4,752 research outputs found

    Ontologies in medicinal chemistry: current status and future challenges

    Get PDF
    [Abstract] Recent years have seen a dramatic increase in the amount and availability of data in the diverse areas of medicinal chemistry, making it possible to achieve significant advances in fields such as the design, synthesis and biological evaluation of compounds. However, with this data explosion, the storage, management and analysis of available data to extract relevant information has become even a more complex task that offers challenging research issues to Artificial Intelligence (AI) scientists. Ontologies have emerged in AI as a key tool to formally represent and semantically organize aspects of the real world. Beyond glossaries or thesauri, ontologies facilitate communication between experts and allow the application of computational techniques to extract useful information from available data. In medicinal chemistry, multiple ontologies have been developed during the last years which contain knowledge about chemical compounds and processes of synthesis of pharmaceutical products. This article reviews the principal standards and ontologies in medicinal chemistry, analyzes their main applications and suggests future directions.Instituto de Salud Carlos III; FIS-PI10/02180Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo; 209RT0366Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2012/217Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2011/034Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; CN2012/21

    Engineering polymer informatics: Towards the computer-aided design of polymers

    Get PDF
    The computer-aided design of polymers is one of the holy grails of modern chemical informatics and of significant interest for a number of communities in polymer science. The paper outlines a vision for the in silico design of polymers and presents an information model for polymers based on modern semantic web technologies, thus laying the foundations for achieving the vision

    Semantic Similarity in Cheminformatics

    Get PDF
    Similarity in chemistry has been applied to a variety of problems: to predict biochemical properties of molecules, to disambiguate chemical compound references in natural language, to understand the evolution of metabolic pathways, to predict drug-drug interactions, to predict therapeutic substitution of antibiotics, to estimate whether a compound is harmful, etc. While measures of similarity have been created that make use of the structural properties of the molecules, some ontologies (the Chemical Entities of Biological Interest (ChEBI) being one of the most relevant) capture chemistry knowledge in machine-readable formats and can be used to improve our notions of molecular similarity. Ontologies in the biomedical domain have been extensively used to compare entities of biological interest, a technique known as ontology-based semantic similarity. This has been applied to various biologically relevant entities, such as genes, proteins, diseases, and anatomical structures, as well as in the chemical domain. This chapter introduces the fundamental concepts of ontology-based semantic similarity, its application in cheminformatics, its relevance in previous studies, and future potential. It also discusses the existing challenges in this area, tracing a parallel with other domains, particularly genomics, where this technique has been used more often and for longer

    Exploring the relationship between the Engineering and Physical Sciences and the Health and Life Sciences by advanced bibliometric methods

    Get PDF
    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade

    Integration and mining of malaria molecular, functional and pharmacological data: how far are we from a chemogenomic knowledge space?

    Get PDF
    The organization and mining of malaria genomic and post-genomic data is highly motivated by the necessity to predict and characterize new biological targets and new drugs. Biological targets are sought in a biological space designed from the genomic data from Plasmodium falciparum, but using also the millions of genomic data from other species. Drug candidates are sought in a chemical space containing the millions of small molecules stored in public and private chemolibraries. Data management should therefore be as reliable and versatile as possible. In this context, we examined five aspects of the organization and mining of malaria genomic and post-genomic data: 1) the comparison of protein sequences including compositionally atypical malaria sequences, 2) the high throughput reconstruction of molecular phylogenies, 3) the representation of biological processes particularly metabolic pathways, 4) the versatile methods to integrate genomic data, biological representations and functional profiling obtained from X-omic experiments after drug treatments and 5) the determination and prediction of protein structures and their molecular docking with drug candidate structures. Progresses toward a grid-enabled chemogenomic knowledge space are discussed.Comment: 43 pages, 4 figures, to appear in Malaria Journa

    Mapping and characterization of G-quadruplexes in Mycobacterium tuberculosis gene promoter regions

    Get PDF
    Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), one of the top 10 causes of death worldwide in 2015. The recent emergence of strains resistant to all current drugs urges the development of compounds with new mechanisms of action. G-quadruplexes are nucleic acids secondary structures that may form in G-rich regions to epigenetically regulate cellular functions. Here we implemented a computational tool to scan the presence of putative G-quadruplex forming sequences in the genome of Mycobacterium tuberculosis and analyse their association to transcription start sites. We found that the most stable G-quadruplexes were in the promoter region of genes belonging to definite functional categories. Actual G-quadruplex folding of four selected sequences was assessed by biophysical and biomolecular techniques: all molecules formed stable G-quadruplexes, which were further stabilized by two G-quadruplex ligands. These compounds inhibited Mycobacterium tuberculosis growth with minimal inhibitory concentrations in the low micromolar range. These data support formation of Mycobacterium tuberculosis G-quadruplexes in vivo and their potential regulation of gene transcription, and prompt the use of G4 ligands to develop original antitubercular agents

    WIPI1, BAG1 and PEX3 autophagy-related genes are relevant melanoma markers

    Get PDF
    ROS and oxidative stress may promote autophagy; on the other hand, autophagy may help reduce oxidative damages. According to the known interplay of ROS, autophagy, and melanoma onset, we hypothesized that autophagy-related genes (ARGs) may represent useful melanoma biomarkers. We therefore analyzed the gene and protein expression of 222 ARGs in human melanoma samples, from 5 independent expression databases (overall 572 patients). Gene expression was first evaluated in the GEO database. Forty-two genes showed extremely high ability to discriminate melanoma from nevi (63 samples) according to ROC (AUC ≥ 0.85) and Mann-Whitney (p < 0.0001) analyses. The 9 genes never related to melanoma before were then in silico validated in the IST online database. BAG1, CHMP2B, PEX3, and WIPI1 confirmed a strong differential gene expression, in 355 samples. A second-round validation performed on the Human Protein Atlas database showed strong differential protein expression for BAG1, PEX3, and WIPI1 in melanoma vs control samples, according to the image analysis of 80 human histological sections. WIPI1 gene expression also showed a significant prognostic value (p < 0.0001) according to 102 melanoma patients' survival data. We finally addressed in Oncomine database whether WIPI1 overexpression is melanoma-specific. Within more than 20 cancer types, the most relevant WIPI1 expression change (p = 0.00002; fold change = 3.1) was observed in melanoma. Molecular/functional relationships of the investigated molecules with melanoma and their molecular/functional network were analyzed via Chilibot software, STRING analysis, and gene ontology enrichment analysis. We conclude that WIPI1 (AUC = 0.99), BAG1 (AUC = 1), and PEX3 (AUC = 0.93) are relevant novel melanoma markers at both gene and protein levels
    corecore