches and the significance of the methods devel-
oped in this thesis for the foreseeable future.

6.1. Issues and opportunities offered by emerging sequencing
techniques

Since the emergence of next generation sequencing technologies in the late nineties,
astonishing progress has been observed in the throughput, cost and read-length of se-
quencing [19]. Third generation sequencing technologies, such as Oxford Nanopore
Technologies (ONT) [30] and PacBio [33], now offer sequence reads with lengths rang-
ing from several to hundreds of kilobases. In addition to these long-read technologies,
the multiplexed microfluidic DNA preparation method developed by 10X Genomics can
be piggybacked on the traditional Illumina sequencing platform to generate short reads
linked and separated by uncalled inserts within a single fragment that spans a long ge-
nomic distance [50]. Another DNA preparation approach, Hi-C, is capable of linking ge-
nomic loci that are distant in the linear genome, but are physically close through the 3D
folding of chromatin [28]. The long reads or sequencing fragments obtained by these ap-
proaches are more likely to contain several genomic variants compared to short reads,
and therefore reveal more information about the haplotypes [23]. However, the same
challenges are present for phasing as with short reads, making a thorough evaluation
of the estimation methods necessary using various measures of estimation quality, as
discussed in Chapter 2.
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Chin et al. [6] present a haplotype aware assembler for diploid genomes, FALCON
Unzip, which is based on the classical three stages for de novo assembly: overlap, layout
and consensus (OLC). Using the contigs obtained by the flexible primary assembler FAL-
CON, FALCON Unzip looks into different possible phasings between overlapping contigs
and chooses those supported the most by the reads. A novel method, FALCON Phase,
tries to scaffold interrupted haplotype contigs of FALCON Unzip by mapping Hi-C short-
reads to them, so that ultra-long-range haplotypes (>1Mb) can be obtained [26]. How-
ever, the success of these approaches depends on the sequencing depth, read length and
base calling error, as well as on the rate and type of variation between the haplotypes.
In particular, the rather high sequencing error rates can result in spurious haplotypes or
interrupt the phasing. Due to higher sequencing error rates, this issue is specially a limit-
ing factor with ONT sequencing [27]. Ghareghani et al. [18] present SaaRclust for reliable
separation of ONT reads per chromosome before assembly, based on a latent variable
model, which has only been evaluated on the human genome.

However, haplotype aware assembly is much more difficult for polyploid genomes.
For allopolyploids, the problem can be reduced to diploid assembly by assuming an or-
ganism with 2n = kx chromosomes to be a diploid organism with 2n = 2( k

2 x) chromo-
somes. Substantial differences between the subgenomes of an allopolyploid can make
this approach possible, as has been applied to the allotetraploid blueberry, using a com-
bination of 10X Genomics, Illumina and Hi-C data [10].

Recently, a pan-genomic approach has been developed by the NRGene company [31],
which makes use of a combination of long and short reads to make a graphical database
of all possible contigs and their mutual relationships for several cultivars within the same
species. This approach has successfully been applied to the diploid corn [31] and is cur-
rently under development for polyploids, notably for potato. Using such a database, the
read alignment, variant calling and haplotyping steps can all be integrated and improved
for both long and short reads. Such an integrated approach is capable of revealing most
of the SNPs, presence/absence variations (PAV) and chromosome rearrangements ob-
served in a query genome with respect to the pan-genome reference [39, 42].

6.2. Use of haplotype estimation methods in polyploid genetics
When it comes to the application of sequence-based haplotyping to study the genetics
of polyploid populations, the first question that must be faced in practice is get enough
sequencing coverage. We showed in Chapter 2 that the efficiency of single individual
haplotyping (SIH) heavily depends on the sequencing depth. In Chapters 3 and 4 we
showed that using pedigree information results in higher accuracy at lower sequencing
depths. However, a coverage of at least 2× per homologue is still needed for each indi-
vidual to obtain satisfactory haplotype estimates using population-based methods such
as TriPoly and PopPoly. This corresponds to a total coverage of 8× for tetraploids, while
in large populations (consisting of a few hundreds or more individuals) the feasible total
coverage, limited by time and budget considerations, using high-throughput (and rela-
tively cheap) Illumina sequencing is often lower.

However, the interest is not always in the markers, and hence not in the haplotypes,
of a single individual in genetic studies, for example when the aim is to compare frequen-
cies of different alleles in a group of seedlings resistant to a phytopathogen with those in
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a susceptible group [32, 44]. Such a strategy has also been applied to case and control
groups in genetic epidemiology [21]. Therefore, an alternative strategy to determinis-
tic phasing, as discussed in Chapter 5, can be applied in this situation to estimate the
frequencies of haplotype alleles that are theoretically possible over a region of interest.
This approach makes the pooling of sequence reads possible within each experimental
group and thus compensates for the shallow coverage of each individual. However, it is
still worth determining the phasing for a number of individuals to obtain a preliminary
set of haplotype alleles that actually occur in the (unstructured) population, so that un-
likely haplotype alleles are ruled out a priori. This is especially important if haplotypes
contain many SNPs, and hence have many theoretically possible alleles, as the compu-
tational burden is considerably reduced and the precision of frequency estimates is im-
proved. The PopPoly approach is in particular advantageous to obtain haplotypes that
appear in an F1-population with low individual coverages, as it uses all of the population
reads to estimate the parental haplotypes with high precision. The PopPoly method can
also deliver several likely estimates of the phasing, instead of just the most likely, so that
a broader set of haplotypes can be considered for the bulk analysis.

As sequencing costs are plummeting and throughput and precision increase, whole
population sequencing is becoming an attractive alternative to the traditional marker
genotyping and imputation methods. This can benefit polyploids the most, as linkage
analysis and genetic imputation are much more complicated compared to diploids [3,
37, 49]. In sequenced segregating populations, haplotype estimation methods can reveal
the inheritance patterns for a set of densely positioned markers with high precision and
thus help fine mapping of the traits of interest. This landscape becomes more promising
if cheap, high-throughput short-read sequence data can be complemented with long-
range sequencing of selected regions or individuals, so that the gaps between haplotype
blocks can be bridged and structural variations can be detected [38].

Haplotypes can also be very useful tools for genomic prediction, where the goal is
to accurately predict traits of interest using a large set of dense genetic markers [5, 22].
However, errors in haplotype estimation might reduce the prediction accuracy with hap-
lotypes compared to individual markers [35]. Approaches such as AcroPoly (Chapter 5)
are capable of providing reliable haplotype scores to be used for prediction, incorporat-
ing the estimation uncertainty into probabilistic haplotype scores, for both diploid and
polyploid populations.

6.3. Sequence-based phasing in populations
We presented two approaches that combine sequence data with inheritance informa-
tion coming from the population structure to improve sequence-based haplotyping. The
TriPoly method in Chapter 3 compares the phasing estimate of each offspring to the
parental estimates according to the inheritance pattern expected in a trio with a pre-
specified recombination rate. The PopPoly method in Chapter 4 combines all of the
reads in an F1-population to estimate the haplotypes of the parents and subsequently
chooses the phasing of each offspring from the parental transmissions, assuming com-
plete Mendelian inheritance with no recombination.

The complexity of haplotype estimation algorithms often requires heavy computa-
tions for large populations and with high sequencing depths. However, as sequence
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reads are assumed independent of each other and the offspring conditionally indepen-
dent given the parents, calculations are massively parallel and therefore can greatly ben-
efit from GPU-computing, which makes use of powerful and highly-parallel program-
able processors called graphics processing units (GPU). GPU-computing has success-
fully been used to accelerate sequence alignment [29] and has the potential of greatly
speeding up haplotyping, rendering the methods scalable to large populations at not
much extra cost.

The inheritance information provided by F1-populations can also be used to de-
termine the phasing between haplotype blocks, i.e. to connect phasing interruptions
caused by lack of informative overlaps between the reads. For the sake of illustration,
consider a situation where in a tetraploid F1-population we have maternal haplotype a
in block A, which is distinct from the three other haplotypes in the block, and maternal
haplotype b in the closely located block B, which is also distinct. Looking into the off-
spring phasing estimates of block A and block B, we can conclude that haplotypes a and
b are in coupling phase (located on the same chromosome), if they are always or most
of the time inherited together. An observation of completely random co-inheritance,
i.e. in 1

2 × 1
2 = 1

4 of the offspring, leads us to conclude that a and b are in repulsion phase
(located on different chromosomes). A generalisation of the population-based phasing
methods, which currently handle only SNP markers [4, 49], allows systematic tackling of
the long-range haplotyping problem in populations, even with short sequencing reads,
and thus can be of particular interest for genomic prediction and genomic selection.

Finally, there is definitely a need to extend the methods developed for F1-populations
to other types of (partially) outcrossing populations, such as a GWAS panel [14, 41]. In
such populations, prior estimation of founder haplotypes and homozygous lines pro-
vides some information about the occurring haplotypes and their expected frequencies
in the rest of the population, which can be combined with sequence data to construct
improved likelihood models for phasing.

6.4. Haplotype estimation for studying genomic variation in
allopolyploids

The methods of haplotype estimation discussed in this thesis were developed using the
assumptions that for an individual, reads originating from any of the chromosomes can
be accurately aligned to a common reference genome and that there is no preferential
pairing between the chromosomes. These assumption are often violated in allopolyploid
species, which consist of divergent subgenomes. However, the basic concepts underly-
ing the methods can still be applied when regions dissimilar between the subgenomes
are flanked by similar regions, e.g. orthologs, that contain SNP markers. For such regions,
the flanking markers can be used to distinguish the occurring haplotypes. Knowing these
haplotypes helps reveal phylogenetic origins of the subgenomes and is of great value for
answering fundamental questions about molecular mechanisms [13, 45, 47].

If a common reference is available for the subgenomes, common SNPs can be called
and their phasings can be estimated using the introduced haplotyping methods, even if
the used reference is in parts divergent compared to the subgenomes [24]. The estimated
SNP phasings can be used to group the reads according to their chromosomal origin. To
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achieve this, the reference bases are first replaced with the SNP alleles of each haplotype
to obtain a backbone sequence for each chromosome and the reads are aligned to these
backbones using algorithms such as BLAST [48]. In this way, the full sequence of each
chromosome can be determined over the region of interest by assembling the assigned
reads. Structural variations and insertions/deletions can then be detected by comparing
the assembled haplotype sequences to the common reference or to each other. Such an
approach is especially applicable with long sequence reads, which are likely to contain
several common SNPs. For allopolyploids, this approach can also be used to distinguish
homologous, i.e. within subgenome, SNPs from homoeologous SNPs, i.e. SNPs that are
homozygous within the subgenomes but bear different alleles on each. This method of
detecting homologous SNPs can be applied to a broad range of allopolyploids, in con-
trast to methods such as SWEEP [8] and HAPLOSWEEP [9] that have been developed for
self-fertilising allopolyploids.

6.5. Validation of haplotype estimation algorithms
In case the haplotypes of an organism can be set apart by experimental methods and
thus separately sequenced [40], the performance of a haplotype estimation algorithm
can be assessed with respect to the ground truth. This is, however, often not the case as
the available procedures are laborious and costly and not always successful, especially
for polyploids [12]. Simulation of polyploid genomes and sequence data is an alterna-
tive that also allows evaluating performance under varying heterozygosity rates, ploidy
levels, sequencing approaches, read lengths and sequencing depths. Such a comparison
of different scenarios is not easily possible with experimental datasets.

However, inferring real-world performance from simulation data is not straightfor-
ward, as the genomic complexity of polyploids goes far beyond the density of heterozy-
gous SNPs and the distribution of their dosages. When compared to a common refer-
ence, distantly related genomes can host abundant insertions, deletions and chromo-
somal rearrangements. When primers and library preparation protocols are designed
using a rather distant reference, these differences can heavily affect the upstream analy-
sis of the sequence data including read alignment and variant calling. Some of the reads
might be aligned to wrong genomic positions and therefore result in spurious variants or
wrong dosage estimates. Some of the variant alleles might also be lost, or not amplified,
during the DNA preparation step and therefore not detected by variant callers [2, 34].

In Chapter 2, we use an approach that integrates the simulation of polyploid genomes
and sequence reads with conventional read alignment and variant calling, hence min-
imising the effect of the simplifying assumptions necessary for simulation. Using this
approach, we show that the results obtained by more simplistic simulations do not al-
ways hold and may even be contradicted. For instance, while simplistic simulations
show that SDhaP is more accurate than HapTree [11], we show in Chapter 2 that Hap-
Tree is the more accurate method with Illumina sequencing. However, our simulation
approach is also inevitably based on simplifying assumptions about sequencing cover-
age and sequence similarity to the reference genome.

However, experimental approaches could be applied to a set of selected organisms
and loci, providing a common database for the benchmarking of haplotype estimation
methods that use high-throughput sequencing [36]. For example, the traditional Sanger
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sequencing approach combined with allele specific PCR [43] or cloning [25] can yield
highly accurate haplotypes, although at high cost and low throughput. The substantial
cost and labour required for constructing such a database can be shared and provided
by a consortium of research centres, which will eventually benefit the whole field [51].
High-throughput long-read and short-read sequence data can also be added to such a
database at high depths, providing a standard for the evaluation of haplotyping, as well
as genome assembly and alignment methods.

The insights obtained by such experimental haplotypes can also help improve sim-
ulation pipelines and genome modelling, so that simulations result in more reliable and
more generalisable validations in various situations. The availability of standard data
makes non-parametric simulation an option as well, as artificial polyploids can be made
by combining available haplotypes and desired sequencing depths can be achieved by
downsampling of the available high-throughput sequence data.

6.6. Concluding remarks
With recent advances in molecular techniques and statistical methods, plant genetics
and breeding has observed a major shift in many aspects. Polyploidy has so become a
centre of attention, with many questions still unanswered about its evolutionary conse-
quences. Modern experimental methods and computational tools enable us to investi-
gate polyploid genomes for finding trait loci and crop improvement [4, 15], among which
high-throughput sequencing plays an increasingly important role [17, 20, 46]. Haplo-
typing is an important part of sequence data analysis in heterozygous polyploids and is
tightly linked to read assembly/alignment and variant calling [7, 16, 17].

The first sequence-based haplotype estimation algorithm for polyploids was intro-
duced by Aguiar and Istrail [1], about half a decade ago. While the state of the art has
advanced since then, there is still ample room for improvement, especially considering
the growth in the amount of available sequence data and the advances in computational
resources. The work presented in the current thesis was one of the first attempts to-
wards combining population structure and sequencing data for polyploid haplotyping,
and using sequence-based haplotypes for studying phenotypic traits in polyploids. The
short sequence reads targeted by the algorithms presented in this thesis will remain the
main source of sequence data for large scale populations, at least in the foreseeable fu-
ture, as these technologies still outperform the emerging long-read technologies in cost,
throughput and precision.

With the continuous advances in sequencing, haplotypes are expected to become an
essential tool for both genetic analysis and precision breeding in the near future.
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Summary
Haplotypes are sequences of ordered genomic variants over the same chromosome. Cur-
rent sequencing technologies enable us to read the DNA and detect genomic variants,
but cannot distinguish between the copies of the genome in diploids, one inherited from
each parent. Therefore, it is not clear which alleles are found on the same chromosome.
To detect inheritance patterns in populations, it is necessary to know the haplotypes, as
alleles that are in linkage over the same chromosome tend to be inherited together. Be-
sides, the allele effects sometimes depend on the alleles being located on the same copy
of the genome. Mathematical optimisation algorithms have therefore been developed
to indirectly estimate haplotypes by looking into overlaps between the sequence reads
of an individual, as each sequencing read that contains more than two variation posi-
tions is representative of its haplotype of origin. However, such algorithms have to deal
with sequencing errors and random variations in the counts of reads observed from each
haplotype. Polyploid organisms possess more than two copies of their core genome and
therefore contain k>2 haplotypes for each set of variation positions. Polyploidy occurs
often within the plant kingdom, among others in important corps such as potato (k=4)
and wheat (k=6). Haplotype estimation is much more difficult in polyploids compared
to diploids and estimation algorithms are more prone to yield non-existing haplotypes.

Chapter 1 gives an overview of the use of haplotypes in plant genetics and breeding,
and provides a thorough introduction to polyploidy and its origins. Basic mathematical
concepts are also discussed, necessary for developing haplotype estimation algorithms.

In Chapter 2, we develop a simulation pipeline for polyploid genomes and intro-
duce measures to assess the accuracy of polyploid haplotype estimation algorithms. The
pipeline and the measures allow to investigate how haplotype estimation is influenced
by the read length, library preparation and sequencing technology, heterozygosity rate
and the ploidy level. Finally, the pipeline is used to evaluate and compare several state-
of-the-art haplotyping algorithms. In Chapter 3 and Chapter 4, two Bayesian algorithms
are introduced to infer haplotypes in trios (TriPoly) and in families with several to many
offspring (PopPoly). The Bayesian framework incorporates both inheritance informa-
tion and partial haplotype information within the reads, and can therefore result in pre-
cise estimates. Missing alleles can also be imputed using this approach, as is done by
PopPoly. We extend the simulation pipeline of Chapter 1 to simulate parental crossing
and show that both TriPoly and PopPoly significantly improve the quality of haplotyping
in the offspring compared to single individual methods. In Chapter 5 we propose an
expectation-maximisation (EM) algorithm, AcroPoly, to infer the allele dosages of multi-
SNP haplotype markers directly from the sequencing depth, and to associate these mark-
ers with traits.

The thesis is concluded in Chapter 6 by discussing potential applications of the de-
veloped methods, as well as opportunities offered by emerging sequencing technologies
for improved determination of haplotypes.
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Samenvatting
Haplotypen zijn sequenties van geordende genomische varianten op hetzelfde chromo-
soom. Hoewel huidige sequencingtechnologieën ons in staat stellen om het DNA te le-
zen en daarin genomische varianten te ontdekken, kunnen ze geen onderscheid ma-
ken tussen de kopieën van het genoom in diploïden, waarvan één is geërfd per ouder.
Daarom is het niet duidelijk welke allelen zich op hetzelfde chromosoom bevinden. Voor
het detecteren van overervingspatronen in populaties is het noodzakelijk de haplotypen
te kennen, omdat allelen die op hetzelfde chromosoom met elkaar verbonden zijn in het
algemeen samen overerfd worden. Bovendien hangen de effecten van allelen er soms
van af of ze zich op dezelfde kopie van het genoom bevinden. Daarom zijn er wiskun-
dige optimalisatiealgoritmen ontwikkeld die haplotypes indirect proberen te schatten,
door te kijken naar overlap tussen de DNA reads van een individu. Deze aanpakken zijn
gebaseerd op het feite dat elke gelezen sequentie die twee of meer variatieposities bevat,
het haplotype dat bij die sequentie hoort vertegenwoordigt. Zulke algoritmen hebben
echter te maken met sequencingfouten en toevallige afwijkingen in het aantal waarge-
nomen reads per haplotype. Polyploïde organismen bezitten meer dan twee kopieën
van hun kerngenoom en bevatten daarom k>2 haplotypen per set variatieposities. Po-
lyploïdie komt vaak voor binnen het plantenrijk, onder andere in belangrijke gewassen
zoals aardappel (k = 4) en tarwe (k = 6). In vergelijking met diploïden is haplotypeschat-
ting veel moeilijker in polyploïden en geven schattingsalgoritmen vaker niet-bestaande
haplotypen.

Hoofdstuk 1 geeft een overzicht van het gebruik van haplotypen in plantengenetica
en veredeling. Dit hoofdstuk biedt ook een grondige inleiding tot polyploïdie en de oor-
sprong ervan. Daarnaast worden de basale wiskundige begrippen besproken die nood-
zakelijk zijn voor het ontwikkelen van haplotypeschattingsalgoritmen.

In Hoofdstuk 2 ontwikkelen we een simulatiepijplijn voor polyploïde genomen en
stellen we maten voor om de nauwkeurigheid van polyploïde
haplotypeschattingsalgoritmen te beoordelen. De pijplijn en de voorgestelde maten ma-
ken het mogelijk om te onderzoeken hoe de haplotypenschatting wordt beïnvloed door
de lengte van de gelezen sequenties, het maken van de sequentie-library en sequencing-
technologie, de frequentie van heterozygositeit en het ploidieniveau. Ten slotte wordt de
pijplijn gebruikt om verschillende huidige haplotypeschattingsalgoritmen te evalueren
en te vergelijken. In Hoofdstuk 3 en Hoofdstuk 4 worden twee Bayesiaanse algoritmen
geïntroduceerd om haplotypes af te leiden in trio’s (TriPoly) en in families met meerdere
tot vele nakomelingen (PopPoly). Het Bayesiaanse kader maakt het mogelijk de overer-
vingspatronen en de gedeeltelijke informatie over de haplotypen in de reads te combi-
neren, resulterend in preciezere schattingen van de haplotypen. Bovendien kunnen op
deze manier ontbrekende varianten worden afgeleid, zoals door PopPoly. We breiden
de simulatiepijplijn van Hoofdstuk 1 uit om de kruising tussen de ouders te simuleren
en laten zien dat zowel TriPoly als PopPoly leiden tot aanzienlijk betere schattingen in
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de nakomelingen in vergelijking met de methoden die enkele individuen beschouwen.
In Hoofdstuk 5 stellen we een expectation-maximization (EM) algoritme voor, AcroPoly,
om de alleldoseringen van multi-SNP haplotypemerkers direct af te leiden uit de sequen-
cingdiepte. We gebruiken deze merkers in een populatie om associaties met fenotypi-
sche eigenschappen te detecteren.

Het proefschrift wordt afgesloten in Hoofdstuk 6, waarin potentiële toepassingen
van de ontwikkelde methoden besproken worden, evenals kansen die opkomende se-
quencingtechnologieën bieden voor een betere bepaling van de haplotypen.



Epilogue
The study of inheritance, in its foundation, was to find out relations between observ-
able traits and the kinship. This culminated in the experiments of Gregor Mendel (1822-
1844) and his well known laws of inheritance. Today, we know much more about gene
expression, genomic recombination and the 3D structures of the life molecules. The
technology has so evolved that the whole DNA sequence, albeit blurry and fragmented,
can be measured within a single cell. The organization of the eukaryotic DNA in (par-
tially) homologous haplotypes is an important feature which must be known in order to
fully understand the regulatory processes and interactions between genes.

However, making sense out of the immense, fragmentary and noisy data, ranging
from the DNA to RNA and amino-acid sequences and their 3D structures, requires math-
ematical simplification, optimization and approximation. As Bertrand Russel (1872-
1970) once put into words, attention must be paid not to confound the mathematical
properties that we can discover with the underlying ontology.

The current thesis has been the result of a joint effort, and it should be acknowl-
edged as such. First and foremost, I need to thank my promotor, Dick de Ridder, and my
co-promotors Chris Maliepaard and Richard Finkers. The amount of support and inspi-
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