We investigate the extent to which advances in the health and life sciences
(HLS) are dependent on research in the engineering and physical sciences (EPS),
particularly physics, chemistry, mathematics, and engineering. The analysis
combines two different bibliometric approaches. The first approach to analyze
the 'EPS-HLS interface' is based on term map visualizations of HLS research
fields. We consider 16 clinical fields and five life science fields. On the
basis of expert judgment, EPS research in these fields is studied by
identifying EPS-related terms in the term maps. In the second approach, a
large-scale citation-based network analysis is applied to publications from all
fields of science. We work with about 22,000 clusters of publications, each
representing a topic in the scientific literature. Citation relations are used
to identify topics at the EPS-HLS interface. The two approaches complement each
other. The advantages of working with textual data compensate for the
limitations of working with citation relations and the other way around. An
important advantage of working with textual data is in the in-depth qualitative
insights it provides. Working with citation relations, on the other hand,
yields many relevant quantitative statistics. We find that EPS research
contributes to HLS developments mainly in the following five ways: new
materials and their properties; chemical methods for analysis and molecular
synthesis; imaging of parts of the body as well as of biomaterial surfaces;
medical engineering mainly related to imaging, radiation therapy, signal
processing technology, and other medical instrumentation; mathematical and
statistical methods for data analysis. In our analysis, about 10% of all EPS
and HLS publications are classified as being at the EPS-HLS interface. This
percentage has remained more or less constant during the past decade