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Simulating tissue mechanics with Agent Based Models: concepts and
perspectives.

P. Van Liedekerkea, M. M. Palma, N. Jagiella, D. Drasdoa,∗

aINRIA, Domaine Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France

Abstract

In this paper we present an overview of agent based models that are used to simulate mechanical and
physiological phenomena in cells and tissues, and we discuss underlying concepts, limitations and future
perspectives of these models. As the interest in cell and tissue mechanics increase, agent based models are
becoming more common the modeling community. We overview the physical aspects, complexity, shortcom-
ings and capabilities of the major agent based model categories: lattice-based models (cellular automata,
lattice gas cellular automata, cellular Potts models), off-lattice models (center based models, deformable
cell models, vertex models), and hybrid discrete-continuum models. In this way, we hope to assist future
researchers in choosing a model for the phenomenon they want to model and understand. The article also
contains some novel results.

Keywords: Cell Mechanics, Agent Based Modeling, Lattice-based Models, Lattice-free Models,
Deformable Cell Mode, Hybrid Models.

1. Introduction

Biological cells are constantly exposed to mechanical stress. In response to this stress they may change
their shape, migrate, or change their state in another way. In the past decades, research majority focused on
the molecular processes and their impact on biological organization processes. Molecular biology was led by
the expectation that unveiling the genome, identifying genes and their function, could be sufficient to under-
stand functioning and failure of living organisms. Despite impressive insights triggered by molecular biology,
these expectations were not fulfilled. Since then, stepwise higher levels of organization have been linked to
the lower levels, arriving at gene expression, gene regulation, gene translation, post translational protein
modifications, and signal transduction and metabolism. It is becoming increasingly obvious that molecular
events can impact cell behavior and subsequently modify multi-cellular organization, which in turn can feed
back to the molecular control inside the cell citeIskratsch2014. Besides feedback by signaling molecules
outside of the cell, cells can sense mechanical stress by mechanotransduction, which is the mechanism by
which cells transduce an external mechanical stimulus into an internal molecular signal. The dynamics of
the cytoskeleton (CSK) and focal adhesion complexes plays a major role herein [1, 2]. Mechanotransduction
can materialize itself in different types of cell responses: (i) primary mechanoreceptors like ion channels and
integrins. Integrins are transmembrane adhesion proteins that instantaneously mediate coupling between
the plasma membrane or the extracellular matrix (ECM) and the cystoskeleton; (ii) mechanosignalling com-
plexes, like caveolae [3] or focal adhesions [4], which respond rapidly (seconds to minutes range) to forces;
(iii) signal integrators like the actin cytoskeleton [5] which is essential to propagate extracellular forces to
the nucleus. The nucleus has also been proposed to act as a mechanosensor [6], where integration of the
changes in nuclear shape may cause conformational changes in chromatin organization; (iv) nuclear shut-
tling proteins [7] (like zyxin, YAP, Yes-associated protein, MRTFA, myocardin-related transcription factor),
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which transit from the cytoplasm to the nucleus where they affect gene expression. In turn, these signals
lead to cell organization and function adjustments. In particular, they alter the mechanical properties and
response of the cell. Mechanotransduction is therefore intrinsically a feedback mechanism. For these reasons
the understanding of biological organization requires to ultimately include the contribution of mechanics,
as well as the level of cells and tissues.

Mechanical stimuli play a prominent role in the development and constitution of an organism. Already
in the early stages of development mechanosensing plays a role in stem cell differentiation [8]. This role is
maintained in later stages of differentiation, e.g. in chondrocytes in bone remodeling. The tissue engineering
community now acknowledges that physical influences, such as extracellular matrix (ECM) geometry, ECM
elasticity, or mechanical signals transmitted from the ECM to the cells (i.e. mechanotransduction) are
of great importance to explain biological observations [9]. In order to get more insight and quantify the
relations between mechanical stress and biological processes, people have started to study the mechanics of
tissues such as bone, heart, and the artery system using mathematical models. Yet, experimental studies
continue to raise important questions and reveal new observations.

In cancer, cells experience augmented stresses as the tumor develops. Helmlinger et al. [10] set up
an experiment where cells were grown in an elastic gel and they found that the growth of the tumor was
gradually stalled (reaching compressive stresses of several kPa) although no indication of apoptosis was
reported. In similar experiments however, Cheng et al. [11] concluded induced apoptosis in regions of high
compressive stress and allowing proliferation in regions of low stress. Basan et al. [12] studied the influence
of mechanical stress by compressing tissue in a cylindrical chamber. This led to concept of homestatic
pressure, i.e. the pressure at which the net result of growth and apoptosis is zero. The same group also
studied spheroids in an osmotic solution to mimic external pressure. They observed diminished proliferation
rates in the spheroid except at the periphery. Similarly, Alessandri et al. (2013) [13] showed that spheroids in
a confined environment exhibited a declined growth rate but an increased migrative activity at the periphery
of the tumor. The origin of this ”skin” effect is not yet clarified. There is still discussion whether increased
stress triggers migrative activity in the tumor [14, 13, 15, 16].

In wound healing, cells that attempt to repair the tissue are steered by both passive and active (motility)
forces. Traction force microscopy studies using a variety of in vitro monolayer have revealed that active
motility forces are not only generated by the boundary cells but also by cells in the middle of the epithelia
[17]. The leading edge of the epithelial tissue often does not move uniformly but forms finger-like protrusions
while cells in the bulk can exhibit spontaneous swirl-like flow patterns, which depend on the cell density
and viscous forces between cells and substrate.

Various experiments illustrate the importance of cell-matrix mechanics. Matrix mechanics can foster
tissue formation by correlating the relative motions of cells, promoting the formation of cell-cell contacts. For
instance, it has been reported that cardiac cells can synchronize their beating through substrate deformations
[18]. In blood vessel formation and growth, diverse mechanical forces originating from key cell processes, such
as lamellipodium and filopodium formation, regulate the direction and rate of formation of the vessels [19].
Also in this case there is a prominent role for cell-matrix mechanical interactions, which has been recognized
in several modeling studies using a continuum approach [20, 21, 22, 23] and was recently included in and
agent based angiogenesis model [24]. During metastasis in cancer, cells detach from the tumor and migrate
through the stroma. Studies have revealed that cells remodel the matrix around them [25, 26], thereby
possibly creating trails for other cells [27, 28].

Modeling cells and tissue mechanics is an emerging field in biomedical sciences. The abovementioned
phenomena have created plenty of challenges for engineers, mathematicians, physicists, and biologists, and
endowed a whole new subject in the biomechanics and mechanobiology modeling community. Clearly,
modeling these phenomena is not a trivial task due to the biological complexity and various scales involved.
Agent based models were developed to understand tissue dynamics as a result of interplay of its individual
cells. In these models, cells are by definition regarded as separate units. This approach is contrary to
continuum methods, where the individual character of the cells is discarded and tissue dynamics is derived
from mesoscopic or macroscopic conservation and constitutive laws. Agent based systems provide an ideal
framework for the integration of intracellular molecular processes as their directly represent the cell itself as
individual which captures natural spatial inhomogeneities and variability between cells.
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Inhomogeneities on the level of individual cells can be fundamental to understand the organization on
the tissue level. For example, it has been realized that understanding of tumor progression and resistance to
treatment requires to take into account the cell-to-cell variability [29, 30]. These inhomogeneities can readily
be represented within an agent-based approach (e.g. [31]). Tissue architecture in vivo can closely be related
to the function of the organ in which case it needs to be represented explicitly. For example hepatocytes, the
parenchyma of liver, that detoxify blood from food toxins and other toxins, are arranged within a complex
architecture around a network of micro-vessels in such a way that the exchange area between hepatocytes and
blood is very large [32]. Another example are intestinal crypts forming one cell thick pockets in the intestinal
wall hence optimizing resorption from the intestine (e.g. [33, 34, 35, 36]). Such inhomogeneities and small
scale effects favor agent based approaches as they are often difficult to be represented in continuum models
which usually deal with quantities locally averaged over a group of many cells. Agent based models can
also probe properties of in vitro multi-cellular systems such as monolayer cultures or multicellular spheroids
as these systems can, due to their moderate cell population size, be modeled in a 1:1 manner, yielding an
abstraction of the ”wet” experiment on the computer.

Recent developments of experimental imaging techniques facilitate validation of simulation models at
histological scales. Confocal laser scanning micrographs can be used to reconstruct the three-dimensional
tissue architecture at histological scales [32]. For liver tissue, standard imaging and image processing pro-
tocols have been developed indicating that in the future more and more automated or half automated well
established procedures will be established to speed up analysis of tissue organization processes at histological
scales [37]. Staining for tissue components such as cell types or cell properties can be used to collect infor-
mation about the multicellular state. The information can directly be fed into a pipeline of image analysis
and modeling, whereby the modeling can be regarded as in silico experiment [38]. Modeling can be either
started directly out of reconstructed 3D volume data sets, or be performed in virtual tissue architectures
that represent the image information in a statistical sense. Live imaging permits direct observation of cel-
lular arrangement processes in real time over a period of several hours. Hence, combining different image
modalities operating on the histological scale can provide complementary information on different time and
length scales that can be used to construct and validate agent based tissue models.

Over the last decades a number of different agent-based approaches have been developed to mimic
multicellular organization. Our focus here is on agent-based models in space. “Space-free” agent-based
models have been considered for example in hematology and are reported elsewhere [39]. Spatial agent
based models can roughly been distinguished by those operating on space fixed lattices ([40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]) and those operating without a lattice (“lattice-free”,
”off-lattice”; [60, 61, 62, 63, 64, 65, 51]). Among lattice models, either (i) a lattice site may be occupied by
many cells (e.g. [66]) permitting modeling of large cell population sizes, (ii) cells may occupy at most a single
lattice site (e.g. [67]), or (iii) many lattice sites may be occupied by one biological cell (e.g. [52]). In each of
the aforementioned lattice approaches, division, death, and migration are modeled as stochastic processes.
The degree to which biomechanical aspects can be captured depends much on which of the three types (i)-
(iii) is chosen. Model types (i) and (ii) can represent excluded volume effects, (iii) can capture qualitatively
cell deformation and compression, while each of the three approaches to some extend can describe the effect
of mechanical forces of one cell on its neighbor, or on a group of neighbor cells. A last type of agent-based
model defined on a lattice is the lattice gas cellular automaton (LGCA) [68] in which each lattice site also
contains velocity channels. Among lattice-free models one can roughly distinguish between center-based
models and deformable cell models. The first class models the interaction of cells based on forces or energies
between cell centers and does not resolve cell shape precisely. The second class resolves cell shape in detail
and permits for representation of complex cell shapes.

As agent based models are used by an expanding modeling community, our goal is to provide an overview
of agent based modeling approaches on the modeling aspects with emphasis on the cell mechanics that they
can capture, rather than to give an overview of mathematical models developed for the modeling of well
defined phenomena such as tissue growth [69] or tackling a specific clinical problem [70]. For each of the
approaches we make the trial to list their specific capabilities, advantages and drawbacks (knowing this is
partially worthy of discussion and therefore a bit a matter of taste as so far no absolute quantitative measures
for it exist), and provide as such an short guide to people entering or already established community of
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biomechanical modeling. In addition, we present some complementary so far unpublished (novel) results.
The paper is organized as follows: in section 2 we introduce the lattice models addressing different spatial

resolutions. This is followed by off-lattice models, encompassing center based models and deformable cell
models (section 3), considering the cell as a object being able to move continuously in space. Finally, we
give a short overview on how discrete models can be coupled to continuum models (section 4). An overview
of existing software tools is given in section 5.

Where respective simulation results are available we discuss the different model approaches referring to
monolayer and multicellular spheroid growth as they may represent a good reference (” traveling salesman”)
example for in how far the models are able to capture tissue mechanics of growth processes. By monolayer
we mean cell populations growing in vitro on a flat substrate without shortage of nutrients, growth factors
etc.. Multicellular spheroids are their three dimensional counterpart, cell populations growing in vitro either
in liquid suspension or collagen-like gel.

2. Lattice Models

Among lattice models, either only positions of cells are considered, or, with the class of lattice gas cellular
automata (LGCA), in addition the velocity of the cells is denoted (e.g. Dormann and Deutsch, 2001) [67].
We consider first those where the velocity is no explicit variable. In this case either (type A) a lattice site
may be occupied by many cells [66] which permits simulation of large cell population sizes, (type B) cells
may occupy at most a single lattice site [71], or (type C) many lattice sites may be occupied by one biological
cell [52]. Model type C is derived from the Potts model and therefore usually called ”Cellular Potts model”
[72]. Our choice of the enumeration by letters A, B, C is led by the relative size of a cell compared to the
size of the lattice spacing (constant): type A: cell size is much smaller than the lattice spacing, type B: cell
size is the same or about the same as the lattice spacing, type C: cell size is much bigger than the lattice
spacing. LGCA (denoted as model type D) usually also have several cells on the same lattice site, but in
addition carry a velocity variable.
For didactic reasons we first discuss model type B, then model types A, C and D in subsequent subsections.

2.1. Cellular automaton with one cell per lattice site (type B)

We start with type B as reference case because type A can be described as a generalization of type B.
Cellular automaton models of type B are used quite a lot in cancer modeling to study how intrinsic

cell mechanisms contribute to tumor growth, death, and morphology (e.g. [73, 74, 75, 76]), and have been
intensively used to model monolayers and multicellular spheroids (e.g. [66] and refs. therein).

The growth, death and migration dynamics of cells on a lattice is usually modeled by a stochastic
process. In type B automata, the volume of a cell is usually identified with the volume associated with
that lattice site. On a cubic lattice with lattice spacing a this is ad, with d being the spatial dimension. A
commonly used alternative to the structures lattice is the Delaunay lattice [77, 71], in which the number of
cell neighbors corresponds to the value found in epithelial tissues [78, 79]. The Delaunay lattice is generated
by seeding a set of constructions points and then generating the corresponding Voronoi mesh and Delaunay
lattice (Fig. 1).

Block et al. [71] proposed generating a 2D Delaunay lattice by placing the construction points into each
square of a square lattice to ensure that cell sizes only slightly vary around a2. This way of constructing the
cellular automaton lattice was later extended to three dimension by Radszuweit et al. [66]. For illustration,
Fig. 2 represent an recent example for a simulation of population growth in a CA model on an unstructured
lattice and within a graphic scheme illustrates the key processes that can occur. There are growth, migration,
division, death, or pushing [71] [80]. The processes are explained below.

The cell cycle time distribution found experimentally is peaked and does not correspond to the assumption
that division is a Poissonian process, as such a process generates a cell cycle time distribution decreasing
exponentially with time. By introducing intermediate states with Poissonian transitions, the experimentally
observed cell cycle distribution can be reproduce and the emerging cell cycle time distribution is an Erlang
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Figure 1: Construction scheme of unstructured lattice for cellular automaton simulations with type B automaton [71]. From
left to right: (i) a square lattice is generated with one point in each square. (ii) the nearest neighbors are connected by lines
generating a Delaunay triangulation; (iii) the Voronoi tessellation representing the dual graph of the Delaunay triangulation
is generated from it, by drawing the perpendicular bisection on every edge of the Delaunay triangulation; (iv) shows the final
Voronoi tessellation with the construction points. Notice that each point in space closer to one construction point (each of
the black points is a construction point) than to any other construction point belongs to the Voronoi cell of that construction
point. Points with equal distance to more than one construction point form the borders between neighboring Voronoi cells
(black lines). If a biological cell changes site, the volume (area in 2d) changes too, as the volume (area in 2d) is an intrinsic
property of the lattice site, not of the cell.

distribution:

f(τ) =
λ(λmτ)m−1

(m− 1)!
e−λmτ , (1)

where λm = m/τe is the transition rate between subsequent states, τ the cell cycle time, and m the total
number of states. This yields 〈τ〉 = τe.

a b

c

Figure 2: (a) Determination of free lattice site with circle of radius ∆R [71]. (b) Fundamental processes during growth of
multicellular spheroids [80]. (C) Typical growth scenario in absence of migration and death [71].

The magnitude of the expansion speed of dense one-cell-thick monolayers is incompatible with the as-
sumption that only those cells at the monolayer border grow and divide [81]. Furthermore, in monolayers
both glucose and oxygen are abundant, suggesting that the expansion speed of the monolayer may be con-
trolled by physical forces [81, 82, 71]. Different from a monolayer in a multicellular spheroid, the three di-
mensional counterpart of a monolayer, nutrients become limiting in the interior of the multicellular spheroid
if the size of the multicellular spheroid grows beyond a certain size. A careful analysis of EMT6/Ro growing
multicellular spheroids shows significant central necrosis above a certain size which is associated to the lack
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of glucose and oxygen (see [81] and refs. therein). The central necrotic core and the diameter of these
multicellular spheroids grow linear in time [83] suggesting the existence of a proliferating rim of constant
size. Moreover, change of glucose does not change the growth speed, while it does change the size of the
necrotic core.
All these observations suggest, that biomechanical forces, presumably by the same mechanisms, play an
important role in the control of the growth speed in both monolayer and multicellular spheroids, and that
the proliferating rim is constant in time.

A growing and dividing cell can exert forces on neighboring cells pushing them aside to generate free
space for its division. In type B cellular automaton this was taken into account by defining a certain length
∆L over which a cell is able to push neighbor cells away [82, 77, 71] (Fig. 2a). This would generate a constant
proliferating rim and comply with the observations in growing monolayers and multicellular spheroids. A
cell can only divide if at least one lattice site within radius ∆L is free. To make space for the daughter cells,
a line is drawn linking the cell’s site to the closest free lattice site and all intersecting neighbors are shifted
one position towards the free lattice site. Next, one daughter cell is placed at the site of the mother cell and
the other one is placed at the lattice site that was freed by the shifting procedure (Fig. 2). This procedure
ensures that the daughter cells of the same mother cell are neighbors directly after division. Instead of
using for ∆L a fixed length, one may also use an upper bound for the number of neighbor cells a dividing
cell can push aside. The algorithm mimics that a dividing cell exerts forces on its environment, leading to
a rearrangement of cells in its neighborhood such that the total energy needed to push the neighbor cells
away is minimal. Most models used ∆L as a threshold parameter with cells having the same chance of
dividing if their distance to the next free lattice site does not exceed ∆L [82, 77, 71], but direct comparison
with experimental data on multicellular spheroids suggest that the probability of division depends on the
distance of the cell to the spheroid border leading to a slightly different dynamics [80].

Using the shifting procedure in a type B cellular automaton, the grow kinetics of one-cell-thick monolayers
can be reproduced (Fig. 3).

Figure 3: Left: Simulations of a growing monolayer with a type B cellular automaton (points: experiment, red line: simulations
with type B cellular automaton, Blue line with squares: off-lattice center based model (see later section). The parameters
for the type B cellular automaton are ∆L = 9 (in lattice units, here cell diameters), m = 60 (Erlang parameter), φ = 0
(migration rate). The experimental growth curve can be explained also by other parameter sets, and other mechanisms [71].
Additional experimental information is needed to uniquely fix model mechanisms and parameters. Middle: Cell cycle duration
distribution for type B cellular automaton and center based model for the simulations depicted in the middle. Right: Simulation
of a xenograft in mouse with a type A cellular automaton (points: experiment, line: simulation) [66]. Cells can be shifted
over ∆L = 2.85 lattice units, here b = 10 cell diameters. NIH3T3 xenografts show only small necrotic lesions, hence nutrient
limitation can be neglected even inside the tumor. This means the speed of tumor expansion is controlled by the thickness of
the proliferating rim of size ∆L = 2.85b = 28.5 cell diameters. Here, Nmax = 1000 cells and zero micro-motility (no migration)
have been assumed.

The processes migration, growth, birth and death are usually modeled by a master equation providing
an equation for the time development of the multivariate probability to find the entire system in a partic-
ular state. The master equation is a balance equation and permits to calculate transitions into accessible

6



neighboring states. The transitions in a type B cellular automaton are described as:

∂p(Z, t)

∂t
=
∑
Z′

W (Z ′ → Z)p(Z ′, t)−W (Z → Z ′)p(Z, t), (2)

where the first term denotes all transition from neighbor states Z ′ into the ”current” state Z and the sec-
ond term denotes all transitions from the current state Z into any accessible neighbor state Z ′. This
master equation may either be solved with a fixed time-step algorithm choosing the time step ∆t so
small that only a single event is likely to occur within [t...t+ ∆t], or by the Gillespie algorithm (often
also called Kinetic Monte-Carlo) [84, 85]. In the Gillespie algorithm a variable time step is calculated
by ∆t = − (1/

∑
Z′W (Z → Z ′)) ln(1 − ξ), where ξ ∈ [0, 1) is a uniformly distributed random variable.

W (Z → Z ′) denotes the rate of a transition from Z to Z ′. Different from chemical particles, hopping of
cells should not depend on the number of free neighbor sites as long as at least one free neighbor site exists.
Accordingly, one may only sum over Z̃(Z ′) states assuming that the rate at which a cell changes its state by a
hop, a progress in the cell cycle, a division, or death process is independent of the number of accessible states
as long as at least one state is accessible, that is, one free adjacent lattice site in case of a hop and one free
site within a circle of radius ∆L in case of a division. For example, a cell in d = 3 having three free neighbor
sites would then be chosen for a move with rate (λ1 + λ2 + λ3)/3 (instead of with λ1 + λ2 + λ3) if λi with
i = 1, 2, 3 denoting the individual hoping rates. Once it has been selected for a move, the move to lattice site
j is performed with probability λj/(

∑3
i=1 λj). An equivalent line of argument holds for division. Growth

can be modeled by allowing a cell to occupy two adjacent lattice sites simultaneously without considering
the cell as having divided [80]. This means, that in this case the same cell would occupy more than one
lattice site. This principle can be extended to occupation of many lattice sites of a cell then changing into
an occupation of at most double of many lattice sites during growth until division takes place. A migrating
cells may also be able to exert forces to a neighbor cell which can be implemented in the same way as division
[71]. Cell-cell or cell-extra-cellular matrix interactions can be included in the transition rate for each move,
which then becomes ∝ e−∆E/FT where ∆E denotes the total energy of change for a particular cell move, FT
a reference energy, that was proposed to represent the membrane fluctuation energy as a formal equivalent
to kBT in fluids (kB : Boltzmann constant, T : temperature) [86].

By systematic simulations it was possible to infer the growth speed of a growing population with hopping
rate φ, shift radius ∆L, cell cycle time τ , and Erlang-number m in the linear growth regime for monolayers
(Fig. 3a) to

v2 ≈ B2

[∆L′(∆L)]2/τ2
eff︸ ︷︷ ︸

(1)

+φ/τeff︸ ︷︷ ︸
(2)

 , (3)

with τ−1
eff = m(21/m − 1)τ−1, τ = τe (with λm = m/τe being the rate with which the internal state of the

cell is increased by +1), ∆L′(∆L) = A(∆L−1) + 1, with A ≈ 0.68, B ≈ 1.4 for the 2D case, and A ≈ 0.708,
B ≈ 1.236 for the 3D case. φ is here expressed in units of a2/τe, a is the lattice spacing and τe the expected
cycle time. The term (1) expresses the front movement due to proliferation, (2) the front movement due to
random migration. In case the proliferation length is much larger than the diffusion length, v ∝ ∆L/τeff i.e.
the mechanical pushing movement controls the expansion of the moving population surface. In the opposite
case, where the diffusion length is much larger than the proliferation length, the limiting continuum equation
of the Type-B cellular automaton can be shown by a statistical field theoretical approach to be a stochastic
Fisher-KPP equation with and intrinsic multiplicative noise term [82]. The velocity change with increasing
proliferation length on large scale can be included in the Fisher-KPP equation by some heuristic redefinition
of the diffusion constant but the short range behavior of the cellular automaton type B model cannot
correctly be captured by this approach. The reason is, that in the derivation of the Fisher-KPP equation,
local homogeneity on small scales had to be assumed which is only valid if the diffusion length overcomes
the proliferation length [82].
Recent direct comparison of model simulations with a type B cellular automaton model with KI 67 staining
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b

c

d

Figure 4: Growth figures in absence of migration and in case of m = 60 states that have to be passed until division. (a)
Square lattice with division along the x and y axes. (b) Square lattice with division along x, y axes and in diagonals (Moore
neighborhood), (c) Hexagonal lattice, (d) Voronoi lattice.

in multicellular spheroids of non-small cell lung cancer (NSCLC) cells shows that the assumption that a cells
divide with equal probability as long as the dividing cell has to push at most ∆L/a (a: lattice spacing) cells
away in order to divide does not suffice for the quantitative reproduction of the experimentally observed
spatial proliferation pattern [80]. The experimentally found proliferation profiles can be correctly reproduced
if the transition rate for division is assumed to be ∝ e−di/∆L. Here dij is the distance between the dividing
cell and the lattice site that will be occupied as a consequence of the division and the shift of neighbor cells
coming with it. The distance is proportional to the number of neighbors that has to be shifted, and might
be proportional to the energy to shift the neighors. Also other model variants have been studied addressing
cells pushing during migration, cell-cell adhesion etc. [71].

In the CA type B approach, cells can neither be compressed nor deformed. Only rigid cell body move-
ments are possible. On a regular lattice, this corresponds to rigid body movements into discrete directions.
However, in case of noise reduction achieved by choosing many intermediate steps between subsequent cell
divisions and suppressing migration, the emerging growth pattern reflect the lattice symmetry [82, 71] (see
Fig. 4). On an irregular, unstructured lattice, cell size of a moving cell is only conserved on the average. The
advantage of unstructured lattice is that the emerging growth figures do not reflect the lattice symmetry
even in the presence of noise reduction. This has great advantages if quantities sensitive to lattice artifacts
should be studied by modeling, such as the surface scaling properties of growing monolayers that by using a
type B cellular automaton model on an unstructured lattice could be shown by Block et al. [71] to clearly
reveal the scaling properties of Kardar-Parisi-Zhang (KPZ) universality class [87], [88]. This model predic-
tion contradicted claims emerging from interpretations of experimental findings at that time [89], saying
that the surface scaling of growing monolayers and multicellular spheroids (generally: solid tumors) should
be in Molecular-Beam Epitaxy (MBE) universality class. The model prediction was subsequently confirmed
[90, 91] indicating that despite their simplicity the CA models can provide valid predictions.
Interestingly, introducing ∆L on a regular lattice reduces lattice effects [82], and may upon a slight modifi-
cation of the above algorithm eliminate them [92].

Below we briefly summarize advantages and disadvantages of type B cellular automaton models from
our perspective. Evaluations on the computation times are done with regard to a standard PC.
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+ Each cell represented individually.

+ Precise cell position is resolved.

+ Movement (hopping), division and death of cells can be represented.

+ Permits large scale simulations, limitations rather due to large memory requirement than due to
simulation time.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g. mechanics, adhesion)

◦ Cell size and shape represented but they are a lattice and not a cell property, in addition, the
shape of a cell is fixed.

− Due to the lattice there is a lower length scale.

− All dynamics processes (migration, division, death, pushing) are by a jump-type stochastic process.

2.2. Cellular automaton with many cells per lattice site (type A)

In type A automata multiple cells (Nmax > 1) can occupy a lattice site. Consequently, each lattice site
represents a spatial compartment much larger than the size of the individual cell. Birth, death and migration
processes can occur within each compartment and between neighboring compartments. As with the type
B cellular automata, the changes of the number of cells in a certain state can be formulated as chemical
reactions and turned into a master equation for the multivariate probability of finding a certain multicellular
configuration. However, the position of a cell cannot be resolved in this approach, only its compartment
is known. Simulations with type A cellular automata can be speed up by tracking the number of cells in
a certain state instead of tracking each cell individually. An excluded volume assumption is implemented
by only permitting cells to divide within a compartment or into a neighbor compartment, or to hop into
a neighbor compartment if this compartment is not already full. Similar to the type B cellular automata,
mechanical pushing is included by defining a maximum length ∆L > b over which cells can be pushed, with
b > a ≈ V 1/3 denoting the lattice spacing, V the cell volume [66]. When a cell divides in a compartment
that is not completely filled (i.e. N < Nmax), the number of cells in that compartment increases by 1.
When the compartment is full, the number of cells in the closest non-filled compartment, within radius ∆L,
increases by one.

Type A and type B cellular automata can be matched very well when the compartment size is set to
b = ∆L (Fig. 5). Also migration rate φ and internal state m as a representation of the cell cycle can be
matched to produce the same outcome with type A and type B cellular automata models (Fig. 5). Therefore,
a type A cellular automaton can be used as a coarse grained model of a type B cellular automaton model
given the lattice spacing of the type B cellular automaton is properly chosen. This is advantageous if model
parameters are calibrated with in-vitro experiments (monolayer or multicellular spheroids) in which the cell
population sizes do usually not exceed 300, 000 − 400, 000 cells, and this calibrated model should be used
to predict possible growth scenarios of in vivo tumors with 109 − 1010 cells. As an example, Fig. 3 shows
such a simulation for a Xenograft [66]. However, growth of tumors in vivo are largely controlled by the
availability of oxygen, glucose and growth factors. Hence the spatial profiles of these molecules have to be
equally coarse grained. Preliminary attempts at developing numerical schemes for this indicated that for
high concentrations of molecules outside the tumor, coarse graining schemes yielding to the same growth
and death of tumor cell populations can be found while for small concentrations of molecules growth and
death of the tumor cells deviated strongly. As a result, the growth dynamics in the coarse grain type A CA
can deviate significantly from the growth dynamics of the type B CA where each single cell is represented.
These deviations may occur because at high consumption rates, caused by a large number of cells in a
compartment, the approximation schemes fail [93].
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Figure 5: Matching type A and B cellular automaton models. (a) Lin-log plot of growth kinetics for N1/3(t) for m = 1, φ = 0
(φ =phi in the figure legends). For short times growth is exponential. (b) The resulting growth kinetics N1/3(t) for m = 1,
φ = 0 in lin-lin plot shows that N1/d ∝ R ∝ t for long times. (c) Scaling of the maximum number of cells in a compartment of
a type-A cellular automaton versus k = ∆L− 1 in a type B automaton. (d) Growth kinetics for m = 100, φ = 0. (e) Growth
kinetics as in (b) but for φ = 0.1/h (f) Growth kinetics for varying migration rate. (In (e) and (f), the number of cells per
compartment, N is denoted by n.)

A way to deal with this problem is to construct a hybrid lattice which represents the cell population at high
resolution with a type B cellular automaton where strong gradients occur, and otherwise consider the coarse
grained automaton type A. Such a hybrid model is presented in Fig. 6. In order to maximize the resolution
where necessary and coarse grain where no accuracy is needed, ideally the hybrid model would perform
automated switches of the resolution depending on some criterion. For the example shown in Fig. 6 the
small compartments have the size of one cell while the large compartments contain many cells. During the
simulation all compartments which are occupied by an heterogeneous mix of cells are refined to the single-
cell-resolution. Whereas, when all lattice sites associated to a large compartment are occupied exclusively
by cells of the same type, a group of lattice sites are represented by a single lattice site on the coarser scale.
This way only those compartments with a heterogeneous mix of cells or not completely filled with cells are
resolved at single-cell scale. This algorithm especially resolves cells individually in border regions as at the
tumor-medium interface.

Below we briefly summarize advantages and disadvantages of type A cellular automaton models from
our perspective. Evaluations on the computation times are done with regard to a standard PC.

10



a b

Figure 6: Integration of type A and type B cellular automaton in a hybrid model. In the proliferating rim, individual cell
positions a spatially resolved by a type B automaton, otherwise, a type A automaton is used. Inspired by octrees, we divide
the whole space into large compartments which themselves can be further sub-divided.

+ Each cell represented individually.

+ Movement (hopping), division and death of cells can be represented.

+ Permits centimeter scale simulations.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g. mechanics, adhesion can be represented in
limited way by an energy function but not straightforward).

− Precise cell position within the lattice compartment is not resolved.

− Cell size and shape is not represented.

− Due to lattice there is a lower length scale.

− All dynamics processes (migration, division, death, pushing) are by a jump-type stochastic process.

2.3. Lattice gas cellular automata (type D)

Lattice gas cellular automata (LGCA) are a special kind of cellular automata. In addition to the lattice
model types discussed above, LGCA models include velocity channels i.e., particles are characterized by
their position and velocity, which are both are discrete. Frisch, Hasslacher and Pomeau demonstrated in
1986 that by defining a set of rules for the interaction (in their case collision) and propagation of particles
on a regular lattice with discrete time steps and a small set of velocities, one can generate dynamics that
on large scales reproduce the behavior of the incompressible Navier Stokes equation [94, 95, 96]. A simple
intuitive derivation can be found in ref. [97]. In the simulations of fluids, the velocity channels represented
particle collisions. Deutsch and co-workers extended the framework to model growth and migration of cells
in multi-cellular environments [68, 45, 98, 99].

In our description we very closely follow the line of argument presented by Hatzikirou and Deutsch
in [100], which we consider as an excellent presentation addressing the underlying concepts of LGCA for
modeling of tissue organisation and growth.
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LGCAs are defined on a regular lattice, which, in two dimensions, are usually either hexagonal or square
lattices. Each node possesses b velocity channels, where b is the number of neighbors of a lattice site, and
m ∈ 0, 1, 2, ... rest channels (Figure 7). Assuming the coordinate system is fixed at the center of the node,
the rest channel(s) is (are) placed at (0, 0), and the four velocity channels of a rectangular lattice site are
(with vk > 0) at (1, 0), (0, 1), (−1, 0), (0,−1). A node’s state is given by η(r) = (η1(r), η2(r), ..., ηb+m(r)).
The number of particles on a site represent a type of microscopic density (called node density) and can be
calculated by summing up all occupation numbers ηi(r) ∈ 0, 1 at a node r:

n(r, t) =

b+m∑
i

ηi(r, t). (4)

Figure 7: LGCA propagation scheme for a cubic lattice. Shown are 9 lattice squares (called nodes), each with four velocity
channels oriented towards the +x,−x,+y,−y-direction, and a rest channel in the center of node.The left field of 9 lattice
sites show the state before, the right after one propagation step where the cell speed is m̃ = 1. Filled circles denote occupied
channels, empty circles empty channels (redrawn from Hatzikirou and Deutsch in ref. [100]). For example, the central node
on the left side has two occupied channels, i.e., is occupied by two particles. The maximum number of particles at one node is
4 + 1 = 5 i.e., several particles can occupy the same node in space (as for type A cellular automata introduced previously).

The dynamics of an LGCA emerges from applying superpositions of local probabilistic interactions and
deterministic transport steps. The definition of these steps have to satisfy the exclusion principle, i.e., each
channel can at most be occupied by one particle (here: cell). Cells can move to a neighboring lattice site,
and divide or die at discrete time steps with an simultaneous update at all nodes. The temporal evolution
of a state η(r, t) ∈ {0, 1}b+m is determined by the temporal evolution of the occupation numbers ηi(r, t) for
each i ∈ {1, ...,m + b}. With probability P (η −→ ηC), the pre-interaction state ηi(r, t) is replaced by the
post-interaction state ηCi (r, t) ∈ (0, 1) according to

ηCi (r, t) = RCi ({η(r, t)|r ∈ Nb(r)}) , (5)

ηC(r, t) =
(
RCi ({η(r, t)|r ∈ Nb(r)})

)b+m
, (6)

Nb(r) := {r+vi : vi ∈ Nb), i = 1, 2, ..., b} denotes a finite list of the node localized at position r on the lattice,
RCi denotes the interaction rule. This is the time-independent probability P (η → ηC) for transition from
the pre-interaction to the post-interaction node state. In the deterministic propagation step, all particles
are moved simultaneously to nodes in the direction of their velocity i.e., a particle residing in channel (r, vi)
at time t moves to another channel (r + m̃vi, vi) (m̃ ∈ N0) during one time step. This is represented by

ηi(r + m̃vi, t+ τ) = ηP̃i (r, t), (7)
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where, m̃ ∈ N0 denotes the particle speed, m̃vi the translocation of the particle, τ denotes the time step.
Index P̃ indicates that it is a streaming step.

Propagation according to the last equation respects mass and momentum conservation. As a consequence
all particles (cells) in the same velocity channel move the same number of m̃ lattice units. Thus, in contrast
with the CA models of type A and B, cells in LGCAs can move in one time step over many lattice sites.
Combining interaction (C) and propagation (P̃ ) leads to

ηi(r + m̃vi, t+ τ) = ηCP̃i (r, t). (8)

The change of the occupation number due to the combined interaction and propagation is

ηi(r + m̃vi, t+ τ)− ηi(r, t) = ηCPi (r, t)− ηi(r, t) = Ci
(
ηNb(r)(t)

)
, i = 1, ..., b+m, (9)

with

Ci
(
ηN (r)(t))

)
=

 1 creation of a particle in channel(r, vi)
0 no change in channel(r, vi)
−1 annihilation of a particle in channel(r, vi).

(10)

Here, Ci denotes the change of the occupation number.
So far, the upper outline summarizes local rules applied on each site of the lattice. However, the dynamics
can also be formalized on scales larger than individual site of the lattice following the following conceptual
ideas. The overall dynamics at this stage can be described by microdynamical difference equations that
include the probabilistic interaction as well as the deterministic propagation. Ensemble averaging leads
to an equation for the single-particle distribution functions, fi(r, t) = 〈ηi(r, t)〉 which typically contains
a collision term. In a continuum expansion, the difference equation for the single particle distribution
function can be turned into a differential equation. The collision term generally involves higher-order
particle distribution functions hence requiring to solve a hierarchy of coupled equations for the one, two,
three, ... particle distribution functions. This is the BBGKY (Bogolyubov, Born, Green, Kirkwood, Yvon)
hierarchy. Breaking up after the first order, and approximating the two particle distribution function by
the one particle distribution function leads to the Boltzmann equation from which by integration over the
velocity the density, momentum density and energy density can be calculated. As these operations can be
equally performed for the LGCA, it permits to define a pressure tensor. The kinetic pressure in the LGCA
is defined as pK = (1/V0)

∑
i v

2
i fi, with V0 being the elementary volume associated to a node, fi the single

particle distribution function, and vi with i1, ..., b denotes the velocity channels [96]. The thermodynamic
pressure is defined by p = (1/(V0β))

(∑
i fi + (1/2)

∑
i f

2
i + ...

)
[96] with β = 1/(kBT ), T being temperature,

kB the Boltzmann constant. Hence relations for the kinetic and thermodynamic pressure can be derived
for the LGCA. The local density is defined as %(r, t) =

∑
i fi(r, t). Equivalently, a momentum density can

be defined by summing %v =
∑
i m̃vifi(r, t). While the rules of classical LGCA are chosen in order to

reproduce classical partial-differential equations describing fluid dynamics such as the mass conservation
and the Navier - Stokes equation for an incompressible fluid as the momentum conservation, for cell systems
momentum conservation is not assumed.

Deutsch and co-workers established extended the framework to include birth and death. In a most basic
model they permit cells to move according to a propagation operator, reorient, and grow and divide. In the
simplest case the rules are chosen such that isolated cells perform a random walk with transition probability

P(η → η0)(r, t) =
1

Z
δ(n(r, t), n0(r, t)) (11)

with a normalization factor Z =
∑
η0(r,t)) δ(n(r, t), n0(r, t)). The index O here denotes re-orientation.

The rule for birth is:
Ri(r, t) = ξi(r, t)(1− ηi(r, t)), (12)

where ξi are random Boolean variables with
∑b+m
i=1 ξi(r, t) = 1. This rule takes into account that occu-

pied velocity channels cannot be occupied by a second cell hence mimics contact-inhibited growth. The
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corresponding probabilities are:

P(ξi(r, t) = 1) = rM

∑b+m
i=1 ηi(r, t)

b+m
, (13)

with rM being a proportionality constant. Notice that if no cell is on the node, division cannot occur, and
the probability is proportional to the number of occupied channels.
Death occurs with rate rd = (b+m−C)/(b+m)rM , with C ≤ b+m being the maximum node occupancy.
Results are shown in Fig. 8. As in the CA-types A and B models above without a velocity channel, growth
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Figure 8: Simulation of a growth process in the LGCA (courtesy of Hatzikirou and Deutsch [101] ). Shown are the lines of
each cell density at times t = 50, 100, 150, and the growth kinetics. The center is filled with cells.

is linear.
The above dynamics is fully specified by the following microdynamical equations, that form a useful

starting point to derive the large scale behavior (see below):

ηRi (r, t) = ηi(r, t) +Ri(r, t) (14)

ηRi (r +mvi, t+ τ) =

b+m∑
j=1

µj(r, t)η
R
j (r, t). (15)

The first of the two equations refer to the growth operator R, the 2nd to the redistribution of cells on
the velocity channels, and the propagation to the neighboring nodes. The growth operator associates a new
occupation number for a given channels by a stochastic growth process. µj(r, t) ∈ {0, 1} are Boolean random
variables selecting only one of the b+m-terms on the rhs of the Eq. 15. The random walk is implemented
as a simple reshuffling of cells within the node channels leading to the probability of choosing a channel:
〈µj〉 = 1/(b+m) for j = 1, ..., b+m. The terms Ri(r, t) ∈ {0, 1} for i = 0, 1, ..., b+m represent birth/death
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processes of cells in channel i and are applied to each channel independently.
By local ensemble averaging, the lattice Boltzmann equation can be obtained from Eqs. (14, 15):

fi(r +mvi, t+ τ)− fi(r, t) =

b+m∑
j=1

Ωijfj(r, t) +

b+m∑
j=1

(δij + Ωij)R̃j(r, t). (16)

Here Ωij = 1/(b+m)− δij is the transition matrix of the shuffling process, R̃i = F (%)/(b+m) the averaged
reaction term, that is assumed to be independent of the particle direction. F (%) is the cell reaction term for
a single node. Inserting the upper equations, one obtains for the reaction term

R̃j(r, t) = rMfi(r, t)

(
1− rD

rM
− fi(r, t)

)
. (17)

Using a Chapman-Enskog expansion, the macroscopic dynamics can be obtained from the upper equation
(14, 15) by using diffusive scaling according to x = εr, t̃ = ε2t. The emerging equation for slow growth rates
is of the Fisher-KPP type:

∂%

∂t̃
=

m̃2

(b+m)τ
∇2%+

1

τ
F (%), (18)

with F (%) = rM%(C−%(x, t̃)). The mean field equation shows qualitatively the same behavior as a simulation
with the LGCA. The minimum growth speed for this equation, well known and Fisher-KPP equation, is

vmin ≥ 2 m̃τ

√
rM

(b+m) . This qualitatively agrees with the estimate for the type B automaton made in ref. [82],

for which in case where the proliferating rim is much larger than the diffusion length, v ∝ ∆L/τeff has been
found (see above), if ∆L ∝ m̃ is chosen. I.e., the introduction of the velocity channels indicate the same
function as the introduction of the distance over which dividing cells are able to shift their neighbor cells.
However, to reach quantitative agreement between the above Fisher-KPP equation and the LGCA, the long
tail of the traveling front needs to be cut, which may occur by introducing a cut-off. In this case the behavior
is as those of the cellular automaton without velocity channel, for which on long time scales a stochastic
Fisher-KPP equation could be obtained [82], where an intrinsic multiplicative noise term cuts off the long
small density tail of the traveling front.

Below we briefly summarize advantages and disadvantages of type D cellular automaton models from
our perspective. Evaluations on the computation times are done with regard to a standard PC.

+ Each cell represented individually (but several cells are usually on the same lattice site as there
are velocity and rest channels).

+ Movement, division and death of cells can be represented.

+ Permits large scale simulations, limitations rather due to large memory requirement than due to
simulation time.

+ Permits efficient parameter sensitivity analysis.

◦ Rule based, physics not directly represented (e.g. mechanics, adhesion) (but for certain cases
convergence against continuum mechanical equations could be rigorously shown)

− Precise cell position is usually not resolved (but number of cells on a lattice site is usually chosen
small).

− Due to the lattice there is a lower length scale.

− Some dynamical processes are by a jump-type stochastic process.
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2.4. Cellular automaton with many lattice sites per cell (Type C; Cellular Potts Models)

The cellular Potts model (CPM) is an energy based, lattice-based modeling method for cell based model-
ing. It uses an energy functional generalized from the Potts model to evaluate a multi-cellular state, and it is
therefore named Cellular Potts model. The Potts model is a generalization of the celebrated and extensively
studied Ising model, both are used to describe phenomena in solid state physics as e.g. ferromagnets.
In CPM, one cell occupies many lattice sites. Different from the CA models discussed before, the CPM
explicitly represents the cell shape which has made the CPM a popular tool to model morphogenic processes
such as cell sorting [52, 102], cancer and tumor growth [103, 104, 105, 106, 107, 108, 109], and angiogenesis
[110, 111, 112, 113, 114, 115, 116, 24].

In the CPM cells are positioned on a 2D or 3D lattice. Each site x on the lattice is assigned an identifier
σ ∈ N0. All sites with the same, positive identity σ are part of the same cell, and all remaining lattice sites,
with σ = 0, belong to the medium. Cell migration, cell growth and cell shape changes are modeled using
a Markov chain Monte Carlo method. The CPM iteratively attempts to change the state of a randomly
chosen lattice site x to that of a randomly chosen neighboring lattice site x′. To determine whether such a
copy attempt is successful the change in effective energy of the configuration (∆E) is evaluated using the

Metropolis algorithm: p(σ(x) → σ(x′)) = min(1, e
−∆E
FT ), where FT denotes an effective fluctuation energy

that controls the cell motility. Each time step, this sampling process is repeated until the number of copy
attempts is equal to the number of lattice sites. Afterwards, the model parameters may be updated and
non-energy driven process such as cell division may occur.

The effective energy E summarizes the effects of the modeled cell behavior. The standard effective energy
of the CPM consists of two terms:

E =
∑

(x,x′)

J(σ(x), σ(x′))(1− δ(σ(x), σ(x′)) + λV
∑
σ

(V0 − V (σ))2 (19)

The first term represents both cell-cell adhesion and cell-ECM adhesion that is computed for all sets of
neighboring lattice sites (x, x′) where J(σ(x), σ(x′)) represents the energy cost of an interface between two
cells. Because only interfaces at the cell membrane are associated with energy costs, the Kronecker delta
(δ(x, y) = {1, x = y; 0, x 6= y}) is used such that the contact energy becomes zero for σ(x) = σ(x′). The
second term is a volume constraint, with cell volume V (σ) and target volume V0, and the penalty parameter
λ. For 2D simulations volume should be replaced with area.

In case the cell is assumed to be homogeneous isotropic elastic, one would expect λV = KV = E/(3(1−
2ν)) with E being the Young modulus of the cell, ν being the Poisson ratio, and KV the bulk modulus.
To model growth, the target volume V may be updated at each simulation step. Once the target volume
has adopted twice its value after mitosis, and the ratio of actual volume and target volume Θ = V0/V
overcomes a critical threshold, a cell splits into two daughter cells. A scenario is shown in Fig. 9 [117]. It
can be shown that the dependency of the growth kinetics on the model parameters is the same for the CPM
as for the lattice type A and B models. A larger Erlang parameter m leads to slower growth and, as in
the center-based off lattice models discussed below, growth is faster if Θ is decreased (Fig. 10). Non-shear
contributions to the elastic energy are controlled by the bulk modulus. The change of hydrostatic pressure
dp and the volume change dV are related by

dp

dV
= −KV

1

V
, (20)

leading to p = p0−KV log(V/V0), with p0 being the hydrostatic pressure of the cell at volume V0. For small
volume changes, Taylor expansion for small (V − V0)/V0 yields the approximate pressure

p = p0 −KV
V − V0

V0
, (21)

with KV = E/(3(1− 2ν)) as defined above, hence the volume threshold can be related to a pressure. With
increasing E the pressure increment p − p0 necessary to generate the same volume deviation increases or,
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Figure 9: Simulation of a growth process in a Cellular Potts model defined on an irregular (a Voronoi) lattice in d = 2 spatial
dimensions ([117]). The found growth kinetics is the same as for the CA type A and B models and the LGCA. Note, that
R ∝ N1/d.

vice versa, in order to generate the same pressure increment for a large Young modulus E than for a small
Young modulus E, the volume difference (V −V0) must be smaller. With an increasing Young modulus and
a fixed Θ the growth speed increases, as also found for the center-based model [81].

The volume constraint also demonstrates a shortcoming of the CPM. For incompressible cells, volume
changes during migration are associated with infinite energy increase. However, a cell in the CPM moves
by flipping lattice sites, which, according to the Metropolis scheme, has probability zero in case a flip is
associated with an infinite energy increase. This means that an incompressible cell cannot move in the
standard CPM described by Eqs. (19) and the choice of λV with ν = 0.5. The reason is that cell movement
in the standard CPM is inherently linked to volume changes because the CPM does not distinguish between
the main cell body and filopodia. The relation to energy and temperature has to be properly chosen to
permit reasonable movement.

Another commonly used term in the effective energy is the surface area conservation: λS
∑
σ(S0−S(σ))2,

with surface area S0 and target surface area S [118]. In d = 2 dimensions it becomes a line energy. This
term is either added as an extra term, or replaces the volume conservation term. When the surface area
or the perimeter constraint energy contribution are combined with contact energies (J) that are permitted
be negative, then the roughness of the cell border can be controlled and may be linked to experimental
observations [119]. Note that the magnitude of both the surface area conservation term and the volume
conservation term depend on the fineness of the lattice. For example, when the number of lattice sites on
a 2D lattice doubles, a deviation of 1 lattice site yields the same energy while the actual deviation is twice
as small. To fix this issue, both the deviation of the volume or surface area may be divided by the target
volume or target surface area [24, 120].
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Figure 10: Simulation of a growth process in a Cellular Potts model defined on an irregular (a Voronoi) lattice in d = 2 spatial
dimensions ([117]). A smaller Erlang parameter k and volume threshold Θ accelerates growth. (The Erlang parameter is here
denoted by k, not by m.)

The effective energy only includes static cell properties such as size and neighbors. To include dynamic
cell behavior, such as chemotaxis, extra terms may be added to the energy change ∆E. The most common
mechanism that is included in this way is chemotaxis [54]:

∆Echemotaxis = −χ (c(x′)− c(x)) , (22)

where χ denotes the chemotactic sensitivity and c(x) is the concentration at position x. In ref. [121],
external forces have been defined for any external potential. To illustrate modeling external forces in the
CPM we set up a model with a row of three cells and define a potential for right to left on the rightmost cell.
We expect that the cell on the right and the cell in the middle will elongate because of this force. Figure 11
shows the evolution of the cells and the cell length during the simulation. As expected, the pushing force
towards the left causes the cells to elongate. After ∼ 600 steps the cell the right starts crawling over the
middle cell and migrates further to the left. As a result, the rightmost cell no longer pushes on the other
two cells and they relax. Note that the exact moment of at which the rightmost cell starts crawling over its
neighbor differs per simulation, therefore we stopped measuring the cell length after 600 steps.

ba
600 steps 1500 steps1000 steps

0 steps 100 steps 400 steps

Figure 11: Cellular Potts simulation of a row of three cells with a pushing force on the rightmost cell (µ = 10, V = 2500,
λ = 10, J(cell,cell) = 10, J(cell,medium) = 5). a evolution of the three cells in a single simulation. b evolution if the length
of each cell averaged over 50 simulations (filled areas around the curves reflect the standard deviation). The cell length is
estimated from the cell’s moment of inertia [122].

Recently, several efforts have been made to extend the CPM with a heterogeneous ECM that interacts
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with cells and that is remodeled by the cells. Overall, three different approaches can be recognized. In the
first approach the ECM is modeled as a density field that affects the behavior or the cells and is remodeled
by the cells. Daub and coworkers [116] extended the CPM with both haptotaxis, migration towards higher
ECM concentrations, and haptokinesis, preferential migration on intermediate levels of ECM, using an ECM
density field. The cells affected the field by depositing matrix metalloproteinases (MMPs) that degrade

the ECM: ∂c(x,t)
∂t = −δ(σ(x), 0)εcMMP(x, t)c(x, t), with cMMP the MMP concentration and ε the ECM

degradation rate. Both haptotaxis and haptokinesis affect the dynamics of the cells, therefore they are
added as changes in effective energy. The energy change due to haptotaxis is described as:

∆Ehaptotaxis = χ

(
c(x′)

1 + s c(x′)
− c(x)

1 + s c(x)

)
, (23)

where χ denotes the sensitivity, c(x) the ECM concentration (c ∈ [0, 1]), and s the saturation coefficient.
For haptokinesis a reverse Gaussian function is used to model the response of a cell to the local ECM
concentration:

∆Ehaptokinesis = ηδ(σ(x), 0)

(
1− 1

ρ
√

2π
e
− (µ(x′)−µ̄)2

2ρ2

)
, (24)

with haptokinesis strength η, and µ and ρ the mean an standard deviation of the Gaussian function. The
second approach for modeling cell-ECM interactions in the CPM is by including immobile objects that
represent fibers [115, 114, 104, 123, 124, 125]. The cells adhere to the fibers and thereby the fibers facilitate
migration. However, because the fibers are modeled as immobile objects, they may also block migration. In
some of the models, cells are also able to degrade the fibers by overtaking their lattice sites [125]. The third
method of modeling cell-ECM interactions is by mechanically linking the ECM to the cells. For this the
ECM is modeled as a 2D compliant substrate using the finite element method (FEM) [24] and each CPM
step is followed by a FEM step that resolves the ECM deformation. The CPM lattice is placed on top of
the FEM mesh such that one CPM lattice site corresponds with one FEM node. Each FEM node that is
covered by a cell pulls on all other nodes that are part of the same cell [126, 24], causing a resultant force
F i on each node i:

F i = µ

j 6=i∑
∀j:σ(j)=σ(i)

dij , (25)

with µ the tension per unit length, and dij the Euclidean distance between node i and j. Then, during
the FEM step, the substrate deformation is computed according to: Ku = F with stiffness matrix K,
displacement u and forces F . The deformation causes strain stiffening, which is expressed in the Young’s
modulus E(ε). Strain stiffening is fed back to the CPM via durotaxis: the preferential migration of cells
towards areas of higher stiffness:

∆Edurotaxis = −g(x, x′)λdurotaxis (h(E(ε1))(v1 · vm) + h(E(ε2))(v2 · vm)) (26)

with g(x, x′) = 1 for extensions and g(x, x′) = −1 for retractions, λdurotaxis the magnitude of the response
to stiffness, h(E) a sigmoid representing the shape of response of the cells to the stiffness, ε1 and ε2, and v1

and v2 the principal strains and strain orientation, and vm = x̂− x′ is the unit vector in direction of x− x′.
As described, cell-based models have been linked to the ECM in several ways using the CPM. The main

reasons that this has happened with the CPM is that the method is computationally inexpensive in 2D
and quasi-3D. Therefore, it is possible to perform large scale parameter sweeps and sensitivity analyses
with CPM-based models [127, 128]. Furthermore, open source software CPM modeling is readily available
[129, 130, 131] which makes it easy to implement and simulate models using the CPM. However, there are
some major disadvantages to the CPM. First, whereas the CPM performs well in 2D and quasi-3D, real
3D simulations take long and are therefore uncommon. Second, because the CPM minimizes the effective
energy, all cell behavior is highly linked to cell motility. It is, for example, not possible to simulate a im-
mobile, flexible cell using the CPM (see also the discussion above). Finally, some parameters of the CPM
cannot be linked directly to physical parameters. Therefore, physical parameters measured in experiments
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cannot always be used to set model parameters in the CPM. One could derive the Poisson ratio and Young’s
modulus from single cell simulations in which the cell is compressed or stretched [132]. By calibrating the
model such that the Poisson ratio and Young’s modulus measured in simulations correspond with those
measured in experiments, the single-cell parameters can be estimated. This leaves only the contact energies
between cells as an unknown parameter, which can only be estimated by calibrating the CPM simulations
against experimental observations. Altogether, whereas the CPM offers a flexible framework for cell-based
simulations that include interactions between cells and the ECM, the method is limited to simulating motile
cells and is mainly applicable for qualitative modeling. Below we briefly summarize advantages and disad-
vantages of type C cellular automaton models (Cellular Potts models) from our perspective. Evaluations on
the computation times are done with regard to a standard PC.

+ Each cell represented individually.

+ Precise cell position is resolved.

+ Cell size and shape statistically represented (if cell fragments are permitted to dissociate from the
cell body) or directly represented (if dissociation moves are inhibited).

+ Movement, growth, division and death of cells can be represented.

+ High cell densities can straightforwardly be handled.

+ Provides a flexible modeling framework shown by many authors using and having extended the
approach.

◦ Large scale simulations due to computation time not accessible, at most around 106 cells can be
simulated.

◦ Parameter sensitivity analysis challenging due to long computation time and as some of the pa-
rameters cannot be associated directly with physically known quantities.

◦ Physics partially directly represented (e.g. mechanics, adhesion), but partially unphysical cou-
plings of migration and physical properties can occur (see in the text: incompressible cells
(λV →∞) do not move in the standard CPM).

− Due to lattice there is a lower length scale.

− All dynamics processes (migration, division, death, pushing) are by a jump-type stochastic process.

− A given multicellular configuration has usually a very large number of possible neighbor config-
urations, too large to be completely listed. As a consequence, the dynamics is by Monte-Carlo
sampling, which can lead to unnatural distortions of the time scale.
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3. Off Lattice Models

In off lattice models, cells are represented by a single or a clusters of particles and interactions between
them can then be described by forces or potentials. As in the lattice models, cells have the ability to grow,
migrate, divide, and die. Position changes can be obtained by solving an equation of motion for each cell.
Alternatively, the dynamics of a system of cells can be mimicked using energy based methods using numerical
procedures such as Monte Carlo sampling and the Metropolis algorithm [60, 133, 81], which is used also for
the CPM (see previous section). The advantages of force-based models are a well-defined time scale, and a
more intuitive way of taking into account complex interactions of cells with other cells or their environment
which is why they became the standard approach. For this reason, we mainly limit ourselves to force-based
models. Energy based modeling with center based models are discussed in detail in ref. [72].

3.1. Center Based Models

3.1.1. Basic concepts

In Center Based Models (CBM) cells are represented by simple geometrical objects that can be described
by one or a small number of centers. The basic assumption is that each trajectory of a cell in space can
be described by an equation of motion in formal analogy to physical particles. Usually inertia effects are
neglected as the Reynolds numbers are very small meaning friction dominates the system [134]. The basic
equation considering forces between cells and between cells and substrate then reads for cell i

Γcsi vi +
∑
j

Γccij (vi − vj) =
∑
j

F intij + F subi + Fmigi . (27)

On the left side, we have the friction forces of cells with substrate (1st term) and among cells (2nd term),
on the right side of this equation, we find the forces on the cells emerging from repulsion/adhesion with
other cells j, F intij , as well as with the substrate F subij , as well as the cell migration force Fmigi . The friction
forces involve tensors for the cell-cell friction (Γccij ) and cell-substrate friction (Γcsi ). The latter can also
capture capillaries or membranes [32]. If friction coefficients parallel and normal to the movement direction
are different, the friction tensor becomes

Γij = γ⊥(uij ⊗ uij) + γ||(I − uij ⊗ uij), (28)

with uij = (rj − ri)/|rj − ri|, where ri, rj denote the position of the centers (see Fig.12) of cell i and object
j. (⊗ denotes the dyadic product. If object j denotes another cell, this would correspond to the superscript
”cc”, otherwise to the superscript ”cs”. For example if cells move on a flat substrate (s), the substrate can
be viewed as a sphere with infinite radius.) Here γ⊥ denotes perpendicular, γ|| parallel friction. This can
be seen after multiplication of the friction tensor with the cell velocity:

Γijvi =
(
γ⊥(uij ⊗ uij) + γ||(I − uij ⊗ uij)

)
vi

= γ⊥uij(uijvi) + γ||(Ivi − uij(uijvi)).

Friction occurring in the perpendicular direction of the movement may be associated with internal friction
in particular if two cells are pushed against each other which leads to deformation and reorganization of the
cytoskeleton, while friction in the parallel direction is a description of the dissipative forces when sliding the
cell membranes along each other.

The migration force Fmigi is usually an active force. In absence of influences that impose a direction it
is common to assume that the migration force is stochastic, with zero mean and uncorrelated at different
points in time, 〈Fmigi 〉 = 0, 〈Fmigi (t)⊗Fmigi (t′)〉 = Aiδ(t− t′). Here Ai is a d×d matrix that may be specific
for each individual cell i, d being the spatial dimension. Using the formal analogy to colloidal particles in
suspension, one obtains for the fluctuation strength

〈Fmig||;i (t)Fmig||;i (t′)〉 = G||;iδ(t− t′), (29)

〈Fmig⊥;i (t)Fmig⊥;i (t′)〉 = G⊥;iδ(t− t′), (30)
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with Fmig||;i (t) = (I − ui ⊗ ui)F
mig
i , Fmig⊥;i (t) = (ui ⊗ ui)F

mig
i . G||;i and G⊥;i are scalars. ui is the unit

vector pointing into the direction of the cell movement. In colloidal particle physics, the autocorrelation
amplitude of the noise is controlled by the friction coefficient and the thermal energy kBT , kB being the
Boltzmann constant, T temperature, according to G||;i = 4γ||kBT , G⊥;i = 2γ⊥kBT . A formal analogy
would lead to replacing kBT by the membrane fluctuation strength FT as proposed by Beysens et al. (2000)
[86]. However, the mechanisms of cell movement cannot be expected to follow the equipartition theorem of
statistical mechanics. Cell migration is active, depending on the local matrix density and orientation hence
we cannot claim the autocorrelation amplitude matrix A is properly described by the aforementioned analogy
to colloidal particle movement. Instead, by measuring 〈((ri(t+ τ)− ri(t))⊗ (ri(t+ τ)− ri(t))〉 = 2Dτ , one
might determine the diffusion tensor D of the cell where again diffusion is not a consequence of collisions with
smaller particles, but a parameter phenomenologically describing the cells’ spread. For a simple algorithm
to simulate a force-based Brownian motion of a cell in a isotropic medium, see appendix B.

Some authors use the inertia term midvi/dt to mimic the effect of persistence [27] while in principle
it can be directly simulated using a memory term. In this case, Γcxij vk (x ∈ {c, s}, k ∈ {i, j}) has to be

replaced by
∫∞
−∞ Γcxij (t − t′)vk(t′)dt′, so that if Γcxij (t − t′) = Γcxij δ(t − t′), the basic equation of motion is

recovered. Another way is to assume that the active movement component of a cell has a memory i.e., a
cell has the tendency towards keeping its (active) migration direction. This can be modelled by replacing
the uncorrelated noise by noise for which the auto-correlation amplitude decreases over a time period over
which the cell has migrated of a distance of the order of its diameter or even larger. Sepulveda et al. [135]
modelled this by assuming the active random migration force Fmigi follows an Ornstein-Uhlenbeck process

modelled by the solution of the equation (1/β)dFmigi /dt = −Fmigi + fuc
i

were fuc
i

again has zero mean and
is uncorrelated, β is the inverse of the autocorrelation time.
Directed cell migration was successfully modelled in Hoehme et al. [32] considering the closure of a necrotic
lesion after drug induced damage in liver. Firstly, by a chemotaxis force F chemi = χ∇c was assumed with
χ being the chemotaxis coefficient, and c(r, t) the morphogen concentration assuming a morphogen being
secreted by the necrotic cells. A second assumption was that cells attempt to move away from cells of the
same type, modelled by the term Fmigi = (1 − θ(∇pifuci ))fuc

i
. Here θ(x) = 1 if x ≥ 0, else θ(x) = 0, is

the Heaviside step function, fuc
i

again uncorrelated white noise. pi is a pressure-like measure defined below
(Eq. (36)). The effect of this formula is, that it inhibits all active moves that would increase cell density as
for those the Theta-function becomes one so the migration force becomes zero. Only active moves leading
to a decrease of density can occur. Hence the expression reinforces cells to move towards empty spaces.

a b

Ri

Rjδij

Fdiv
ri

rj

vi

vj

0

mother cell

Figure 12: Left: Center based model with cells represented as spheres, defining the basic contact variables. Right: division of
two cells in a CBM.

The cells interact by pairwise potentials having a repulsive and adhesive part, and are described by a
function of the geometrical overlap δij . A number of different approaches have been used for the interaction
force, including linear springs [133, 136, 33], a force derived from Lennard-Jones like potentials [137], and
a Hertz force approximating cells by isotropic homogeneous elastic bodies that are moderately deformed if
pressed against each other [62, 81]. We here consider the latter approach and extensions based upon it.
Consider two spherical cells i and j which are in each others neighborhood (see Fig.12). If the distance dij
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between the cells becomes smaller than the sum of their radii, we assume a Hertzian contact force develops
calculated by:

F repi = 4/3Êi

√
R̂iδ

3/2. (31)

in which δ is the overlap between the cells and Ê and R̂ are defined as

Ê =

(
1− ν2

i

Ei
+

1− ν2
j

Ej

)−1

and R̂ =

(
1

Ri
+

1

Rj

)−1

with Ei and Ej being the Young’s moduli, νi and νj the Poisson numbers and Ri and Rj the radii of the cells
i and j, respectively. Galle et al. (2005) and Ramis-Conde et al. (2009) [62, 64] considered adhesion of cells
to other cells or an underlying substrate by an additive term in the interaction energy which is proportional
to the Hertzian contact area of the cells without adhesion and the strength of the adhesion formed by bonds
σ:

F adhi = −πσR̂, (32)

and named the force ”extended Hertz model”. Note that the total force F = F rep + F adh acts in the
direction of the vector connection the centers of the spheres. This simplified approach is convenient as it
permits to give an explicit analytical expression for the force. However, it neglects that adhesion is modifying
the contact area, and disregards that the force distribution within the contact area are is inhomogeneous.
A more realistic adhesive model taking this into account results from the Johnson-Kendal-Roberts (JKR)
theory, which also takes into account a hysteresis effect if the cells are separated from each other. In this
case the force is computed by

F adhi =
4Ê

3R̂
[a(δij)]

3 −
√

8πσÊ [a(δij)]
3
. (33)

The contact radius a in Eq. 33 must be obtained (from [138]):

δij =
a2

R̂
−
√

2πσ

Ê
a. (34)

Compared to the JKR model, the modified Hertz model requires less computational effort, because Eq. 34
needs to be solved iteratively. On the other hand, the JKR model is a more realistic adhesion model for solid
adhesive soft spheres for the reasons explained above. A study of multi-cellular dynamics in monolayers
reported an effect of the adhesion model choice [61].

Once all forces are determined in Eq. 27, we arrive at a linear problem described by a sparse symmetric
matrix, which can be solved efficiently by a Conjugate Gradient method [139, 140]. Note that the above
system of equations of motion (Eq. 27) does not conserve total momentum. It assumes a substrate on
which momentum can be transfered on is a petri dish in case of growing monolayers, or a stiff but not too
dense extracellular matrix (ECM). If cells migrate over each other or if the ECM is not rigid enough, this
assumption might be problematic. In the latter case of a soft ECM long range communication between the
cells mediated by the ECM could become important and should be taken into account explicitly. Models
taking into account ECM are briefly discussed below.

In the cycle a cell increases its volume, which can be described by

dVi
dt

=

∫ Ti

0

αi(Vi, ...)dt. (35)

with a volume V0;i right after mitosis has occured, Ti the cell cycle time, and αi(Vi, ...) the volume growth
rate. The latter one cannot be assumed to be constant over the cell cycle and maybe altered under the
conditions of inhibited growth, and for example depend on the actual volume Vi and many other parameters.
If αi is a constant, cell volume increase is linear. If the cell passed a critical volume, critical time point, or, in

23



case a cell is modelled by a dumb-bells, a critical dumb-bell axis length, the cell undergoes mitosis, the process
during which a cell splits into two daughter cell bodies, and two new cells with equal volume are created.
During the mitosis process several internal forces develop in the mother cell, involving an actin contractile
ring at the cell equator [141]. Different models of cell division have been studied [61]. The interphase adding
up the G1, S and G2 phase and mitosis phase may be described by an increase the radius of a spherical
cell, eventually transforming it into a dumbbell during mitosis. As dumbbells lack spherical symmetry an
additional equation of motion for rotation is required. The equation for the angular momentum is complex
[82], and therefore rotations are often simulated by a Monte-Carlo dynamics using the Metropolis algorithm
[32]). A simplification of the division algorithm consists in skipping the transformation phase and placing
two smaller daughter cells in the space originally filled by the mother cell at the end of the interphase (e.g.
[142, 62]). With this algorithm no dumbbells are generated, hence rotations of to dumb-bell shapes does not
occur. When the two daughter cells are created, the two daughter cells will be pushed from each other away
until mechanically in equilibrium. The direction in which the cell divides may be chosen randomly, according
to biological principles or the cells’ environment, or according to stress principles (see further). However,
the simplified algorithm has two major shortcomings. Firstly, if the space filled by the mother cell is small
already, which is often the case for cells in the interior of a cell population, the local forces occurring after
replacing the mother cell by two spherical daughters can adopt very large (unphysiological) values leading
to unphysiologically large cell displacements. This might partially be balanced by intermediately reducing
the forces between the daughter cells. Secondly, cells in contact to the mother cell prior to replacing the
mother cell by its two smaller daughter cells may loose contact as a consequence of the discontinuous local
configuration change. For a cell at the border of a population this can lead to a detachment of the neighbor
cell from the multicellular aggregate.
In another approach to cell division, cells entering the cell cycle are immediately represented as dumbbells
which gradually grow by increasing their axis from zero length to twice the radius of the dumbbell spheres,
where they separate into two spheres [83, 137]. This algorithm has been found to generate only minor
differences on time scales much larger than the cell cycle time compared to the algorithm distinguishing
between a spherical growth and a dumbbell deformation phase.

During the cell cycle, cells take several decisions depending on certain criteria. Commonly used criteria
for cell cycle progression control by contact inhibition on the whole cell level are cell deformation, volume
compression, a force threshold or a stress threshold, each of which have proven to qualitatively predict
growth limitation in tumor models [143]. A machinery of molecular factors underly the decision processes
(e.g. [144], [145]). Drasdo and co-workers considered in a number of papers [60, 81, 146] a mechanism
in which progression of a cell in the cell cycle was possible only if the distance to any of its neighbor did
not become smaller than a certain threshold value. For a cell in the interior of a multicellular aggregate,
balance of forces usually leads to small distances of a cell to its neighboring cells, so a too large overlap
is likely to correspond to a too large volume compression of that cell. Cells at the border can move and
escape the compression which is why border cells were not limited by this criterion. Contact inhibition
of growth, as well as other growth control mechanisms mark the difference between normal and abnormal
cells. Aggressive cell lines pile markedly up in monolayer culture i.e. growing on a flat substrate, as their
are able to grow and divide without contact to the underlying substrate [62], [61]. For example, in the
absence of contact inhibition, cells localized in the interior of the monolayer may above a critical size not be
able anymore to relax their mechanical stress by pushing other cells towards the monolayer border. Small
stochastic differences in the cells’ distance from the underlying growth plane may then lead to normal force
components, which for some of the cells are directed out-of-plane (Fig. 13). If those force components are
not balanced by adhesion forces between substrate and these cells anymore, then these cells can be pushed
out of the layer. CBMs capture this effect very naturally as it emerges out of the force-based dynamics,
while in a cellular automaton model such an effect needs to be coded explicitly and is otherwise missed out.
The criterion that cell cycle progression is inhibited at any time in the cycle leaving cells in the interior of a
multicellular aggregate arbitrarily long in the cell cycle does not correspond to biological observation. Rather
a number of checkpoints are reported and generally accepted (e.g. G1, G2, M−checkpoint). Cells passing
G1-checkpoint are committed to pass the entire cell cycle. Hoehme et al. [32, 83] implemented this by
assuming that cell cycle entrance was possible only after division in a certain time point or small window in

24



Figure 13: Growth scenario in expanding monolayers if cell-substrate adhesion is insufficient to keep the cells in contact with
the substrate (left), hence cells in the interior are pushed out of the basal layer by the forces exerted by their neighbor cells
during growth and division [62] [61]. Blue cells denote cells with contact to the underlying substrate, red cells do not contact
to the substrate anymore. Right: cells trying to grow by increasing their size exert forces on their neighbors. Those can lead
to force components normal to the substrate (thick red arrow, overemphasized). Such a process represents a difficult obstacle
to cellular automaton models of types A, B, D, as gradual displacements in combination with an increasing force component
pointing perpendicular outside the layer are responsible for the macroscopic detachment of cells.

G1 phase mimicking the restriction point. Once a cell passes the restriction point it progresses until division
with probability one. This condition gave a very good quantitative explanation of many observations in
growing multicellular spheroids of EMT6/Ro cells [83]. A similar choice had been taken by Schaller and
Meyer-Hermann [142]. Schaller and Meyer-Hermann [142] considered cell-cycle entrance if the local pressure
was below a critical value. Drasdo and Hoehme [143] also compared the consequence of different cell cycle
entrance criteria such as a compression threshold, a tension threshold (meaning cells enter cell cycle only if
stretched), and different mechanical stress-related criteria, on monolayer growth (Fig. 14).

In Galle et al. [62] a volume based criterion is used. The cell compression is computed using the tar-
get volume minus the volume loss from geometrical overlaps of neighboring cells, Vi(t) = (4/3)πRi(t)

3 −∑
j NN i V

cap
ij i.e., the caps lying in the neighbor cell. The overlap is overestimated if a cell overlaps simul-

taneously with two other cells that already overlap i.e., if three cells share a volume segment. The different

Figure 14: Left: growth of a monolayer for pure pushing forces and pulling forces emerging if border cells migrate actively into
the environment. Right: Growth of a multicellular spheroid in an environment of elastic particles to mimic the mechanical
resistance of agarose gel [143]. As in the cellular automaton models, growth is first exponential turning into linear growth.

criteria influence the expansion speed and the cell density profile but seem to reproduce qualitatively the
same dynamics.
There are several possibilities to compute stresses in CBM. For mechanical stress, one can define several
pressure, or pressure-related quantities. Byrne and Drasdo [146] used the following definition to incorporate
contact inhibition effects in tumor growth:

pi =
∑
j

‖frep
ij
uij |‖

Aij
, (36)
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with uij = (ri− rj)/|ri− rj |. f
rep
i are the repulsive forces from cells j on on cell i due to contacts with cells

j and Aij is the contact area derived from the contact model. This measure associates every deformation
or compression of the cell with a (positive) pressure, including cell deformation occurring as a consequence
of adhesion. The measure was calculated as pressure equivalent in a growing monolayer, where cells are
constantly under compression hence the cell-to-cell distance 〈dij〉 < Ri +Rj .
Schaller and Meyer-Hermann [142] considered instead

pi =
∑
j

‖f
ij
uij‖

Aij
, (37)

i.e. adhesive and repulsive forces in growing multi-cellular spheroids. In this case, the pressure would be zero
if the total interaction force between a cell and its neighbors is zero, so the obtained values are always below
those in the former definition in presence of cell cohesion. However, as the latter measure was considered
in growing cell populations with all cells permanently under compression, it differs only by a pressure shift.
Defining instead [143]:

pi =
∑
j

f
ij
uij

Aij
, (38)

takes into account tensions that can occur if a cell stretches its cell-cell contacts during its attempt to ac-
tively migrate away from the cell aggregate it is attached to, which has been one of the cases studied in that
reference in addition to the aforementioned case of cells permanently being under compression. This study
was motivated by the experimental findings of Trepat et al. (2009) [17] suggesting that border cells migrate
actively into their environment pulling interior cells behind. Reference [143] studied if the experimental
observations could be explained if cell cycle entrance could occur only for cells under negative pressure, here
defined such that the cell contacts are subject to stretch.
For growing monolayers with all cells under compression, all three measures differ only by moderate shifts of
the pressure curves. In the first and second definition, pi ≥ 0. Using Eq. 37 has the disadvantage that cells
for which are slightly compressed so that the interaction force is repulsive and cells for which the interac-
tion force is negative due to adhesion can have the same pressure value. In the previous definition given by
Eq. 36, the force is by definition always positive so this problem cannot occur. The disadvantages of all these
measures is that they only give a scalar measure but do not allow to calculate the entire stress tensor. More-
over, they cannot easily quantitatively compared to the Cauchy stress tensor obtained in continuum theories.

An alternative estimation of stress can be obtained by introducing the concept of virial stress, a well
known concept in particle based simulations. It was drawn from theories in molecular dynamics to compute
macroscopic stress originating from the interaction of many particles [147]. Compared to the abovementioned
definitions, more information can be extracted using the viral stress formula. The general formulation of
virial stress defines the average stress1 in a box of particles due to contact forces f

ij
with other particles by:

σi =
1

V

∑
j

(
f
ij
⊗ rij

)
(39)

where rij is the vector pointing from the center of cell i to the contact plane with cell j, and V is the sampling
volume. In principal this volume needs to be large enough to obtain reliable averages over an ensemble of
particles, yet one can still use it as an estimator for individual cell stresses, by taking the sampling volume
as the volume of the cell. The hydrodynamic pressure pi on a cell can now be computed by:

pi =
1

3
tr(σi). (40)

1This formula is not complete as the general formula of viral stress includes a kinetic term related to the temperature of
the molecular particle system. For a system of cells however, the latter term can be neglected and the stress corresponds to
the Cauchy stress of the microscopic system [148].
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Eq. 39 defines a full stress tensor for the cell, which will allow to extract more information than just a
pressure. An example and the applicability of this method is further demonstrated in appendix A. From
the stress tensor, we can also derive the principal stress directions {n1, n2, n3} and eigenvalues {σ1, σ2, σ3}
by diagonalization of Eq. 39, yielding important information on how stresses on the cells are oriented. The
algorithm for diagonalization of Eq. 39 is trivial in 2D and not demanding in 3D, using e.g. Cardano’s
method.

3.1.2. Achievements, limitations and practical use

Center based models now exist for several decades and despite their simplicity, they have been used with
quite large success. Typical application fields are studies 2D monolayers (Fig.14), (small) tumors (Fig. 14),
intestinal crypts (Fig. 18), and liver (e.g. liver lobules, Fig. 15), with cell numbers starting from few and
ranging up to 106 [82], [149]. Refined image analysis techniques and available software increasingly permit a
quantitative analysis of tissues in 3D at micro-meter resolution [37], [150]. The data infered can subsequently
be transfered into modeling software such as CellSys [149], to simulate the tissue organisation process of
interest as demonstrated for the example of the regenerating liver (Fig. 15, [32], [151]). The experimental
technology improvements regarding confocal microscopy and live microscopy now provides the necessary
data on the histological level to calibrate agent based models (see also [80]).

Figure 15: Simulation of a regenerating liver lobule, the smallest functional and anatomical repetitive unit of liver after drug
induced damage in the center of the lobule. This scheme illustrates the general strategy of how liver architectural parameters
obtained by image analysis of confocal micrographs (left) are used together with a quantification of dynamic processes in the
liver (top row: regeneration after intoxication with the drug carbontetrachloride; brown: hepatocytes, blue: central necrosis)
to construct a dynamic model of the in-vivo situation (bottom row: regeneration after intoxication in the model; light rose:
quiescent hepatocytes, dark rose: proliferating hepatocytes, brown: hepatocytes carrying the enzyme Glutamine sythetase,
red: sinusoids, central and portal vein, blue: portal artery). Left picture: confocal micrographs after image processing; blue:
hepatocytes nuclei, white: sinusoids [151], [32].

Although the mechanical information that can be extracted from these models is rather approximate,
various biomechanical aspects in monolayers, tumor spheroids and organ tissues could be explained. For
example, Drasdo and Hoehme [81] have shown that contact inhibition due to mechanical stress can explain
the equal expansion speed at significantly different glucose medium concentrations in growing multicellular
spheroids of EMT6/Ro cells. The same mechanism could explain different growth speeds in expanding one-
cell thick dense monolayers observed by Bru et al. [89], and growth saturation of multicellular spheroids in
agarose gel [81], [61], [143] observed by Helmlinger et al. [10], and Galle et al. [152]. Recently Delarue et al
[153] confirmed inhibition of proliferation in tumor spheroids by compressive stress.
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Bassan et al. [137] simulated tissue rheology by measuring yield stresses, shear viscosities, complex
viscosities as well as the loss tangents as a function of model parameters, concluding that cell division
and apoptosis lead to a vanishing yield stress and fluid-like tissues. Macklin et al. [154] have addressed
ductile carcinoma’s. A number of researcher has also been focused on intestinal crypts and epithelial tissues,
studying e.g. cell organization and the role of basement membranes, and predicting the behavior of the tissue
during steady state as well as after cell damage [155, 34, 156, 157, 36, 158, 159, 156, 160, 161, 162, 51].

An import aspect in cell migration is the interaction with ECM, as it is responsible for both the support
and obstructing cell movement. For instance, in invasive cancers one observes that migrating cells break-
down the ECM, forming guidance tunnels for other cells. In addition, distant cells can feel one the other’s
presence through the modified strain fields that they cause. In the basic CBM formulation the interaction
with ECM is usually mimicked in an implicit fashion using friction terms and random motility forces. A
3D migration model was proposed by Zaman et al. (2005) [163, 164], based on internally generated forces
transmitted into external traction forces (and considering a timescale during which multiple attachment and
detachment events are integrated). They investigated the migration speed as a function of properties like
ligand density of the adhesion receptors and ECM stiffness, and found configurations where the cells would
optimize their migration speed. A similar approach was used later, by Rey and Aznar (2013) [165] to study
cell migration in wound healing. Vermolen and Geffen (2012) [166] proposed a model with cell movement
assuming a mechanical stimulus arises from the cells sensing a change in strain energy density in the ECM.
An explicit interaction model of CBM with ECM fibers has been introduced by Schlueter et al. (2012) [65]
in where the cells are able to interact and remodel the fiber orientation, showing the tendency of a cell
to move to stiffer substrates. Harjanto et al. (2013) [167] used an approach where the cells can degrade,
deposit, or pull on local fibers, depending on the fiber density around each cell. We note that the fibers
themselves in principle are not inert stiff structures but have their specific dynamics which can be modeled
as well using e.g. Brownian dynamics [168].
To address collective motion of cells, Bassan et al. (2012) [169] proposed a simple flocking-type mecha-
nism, in which cells tend to align their motility forces with their velocity. Their model could explain the
experimentally observed long-range alignment of motility forces in highly disordered patterns, as well as the
buildup of tensile stress throughout the tissue. Also Sepulvada et al. (2013) [135] considered a center based
model in which cells move in a stochastic manner and try to adapt their motion to that of their neighbors.
Introducing leader cells, they found that fingers develop as observed in experiments when leader cells more
actively invade free environment than following cells and regulate their motion according to their contacts
with following cells.

Several extensions have been proposed to alleviate the limitations of CBM. To model more realistic cell
shapes, Palsson et al. [170, 171] and Dallon et al. (2004) [172] used ellipsoidal shapes with axial degrees of
freedom resulting in deformability in three principal directions. Herein the the deformability was controlled
by viscoelastic elements. The shape was adapted according to the forces that act on the cell. However, as
the viscoelastic elements in these models are placed on the three axes of the ellipsoid, a cells’ deformation
depends on the relative orientation of the axes of the ellipsoids compared to the direction of the interaction
force in the contact region of the two interacting ellipsoids. This can be seen as follows (see Fig. 16). Assume
two cells that in the moment where they get into contact have a spheroidal shape, meaning all axes have
the same length. If the cell-cell interaction force acts along the axes of two interacting ellipsoids, they
deform easily. If on the other hand the cell axes are rotated by 45 degrees compared to the direction of the
interaction force, they would not or at most moderately deform (Fig. 16b).
Anisotropy and polarity in cells can be incorporated into the center based model in a rather simple fashion
by assigning a polarity vector P to each cell. The latter indicates that a cell has a preferential direction,
polar adhesion or biased motion [136, 32, 65]. Non-adherent neighboring cells can sense each others presence
and move towards each other through mechano-chemical signals, originating for instance by the formation
of filopodia or cell-cell communication through a medium. To incorporate such effects in the simulations,
one can simply extend the range of cell-cell interaction force using a function that represents the intensity
of this attraction as a function of the separation distance. Palsson et al. [171] proposed to characterize this
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Figure 16: Cells represented as ellipsoids with fixed major axes can introduce orientation artefacts when in contact with other
cells (compare situation a and b).

attraction by a Gaussian:

F inti =

{
−πσ

√
R̂ if dij ≥ Ri +Rj

−πσ
√
R̂ exp(− (Ri+Rj−dij)2

2b2 ) if Ri +Rj < dij ≤ dcutoff
(41)

The parameter b represents the spreading of the filopodia length while the maximal interaction range is
dcutoff . Another possibility are Morse potential functions, which were used by e.g. Rey et al. (2013) [165].
An artifact can occur if the interaction range mimicking the filopodia-mediate attraction is so large that
two cells attract each other even if the local cell configuration does not leave free space for the filopodia
to be stretched out from one to the other cell. In this case, explicit representation of filopodia even if
computationally costly, may be necessary, as e.g. performed in ref. [173] who modelled filopodia with a
CBM by lines radially stretched from the cell border in such a way that they may touch but not intersect
with neighbor cells (Fig. 17).

Figure 17: Left: Sketch of a center-based cell with filopodia ([173]). Right: Comparison of the random migration dynamics
with the stochastic equation of motion using a white noise term (red symbols) or filopodia. In the simulation, a cell had eight
filopodia. Their length was chosen from a Gaussian distribution, and their orientation chosen randomly and uncorrelated in
time. After each move, the orientation was again chosen randomly. The force was assumed to be proportional to the filopodia
length but this parameter had no strong influence. A difference in movement to the standard equation of motion with a noise
term to mimic active motion could be found in presence of other cells, as filopodia could not stretch if the path was blocked
by a neighbor cell.

A drawback in center based models based upon pair-wise forces is that the contact forces and contact area
become largely inaccurate when cells become densely packed. To understand this, consider a cell surrounded
by many other cells in a dense packing as it may occur if neighbor cells grow. The volume of the central
cell can be estimated by local Voronoi tessellation, and the calculation of the volume of the Voronoi polygon
associated with the central cell (for a Voronoi tessellation, see Fig. 1). Consider the case of an incompressible
homogeneous isotropic elastic cell. Incompressibility would correspond to a Poisson ratio of ν = 0.5. Because
the central cell is incompressible, even in the most dense arrangement of cells, its volume (let’s denote it
by V0) would remain the same all the time. This is a consequence of the volume control that generates
a multibody interaction of the central cell with each of its neighbors. In contrast to this, in simulations
the pairwise interaction forces (e.g. Hertz without adhesion, JKR in presence of cell-cell adhesion) do not
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include any notion of cell volume. Hence, even for the setting ν = 0.5 in the Hertz (or JKR) force models,
the cell-cell distances of the central cell with its neighbors could become so small, that the volume that can
be associated with the central cell (e.g. by Voronoi tesselation) would become smaller than V0. One way to
account for the volume is adding a force term that takes into account a volume constraint. In this case the
cell volume may be approximated by a Voronoi tessellation which, however, generates some other problems
that are discussed in more detail below.

Another, related, point is that in a dense cell packing the Hertz contact area (or in presence of adhesion
the JKR contact area) does not represent a good estimate of the contact area anymore, as in a dense packing
the contact regions of the central cell with those of the neighbor cells, that are themselves neighbors of each
other, overlap. In this case the interaction between the neighbors of the central cell leads to deformations of
the neighbor cells, which impact on the contact area between the neighbors and the central cell. The contact
area may then better be estimated by the geometrical area in the contact region, calculated again from a
Voronoi tessellation. However, there is no evident smooth consistent transition between Hertz contact area
at cell configurations with low densities, and geometrical area for cell configurations at high densities. To
better see this, consider the case of no cell-cell adhesion i.e., a Hertz interaction force. The Hertz interaction
area for two cells is AHij = π(Ri+Rj−dij)(RiRj)/(Ri+Rj). The geometrical contact area for two interacting

cells, which is the area the two overlapping cells have in common, is Agij = πR2
i − (d2

ij +R2
i −R2

j )/(2d
2
ij). In

both cases, dij is the distance of the centers of the two cells i, j. The Hertz interaction area is always smaller
than the geometrical interaction area. For example in case Ri = Rj ≡ R one finds AHij = π(2R− dij)R/2 <
Agij = π(R2 − d2

ij) (for dij < 2R). This has a number of shortcomings. The Hertz model is expected to be
adequate only at sufficiently low cell deformations, which is not the case in cell configurations at high density.
The latter cannot be avoided if no additional forces are added that take into account volume constraints.
Below a certain distance, the geometrical contact area is more adequate but inconsistent with the Hertz
force, as Hertz force and Hertz contact area are inherently linked. Moreover, the transition between the two
areas is only smooth at dij = Ri +Rj , so at point contact. Therefore, the description of cell-cell interaction
forces by Hertz (or JKR) force at large cell densities is only a crude approximation.

Finally, the Hertz and JKR-force emerge from linear elasticity assuming small deformations which in
dense packings of cells can easily be violated, so that these force models can only be regarded as crude
approximations in dense cell aggregates also with regard to this aspect.
The Voronoi tessellation approach originally proposed by Honda et al. [79], [174] have been considered also
by other authors in center-based type modeling approaches, as it allows well approximating the surface and
volume of a cell in dense aggregates, such as epithelial layers of intestinal crypts [33] (Fig. 18).

However, in some multi-cellular configurations such as multicellular spheroids or monolayers cells may
detach from the main tumor body and enter the tumors’ environment [64, 177]. In a Voronoi tessellation the
cell shape is constructed uniquely from the position of its neighbor cells hence the concept of an isolated cell
within a Voronoi tessellation does not exist. In reference [82], [133] a possible solution to this problem using
a modified Voronoi tessellation was sketched in which the biological cell shape was constructed as follows.
A circle of radius R was drawn around each cell construction point (for a center based cell, this would be
the cell center). Then the Voronoi tessellation was constructed. If for a cell the Voronoi border was closer to
the construction point than the circle, the biological cell border was associated with the Voronoi cell border,
otherwise the biological cell border was associated with the circle (Fig. 18). Meyer-Hermann and co-workers
[142, 178] explored this approach in more depth, and in three dimension for growing multi-cellular spheroids.
As long as deformations of the cells remain moderate, the difference between the Voronoi approach and the
presentation of the cells in isolation by spheres that deform due to Hertz or JKR force upon compression
are moderate, as supported by very similar simulation results for EMT6/Ro multicellular spheroids with
pairwise JKR-force [82] and Voronoi tessellation with a modified Hertz force [142].

However, volume estimates permit to consider explicitly compression terms. Using KV = −V (∂p/∂V ),
a volume pairwise force term may be constructed by [179]

F volij =

(
Ei

3(1− 2νi)
log

Vi
V 0
i

+
Ej

3(1− 2νj)
log

Vj
V 0
j

)
Aij

ri − rj
|ri − rj |

. (42)
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Figure 18: Left: model of an intestinal crypt using a Voronoi tessellation. The model assumes periodic boundary conditions in
x-direction, and a hard border at the bottom. Cells dividing in the bottom push other cells towards the top from where there
are shed in the intestinal lumen [33]. Middle: modified Voronoi-tessellation to account for isolated and border cells [60], [175].
The configuration emerged from sorting of two cell types A (triangles) and B with (differential) adhesion energies strongest
between A-A, second strongest between A-B and weakest between B-B cells. Right: cross section of a crypt in a model [136].
Here, the one-cell-thick layer of the intestinal crypt has been stabilized by a bending force. If either the proliferation pressure of
the cells dividing in the bottom of the crypts become too high because of a too high proliferation rate, or the bending stiffness
is reduced by reduction of the cell layers’ elastic modulus, the layer folds [176]. Such a folding or bending is very difficult to
represent in cellular automaton models while it emerges naturally out of polar adhesion forces in CBMs.

For Vi ≈ V 0
i and Vj ≈ V 0

j , log(Vi/V
0
i ) can again be replaced by (Vi − V 0

i )/Vi. However, the approach
has a shortcoming. The pairwise forces (Hertz and JKR) do already account for both, compression and
deformation. The upper equation would represent compression hence the compression part would have to
be eliminated from the Hertz (JRK) model which is not straightforward.
Pathmanaghan et al. (2009) [138] also used a Voronoi tessellation approach for a computational study of
tissue mechanics. Despite the general higher realism for mechanics, these algorithms can be computationally
expensive and also show some flaws for tissues under high mechanical stress [138].

In CBM a large part of the computational effort will be spend in the contact detection and the matrix
solving of Eq. 27. Contact resolution is easily to implement while contact detection (i.e finding list of
neighbours) is relatively cheap (∼ NlogN) using grid based methods or tree search algorithms. Once the
forces are computed in Eq. 27 and convergence is found in the Conjugate Gradient algorithm, the velocities
of the cells can be calculated to obtain the positions of the cells, by using e.g. a simple explicit Euler
integration scheme. The stability of the simulation is then formally be determined by the timestep ∆t.

∆t ≤ C γ
k

(43)

where C is a prefactor, k is the stiffness of the system (e.g. Young modulus of the cells), and γ is the friction
(e.g. cell-cell friction). Thus, the higher the friction, the lower one can choose the timestep. In practice, one
choses a fixed timestep that results in a stable simulation. Alternatively, one may also opt for an adaptive
time stepping scheme [142].

In some cases explicit matrix solving can be avoided if one considers only friction with a medium [142,
180], which speeds up the computation significantly. The maximal timestep is limited by the minimal ratio
of the damping parameters to the contact stiffnesses. Time stepping may put significant restrictions to
the solvability in a mechanically stiff system when the time scale of interest is long (e.g. several days or
weeks in tumor simulations), because the number of time steps may become prohibitively high. To alleviate
this, one can work with rescaled parameters such that the simulation time is shortened but the dynamics
remains unaffected. This can be achieved, for example, if there are two timescales τ1 and τ2, with the first
representing the characteristic mechanical relaxation of the cellular system and τ2 the division time of the
cells. In case it holds that τ2 � τ1, then one can shorten τ2, such that this separation in timescales remains
large yet the simulation time is decreased significantly.
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Below we briefly summarize advantages and disadvantages of center-based models (CBMs) from our
perspective. Evaluations on the computation times are done with regard to a standard PC.

+ Each cell represented individually.

+ Precise cell position is tracked.

+ Movement, division and death of cells can be represented.

+ Cell position and size can be gradually changed (no upper length scale).

+ Due to solving an equation of motion, the time scale is well defined.

+ Equations of motion are intuitive and permit easy extensions.

+ Physical laws can directly be represented and parameterization is only in terms of physically and
bio-kinetic meaningful parameters that can in principle be measured.

◦ Cell shape can only be represented statistically.

◦ Large scale simulations due to computation time not accessible, at most around 106 cells can be
simulated. Parallelization of the code could solve this problem but this is non-trivial.

◦ Parameter sensitivity analysis challenging due to long computation time but as all parameters
have a direct physical interpretation, the parameter ranges can well be inferred from experiments.

− Large deviations from a spherical shape cannot be captured.

− In the standard CBMs cell-cell forces are pair-wise forces which can generate artifacts at high cell
densities.
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3.2. Deformable cell models and vertex models

3.2.1. Basic concepts

Center based models show several disadvantages. Basically their constitution does not allow to repre-
sent arbitrary cell shapes. Also they cannot give detailed information of the mechanical signals (tensile,
compressive forces, shear forces) that are transmitted by the ECM via integrin receptors linked with the
cytoplasm and cytoskeleton (CSK). On the other hand, detailed models that focus on the mechanics of the
CSK as such (e.g. [168]) may be unable to capture the behavior of the whole cell. An intermediate scale
model is thus desirable to bridge this gap. A number of authors introduced a series of models which can
be categorized as Deformable Cell Models (DCM). Rejniak [181] proposed a 2D modeling framework based
on deformable cells represented by connected line segments as units. The cells were capable of growing,
dividing, and adhering to other cells, allowing for the formation of clusters of cells. The first 3D models did
not address such complexity (only the cell surface is discretized) and were mainly used to simulate the large
deformation mechanics in erythrocytes [182].

In DCM the cell body is discretized by a number of nodes which are connected by viscoelastic elements
interacting via pairwise potential functions, creating a flexible scaffolding structure with arbitrary degrees
of freedom per cell. The nodes at the boundary can be used to triangulate a cell surface (line segments in
2D), accounting for the mechanical response of the membrane and cortical cytoskeleton (see Fig. 19a). The
forces in DCM originate from both cell-cell interactions and intracellular interactions due to the viscoelastic
elements, bending resistance in the membrane, and global cell properties such as cell volume and surface
area conservation.

A special class called Vertex Models (VM) are similar to DCM but the vertices form a polygonal tes-
sellation (usually Voronoi) for the cells. These models are therefore rather suitable for tightly packed cell
ensembles with negligible intercellular space. The terms that contribute to the mechanics in each cell are
the line tension and adhesion along its common edges with other cells, the contractility of the cortical ring
along the cell perimeter, and hydrostatic pressure related to cell area/volume. Also here one can define rules
that govern cell proliferation, migration and apoptosis. Analyzing static equilibrium configurations such as
the optimal packing in epithelial cells can be done using energy based methods while for dynamical systems
one can opt for equations of motion, similar as in CBM.
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Figure 19: a): DCM representation of two adhering cells. Each cell has a nucleus, a coarse central oriented cytoskeleton (CSK),
and a membrane/cortex. b) Detail of the elements in a cell membrane triangulation.

Often, the individual elements are represented by classical linear spring-damper systems. When the
elastic and dissipative components are positioned in parallel, one has the well-known Kelvin-Voight element
representing a solid like behavior. The vector force between two nodes i and j then reads (see Fig. 19b):

F ij = F eij + F vij = −ks(dij − d
0
ij)− γvij (44)

Where F eij and F vij are the elastic and dissipative forces, ks is the spring stiffness, γ represents the level

of dissipation, d0
ij , dij are the initial and actual distance vectors, and vij is the relative velocity between the
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nodes respectively. In some cases however, it is necessary to incorporate nonlinear elastic behavior which
better describe the polymeric molecular structures [183, 139]. A well known model for this is the Finitely
Extensible Nonlinear Elastic (FENE) force which behaves soft at low stretch but become very stiff at high
stretches (similar to uncoiling a rope):

F eij = −k
FENE

dij

[
1−

(
dij
dmax

)−2
]−1

, (45)

where k
FENE

is the stiffness, and dmax is the maximum stretch of the spring, at which the force will
diverge. Van Liedekerke et al.[184] implemented a Neo-Hookean incompressible polymer model for a cell
surface:

F eij = kpoly
(
λ− λ−5

)
, (46)

where λ = dij/d
0
ij is the stretch ratio. This model takes the variation of the thickness of the material during

stretching into account.
For a liquid like behavior the basic representation is the Maxwell model where a spring and damper are

in series. The force equation then reads

Ḟij
k

+
Fij
γ

= vij (47)

This equation contains a derivative of the force, which can be approximated by Ḟ = (F (t) +F (t−∆t))/∆t
and involves the storage the force at the previous time step. Note that the spring-damper elements can
be combined or rearranged [185] to obtain a more complex dynamics with multiple relaxation times. The
surface bending resistance can be incorporated by computing the angle between two adjacent triangles α
and β (or line segments in 2D). This defines an out of plane energy Eb:

Eb = kb(1− cos(nα,nβ)) (48)

where kb is the bending constant and n is the normal to each triangle. Using F i = −∂Eb/∂ri, this can be
transformed to an equivalent quadruplet force system acting on the nodes of the triangles {F 1, F 12, F 21, F 2}
(see Fig. 19b), for which momentum conservation demands that F 1 + F 12 + F 21 + F 2 = 0 [139].

The area and volume constraint forces arise from the limited compressibility of the membrane/cortex and
cytoplasm of the cell. If we would consider a vesicle as a model (i.e. a spherical lipid bilayer encompassing a
fluid), then additional forces F area will arise from the fact that the change of surface area of the membrane
is limited. In addition, one should also try to keep the changes of the individual area of the triangles as low
as possible, because similar to FE simulations, too strong deformed triangles can lead to mesh artefacts,
instabilities and inaccurate results [183]. The magnitude of these forces can be tuned introducing an area
conservation constant KA, with KA = Eh where E and h are the apparent Young modulus and thickness
of the membrane, and εA = (A − A0)/A0 a strain measure (see Fig. 19). The forces F a are then applied
in the plane of each triangle in the direction from the barycenter of the triangle [139]. Note that the
area conservation forces contribute to the membrane/cortex stiffness in a similar way as the spring forces
in Eq. 44 and Eq. 45. However, the latter ones are used to describe the elasticity cortical cytoskeleton,
whereas the former one reflects the elasticity of the lipid bilayer of the cell. The linear spring constant for
a sixfold symmetric triangulated lattice can be related approximatively to the cortex Young modulus Ecor

with thickness h by [186, 184]

ks ≈
2√
3
Ecorh (49)

The bending stiffness of a (thin) cortex is in the same way approximated by

kb ≈
Ecorh3

12(1− ν2)
(50)
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where ν is the Poisson ratio (= 1/3 for an equilateral 2D network of linear springs). For a more a more
in depth analysis relating the spring force parameters to macroscopic constants, we refer to literature [183,
139, 184, 187].

The volume penalty forces are computed from the internal pressure using the volume change and com-
pressibility KV . The internal pressure in the cell is given by

p = KV εV (51)

whereby εV is the volume change strain (for small volume changes, we have εV = (V −V0)/V0). The volume
V of the cell can be computed summing up the volumes of the individual tetrahedra that build up the cell.
The forces F vol on the nodes are obtained by multiplying the pressure with the area of the triangle.

Finally, we arrive at the equation of motion for a node i of a cell in free suspension in its most simple
form, taking all the former terms in account. This equation is formally the same as Eq. (27):∑

j

Γnnij (vi − vj) + Γnsi vi =
∑
j

F eij +
∑

quadrupletsβ

F bi,β +
∑

trianglesα

F ai,α + F voli . (52)

with Γnn and Γns the matrices representing node-node friction and node substrate friction. The latter one
can be obtained by considering the CBM substrate friction coefficient divided by the number of nodes at
the surface of the cell.

The solving of this system is formally the same as Eq. (27) where the positions of the cells are replaced
by the nodes. A Conjugate Gradient method will usually solve this system efficiently. The restrictions to
the timestep are similar as in Eq. 43.

Having the forces at sub cellular scale at hand, one can now compute triangle-averaged stresses using
the concept of viral stress. For example, the membrane/cortex tension in a node σi can be calculated by
[183]

σi ≈
√

3

Nj

∑
j

F e

dij
+KAεA (53)

where F e is the elastic component of the force between two nodes, Nj is the number of connections of node
i (usually 6 -fold connectivity), and the second term is the contribution due to area conservation. Of course,
these formulas need to be adapted if more detail such as an internal structure is added. In this regard it is
also useful to mention that in some simulations of cell models without an internal structure (i.e only fluid
inside) unrealistic buckling instabilities can appear [188]. Adding an internal structure (CSK) or choosing
a higher bending energy will likely solve this issue.

It is clear that the number of parameters and physical complexity in these model types is larger than
in center based models, yet as the forces can be computed up to subcellular level, discerning a nucleus,
organelles, membranes and internal structure, these models are candidates for investigation of mechan-
otransduction.

3.2.2. Achievements, limitations and practical use

The work of Rejniak and co-workers has treated multicellular spheroids, various cellular patterns in
developing ductal carcinoma in situ, invasive tumors as well as normal development of epithelial ductal
monolayers and their various mutants [189, 190, 191, 192]. Deformable models have also been extensively
used for erythrocytes to increase our insight in blood flow and related diseases such as malaria, with some
authors using discretization up to the level of the spectrin cytoskeleton [193], and others using coarse
graining models with realistic mechanical and dynamical behavior, see e.g. [194, 195, 183, 196, 197]. It was
also shown that the model parameters of the viscoelastic elements can be calibrated using optical tweezer
or micro pipetting experiments.

Models of cells with an internal structure or cytoskeleton (CSK) are still relatively scarce, yet they are
likely to become essential for addressing the more fundamental questions in cell migration and mechan-
otransduction. A basic, coarse representation of the CSK was proposed in Ingberg [198] who regarded a cell
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as a tensegrity structure making the connection with macroscopic structure models where forces are trans-
mitted by flexible cables and stiff struts. In the so called Subcellular Element Method (SEM), Sanderius et
al. [185, 199] approached the cell as a 3D network using specific pairwise potentials and springs, to simulate
the rheology of a single cell and small cell clumps. This model can be regarded the off-lattice equivalent of
the CPM. In both abovementioned methods however, the cell membrane and cortex was not discerned. An
extended 2D deformable model was proposed by Jamali et al. [200], where in each cell a certain subcellular
detail was incorporated, including the elastic plasma membrane, elements that perform the function of the
cytoskeleton, and elements representing the cell nucleus. This model allows interaction and communication
with its environment, changing its morphology, and performing basic cellular events such as growth, division,
death, and polarization.

To analyse stress distribution and predict damage in compressed cells and impacted parenchyma tissue,
Van Liedekerke et al. [184, 201] introduced a full Lagrangian particle model using the continuum Smoothed
Particle Hydrodynamics (SPH) technique, coupled with viscoelastic network model representing a solid
hyperelastic membrane (Fig. 21c), see section 3.2.

Deformable cell models can incorporate models for specific adhesion (e.g. electrostatic force, depletion
forces, van der Waals attractions) and non-specific adhesion (involving proteins and adhesion complexes).
Often pairwise potential functions (Van der Waals, Morse) [202, 192, 185, 200] between nodes are used to
mimic the effect of short range repulsion and long ranged attraction force. Odenthal et al. [139] on the other
hand derived an interaction method based on the Maugis-Dugdale adhesion theory, using limited number
of scalable parameters. Their model could successfully reproduce the experimental data of the dynamics of
vesicles spreading to a substrate, and predicts a zone of inward traction stress on the substrate which was
later observed experimentally [203], see Fig.20.

Figure 20: Simulation of a deformable cell model (erythrocyte) adhering to an adhesive substrate (Odenthal et al., 2013)[139].
As the cell adheres, tensile stresses develop in the cortex at the free surface of the cell (red color). At the cell-substrate interface,
compressive stresses develop (blue color), which can in turn deform the substrate.

For cell migration, the same principals and methods originating from colloidal physics applied in CBM
could be applied to DCM (see Eq. 29). Only recently attempts to model cell migration in a mechanistic
way have been introduced. Kim et al. [204] integrated focal adhesion dynamics, cell membrane and nuclear
remodeling, actin motor activity, and lamellipodia protrusion reflecting the 3D spatiotemporal dynamics
of both cell spreading and migration. A comprehensive and detailed 2D model for cell migration in ECM
was developed by Tozluoglu et al. [205], who analyzed the cell migration speed governed by the interplay
between ECM structure, adhesion strength and CSK contractility. The sprouting mechanism in angiogenesis
was investigated by Bentley et al. [206] who developed an agent based model addressing both the internal
actin-based cortical tension and filopodia driven migration in single cells, but also the higher, cell-cell level
interactions of multiple adhered cells.

Using vertex models, a measure of how cell boundaries can be approximated by vertex model was
thoroughly investigated by Honda and coworkers [79, 174], [207, 208] who studied how cells undergo re-
arrangement. Farhadifar and co-workers [209] used the approach to study the role of cell mechanics and
cell division in determining network packing geometry in epithelial cells. Hilgenfeldt et al. (2008) [210]
studied cell geometric order in an epithelial tissue. Manning and co-workers (2010) [211] deciphered the
contributions of adhesion strength and cortical contractility in cells to tissue surface tension. Finally, Rudge
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and Haseloff [212] applied the vertex dynamics approach to study spatial mechanical factors and signal
transduction in morphogenenis of plant tissue. An overview for the VM techniques can be found in [213].

Until now, deformable cell models have especially been proven to give accurate insight in cell mechanics
on short timescale (seconds to minutes). The eventual dynamic that emerges will be dependent on the
rheological model that is incorporated. Lim et al. [214, 215] examined several mechanical models that have
been developed to characterize mechanical responses of living cells when subjected to both transient and
dynamic loads, including cortical shell - liquid core (or liquid drop) models, the solid models, and power-
law structural damping models. The latter seem to offer a more realistic description of the CSK dynamics
[216]. It is important to mention that active phenomena involving actin contractility and CSK remodeling
may require other internal models and parameters compared to those governing in short times experiments
[217]. The choice of experiments for model calibration is therefore critical and can determine the type of
parameters and mechanical properties.

The accuracy of the mechanics in DCM largely depends on the number of nodes assigned to each cell [183].
Depending on the application, a too small number of nodes per cell can create an unrealistic dynamics [139].
Computationally these models are quite expensive and the applications will limit themselves to relatively
small cell numbers. The typical aspects of computational complexity (contact detection algorithms) in center
based models apply to deformable models as well.

Concluding, deformable cell models have already been shown to explain a large variety of phenomena in
cell mechanics, especially related to short timescales. The computational effort and increased complexity
make these models less widespread but they have the potential and might even become necessary to explain
and predict certain phenomena related to cell mechanics and mechanobiology. Despite these useful develop-
ments in various directions, we believe that in order to investigate mechanotransduction in a quantitative
way, more studies are needed to develop models which can capture the mechanical interactions between the
cell interior and ECM accurately.

Below we briefly summarize advantages and disadvantages of deformable cell models (DCMs) from our
perspective. Evaluations on the computation times are done with regard to a standard PC.

+ Each cell represented individually.

+ Precise cell position is tracked.

+ Movement, division and death of cells can be represented.

+ Cell position and size can be gradually changed (no upper length scale).

+ Mechanical stresses in the cell can be computed to subcellular level.

+ Cell shape is explicitly given and complex deformations can be straightforward represented.

+ Due to solving an equation of motion, the time scale is well defined.

◦ Physical laws can partially directly be represented but parameter calibration must be inferred
from comparison with experiments. As a consequence, parameter inference is not straightforward.

− Due to the high complexity of the cells, the number of cells in the simulations is restricted for
a single core (∼1000). In addition, depending on the parameters that were calibrated for an
experiment (e.g. micro pipetting), simulations over long timescales may become insurmountable
if the maximum required timestep for a stable simulation is too low.

− Parameter sensitivity analysis very constrained due to long computation time, hence parameter
inference is stepwise and very tedious.
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4. Hybrid discrete-continuum models

In case one faces large multicellular systems, discrete agent based models can become computationally
infeasible. Continuum models do not have this problem as they are not concerned with individual cells
and they have no intrinsic scale. Continuum models basically solve the governing mass and momentum
balance PDEs for the tissue dynamics, including source terms to for cell growth, birth and death, cell
migration, as well as reaction-diffusion PDEs to compute the concentrations of chemical substances such as
oxygen, glucose, chemokines, growth factors or cytokines. Continuum Models for tumors are often multi-
phase mixture descriptions encompassing a tumor cells phase, intercellular fluid phase, and ECM phase,
using Darcy’s law to determine the dynamics of each phase. It is not our intention to review these models
here, instead we refer the reader to some basic key literature in this field [218, 70, 219]. Models that pay
special attention to mechanical interaction with ECM and surrounding host tissue are generally more recent
developments (see e.g. [220, 221, 222, 223, 224]). Continuum models generally have less parameters and
they offer some advantages with regard to the information that needs to be analyzed. Nevertheless, the
constitutive equations that characterize e.g. migration dynamics, cell adhesion, and stress-strain in the
tissue and ECM will determine the results that will be obtained. The determination of those equations is a
non-trivial task and in general they should be determined from experiments or might be inferred from agent
based models using averaging techniques [225, 48, 226, 227, 82, 228, 148]. This branch is usually refered
to as multiscale models within the mathematical and engineering community, and has to be distinguished
from multi-level model which integrate components, mechanisms and information from different scales in
one model [229].

It is likely however, that if one wants to capture the whole complexity of tissue dynamics, hybrid models
will come into play. The formulation of hybrid models heavily draws on the conservation laws (mass,
momentum, energy) and the key to success of the coupling to discrete models is an adequate (possibly on-
the-fly) mapping between the constitutive behavior to the averaged discrete system with respect to growth
kinetics, rheology, etc. ([146, 230, 231, 232, 223, 233]). A particularly appealing approach to bridge the
gaps across the scales is based on the Density Functional Theory (DFT) [228], which would allow calibration
and validation of the cell-scale parameters and equations to be obtained directly from individual microscale
measurements, and formulating rigorous upscaling techniques of the continuum equations at the larger scales.

Combining continuum and discrete (agent-based) models can be advantageous, e.g. if large parts in the
tissue require less detail and can be treated with continuum approaches, while in other parts agent based
models can provide more detailed information. A coupling scheme was explained in Kim et al. (2007) [234]
who proposed a domain decomposition for a tumor region whereby the active regions (proliferating cells) are
represented by agents while the passive tissues (ECM, necrotic zone) were modeled by the Finite Element
Method discretization of a PDE governing the behavior of an elastic material. The transfer of forces exerted
by the cells to the mesh at the discrete-continuum interface are resolved by interpolation functions.

Hybrid approaches have been formulated, for example, to investigate wound healing [235, 236, 237],
interaction of cells (CBM) and the basal membrane and ECM [51], angiogenesis [238, 232], and multicellular
spheroids with invasion [234, 232].

In the approach where one regards tissue as deformable cells immersed in a continuum field (ECM, fluid)
[189, 191], the dynamics of the cytoplasm and the medium (interstitial fluid, ECM) in which the cells are
embedded is treated as a continuum and usually computed on an Eulerian mesh (see Fig. 21a). Interactions
of the cell boundary with the cytoplasm as well as external medium are computed with the Immersed
Boundary Method, a classic scheme for studying fluid-structure interactions. The interaction calculation
between the Lagrangian and Eulerian points relies on the smearing out of vector or scalars fields computed
in one single point over the neighboring computational points lying in a finite domain Ω, by considering the
convolution integral:

F(x) =

∫
Ω

F(x′)K(x′ − x)dx′ (54)

in where K(x′ − x) is a symmetric kernel function with the property
∫

Ω
K(x′)dx′ = 1. In practice of course
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this integral will be replaced by a summation over all neighboring particles j:

F(xk) =
∑
j

F(xj)K(xk − xj)Vj (55)

where Vj is the volume associated with that particle. One can also define F =M/V, such that, for example
if F represents the mass density ρ, then we have

ρ(xk) =
∑
j

m(xj)K(xk − xj) (56)

which is an ensemble averaging to derive a continuum field from discrete variables.

F
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Figure 21: a) (left) Deformable cell model as proposed by Rejniak [181]. The cell surface is represented by connected viscoelastic
elements between the freely moving particels, while the continuum fields are computed on an Eulerian grid. The interaction
domain (Ω) between Lagrangian and Eulerian points is indicated by the grey disc. (right) Cell model as described in Van
Liedekerke et al. [201]. Both the cell surface and the medium are represented by particles. (b) A snapshot of a simulation
coupling a CBM and DCM. The adhesion model used here is JKR for the CBM, and the Maugis-Dugdale model for the DCM
and DCM-CBM interactions [139]. The stresses in the cell cortex (Eq. 53) are represented a colormap. (c) Schematic view of
a proposed three level hybrid modeling, using DCM, CBM, and a continuum model.

It might be noteworthy that although mesh based methods like Finite Elements (FE) or Finite Differ-
ences (FD) are well established to solve the PDEs in continuum models, we notice that in the last decades
alternative mesh free methods are gaining increasing attention. These methods use particles as computa-
tional nodes without underlying mesh or fixed connectivity. The vector fields and their gradients associated
with a particle are computed using radial kernel functions rather than shape functions, see Eq. 56. Smoothed
Particle hydrodynamics (SPH) [239] is a mesh free method originally developed in astronomy and later fluid
problems, while more recently it has also been applied in microscopic problems [240]. The main advantages
are that no remeshing is required and media with a specific difficulties such as discontinuities or complex
architectures can be dealt with more naturally. In addition these methods naturally allow a coupling with
discrete particle models such as CBM or DCM. Disadvantages of SPH are the requirement a relatively high
number of particles to attain the same accuracy as grid based methods, and the non trivial boundary treat-
ment. Based on SPH, Van Liedekerke et al. [184, 201] proposed model to simulate dynamics of impact an
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damage in tissue (Fig. 21a). Tanaka et al. (2004) and later Hosseini et al. (2009) [241, 195] coupled the SPH
Navier-Stokes solver to a 2D deformable cell model to simulate fluid flow associated with red blood cells.
Van Liedekerke et al. [140] further extended the SPH method to solve the overdamped (Stokes) equations
for a fluid, thereby drastically reducing the computational time.

Finally, we would like to emphasize that hybrid models do not necessarily restrict to the coupling of
discrete and continuum models. In Fig. 21b we present a working simulation example where a CBM and
DCM are coupled using the interaction model proposed in [139]. Moreover, one could even enrich the classical
hybrid CBM - continuum model scheme with a higher detailed model such as DCM, as is schematically
depicted in Fig.21c.

5. Available tools and software development for modeling

While a lot of researchers develop and maintain their own code for agent based simulations, several
research groups have released tools for agent-based modeling in biology. These tools implement the CPM:
CompuCell3D [130] Morpheus [129], Simmune [242] and Chaste [243, 131]; center-based models: CellSys
[149], Chaste [243, 131], EPISIM [244], Timothy [245, 246] and Biocellion [247], or a deformable cell model:
VirtualLeaf [248], LBIBCell [249] and SEM++ [180].

Most of these tools have one or more specific features, such as multi-scale modeling, usability, or perfor-
mance. However, a few of them just provide the first, freely available, implementation of a specific model.
The first of these is LBIBCell, which provides a framework for modeling cells as a viscous, Newtonian fluid
encapsulated by an elastic polygon. The interactions between these two components are resolved with the
immersed boundary method [189]. Furthermore, intracellular networks and extracellular concentrations can
be modeled using reaction diffusion models. Another framework that provides a unique model implemen-
tation is VirtualLeaf, which implements a vertex-based model focused at plant development. Intracellular
processes may be modeled using ODEs as well as transport between cells or between cells and their envi-
ronment. SEM++ provides a framework for the subcellular element model [185] with several extensions.
These extension include actin polymerization based migration, cell-cell mediated phenotype determination
and subcellular organelles. CellSys and Chaste are versatile tools for running center-based models. For CA
models types (A,B,D) public codes seems to be less available for cell based modeling although they exist for
general applications [100].

All of the tools listed above are multiscale in a sense that they enable intracellular and/or extracellular
signaling. Most commonly, ODEs are used to model intracellular signaling and reaction-diffusion equations
are used to model extracellular concentrations. Simmune, a CPM framework, strongly focuses on linking
spatial resolved signaling networks to cell-based models. For this, a network is defined for each lattice
site and the networks are connected via their boundary conditions. In this manner, Simmune provides an
efficient way of combining cell-based models with high resolution spatial signaling. In both CompuCell3D
and EPISIM intracellular models can be added using SBML [250]. In CompuCell3D this is achieved via
the BionetSolver plugin [251] which can handle any number of SBML models per cells. In EPISIM the
SBML models are evaluated with Copasi [252]. Morpheus, one of the CPM frameworks, provides a variety
of modeling formalisms for intracellular modeling, such as ODEs, CAs and fine state machines.

Several tools provide a basic graphical user interface (GUI) for parameter modification and/or simulation
visualization. A few developers took a step further and developed much more elaborate GUIs that enable
users to create and extend models with no or minimal programming. In the CPM framework CompuCell3D
simulations are specified in XML and/or Python scripts. To ease setting up these scripts, CompuCell3D
comes with a specialized editor: Twedit++, in which users can generate simulation scripts using a wizard
and extend these scripts by adding existing code-snippets. Morpheus goes even a step further than this.
Besides setting up, running, and visualizing simulations, Morpheus’ GUI also facilitates batch-processing for
parameter sweeps and sensitivity analysis, and model analysis at run time. A tool for center-based models
that focuses on usability is EPISIM. This tool employs a graphical modeling system (GMS) to set up the
model and automatically converts that model to efficient code. To set up such a model EPISIM provides the
Graphical Model Editor to specify an agent-based-model using predefined components and functions from
the Function Library. The model parameters and cell variables can edited with the Variable-sheet Editor.
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Chaste, a tool that implements both the CPM and center-based models, aims to provide an extensive ap-
plication program interface (API) for agent-based-modeling. In contrast to most of the other tools discussed
here, Chaste is a library that modelers can use to develop their own models. Combining either the CPM or
center-based models with ODEs and/or PDEs. By utilizing automated testing, the developers ensure the
correctness of the code while it is being developed. In this manner, the developers provide a tool for rapidly
implementing models in a way that is reliable and reproducible.

Because biological systems can contain large numbers of cells, performance is an import issue with agent
based modeling tools. To improve performance, several tools are designed to multiple core: CompuCell3D,
LBIBCell, SEM++, CellSys, Biocellion, and Timothy. Recently, two tools have been developed with a
strong focus on performance: Timothy and Biocellion. Timothy is a tool for center-based modeling, which
includes ODE and PDE models for intracellular and extracellular modeling. To be able to simulate cell
populations of 109 cells, Timothy was designed to take advantage of a specific supercomputer. Biocellion
is a generic framework for center-based models. Users must supply the exact code body that governs the
agent-based model as well as models for intracellular and extracellular signaling. Biocellion then distributes
this code over the resources available on the specific platform. As result, Biocellion can run on a desktop
PC with a few cores, or on a supercomputers with dozens or hundreds of cores.

6. Conclusion

Agent-based models of multicellular systems are becoming increasingly popular. An important reason
for this is that they provide a natural direct description at the interface between the whole body of intra-
cellular studies spanning genomics, transcriptomics, proteomics, metabolomics, lipidomics, and the study of
intracellular signal transduction pathways on one hand, and organ and body physiology on the other hand.
Intracellular mechanisms can readily been integrated into each individual cell agent, and the collective im-
pact of cell responses on organ and body physiology be studied. In particular, computer simulations with
agent-based models have been shown to be useful in analyzing development stages in cancer or transitions
between them, cell-to-cell variability during cancer development, selection processes operating on differences
between cell states, as well as transitions from aggregated population stages (as long as the tumor forms a
single mass) to infiltrative invasion and growth, for example the epithelial to mesenchymal transition.
Recently, the role of mechanical stimuli in cell responses have increasingly moved into research focus by
physics, complementing the more molecular mechanistic view of biologists. This has also raised the question
of the pro’s and contra’s of the current agent-based approaches to biological cells. So far still insufficient
quantitative comparisons between the model types and experiments exist to address this question. No op-
timal model exists unless one would classify as optimal a 1:1 in-silico copy of the cell, which would be very
computationally intense, and disagree to the often cited quote by Einstein, adapted: ”Everything (a model)
should be as simple as possible, but not simpler”. So the question is rather how much simplicity is adequate
in a certain application. We present a simple comparative table overview of the models and their capabilities
with regard to the feature they can address in the cellular system in Fig. 22.

41



Figure 22: Table overview of the pro’s and cons of the agent based models with regard to the cellular property they address.
We assume the models are constructed in 3D.

Fundamentally, two classes can roughly be distinguished: lattice-based and lattice-free approaches. As
reference throughout the paper, we have considered growing monolayers or growing multicellular spheroids
as they have been modelled by almost each of these classes. With respect to this, all these models predict
at least qualitatively similar dynamics.

We distinguished four lattice based models refered to, in a wider sense, as cellular automaton models
from which we enumerated types A, B, C according to their spatial resolution. Type A permits a certain
number of cells Nmax > 1 on a lattice site, type B one cell on one lattice site, while in type C, known as
Cellular Potts model, a cell can occupy many lattice sites simultaneously. In addition we considered lattice
gas cellular automata (LGCA) as fourth class (type D). Different from types A-C, LGCA introduce the cell
velocity as model parameter.
On regular lattices, the position of cells in the lattice can be described by integers. Operations, searching,
etc.. is efficient so that the computation time for CA models is usually much faster than for their lattice-free
counterparts addressing a comparable spatial resolution. The price to be paid for the high speed seems to
be the possible artifacts in the emerging multicellular figures. Whether they occur or not depends on the
parameter setting, but in some situations they might not be readily visible even though they could distort
the value of observables.

Using an unstructured lattices (in our case a Voronoi diagram, representing the dual graph of a Delaunay
triangulation) eliminates these artifacts, at the expense of higher computing time (Fig. 4).
A fundamental disadvantage of CA types A, B, D is that the representation of physical laws is rule-based,
and that models on lattices have a lower length scale i.e., displacements smaller than the lattice spacings
are not possible. This can lead to artifacts making the model being non-predictive. It is for example a
huge challenge for the aforementioned models to properly simulate detachment of cells as a consequence of
proliferation pressure in the interior of a monolayer (Fig. 13). Moreover, folding of tissue layers that are
stabilized by polar adhesion forces as it is observed in intestinal crypts after irradiation (Fig. 18) or during
the invagination of the blastula in early animal develoment [133] emerges naturally in a CBM (center-based
model), which belongs to the class of lattice-free models, but it is very difficult to model properly with CA
types A, B, D, and even for type C may represent a difficult task. The first reason is that CBMs represent a
direct physical approach while in cellular automaton models physics has to be implemented in terms of rules
such that on sufficiently large scales the correct mechanics is reproduced. The second reason is that CBMs,
as they are off-lattice models, have now upper length scale and therefore permit gradual displacements.
LGCA (type D) for fluids, for example, can be shown to behave at large scales as the Navier-Stokes equation.
Recent work by Deutsch and co-workers attempt to infer the large-scale behaviour of LGCA for multicellular
organization to better understand the large scale effect of the microscopic (cell scale) LGCA rules [101], [99],
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[98].
Gradual displacements cannot be modelled by type A, B, D cellular automaton models which makes it
difficult to represent properly the cell mechanics, at least on spatial scales comparable to the lattice spacing.
In model types A and B, a shifting length needs to be introduced to mimic pushing of cells that may occur
if a growing and dividing cell exerts forces on its neighbor cells to generate the free space necessary for
its division. By formal comparison with the expansion speed of monolayers, in type D (LGCA) models
the velocity channel may take the function of the shifting length in model types A and B. Finally, the
dynamics in type A, B, D models is stochastic and at least partially of the hopping type. For types A
and B all neighbor configurations of a given configuration can be calculated and is usually not too large so
that the master equation, that describes the underlying dynamics of the multicellular configuration in the
model types A and B, can be numerically solved. The solution represents the dynamics of the probability
distribution function for a certain multicellular configuration. For type C (CPM) and D (LGCA) CA models
usually (Monte Carlo) sampling methods are used. These have the disadvantage, that they can distort the
time scale, making it difficult to associate an absolute, precise time scale to the number of Monte-Carlo
steps. This represents one of the limitations of the CPM. Another limitation is that its physical parameters
can couple in an unnatural way to cell migration. An incompressible elastic cell for example would not be
able to move as moves are inherently linked to transient cell volume changes by flipping of lattice sites. This
limitation might be removed either by separation between cell body and filopodia, or by flipping lattice
sites only pairwise such that the volume of each cell remains constant. On the other hand, the modeling
framework is very flexible, and complex cell shape changes can be captured. The latter has been proven
successful in simulations of cell sorting in case of differential cell-cell adhesion [102] which turned out to
provide an obstacle for those models that do not allow sufficiently large cell deformations. However, as all
lattice-based models intrinsically base upon a stochastic dynamics, they are likely to fail if deterministic
effects largely outrange stochastic contributions.
Off-lattice models have been considered based both on a Monte-Carlo dynamics and on equations of motion.
For growing monolayers within the center based modeling approach both methods have been compared
and no significant deviations in the simulation results have been found [61]. Definition of an absolute time
scale is straightforward when using equations of motion, while they maintain their realism in absence of
stochastic effects. They can also be easily extended with complex forces which is usually more intuitive than
writing down the equation for the corresponding energy functions, although the latter may be a matter of
the scientific background and community.

Within the original concept, in center-based models (CBMs) the interaction force of a cell with its neigh-
bors is calculated based upon the pairwise force between the cell and each of its individual neighbors. CBMs
can be completely parameterized by biophysical and cell-kinetic parameters, that in principle can all be
measured. This is an important strength as it permits identification of a realistic range for each model
parameter, thereby facilitating simulated sensitivity analyses. Moreover, this makes simulated sensitivity
analyses feasible even in complex tissue organisation models despite the otherwise longer simulation times
compared to cellular automaton models [38]. Center based models with a fixed intrinsic shape and inter-
acting with pairwise forces only capture mechanical effects well if the cell shapes do not largely deviate
from their intrinsic shape (usually spheres) and if the local cell density is not too high. The reason for the
latter is that the precise cell shape in CBMs is not known so forces depending on shape or volume need
approximations and force terms in addition to the pairwise force between the cell centers. This is prone
to inconsistencies, for example, if on one hand pairwise Hertz forces are used to mimic the repulsive force
upon compression and deformation, and an additional volume - force term is added at high cell densities,
whereby the volume is approximated from Voronoi tessellation with a cut-off radius (Fig. 18 [175], [142]).
The cut-off radius permits definition of cell shape and volume for the cell in isolation. Omitting the cut-off
as in a pure Voronoi tessellation model [33], the shape and volume of a cell cannot be defined anymore as the
shape of a cell within a Voronoi tessellation is solely determined by the position of the cells’ neighbor cells.
The combined approach permits a reasonable estimate of the cell volume at any cell density which makes
estimating of compression forces feasible at any density but generates an inconsistency as the Hertz contact
force is inherently linked to a specific area (the Hertz contact area), that is different from the contact area
between the same cells within a Voronoi tessellation. These differences can lead to significant problems in
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coherently defining forces and mechanical stresses which may partially be solved by sophisticated heuristic
corrections but these render the models complicated and more computing time-intensive [179]. An additional
drawback is that the Voronoi polygonal shape has to be updated at any moment in the simulation coming
at the expense of longer simulation times.
Some authors assume the geometrical shape as approximation of the entire cell shape and control the cell
volume by an additional dynamical variable [62], but the approach suffers from the same type of inconsis-
tency. Hence these type of models are semi-quantitative in the sense that they do not permit precise force
calculations simultaneously at small and large cell densities. A possibility to solve this issue might be by
calibrating the interaction forces of center-based models by higher detailed models (e.g. deformable cell
models, DCMs) which represent cell shape more realistically and self-consistently.

Deformable cell models represent cell shape explicitly. This is a fundamental advantage as now cell vol-
ume and contact area can be calculated more accurately. However, at high resolution, the choice of model
mechanisms and the calibration of parameters is very difficult. The choice of models and parameters is
usually determined by experiments probing cell mechanical properties at low scale, such as atomic force mi-
croscopy (AFM), pipette aspiration experiments, and optical stretchers. However, given the cells’ complexity
and the difficulty to infer the individual stress contributions from membrane, cellular cortex, cytoskeleton,
cytoplasm, nucleus and other cell organelles, the degrees of freedom within the highly parameterized DCMs
can usually not be uniquely removed i.e., several models and parameter combinations may fit the same
experiments. Due to the complexity of the model, sensitivity analyses are very time consuming. Moreover,
in principle every cell type would have to be studied separately experimentally and then the experiments
be used to calibrate a DCM for that cell type. Another issue is the computational effort. Because the
mechanical timescales of subcellular properties are much smaller than those associated with observables as
migration, growth and division, one can simulate only a small number of cells at each CPU. It seems that
distributed computing can bring a solution here. Another solution may come for hybrid model approaches,
so that in certain tissue parts, CBM may be replaced by a calibrated CBM. Nevertheless, given the develop-
ment of experimental methods to collect information on cells individually and organized in tissues, DCMs are
likely to play an increasingly important role in modeling and understanding mechanotransduction pathways.

What will be the role of lattice (CA) models in the future? This is hard to say, but with increasing
experimental information on the physical cell properties, which are hard to properly represent in CA models,
the future success of CAs will likely depend on in how far it will be possible to match the microscopic rules
and CA parameters with physical observables. In granular matter, cellular automaton models, originally
very successful, are almost not used anymore.
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Appendix A. Validation of different stress measures

To illustrate the possibilities in this approach, let us consider different cases where a cell is in contact
with other cells (see Fig. A.23). In the first case, a cell is squeezed between two other cells along the X axis.
Applying Eq. 39, the stress tensor becomes

σ =

σxx 0 0
0 0 0
0 0 0

 (A.1)
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where σxx = 3f
2πr2 , from which the pressure p can be extracted:

p =
1

3
tr(σ) =

f

2πr2
. (A.2)

In addition we can define the “equivalent” stress σeq as

σeq =
√

0.5 [(σxx − σyy)2 + (σyy − σzz)2 + (σxx − σzz)2] + 3
[
σ2
xy + σ2

yz + σ2
xz

]
, (A.3)

which only counts the deformation. In case of the line contact this yields σeq = 3f
2πr2 . In the second case the

cell has also contact along the Y axis, and then we find an increased pressure p = 1
3 (σxx + σyy) = f

πr2 while

σeq remains the same. However, an additional contact along the Z axis will yield p = 2f
πr2 but σeq = 0 so the

deformational stress vanishes because of symmetry. This is the equivalent situation to a cube compressed
equally from all sides. Thus in agreement with one would expect, the pressure on the cell can increase with
the number of contacts, while the deviatoric part may even decrease or vanish depending on how the contacts
are distributed along the cell’s surface. This extra information is an important advantage over the previous
methods. Note however, that this tensor has no off diagonal components, as no shear forces are taken into
account. Note that if the cells would have isotropic contact area (infinite contact points), the sum in Eq. 39

Figure A.23: Evolution of virial stress and pressure as cells are in contact along the X axis, (X,Y) axes and (X,Y,Z) axes.

can be replaced by an integral while the force should be replaced by a force density P(x, y, z) = Per(x, y, z).
In this case we retrieve the pressure:

p =
1

3
tr(

∫
r⊗PdS

V
) =

1

3
.
r.4πr2

4/3πr3
P = P (A.4)

To test the virial stress implementation, we have performed a study simulating a spheroid with ”inert”
cells, exhibiting no growth nor division, which is gradually compressed by a capsule with decreasing radius.
The cells have a Young modulus of 250 Pa and Poisson ration of 0.49, and do not adhere to each other.
We assume that the capsule wall is rigid. At the point of confluence, the cells start exerting a total force
F cap =

∑
j F

cap,cellj
j on the capsule which will increase as the capsule shrinks further. This force is converted

to an average pressure P cap = F cap/A where A is the inner surface area of the capsule. Fig. A.24 indicates
that the maximal directions in the cells at the boundary point are perpendicular to the capsule wall, while
the minimal stress directions are parallel. In Fig. A.24 (c), we depict a plot of the average pressure increase
versus volume decrease of the capsule, giving an indication of the differences in stress measures that can be
expected between the average viral stress < p >=

∑
j pj/N per cell, and the capsule wall pressure P cap.

It can be seen that the deviations are relatively small for moderate compression. At high compression a
discrepancy arises because the cell overlaps become too high, a problem that is well known in center based
models under compression (see section 3.1). The stress measure Eq. 38 results in a much higher value
because a “local” stresses are computed and summed.
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Figure A.24: Top: Simulation of a spheroid compressed by a capsule. The arrows indicate the maximal (a) and minimal (b)
stress directions. c) Pressure measured during compression of a spheroid for pressure formulations Eq. 40 and Eq. 38.
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Appendix B. Numerical estimation of the stochastic force term in the Langevin equation

To obtain a force based numerical representation of a Brownian motion for a particle or cell in a low
Reynolds number environment in a isotropic medium, we start from the approximation for the square of the
expectation value of the force vector norm in n dimensions:

< ‖FR‖2 >≈ 6(2n)πKBTηR

∆t
, (B.1)

where R is the cell radius, γ is the friction coefficient, η is the viscosity of the medium, and∆t is the
timestep in the simulation. Using Stokes’ formula, γ = 6πηR, we get

< ‖FR‖ >≈
√

(2n)KBTγ

∆t
, (B.2)

To get the actual force vector, at each time-step in the simulation, we need to pick a random force unit
vector nR, and scale it in the following way:

FR =

√
2n KBTγ

∆t
nR, (B.3)

Using D = kBT/γ and introducing S = 2nDγ2 we can also write

FR =
√

(S/∆t)nR, (B.4)

where D is the diffusion coefficient. The vector nR must be taken with care to obtain a true random
direction (just normalizing three random numbers will introduce artefacts), see e.g. [253]. Note finally
that the migrative diffusion coefficient D and the frictional resistance determined by parameter γ, can also
be chosen independently in the simulation. This would in violation with the Einstein relation of inert
Brownian particle (D = kT/γ). As such the diffusion coefficient regulating cell migration must be regarded
as a parameter depending on the cell internal state.
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[125] A. Szabó, K. Varga, T. Garay, B. Hegedus, and A. Czirók, “Invasion from a cell aggregate–the roles of active cell motion

and mechanical equilibrium,” Phys. Biol., vol. 9, p. 16010, Feb. 2012.
[126] C. A. Lemmon and L. H. Romer, “A predictive model of cell traction forces based on cell geometry,” Biophys. J., vol. 99,

pp. L78—-80, Nov. 2010.
[127] S. E. M. Boas, M. I. N. Jimenez, R. M. H. Merks, and J. G. Blom, “A global sensitivity analysis approach for morpho-

genesis models,” arXiv preprint, pp. 1–29, 2015.
[128] M. M. Palm and R. M. H. Merks, “Large-scale parameter studies of cell-based models of tissue morphogenesis using

CompuCell3D or VirtualLeaf,” in Tissue Morphogenesis (C. M. Nelson, ed.), vol. 1189 of Methods in Molecular Biology,
pp. 301–322, New York, NY: Springer New York, 2015.

[129] J. Starruß, W. de Back, L. Brusch, and A. Deutsch, “Morpheus: a user-friendly modeling environment for multiscale and
multicellular systems biology,” Bioinformatics, vol. 30, pp. 1331–1332, May 2014.

[130] M. H. Swat, G. L. Thomas, J. M. Belmonte, A. Shirinifard, D. Hmeljak, and J. A. Glazier, “Multi-Scale Modeling of
Tissues Using CompuCell3D,” in Comput. Methods Cell Biol. (A. R. Asthagiri and A. P. Arkin, eds.), pp. 325–366,
Academic Press, 2012.

[131] G. R. Mirams, C. J. Arthurs, M. O. Bernabeu, R. Bordas, J. Cooper, A. Corrias, Y. Davit, S.-J. Dunn, A. G. Fletcher,
D. G. Harvey, M. E. Marsh, J. M. Osborne, P. Pathmanathan, J. Pitt-Francis, J. Southern, N. Zemzemi, and D. J.
Gavaghan, “Chaste: an open source C++ library for computational physiology and biology,” PLoS computational
biology, vol. 9, p. e1002970, Jan. 2013.

[132] A. F. M. Marée, V. A. Grieneisen, P. Hogeweg, and A. F. M. Maree, “The Cellular Potts Model and Biophysical Properties
of Cells, Tissues and Morphogenesis,” in In: Single-Cell-Based Models in Biology and Medicine (A. R. A. Anderson,
M. A. J. Chaplain, and K. A. Rejniak, eds.), vol. 2, pp. 107–136, Basel: Springer, 2007.

[133] D. Drasdo and G. Forgacs, “Modeling the interplay of generic and genetic mechanisms in cleavage, blastulation, and

51



gastrulation,” Developmental Dynamics, vol. 219, no. 2, pp. 182–191, 2000.
[134] G. M. Odell, G. Oster, P. Alberch, and B. Burnside, “The mechanical basis of morphogenesis. I. Epithelial folding and

invagination,” Developmental biology, vol. 85, no. 2, pp. 446–462, 1981.
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[224] G. Sciumè, R. Santagiuliana, M. Ferrari, P. Decuzzi, and B. A. Schrefler, “A tumor growth model with deformable ECM,”
Physical biology, vol. 11, p. 065004, Jan. 2014.

[225] M. Alber, N. Chen, T. Glimm, and P. M. Lushnikov, “Multiscale dynamics of biological cells with chemotactic interactions:
From a discrete stochastic model to a continuous description,” Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, vol. 73, no. 5, 2006.

[226] A. De Masi, S. Luckhaus, and E. Presutti, “Two scales hydrodynamic limit for a model of malignant tumor cells,”
Annales de l’institut Henri Poincare (B) Probability and Statistics, vol. 43, no. 3, pp. 257–297, 2007.

[227] A. Stevens, “The Derivation of Chemotaxis Equations as Limit Dynamics of Moderately Interacting Stochastic Many-
Particle Systems,” 2000.

[228] A. Chauviere, H. Hatzikirou, I. G. Kevrekidis, J. S. Lowengrub, and V. Cristini, “Dynamic density functional theory of
solid tumor growth: Preliminary models,” AIP advances, vol. 2, p. 11210, Mar. 2012.

[229] L. A. D’Alessandro, S. Hoehme, A. Henney, D. Drasdo, and U. Klingmüller, “Unraveling liver complexity from molecular
to organ level: Challenges and perspectives,” Progress in biophysics and molecular biology, vol. 117, pp. 78–86, Jan.
2015.

[230] J. Galle, L. Preziosi, and A. Tosin, “Contact inhibition of growth described using a multiphase model and an individual
cell based model,” Applied Mathematics Letters, vol. 22, pp. 1483–1490, 2009.

[231] P. Murray, C. Edwards, M. Tindall, and P. Maini, “From a discrete to a continuum model of cell dynamics in one
dimension,” Physical Review E, vol. 80, p. 031912, Sept. 2009.

[232] H. B. Frieboes, F. Jin, Y.-L. Chuang, S. M. Wise, J. S. Lowengrub, and V. Cristini, “Three-dimensional multispecies
nonlinear tumor growth-II: Tumor invasion and angiogenesis,” Journal of theoretical biology, vol. 264, pp. 1254–78, June
2010.

[233] B. H. M. Osborne J. M. , Walter A., Kershaw S. K., Mirams G R, Fletcher A G, Pathmanathan P , Gavaghan D., Jensen
O. E., Maini P. K., “A hybrid approach to multi-scale modelling of cancer,” Phil Trans R Soc A, vol. 368, pp. 5013–5028,
2010.

[234] Y. Kim, M. A. Stolarska, and H. G. Othemer, “A Hybrid model for tumor Spheroid grwoth in vitro I: Theoretical
development and earliy results,” Mathematical Models and Methods in Applied Sciences, vol. 17, pp. 1773–1798, Nov.
2007.

[235] J. C. Dallon, J. A. Sherratt, and P. K. Maini, “Mathematical modelling of extracellular matrix dynamics using discrete
cells: fiber orientation and tissue regeneration,” Journal of theoretical biology, vol. 199, pp. 449–71, Aug. 1999.

[236] B. D. Cumming, D. L. S. McElwain, and Z. Upton, “A mathematical model of wound healing and subsequent scarring,”
Journal of the Royal Society, Interface / the Royal Society, vol. 7, pp. 19–34, Jan. 2010.

[237] L. Yang, T. M. Witten, and R. M. Pidaparti, “A biomechanical model of wound contraction and scar formation,” Journal
of theoretical biology, vol. 332, pp. 228–48, Sept. 2013.

[238] F. Milde, M. Bergdorf, and P. Koumoutsakos, “A hybrid model for three-dimensional simulations of sprouting angiogen-
esis,” Biophysical journal, vol. 95, pp. 3146–60, Oct. 2008.

[239] J. Monaghan, “Smoothed Particle Hydrodynamics and Its Diverse Applications,” Annual Review of Fluid Mechanics,
vol. 44, pp. 323–346, Jan. 2012.

[240] B. Gholami, A. Comerford, and M. Ellero, “A multiscale SPH particle model of the near-wall dynamics of leukocytes in
flow,” International Journal for Numerical Methods in Biomedical Engineering, pp. 83–102, 2013.

[241] N. Tanaka and T. Takano, “Microscoic scale simulation of Blood flow using SPH method,” International Journal of
Computational Methods, vol. 02, no. 04, pp. 555–568, 2005.

[242] B. R. Angermann, F. Klauschen, A. D. Garcia, T. Prustel, F. Zhang, R. N. Germain, and M. Meier-Schellersheim,
“Computational modeling of cellular signaling processes embedded into dynamic spatial contexts,” Nat. Methods, vol. 9,
no. 3, pp. 283–289, 2012.

[243] G. P. Figueredo, T. V. Joshi, J. M. Osborne, H. M. Byrne, and M. R. Owen, “On-lattice agent-based simulation of
populations of cells within the open-source Chaste framework,” Interface focus, vol. 3, p. 20120081, Apr. 2013.
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