
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322444331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

Chapter

Semantic Similarity in 
Cheminformatics
João D. Ferreira and Francisco M. Couto

Abstract

Similarity in chemistry has been applied to a variety of problems: to predict bio-
chemical properties of molecules, to disambiguate chemical compound references 
in natural language, to understand the evolution of metabolic pathways, to predict 
drug-drug interactions, to predict therapeutic substitution of antibiotics, to esti-
mate whether a compound is harmful, etc. While measures of similarity have been 
created that make use of the structural properties of the molecules, some ontologies 
(the Chemical Entities of Biological Interest (ChEBI) being one of the most rel-
evant) capture chemistry knowledge in machine-readable formats and can be used 
to improve our notions of molecular similarity. Ontologies in the biomedical domain 
have been extensively used to compare entities of biological interest, a technique 
known as ontology-based semantic similarity. This has been applied to various bio-
logically relevant entities, such as genes, proteins, diseases, and anatomical struc-
tures, as well as in the chemical domain. This chapter introduces the fundamental 
concepts of ontology-based semantic similarity, its application in cheminformatics, 
its relevance in previous studies, and future potential. It also discusses the existing 
challenges in this area, tracing a parallel with other domains, particularly genomics, 
where this technique has been used more often and for longer.

Keywords: semantic similarity, ontologies, ChEBI, prediction of molecule properties, 
databases

1. Introduction

With the unprecedented amount of data being generated today, we must start 
(and in some cases have already started) to rely on automatic systems to process, 
analyse, and understand all the scientific information that we produce. For some 
examples in chemistry, consider the number of drugs represented in DrugBank, 
which grew from 3909 in 2006 to 9688 [1], about 13% each year; the number 
of metabolites in the Human Metabolite Database grew from 2180 in 2007 to 
114,100 in 2017 [2], approximately 39% per year (although at some point this 
database imported a large number of metabolites at once, artificially increasing 
this statistic); ChemSpider had 25 million compounds in 2010 [3] and now has 
63 million (10% a year); and PubChem grew from 19 million compound structures 
in 2008 [4] to 96.5 million in August 2018 [5] (16% a year). These numbers usually 
grow exponentially [6], reflecting the fact that the amount of knowledge the scien-
tific community produces is proportional to the amount of knowledge we discover.
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With such high volumes of data, it is imperative that we categorise this informa-
tion in ways that assist us in the tasks of consuming that information, specifically 
through categorisation schemas that abstract away the less useful details of reality 
and increase the manageability of this information. As we will see later in this 
chapter, ontologies can perform that goal: they are computational artefacts (files, 
tables in a database, etc.) whose goal is to encode real-world knowledge in machine-
readable logical axioms that can be used by automatic systems to manipulate the 
knowledge inferred and potentially derivable from the data we have.

Furthermore, like most other scientific knowledge, chemistry ideas and notions 
are inferred from comparing entities and finding their similarities and differences. 
For instance, compound similarity has been used to (i) develop pharmacophores 
[7, 8], (ii) estimate whether a compound is harmful without in vivo experimenta-
tion [9], (iii) understand the evolution of metabolic pathways [10], (iv) predict 
adverse side effects of drugs [11], and (v) perform pharmacological profiling of 
compounds in drug design [12].

As we explore in this chapter, ontologies provide one way to measure similarity 
of chemistry entities (compounds, substances, mixtures, reactions, etc.), a tech-
nique known as ontology-based semantic similarity (shortened to semantic similar-
ity in this chapter). This idea is already widely used in genomics and proteomics, 
but its full potential still needs to be brought over to other domains. While some 
research has successfully used this methodology in the cheminformatics domain 
(which we discuss below), there is still space for improvement and further method-
ological development.

In this chapter, we explore the ideas and concepts behind semantic similarity 
and chemistry ontologies, explore some past applications that use those concepts to 
further our knowledge of the chemical domain, and expose some limitations and 
challenges that this technique still needs to overcome for its whole potential to be 
released.

2. Measures of similarity in chemistry

Similarity, in its nature, is a notion that produces a number. In that sense, it 
is mathematical. However, chemical knowledge cannot be trivially reduced to 
mathematical form. For example, given two molecules, how should one compare 
them and assign a number to represent their similarity? And even if specific cases 
can be handled by humans, we still need an automatic way to perform comparison. 
However, to a certain extent, computers can only manipulate objects that can be 
represented mathematically (e.g., vectors) or as strings of characters (e.g., gene 
sequences, SMILES). But the algorithms that are used with these structures are 
context-free: they usually transform the structures without any knowledge of what 
they represent.

Many mechanisms exist to deal with this issue. For example, graph similarity 
can be used to find common substructures in two molecules as a basis for similarity 
calculations (see, e.g., [13, 14]), but these methods tend to be slow and computa-
tionally expensive. There is also the possibility to reduce a molecular structure into 
a fingerprint, which is a binary vector where each position represents the presence 
(with a 1) or absence (with a 0) of a certain feature in the structure. For example, 
the presence of a carboxyl group could be indicated with a 1 in some position of 
the vector. Similarity can then be computed by measuring the overlap in those 
vectors [15, 16].

These methods provide a high similarity value when the structures of the two 
molecules are high. Under the quantitative structure-activity relationship (QSAR) 
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premise, this means that, in general, two molecules with a high similarity score (as 
defined by these methods) tend to have similar biological role, similar chemical 
properties (such as melting point, optical parameters, and mass spectroscopy spec-
tra), similar safety warnings, similar appearance, etc. But this is not always true. For 
instance, while L-amino acids are used to synthesise proteins, D-amino acids are 
much less frequent in nature, and their role is quite different [17]. From a biological 
point of view, they are distinct; however, to capture their structural differences, 
one needs to use three-dimensional methods, and even with that consideration, 
the structural similarity will be high, because both molecules have the same atoms 
and bonds. Another possibility includes simulation of docking with target proteins, 
but these methods are quite expensive computationally. Furthermore, not only can 
similar molecules perform different biological roles, different molecules can per-
form similar roles. For example, both clavulanic acid and salsalate are β-lactamase 
inhibitors, despite their different structures (see Figure 1).

Another way to measure similarity is by means of the semantics attached to the 
chemical compounds. Here, we use the term semantics to mean the knowledge that 
exists about a compound. This includes not only the structure of the molecule itself 
(e.g., the atomic connectivity, the number of oxygen atoms, the presence of triple 
bonds) but also other types of contextual knowledge, such as its chemical role 
(e.g., whether it is an electron donor, a solvent, or an explosive), biological role 
(e.g., whether it is a poison, a cofactor, or a vitamin), its applications (as a drug, 
fertiliser, fuel, etc.), its relationship to other molecules (such as being enantiomers, 
parent hydrides, etc.), and so on.

The difficulty with this is that knowledge is not directly machine-readable. 
Indeed, established facts have been traditionally published in plain text, which 
enables some humans to understand them; however, natural language processing 
techniques are not yet fully capable of converting scientific text into actionable 
formats (e.g., formats that allow automatic reasoning). Therefore, to enable the 
application of computerised processing power to knowledge manipulation, it is 
essential to find ways to represent knowledge in machine-readable formats.

3. Ontologies

Ontologies are the solution to this problem. An ontology is a representation of 
concepts from a domain of knowledge and the relationship between them and is 
usually visualised as a directed acyclic graph (DAG), where nodes are the concepts, 
edges are the relationships, and there are no cycles in the graph. See, for example, 

Figure 1. 
Chemical structure of two semantically related compounds. The two molecular structures in the figure are quite 
different structures, and yet both present the same biological activity, namely, they inhibit β-lactamase enzymes.
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Figure 2, a toy exampled based on a real-world ontology that encodes the fact that 
“acetate” is the conjugate base of “acetic acid” and that “acetic acid” is the conjugate 
acid of “acetate” and then organises these concepts in a hierarchy that contains 
concepts like “ion”, “molecule”, “organic acid”, and “organic molecular entity”, and 
ends up in the most generic “molecular entity” concept.

There are many ontologies whose purpose is to encode the chemical knowledge, 
but one of the most comprehensive and used is the ontology for Chemical Entities 
of Biological Interest (ChEBI) [18]. This ontology represents in a machine-readable 
format about 114 thousand concepts, including not only the chemical compounds 
but also their biological and chemical roles. Other ontologies that encode this or 
related domains include (i) Interlinking Ontology for Biological Concepts, (ii) 
Current Procedural Terminology, (iii) SNOMED CT, (iv) Chemical Information 
Ontology, and (v) Chemical Methods Ontology.

It is important to notice that, even though the notion of ontologies usually 
requires some logic concepts (such as axioms, predicates, etc.), some classifica-
tion hierarchies are also sometimes named “ontologies”. MeSH, the system used 

Figure 2. 
A toy example of an ontology for chemical compounds, based on ChEBI. The ontology shows “is-a” relationships 
with solid lines, and a relationship between acid/base conjugates with a dotted line. The green shaded concepts 
are those that subsume both the yellow and the blue ones.
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by PubMed to classify publications, is a hierarchy of concepts that possesses 
many of the same properties that ontologies do, namely, that it can be repre-
sented as a directed acyclic graph. However, one of the differences is that the 
relationship between two concepts does not always carry the same meaning. For 
example, “Head” is categorised under “Body Regions”, and “Ear” is categorised 
under “Head”, but while heads are body regions, ears are not heads; they are 
instead parts of the head. This illustrates the informality of MeSH: only one rela-
tionship type exists and it is used to express different notions. Another system 
in this category is the Anatomical Therapeutic Chemical (ATC) Classification 
System.

BioPortal [19], a repository of ontologies for the biomedical domain, contains 
a collection of 948 ontologies at the time of this writing. As an illustration of its 
magnitude, consider that 19 ontologies represent the concept “lidocaine”. This 
reflects the effort being currently spent to represent human knowledge in machine-
readable ontologies. In fact, while ontologies such as ChEBI are massive, BioPortal 
allows their users to submit new ontologies, even if small, focussed on a specific 
domain, and created with a specific application in mind other than pure knowledge 
representation (e.g., there is an ontology specific for cardiovascular drug adverse 
events, with 3 thousand concepts).

Other efforts have been set into place to aggregate ontologies in a single source 
of knowledge. For example, the Open Biological and Biomedical Ontology (OBO) 
Foundry [20] developed the OBO file format to represent ontologies and currently 
defines principles of quality for ontologies in biomedical domain that prescribe 
good practices for ontology development, such as being open, being reusable, 
being developed with collaboration in mind, containing both textual and logical 
definitions (for the benefit of both humans and machines), etc. They contain more 
than 200 ontologies as of this writing, 10 of which fully adhere to those principles 
(ChEBI being one of them). The OBO Foundry is tightly coupled with Ontobee 
[21], a web service that uses the principles of linked data to serve as a linked data 
server specifically targeted for ontologies and their concepts.

4. Semantic similarity

Using a formal representation of knowledge, computers are given the ability to 
manipulate concepts that are difficult to represent, in a way that preserves their 
“semantics”. Ontologies provide the appropriate support for automatic manipula-
tion of information. In this context, semantic similarity is a technique that assigns 
a numeric value to a pair of concepts based on the similarity of their meaning, 
extracted from the ontology.

For example, there is no directly obvious way to compare two roles. However, 
considering the illustration in Figure 3, it is possible to intuitively understand that, 
because both “hallucinogen” and “antifungal drug” are examples of “drugs”, they 
are more similar than “hallucinogen” and “fossil fuel”. This measure makes use of 
the meaning of the concepts, implicitly represented in the ontologies through the 
relations between the concepts. Ontologies function as a proxy for that meaning 
and enable its manipulation and ultimately comparison.

Several formulas and ideas have been proposed, implemented and tested in 
the past to compute semantic similarity. A full exposition on such measures and 
algorithms is beyond the scope of this chapter. The reader is encouraged to expand 
on this topic by reading works such as [22–25]. As such, the following is an abridged 
version of how ontology-based semantic similarity has been computed. In this 
discussion, consider the ontology in Figure 3.
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Measures of similarity based on ontologies can roughly be divided into 
edge-based and node-based. An example of an edge-based measure is count-
ing how many relations must be traversed to connect the two concepts being 
compared. Rada et al. [26] define distance as the number of edges in the small-
est path between two nodes composed only of “is-a” relations. In this case, the 
distance between “hallucinogen” and “antimicrobial agent” would be three (“h
allucinogen”→“drug”→“antifungal drug”→“antimicrobial agent”). While this 
type of approach is intuitive, it assumes that all nodes and all edges are equally 
important in terms of their semantics (e.g., that all edges weigh the same), 
which is generally not true in ontologies in life sciences. For instance, the “is-a” 
relation between “hallucinogen” and “drug” does not necessarily convey the 
same amount of information as the inverse “is-a” relation between “drug” and 
“antifungal drug”.

One way to solve this is to introduce node-based methods, a technique that 
weighs nodes based on their information content (IC) [27]. The IC of a node 
is a numeric value based that reflects how informative its presence is and is 
calculated based on its frequency of use, since concepts that appear more fre-
quently are generally less informative. The first formula proposed to measure 
IC was

  IC (c)  = − log f (c)   (1)

where f(c) is the relative frequency with which the concept c and all its descen-
dants appear in a corpus (in the example ontology, we can use the fraction of 
chemical concepts in ChEBI annotated as performing each of those roles). The 
intuition behind this idea is the following: consider a document (e.g., a scientific 
article) that uses the sentence “rodents have fur”. The term “rodent” is used in such 
a way that every other concept that can be categorised under it also possesses the 
declared property. In fact, whenever a concept is used (in text, in logical axioms, 
etc.), it must be interpreted as including the set of all concepts recursively catego-
rised under it.

The similarity between two concepts can be computed as the IC of the most 
informative common ancestor (usually abbreviated as MICA) between them

   sim  Resnik   ( c  1  ,  c  2  )  = IC (MICA ( c  1  ,  c  2  ) ) .  (2)

Figure 3. 
A second toy example of an ontology representing chemical roles, also based on ChEBI.
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This idea has been iterated upon with some additions and adaptations.

• The IC measure can be normalised so that it ranges from 0.0 to 1.0 (originally, 
the measure is unbounded above);

• The IC measure has been computed from multiple sources, such as (i) text 
corpora (as in the original), (ii) frequency of usage of the ontology concepts in 
external sources [28], or (iii) the ontology itself, where frequency can be com-
puted based on the number of descendants (direct or indirect) of a concept 
[29], the number of leaf descendants of a concept [30], or other topological 
properties of the graph representation of the ontology [31].

• The semantic similarity measure itself can be normalised. Notice that the original 
measure gives the same similarity to the pair “application”/“biological role” 
(both generic concepts) and “fossil fuel”/“antiviral agent”, which goes against the 
intuition that the first pair should be more similar. Lin [32] uses this idea to define

   sim  Lin   ( c  1  ,  c  2  )  =   
2 ⋅ IC (MICA ( c  1  ,  c  2  ) ) 

  _______________  
IC ( c  1  )  + IC ( c  2  ) 

   ;  (3)

• The notion of shared information content (originally measured as the informa-
tion content of the MICA of the two concepts) has also been tuned to take into 
account the fact that concepts can have multiple parents [33], which is necessary in 
many life science fields since it is in the nature of biomedical ontologies that some 
concepts are categorised under multiple parents, (see https://github.com/lasige-
BioTM/DiShIn for an example of software that computes this type of measure) 
or the fact that ontologies have disjointness axioms that encode the fact that two 
concepts cannot share any descendants [34], also important because life science 
ontologies, and especially chemistry ones, make use of those types of axioms [35].

• The way to measure shared information content has also been completely re-
implemented to use not the IC of the most informative common ancestor but a 
metric based on the set of all ancestors of the concepts [36].

These measures are able to compare one concept with another. It is also possible 
to compare sets of concepts. For this, one takes the matrix of pairwise similarities 
between concepts in the first set and concepts in the second set and mathemati-
cally manipulates it to produce a single number, taking, for example, the average, 
the maximum, or the “best match average”, an approach that averages the highest 
values in each row and column [22]. There are other approaches that convert a set of 
concepts into the set of all their ancestors and take the intersection of those sets as a 
measure of similarity (two examples are simUI and simGIC [22]).

Finally, there is a difference in measuring the similarity or the relatedness between 
concepts. Similarity is a term that is generally applied to the notion that two con-
cepts are “alike” and is usually computed based on “is-a” hierarchies; relatedness is 
more general: two related concepts can be related based on their categorisation on 
a hierarchy or on any number of other non-hierarchical relations. This distinction 
is important in chemistry, and ChEBI in particular, since many chemistry concepts 
are related via relations such as “has-role”, “has-part”, “is-enantiomer-of”, etc.

Notice that when nothing is known about a chemical compound other than its 
structure, semantic methods can still be used, because one of the ways ontologies 
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(especially ChEBI) classify molecules is based on their structure. For example, 
ChEBI has a concept “carboxylic acid” which is an ancestor of all molecules that 
have one or more carboxylic acid groups (e.g., benzoic acid, all amino acids, all 
penicillins, etc.). This, however, is not conceptually different from measuring struc-
tural similarity, and such a setting would lack the enrichment provided by other 
types of knowledge (e.g., the knowledge of the chemical and biological roles of the 
molecule).

5. Applications

Since 2003, when Lord et al. [28] introduced the idea of ontology-based 
semantic similarity in the gene ontology (GO), several results have been achieved 
using this technique, proving beyond doubt that it is sound and useful and has 
real-life applications. In genomics and proteomics, semantic similarity based on 
GO has been used to (i) cluster proteins [37], (ii) find protein-protein interactions 
[38], (iii) interpret microarray data [39], (iv) predict protein functions [40], (v) 
prioritise candidate disease genes [41], etc. Other uses outside GO include predict-
ing disease-related phenotypes [42] and predicting clinical diagnosis from a set of 
phenotype abnormalities [43].

The uses in chemistry-related areas have been scarce, but nonetheless existing 
and with real-world applications. We collected three research studies of semantic 
similarity in cheminformatics, which show its use in this area.

5.1 Predict biochemical properties of molecules

In 2010, ontology-based semantic similarity was applied to ChEBI [44] using a 
methodology named Chym. Chym shows for the first time that semantic similar-
ity is useful in biomedical chemistry, by applying these ideas to predict whether a 
molecule (i) is capable of crossing the blood brain barrier, (ii) is a substrate of the 
P-glycoprotein, and (iii) binds to an oestrogen receptor. These properties are at 
least partially intrinsically related to the three-dimensional structure of the mol-
ecules and also of the proteins that perform the biochemical role in the organism. 
However, the work shows that structural similarity alone can be improved if it is 
coupled with semantic similarity.

Chym used daylight fingerprints for structural similarity and simUI and simGIC 
for semantic similarity, using ChEBI as the ontology. For all the three properties 
mentioned above, Chym was able to clearly outperform what were then the state-of-
the-art prediction techniques for those properties.

Notice that this means that the two ideas presented here, structural similarity 
and semantic similarity, are not orthogonal and can be applied simultaneously with 
good results. This is not surprising, as ontologies can complement the knowledge 
that can be inferred form the structure alone, without needing to resort to wet-lab 
experiments.

5.2 Disambiguate chemical compound references in natural language

As the amount of textual chemistry information increases, particularly in the 
form of drug leaflets, articles, patents, and other types of communications, the 
need to develop mechanisms to automatically read these texts and extract tractable 
information from them increases as well. In this context, named entity recognition 
is a text mining task whose goal is to identify the entities mentioned in text.
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There have been many attempts to create such systems in the chemical 
domain (see, e.g., the review [45]). In one of those attempts [46], semantic 
similarity has been used to improve the precision of existing methodologies by 
successfully identifying some false positives and removing them from the final 
result set. The idea of that work is that, within a scope of text (e.g., a sentence 
or a paragraph), chemical entities mentioned in that scope share some degree 
of semantic similarity that is higher than average. When entity recognition 
algorithms offer more than one possible ChEBI identifier for an excerpt of text, 
similarity with other ChEBI concepts can be used to disambiguate which is the 
correct entity.

5.3 Drug repurposing

Drug repurposing is the process by which drug that have therapeutic applica-
tion are computationally tested to find other therapeutic applications. This reduces 
costs and improves the drug development pipeline and as such is important for the 
pharmaceutical industry.

The work presented in [47] couples similarity between the three-dimensional 
molecular structure with semantic similarity between the drug targets to find new 
indications for known drugs. The ontology used here is not a chemistry-specific 
one, but GO.

The main methodology of this work was:

1. Select a drug d and a potential target protein p.

2. Find drugs similar to this one (up to a threshold) with a structural similarity meas-
ure. Store these structural similarity values in a vector   X  str   =  ( d  1  ,  d  2  , … ,  d  m  )  .

3. For each similar drug di, find its interacting proteins, compare them with p 
using GO-based semantic similarity, and sum the results. Call this value pi. We 
have now a vector   X  sem   =  ( p  1  ,  p  2  , … ,  p  m  )  .

4. The drug-protein association is assigned a score that depends on the correla-
tion between the vectors Xstr and Xsem. For a set of N proteins, each drug was 
then assigned a vector of N drug-protein association values, called the drug’s 
“expression profile”.

5. The drug-drug similarity measure was computed based on the correlation 
between the “expression profiles” of the two drugs.

The similarity between drugs was then used to construct a network of similari-
ties, where clusters of highly connected drugs were indicative of potential drug 
repurposing.

A related work [48] also uses semantic similarity to predict drug-protein inter-
action. In this work, probabilistic similarity logic is used to construct models that 
are based on a notion of “similarity triads”: triples of the form “drug-target-drug” 
with similar drugs or “target-drug-target” with similar targets. The whole work 
was based on the assumption that similar targets tend to interact with the same 
drug and similar drugs tend to interact with the same target. Here, several protein 
similarity methods (including semantic similarity based on GO) and drug similarity 
method (including semantic similarity based on ATC) were used to build a probabi-
listic model that predicts whether drugs and proteins interact.
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6. Challenges and future work

Semantic similarity in cheminformatics has been slow to keep with the pace of 
equivalent research in other life science fields, such as genomics and proteomics. We 
posit that this is in some ways related to general and specific challenges associated 
with the application of this methodology in chemistry.

First, the state of ontology development and the more general knowledge rep-
resentation area is very active, specifically in the biomedical fields. This means that 
many people have the motivation to develop their own ontology, with specific views 
of the reality embedded in it. However, as many people create their own knowledge 
representation artefacts, many different ontologies start to appear that overlap in 
domain, which means that it is not always obvious which ontology (or ontologies) 
to choose for a specific goal. Furthermore, these ontologies are not easy to reconcile, 
because they encode different and disjoint points of view. While efforts have been 
made to attenuate this problem, such as ontology matching (the process by which 
ontologies of the same domain are automatically merged into a single ontology) 
and the establishment of community standards (in chemistry, e.g., it is standard 
practice to reuse ChEBI concepts rather than create new concepts in new ontolo-
gies), the problem still persists.

Second, metrics of semantic similarity have been mostly developed and tested 
in the fields of natural language processing and genomics/proteomics. While these 
seem to have good enough results when used with ChEBI, we still do not know if 
they are the most adequate measures in this domain. Ferreira et al. [34] developed 
and validated a measure on the chemical domain, but more work needs to be done 
in this area. In particular, what role should the non-hierarchical relationship types 
(“is-enantiomer-of”, “is-conjugate-acid-of”, etc.) have in semantic similarity?

The third challenge is one of similarity profiles. It is not always obvious which 
details or properties of a molecule should be used for comparing. Should a pair 
of chemical compounds that differ only in the presence of an oxygen atom (e.g., 
methane vs. methanol) be more similar than a pair of molecules that differ only in 
charge (e.g., NO2 vs. NO2

−) or only in their three-dimensional conformation (e.g., 
L-serine vs. D-serine)? This problem must be solved based on context: determining 
what the similarity measure will be used for and then deciding which features are 
important. This includes deciding, for example, which relationship types should 
be taken into account, how to weight them, etc. Maggiora et al. [49] touch on the 
fact that chemoinformaticians and medicinal chemists typically perceive similar-
ity differently and we need to find ways to capture those differences in actionable 
measures of similarity.

The fourth challenge is the necessity of taking into account multiple domains 
of knowledge: drugs interact with proteins, treat and cause diseases, are produced 
by different methods (industrial or otherwise), have side effects, participate in 
metabolic reactions, etc. These concepts from other domains can also be compared 
semantically (many are even already represented in appropriate ontologies, includ-
ing diseases, proteins, types of molecular interaction, manufacturing procedures, 
side effects, and pathways). The question now is how to take advantage of these 
other ontologies in order to implement a useful and accurate measure of chemical 
similarity. This issue is even related to the previous one, since by tuning the weight 
of these other domains, we can create new profiles of similarity more pertinent to 
some goals than others.

Another challenge is the absence of a standardised way to validate the mea-
sures that are proposed. In practice, for each new measure being proposed by 
some research group, that same group validates the new measure by comparing 
them with previous ones or by using it to show that the new measure can find 
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hidden knowledge in some dataset. However, the ad hoc way these validations are 
performed means that frequently the measures are neither comparable nor inter-
changeable and that they can only be used for the goal used to validate them. Thus, 
a general but useful validation strategy should also be developed to bring cohesion 
to this field.

7. Conclusion

This chapter introduces the ideas behind ontology-based semantic similarity 
measures, how they are applied in life sciences, and some of their uses in chemistry-
related research endeavours. The main idea that we exposed is that these methods, 
having been used in other biomedical fields, can help cheminformatics in several 
fronts. We described three applications of where this methodology has been applied 
directly in cheminformatics research efforts and expect that this number grows as 
more people are exposed to this idea and its use cases.

We also exposed some of the future challenges in this area, which can serve 
as a starting point to anyone wishing to improve on the work already published, 
and provided general guidelines that should be taken into account for the further 
improvement of cheminformatics as a scientific field. In particular, we emphasise 
the need to explore the multidomain potential in semantic similarity, as well as the 
need to standardise the ways to validate measures of semantic similarity.
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