16 research outputs found

    A Model of Colonic Crypts using SBML Spatial

    Full text link
    The Spatial Processes package enables an explicit definition of a spatial environment on top of the normal dynamic modeling SBML capabilities. The possibility of an explicit representation of spatial dynamics increases the representation power of SBML. In this work we used those new SBML features to define an extensive model of colonic crypts composed of the main cellular types (from stem cells to fully differentiated cells), alongside their spatial dynamics.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Comparing individual-based approaches to modelling the self-organization of multicellular tissues.

    Get PDF
    The coordinated behaviour of populations of cells plays a central role in tissue growth and renewal. Cells react to their microenvironment by modulating processes such as movement, growth and proliferation, and signalling. Alongside experimental studies, computational models offer a useful means by which to investigate these processes. To this end a variety of cell-based modelling approaches have been developed, ranging from lattice-based cellular automata to lattice-free models that treat cells as point-like particles or extended shapes. However, it remains unclear how these approaches compare when applied to the same biological problem, and what differences in behaviour are due to different model assumptions and abstractions. Here, we exploit the availability of an implementation of five popular cell-based modelling approaches within a consistent computational framework, Chaste (http://www.cs.ox.ac.uk/chaste). This framework allows one to easily change constitutive assumptions within these models. In each case we provide full details of all technical aspects of our model implementations. We compare model implementations using four case studies, chosen to reflect the key cellular processes of proliferation, adhesion, and short- and long-range signalling. These case studies demonstrate the applicability of each model and provide a guide for model usage

    together with details of a mailing list and links to documentation and tutorials

    Get PDF
    Abstract Chaste -Cancer, Heart And Soft Tissue Environment -is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high-performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cellbased simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to 're-invent the wheel' with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular testdriven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence a

    ISAP-MATLAB Package for Sensitivity Analysis of High-Dimensional Stochastic Chemical Networks

    Get PDF
    Stochastic simulation and modeling play an important role to elucidate the fundamental mechanisms in complex biochemical networks. The parametric sensitivity analysis of reaction networks becomes a powerful mathematical and computational tool, yielding information regarding the robustness and the identifiability of model parameters. However, due to overwhelming computational cost, parametric sensitivity analysis is a extremely challenging problem for stochastic models with a high-dimensional parameter space and for which existing approaches are very slow. Here we present an information-theoretic sensitivity analysis in path-space (ISAP) MATLAB package that simulates stochastic processes with various algorithms and most importantly implements a gradient-free approach to quantify the parameter sensitivities of stochastic chemical reaction network dynamics using the pathwise Fisher information matrix (PFIM; Pantazis, Katsoulakis, and Vlachos 2013). The sparse, block-diagonal structure of the PFIM makes its computational complexity scale linearly with the number of model parameters. As a result of the gradientfree and the sparse nature of the PFIM, it is highly suitable for the sensitivity analysis of stochastic reaction networks with a very large number of model parameters, which are typical in the modeling and simulation of complex biochemical phenomena. Finally, the PFIM provides a fast sensitivity screening method (Arampatzis, Katsoulakis, and Pantazis 2015) which allows it to be combined with any existing sensitivity analysis software

    Simulating tissue mechanics with Agent Based Models: concepts and perspectives

    Get PDF
    International audienceIn this paper we present an overview of agent based models that are used to simulate mechanical and physiological phenomena in cells and tissues, and we discuss underlying concepts, limitations and future perspectives of these models. As the interest in cell and tissue mechanics increase, agent based models are becoming more common the modeling community. We overview the physical aspects, complexity, shortcomings and capabilities of the major agent based model categories: lattice-based models (cellular automata, lattice gas cellular automata, cellular Potts models), off-lattice models (center based models, deformable cell models, vertex models), and hybrid discrete-continuum models. In this way, we hope to assist future researchers in choosing a model for the phenomenon they want to model and understand. The article also contains some novel results

    The Open Physiology workflow:modeling processes over physiology circuitboards of interoperable tissue units

    Get PDF
    A key challenge for the physiology modeling community is to enable the searching, objective comparison and, ultimately, re-use of models and associated data that are interoperable in terms of their physiological meaning. In this work, we outline the development of a workflow to modularize the simulation of tissue-level processes in physiology. In particular, we show how, via this approach, we can systematically extract, parcellate and annotate tissue histology data to represent component units of tissue function. These functional units are semantically interoperable, in terms of their physiological meaning. In particular, they are interoperable with respect to [i] each other and with respect to [ii] a circuitboard representation of long-range advective routes of fluid flow over which to model long-range molecular exchange between these units. We exemplify this approach through the combination of models for physiology-based pharmacokinetics and pharmacodynamics to quantitatively depict biological mechanisms across multiple scales. Links to the data, models and software components that constitute this workflow are found at http://open-physiology.org/

    A Multiscale Spatiotemporal Model Including a Switch from Aerobic to Anaerobic Metabolism Reproduces Succession in the Early Infant Gut Microbiota

    Get PDF
    The human intestinal microbiota starts to form immediately after birth and is important for the health of the host. During the first days, facultatively anaerobic bacterial species generally dominate, such as Enterobacteriaceae. These are succeeded by strictly anaerobic species, particularly Bifidobacterium species. An early transition to Bifidobacterium species is associated with health benefits; for example, Bifidobacterium species repress growth of pathogenic competitors and modulate the immune response. Succession to Bifidobacterium is thought to be due to consumption of intracolonic oxygen present in newborns by facultative anaerobes, including Enterobacteriaceae. To study if oxygen depletion suffices for the transition to Bifidobacterium species, here we introduced a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics, and cross-feeding. Using publicly available metabolic network data from the AGORA collection, the model simulates ab initio the competition of strictly and facultatively anaerobic species in a gut-like environment under the influence of lactose and oxygen. The model predicts that individual differences in intracolonic oxygen in newborn infants can explain the observed individual variation in succession to anaerobic species, in particular Bifidobacterium species. Bifidobacterium species became dominant in the model by their use of the bifid shunt, which allows Bifidobacterium to switch to suboptimal yield metabolism with fast growth at high lactose concentrations, as predicted here using flux balance analysis. The computational model thus allows us to test the internal plausibility of hypotheses for bacterial colonization and succession in the infant colon

    Knowledge Management Approaches for predicting Biomarker and Assessing its Impact on Clinical Trials

    Get PDF
    The recent success of companion diagnostics along with the increasing regulatory pressure for better identification of the target population has created an unprecedented incentive for the drug discovery companies to invest into novel strategies for stratified biomarker discovery. Catching with this trend, trials with stratified biomarker in drug development have quadrupled in the last decade but represent a small part of all Interventional trials reflecting multiple co-developmental challenges of therapeutic compounds and companion diagnostics. To overcome the challenge, varied knowledge management and system biology approaches are adopted in the clinics to analyze/interpret an ever increasing collection of OMICS data. By semi-automatic screening of more than 150,000 trials, we filtered trials with stratified biomarker to analyse their therapeutic focus, major drivers and elucidated the impact of stratified biomarker programs on trial duration and completion. The analysis clearly shows that cancer is the major focus for trials with stratified biomarker. But targeted therapies in cancer require more accurate stratification of patient population. This can be augmented by a fresh approach of selecting a new class of biomolecules i.e. miRNA as candidate stratification biomarker. miRNA plays an important role in tumorgenesis in regulating expression of oncogenes and tumor suppressors; thus affecting cell proliferation, differentiation, apoptosis, invasion, angiogenesis. miRNAs are potential biomarkers in different cancer. However, the relationship between response of cancer patients towards targeted therapy and resulting modifications of the miRNA transcriptome in pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have created an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. We present a novel SMARTmiR algorithm to predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer. The application of an optimised and fully automated version of the algorithm has the potential to be used as clinical decision support tool. Moreover this research will also provide a comprehensive and valuable knowledge map demonstrating functional bimolecular interactions in colorectal cancer to scientific community. This research also detected seven miRNA i.e. hsa-miR-145, has-miR-27a, has- miR-155, hsa-miR-182, hsa-miR-15a, hsa-miR-96 and hsa-miR-106a as top stratified biomarker candidate for cetuximab therapy in CRC which were not reported previously. Finally a prospective plan on future scenario of biomarker research in cancer drug development has been drawn focusing to reduce the risk of most expensive phase III drug failures

    On the use of process algebra techniques in computational modelling of cancer initiation and development

    Get PDF
    Cancer research has been revolutionised by recent technological advances that allow scientists to produce extensive collections of experimental data, especially on the molecular and cellular level. Formal modelling is a necessary tool for integrating massive amounts of diverse measurement data into a coherent picture of disease development. Models can be used to test hypotheses about the role of cellular components in system function and in creating disease, and to make predictions which can then be tested experimentally. This thesis evaluates process algebra techniques as description formalisms for a collection of cancer-related models. Process algebras view biology as a dynamic interactive communication network, in which an individual agent is performing a computation corresponding to the reaction. Agents typically represent entities such as molecules or cells. The stochastic extensions of process algebras allow the modeller to assign probability (or rate) to every reaction. The analysis of the resulting models is usually based on stochastic simulation. Alternatively, formal verification tools can be used to calculate exact quantitative properties of the underlying stochastic process. We have explored the applicability of the process algebra formalism by analysing the dynamics of two cancer-related signalling pathways: Wnt/Wingless and FGF (Fibroblast Growth Factor). In addition to process algebra models, we have also derived continuous differential equation models for comparison. Systematic analysis of parameter spaces has revealed which variables have the most influence on temporal and steady state properties of the system. By integrating feedback mechanisms, amplification factors, and different time scales we have demonstrated a resulting emergence of several unexpected properties of system dynamics. We were later able to confirm these by in vitro experiments for both pathways. To examine the function of the specific signalling architecture in the cellular decision making process, we have constructed a model that couples Wnt signalling to the decision process within the cell and cell microenvironment. The model reveals signalling characteristics that ensure accuracy and robustness of Wnt-mediated determination of proliferative cell fate and lead to tissue architecture which is resistant to mutations. The main contribution of this thesis is, therefore, to systems biology; we have produced reusable and validated quantified models and demonstrated their value in designing, testing, and refining hypotheses about cancer.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore