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Abstract

Cancer research has been revolutionised by recent technological advances that allow sci-

entists to produce extensive collections of experimental data, especially on the molecular

and cellular level. Formal modelling is a necessary tool for integrating massive amounts

of diverse measurement data into a coherent picture of disease development. Models can

be used to test hypotheses about the role of cellular components in system function and

in creating disease, and to make predictions which can then be tested experimentally.

This thesis evaluates process algebra techniques as description formalisms for a col-

lection of cancer-related models. Process algebras view biology as a dynamic interactive

communication network, in which an individual agent is performing a computation cor-

responding to the reaction. Agents typically represent entities such as molecules or cells.

The stochastic extensions of process algebras allow the modeller to assign probability (or

rate) to every reaction. The analysis of the resulting models is usually based on stochastic

simulation. Alternatively, formal verification tools can be used to calculate exact quanti-

tative properties of the underlying stochastic process.

We have explored the applicability of the process algebra formalism by analysing the

dynamics of two cancer-related signalling pathways: Wnt/Wingless and FGF (Fibroblast

Growth Factor). In addition to process algebra models, we have also derived continuous

differential equation models for comparison. Systematic analysis of parameter spaces has

revealed which variables have the most influence on temporal and steady state properties
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of the system. By integrating feedback mechanisms, amplification factors, and different

time scales we have demonstrated a resulting emergence of several unexpected properties

of system dynamics. We were later able to confirm these by in vitro experiments for both

pathways.

To examine the function of the specific signalling architecture in the cellular decision

making process, we have constructed a model that couples Wnt signalling to the decision

process within the cell and cell microenvironment. The model reveals signalling character-

istics that ensure accuracy and robustness of Wnt-mediated determination of proliferative

cell fate and lead to tissue architecture which is resistant to mutations. The main con-

tribution of this thesis is, therefore, to systems biology; we have produced reusable and

validated quantified models and demonstrated their value in designing, testing, and refin-

ing hypotheses about cancer.
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Chapter 1

Introduction

For decades, cancer research has been focused on the identification of cellular parts, genes

and proteins that become disregulated during cancer development. To a large extent, this

direction was chosen based on the assumption that there is a gene for everything: a gene

that causes cancer and a gene that causes heart disease. This is no longer tenable for

complex organisms; what has been discovered instead is that each gene plays a role in

multiple functions. Likewise, each function arises from the cooperation of many genes. In-

teractions of cellular parts ensure that the system exhibits robustness and fault tolerance

in the presence of randomly occurring perturbations. Understanding of tumourigenesis

and other biological phenomena would benefit greatly from a view of the cell as an inter-

active system where components work together in networks, continuously adjusting to the

information they receive about the internal cell state and cellular environment. While an

understanding of genes and proteins continues to be important, research focus has to be

shifted to include higher levels of abstraction, involving pathways and networks.

This thesis describes the application of computational tools to understanding properties

of cancer using systems approaches. By a systems approach to biology we mean gathering

and integrating diverse measurement data about molecular components and interactions
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taking place in a living cell. These data are incorporated into models which are then used

to test specific hypotheses about component roles in responding to stimuli and in creating

disease. Moreover, models are used to make biologically interesting predictions which are

then tested and confirmed experimentally. A systems based approach is thus shown to

give a novel understanding of what goes wrong in disease at a molecular level and how to

fix the aberrant molecular network.

This thesis evaluates process algebra techniques as description formalisms for a col-

lection of cancer-related models. Process algebras view biology as a dynamic interactive

communication network, in which an individual agent is performing a computation corre-

sponding to the reaction. Such descriptions of biological networks induce discrete models

whose states are vectors of agents and transitions correspond to reactions. Agents typi-

cally represent entities such as molecules or cells. Agents undergo state changes as a result

of consecutive, parallel, competitive, compartment- or context-dependent reactions. The

stochastic extensions of process algebras allow the modeller to assign probability (or rate)

to every reaction. The analysis of the resulting models is usually based on Monte Carlo

numerical simulation, such as stochastic simulation using the Gillespie algorithm. Alter-

natively, formal verification tools can be used to calculate exact quantitative properties of

the underlying stochastic process, for example, the probability that a particular complex

is formed.

Using the process algebra approach we study the dynamics of two cancer-related sig-

nalling pathways: Wnt/Wingless and FGF (Fibroblast Growth Factor). We have chosen

these pathways because, even though their components and interactions are relatively

well understood, the knowledge of system dynamics and how it changes as cancer pro-

gresses is still lacking. Pathway models are explored to discover types of properties that

emerge from integration of such concepts as feedback mechanisms, amplification factors
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and different time scales. Systematic analysis of parameter spaces is carried out in order

to reveal which variables have the most influence on temporal and steady state properties

of signalling systems. As a result of extensive manipulations of these models, we are able

to predict several unexpected properties of signalling system dynamics. We later confirm

these by in vitro experiments for both pathways.

To examine the function of the specific intracellular signalling network architecture in

the cellular decision making process, we have constructed a family of models that couple

Wnt signalling to the cellular behaviour and cell microenvironment. Based on the state of

the embedded signalling network, each cell decides whether to proliferate, differentiate, or

stay quiescent. Environmental factors induce changes in the intracellular state which might

change cell fate and thus feedback on the extracellular and intracellular state. Different

scenarios of cell fate control are compared. The model reveals cellular characteristics that

ensure a stable number and positioning of cells that assume proliferative fate. Moreover,

we demonstrate the robustness of Wnt-mediated determination of cell fate that protects

tissue against exponential growth when mutations occur.

1.1 Contributions

The main contribution of this thesis is to systems biology; we have produced controllable

and manipulable models and used them to design, test, and refine hypotheses about can-

cer. These results produced important predictions, which were then validated by in vitro

experiments. We were focusing on the following research areas:

• The FGF pathway collaborative project allowed us to discover counter-intuitive fea-

tures of the dynamics of this pathway. Our analysis revealed the interplay between

receptor activation and attenuation that controls proper timing of signal transduc-

tion. Understanding of this complex dynamics helped explain how pathogenic mu-
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tations in FGF receptor lead to sustained signalling, thereby yielding novel insight

into the function of oncogenic mutations.

• The Wnt pathway project allowed us to understand in detail a pathway that shows

frequent abnormalities in a cancer cell, in particular in colon cancer. We analysed

dynamic features of the system, predicted, and later confirmed previously unknown

oscillatory behaviour of the pathway. We further demonstrated how this complex

pathway dynamics can be utilised to control cell fate induction in developing and

self-renewing tissues.

• We further built a multi-scale extension of the Wnt model by linking it to the

regulation of cell proliferation and differentiation in the intestinal tissue. Results of

this project demonstrate how decisions made by individual cells lead to emerging

robust regulation of tissue architecture. Model predictions of the effects of mutations

in the Wnt pathway are consistent with concrete colon cancer models (Familial

Adenomatous Polyposis, hyperplastic and adenomatous polyps).

1.2 Publications

Article 1. J. Heath and M. Kwiatkowska and G. Norman and D. Parker and O. Tym-

chyshyn (Schaeffer). (2008) Probabilistic Model Checking of Complex Biological

Pathways. Theoretical Computer Science (Special Issue on Converging Sciences:

Informatics and Biology), 391, pages 239-257.

appeared earlier as

J. Heath, M. Kwiatkowska, G. Norman, D. Parker and O. Tymchyshyn (Schaeffer).

(2006) Probabilistic model checking of complex biological pathways. In C. Priami

(editor) Proc. Computational Methods in Systems Biology (CMSB’06), volume 4210
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of Lecture Notes in Bioinformatics, pages 32-47, Springer Verlag.

This paper presents the comprehensive computational framework for reasoning about

the behaviour of signalling pathways. My contributions to this work include refining,

analysis, and interpretation of results from the FGF pathway modelling case study.

Article 2. M. Kwiatkowska, G. Norman, D. Parker, O. Tymchyshyn (Schaeffer), J. Heath

and E. Gaffney. (2006) Simulation and verification for computational modelling of

signalling pathways. In L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D.

M. Nicol, and R. M. Fujimoto (editors) Proc. 2006 Winter Simulation Conference,

pages 1666-1674, Winter Simulation Conference, Monterey, CA, USA.

This paper compares various computational frameworks in their ability to capture

the dynamics of biological signalling pathways. My contributions to this paper in-

clude design of the FGF-based pathway reaction system, and derivation and analysis

of the stochastic π-calculus model for this system.

Article 3. O. Tymchyshyn (Schaeffer) and M. Kwiatkowska. (2008) Combining intra-

and inter-cellular dynamics to investigate intestinal homeostasis. In J. Fisher (editor)

Proc. Formal Methods in Systems Biology (FMSB’08), volume 5054 of Lecture Notes

in Bioinformatics, pages 63-76, Springer Verlag.

This paper presents a multi-scale model of the regulation of cellular behaviour in the

epithelial self-renewal in the intestine. Here my contributions include model design

and analysis. The model is then validated using information from the literature.

Poster 1. O. Tymchyshyn (Schaeffer), G. Norman, J. Heath and M. Kwiatkowska. (2006)

Computer assisted biological reasoning: the simulation and analysis of FGF sig-

nalling pathway dynamics. Poster at the NCRI Cancer Conference, Birmingham,

UK.
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This poster contains preliminary analysis of dynamic features of the FGF pathway

including characterisation of the role of different pathway components in activat-

ing pathway amplitude and/or duration. The paper with complete analysis of the

pathway is in preparation (listed as Article 4).

Poster 2. O.Tymchyshyn (Schaeffer) and M. Kwiatkowska. (2006) Computational ap-

proach for understanding molecular and cellular implications of defects in the Wnt

pathway. Poster at the Winter Simulation Conference, Monterey, CA.

This poster outlines an adaptation of the stochastic π-calculus framework to mod-

elling cellular dynamics at different levels of abstraction. Further details of model

analysis are given in Article 3.

Poster 3. J. Heath, M. Kwiatkowska, G. Norman and O. Tymchyshyn (Schaeffer). (2005)

Stochastic modelling of the FGF signalling pathway. Poster at the International

Conference in Systems Biology, Harvard Medical School, Boston, MA.

This poster contains earlier results of the FGF modelling study.

The following papers are currently in preparation or under submission:

Article 4. O. Tymchyshyn (Schaeffer), S. Akbazardeh, D. McEwan, G. Norman, J. Heath

and M. Kwiatkowska. Computational reasoning applied to FGF pathway: simula-

tion, analysis and experimental validation.

This paper consolidates earlier work on the computational modelling of FGF sig-

nalling and discusses biological insight gained from the model. My contributions are

derivation of the stochastic π-calculus model of the complete pathway, comprehen-

sive simulation-based analysis of the model, and model refinement with additional

information from experimental validation.
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Article 5. O. Tymchyshyn (Schaeffer), G. Caldwell, G. Matthews, J. Heath and M.

Kwiatkowska. Dynamic and noise-induced oscillations of the Wnt pathway: analysis

and experimental validation.

This paper presents design, analysis and validation of the Wnt pathway model. My

contributions include the design of models using deterministic ordinary differential

equation and stochastic π-calculus frameworks, and model analysis including inter-

pretation of their results in biological context.

1.3 Outline

This thesis is organised as follows:

Chapter 2 presents various modelling techniques for studying complex biological systems

at the molecular level, and illustrates their application to analysis of several general

types of reaction modules. We focus on qualitative changes of molecular dynamics

emerging from feedback inclusion into the model.

Chapter 3 studies the FGF signalling pathway which plays a significant role in common

forms of human cancer. We describe the computational model that captures biolog-

ical details of the pathway and discuss results obtained from the model. Finally, we

validate model predictions using an in vitro experimental system.

Chapter 4 contains a model of the Wnt signalling pathway primarily known for its role

in colon cancer. We derive models of pathway dynamics using two different computa-

tional frameworks, and analyse pathway properties that help ensure robust function

of the signalling system in the presence of random noise and mutations.

Chapter 5 describes the model-based study of cellular turnover in the intestine and the
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changes that occur in cancer. We derive the extension of the stochastic π-calculus

for modelling cells, and test the feasibility of hypotheses about cellular interactions

proposed by different groups of biologists.

Chapter 6 concludes by summarising the main message of the thesis.
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Chapter 2

Signalling networks

2.1 Introduction

In this chapter, we discuss existing approaches to modelling complex biochemical systems

in particular signalling pathways. We show how systematic analysis of signalling systems

can be performed using the deterministic approach based on ordinary differential equations

and the stochastic approach based on process algebras. We explore the applicability of

such analysis to characterising general types of recurring reaction patterns in biological

networks. Having knowledge of these, in the next chapters we construct more complex

models of realistic signalling pathways: Wnt and FGF, which are primarily known for

their role in the initiation and progression of cancer.

2.1.1 Computational models of signalling systems

Cell signalling is a set of communication mechanisms that allows a cell to sense and respond

to its environment. A cell receives information from the environment through a class of

proteins known as receptors. The signal is then propagated through a network of genetic
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and molecular components together forming a signalling pathway. Regulation of signalling

pathways is crucial for coordination of basic cellular activities and cellular decisions about

division, differentiation, and death.

Traditional analysis of signalling mechanisms in molecular biology has focused on a

reductionist approach. This approach tries to explain the complex function of a signalling

network by studying properties of its individual parts. This approach ignored quantitative

information essential for understanding the nonlinear character of system dynamics which

is very common in biological systems.

A more modern systems biology approach relies on computational modelling to under-

stand the behaviour of molecular networks. Modelling emphasises the emergent aspects

of signalling networks which disappear if the components are studied in separation. If

feedback loops come into play or if the relative timing of processes makes a difference,

then computational analysis can be used to infer counter-intuitive behaviour. Moreover,

modelling helps uncover principles of biological design and control by comparing different

network architectures under wide ranges of the numerical values that quantify those archi-

tectures. The extensive characterisation of the dynamics of cellular response to external

or internal changes can then be used to predict the conditions for the breakdown of the

signalling mechanism present in mutant phenotypes and the effect of drugs on it.

As computational studies are becoming more common in the field of molecular biology,

the question of what constitutes novel insight arises. In many cases, models are used to

generate predictions which are then validated by new experimental data. In this thesis,

we build computational models that are consequently used to design in silico experiments,

develop new hypotheses, and test them by in vitro experiments that provide further mod-

elling input. We show how models can be used to identify all possible classes of behaviour

that could arise from a given network topology, and help uncover useful properties and
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the potential purpose of a specific biochemical system.

Due to the lack of quantitative data in experiments and high level of noise and vari-

ability in biological data, model validation by traditional fitting of model results to any

particular set of experimental molecular traces is often of limited use. An assumed model

and experimental data have to be compared by analysing different model structures and

identifying the one consistent with the known qualitative effect of changing the operating

conditions, such as mutagenesis and drugs. Using this approach, we were able to validate

and update the knowledge of molecular components and their interactions in the context

of realistic signalling pathways.

2.2 Modelling frameworks

Intracellular signalling networks involve interactions of numerous molecular components.

The role of each molecule in a signalling network is to communicate the signal from one

partner to the next. To accomplish this the molecule has to be in a defined signalling

state. The state of a signalling molecule is characterised by covalent modification (e.g.,

phosphorylation), its state of association with other molecules, and possibly its location in

the cell. The state of the entire molecular network can be thought of as a vector of states

of participating molecules. The process of signal transduction can then be viewed as a

series of transitions between such network states. These state transitions are not static

but are determined by dynamically varying context in which signalling occurs. Network

states and rules for transitions between them provide the building blocks for the modelling

of a signalling network.

Therefore, the starting point for the model construction is the definition of a set of

network states and a set of reaction rules for signal transduction, together with a list

of parameters and initial conditions. We consider a well-mixed biochemical system of
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constant temperature and fixed volume that consists of molecular species Xn, n = 1, ..., N .

Molecular species can assume different states which correspond to covalent modification

or occupation of binding site by a partner protein. Let {Xs
n}, s = 1, ..., Sn be the set of

possible states of molecular species Xn, where Sn is the total number of different states.

Molecular species interact by participating in reactions that lead to molecular associ-

ation, state changes (covalent modification), synthesis, or degradation. Each elementary

reaction Rm, m = 1, ..., M , is given in the following form:

Rm : l1mX1 + l2mX2 + ... + lNmXN
km→ r1mX1 + r2mX2 + ... + rNmXN (2.1)

where lnm and rnm are non-negative integer coefficients determining reactants and products

of every reaction, respectively, defined as follows:

lnm(rnm) =







i, if i molecules of Xn are reactants (products) in a reaction Rm

0, Xn are not among reactants (products) of Rm,

and km is a rate constant associated with the reaction Rm. The number of reactant

molecules, i.e.
∑N

n=1 lnm denotes the order of the reaction Rm.

At this time, no standard representation of biochemical pathways exists. Several efforts

are underway to build databases of biochemical signalling networks ([Science STKE, 1996,

KEGG, 1995, PID, 2006]) together with tools for visualising these networks

([Kitano et al., 2005, Kohn et al., 2006]). While such databases are a step toward organ-

ising and visualising pathway data, at this time they do not provide tools for simulation

and unifying dynamic information.

Multiple computational frameworks are currently used to provide a quantitative un-

derstanding of complex biochemical networks. They differ in the way the translation
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between (2.1) and formal model entities is made, as well as in the applicable analysis

techniques. The more traditional approach of ordinary differential equations describes the

system in terms of continuous changes of concentrations of molecular species Xn. This

approach is implemented by several biochemical modelling packages [Shapiro et al., 2002,

Mendes, 1997]. Its alternative is the stochastic approach that describes the evolution of

molecular numbers in terms of probability of reactions. This approach is implemented by

the stochastic π-calculus [Regev and Shapiro, 2004] and PRISM [Kwiatkowska et al., 2007]

computational platforms and others [Le Novere and Shimizu, 2001, Fages et al., 2004] (re-

viewed in [Hlavacek et al., 2006, Kwiatkowska et al., 2006]).

A promising effort attempts to build an XML-based exchange language that would

integrate models in different formalisms from various sources [SBML, 2000]. However, in

its current state, SBML cannot be used for representing models which contain complex

molecular entities composed from multiple components that undergo independent state

transitions.

Below we present a summary of different computational frameworks, together with

simple examples of biochemical reaction systems, which are subsequently analysed using

these formalisms.

2.2.1 Continuous deterministic approach

The continuous deterministic approach and, in particular, ordinary differential equation

models (ODEs) define the state of the system at time t by a vector of concentrations [Xn]

of biochemical species Xn. Model equations describe the dependency of fluxes ∆[Xn] on

the populations of participating biochemical species Xn and kinetic reaction constants km.

The main assumption required to justify this approach states that reactants are present

in large numbers in well-mixed spatially uniform reaction volume, allowing us to treat
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populations of species as variables varying on a continuous scale.

In such a population-based approach, each state of Xn, Xs
n, s = 1, ..., Sn, is treated

as a distinct molecular species and demands its own population pool. This effectively

requires the modeller to specify the reaction rules for all modification states Xs
n for every

reactant or product molecule Xn. Generally, if a molecule contains j independent binding

and phosphorylation sites, and therefore can be in one of 2j states, the number of variables

and equations needed to describe the dynamics of such a system grows by 2j. Exponen-

tial explosion in the number of equations is one of the major drawbacks of applying a

continuous deterministic approach to modelling complex signalling pathways.

Let us consider a set of single-state variables Yn, n = 1, ...,
∑N

i=1 Si, defined through

renaming relationship Xs
n = Ys+

Pn−1

j=1
Sj

. Let [Yn] denote the concentration of the molecular

species Yn. Using an ODE approach, the rates of production and consumption of individual

biomolecular species, d[Yn]/dt, are represented in terms of mass action kinetics. A law of

mass action states that rates of a reaction are proportional to the concentrations of the

reacting species. ODE models for (2.1) can be written as

d[Yn]

dt
=

M∑

m=1

νnmkm

N∏

i=1

[Yi]
lim (2.2)

where lim and rim are stoichiometric coefficients determining whether Yi is a reactant or

product of the reaction Rm. νim = rim− lim denotes the change of molecules of Yi resulting

from a reaction Rm.

After providing values of rate constants km and initial concentrations of all biochemical

species [Yn](0), the system of equations (2.2) is solved yielding the dynamic time profile of

concentrations of all species. Although analytical solutions are not guaranteed, numerical

methods for solving a system with a large number of coupled nonlinear ODEs are well de-

veloped. Several integrated development environments exist that provide the convenience
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of front-end data entry as well as support for efficient simulation and data manipulation

algorithms [Shapiro et al., 2002, Mendes, 1997, Bower and Beeman, 1998].

The continuous deterministic approach suffers from an exponential explosion in the

number of equations, hence the time needed to solve the model. Moreover, the continuous

approach is unable to describe the fluctuations in the molecular population levels. As

we will see further (section 2.4.2), it is not even guaranteed that the model equations

will provide a sufficiently accurate account of the average molecular population levels.

For a biochemical system to be compatible with the continuity assumption, the number of

molecules of each species must be large compared to thermal fluctuations in concentrations,

and the number of reactions of each type needs to be large in each observation interval. The

deterministic analysis breaks when fluctuations are amplified by the signalling network.

2.2.2 Discrete stochastic approach

A conventional ODE method represents a continuous approximation of reactions that

actually involve interactions between individual molecules, which is a probabilistic process.

An alternative is an event-based approach which deals with the probabilistic description

of the system. In the stochastic approach, the state of the system at time t is defined by

the integer vector of numbers of molecules of each biochemical species Xn:

X(t) = (#X1(t), #X2(t), ..., #XN(t)).

The number of molecules divided by the reaction volume is the concentration [Xi] =

#Xi/Ω. Ω is defined as the volume of the reaction system multiplied by the Avogadro

number. The common values of Ω vary between 1 and 1000.

The behaviour of the counts of different species is described by their joint probability

density function P (x, t) = Prob{#Xi(t) = xi, i = 1, ..., N}, defined as the probability
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of having xi molecules of species Xi at time t, as opposed to deterministic rate equation

descriptions of the absolute concentration of these molecules.

In order to define the probability P (x, t) in terms of the system state X, one needs to

know the probability of the occurrence of every elementary reaction step in the biochemical

system. Each transition between system states is represented by a reaction step and

the probability of that transition is determined by the probability of the corresponding

reactions. This relation is formulated as a set of partial differential equations known as

the chemical master equation (CME). For the reaction model in (2.1), the chemical master

equation is

∂P (x, t)

∂t
=

∑

m

(am(x − νm)P (x − νm, t) − am(x)P (x, t)). (2.3)

where am(x), called the propensity function, is the probability per unit of time that one

reaction Rm occurs within this time interval if the system is in the state x. νm =

(ν1m, ..., νNm) = (r1m − l1m, ..., rNm − lNm) is the stoichiometric vector defining the result

of the mth reaction. The propensity function is further defined as

am(x) = cmhm(x),

where cm > 0 is the stochastic rate constant of the mth reaction, and hm(x) is the number

of distinct combinations of molecular reactants associated with the reaction Rm in state

x.

The stochastic reaction rate constant cm is closely related to the conventional macro-

scopic reaction rate constant km, used in the deterministic approach. The stochastic rate

constant no longer describes the concentration of chemical species being produced or con-

sumed per unit time, but rather the probability per unit time that a randomly chosen

combination of reactant molecules will react. Therefore cm is inversely proportional to the
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reaction volume and satisfies the relationship cm = kmΩ1−n, where n is the reaction order.

Analytical solutions to the CME are only practical for simple reaction systems. How-

ever, one can resort to a Monte Carlo type of numerical simulation, such as the Gillespie

algorithm [Gillespie, 1976], also called Stochastic Simulation Algorithm (SSA). Based on

the theory of thermodynamics, the Gillespie algorithm leads to an exact procedure for

numerical simulation of the dynamic evolution of a reacting system. Based on the propen-

sity functions am at any given time, the algorithm computes the reaction that will occur

next in the system, as well as the time interval within which this reaction occurs. The

number of molecules of reacting species as well as reaction probabilities are updated at

each time step. Iteration of this procedure until a final time is reached provides numerical

realisations possessing the same statistical properties as those described by the CME. The

method is accurate even at low numbers of reactants where the assumption of continuity

used in ODEs breaks down.

The Gillespie algorithm does not easily handle the reactions of multistate molecules.

Similar to the ODE approach, this method faces an exponential performance decrease

under linear increase of the number of independent protein sites. Moreover, because the

Gillespie algorithm does not represent each molecule in the system separately, it can

neither associate physical quantities with each molecule, nor trace the fate of particular

molecules over period of time.

2.2.3 Modelling signalling dynamics in π-calculus

The next two sections describe process algebra approaches to the stochastic modelling of

signalling networks. The process-algebra approaches were originally developed in com-

puter science for describing and reasoning about networks of concurrent components.

They have been successfully applied for analysing several types of molecular and genetic
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systems [Regev and Shapiro, 2004, Heath et al., 2007, Calder et al., 2006]. Once a bio-

logical system has been described using process algebra language constructs, the model

can be stochastically simulated to derive the properties under study over time. Stochas-

tic π-calculus [Priami, 1995] is a stochastic process algebra where interactions are as-

signed rates controlled by exponential distributions. In this thesis, we use the BioSPI

[Regev and Shapiro, 2004] as the platform which performs simulations of the π-calculus

code using an adaptation of the Gillespie algorithm [Gillespie, 1976].

A model in the stochastic π-calculus is a composition of communicating components

(called processes). Communication between a pair of processes occurs on complementary

channels. Output r! and input r? prefixes, where r is a channel name, are elementary

constituents of communication capabilities. Following communication between process

X ::= r!{y}, X′, containing an output capability r!{y}, and process Y ::= r?{z}, Y′, con-

taining an input capability r?{z}, the action involving channel r is removed, process X

changes its state to X′, while process Y substitutes channel name y for z and changes its

state to Y′ (see also Table 2.1 for the formal reduction rules of π-calculus). Figure 2.1(a)

displays graphically communication between processes X and Y.

If the set of channel names transmitted over a channel is empty, communication ca-

pabilities are displayed as r![ ] and r?[ ]. Alternatively, communication between processes

may carry a set of channel names that further changes interaction capabilities of partici-

pating processes. Such a change in future communication capabilities as a result of passing

channel names is termed mobility.

Furthermore, a process X may be defined as a choice between a set of processes X1, . . . Xn:

X ::= π1, X1 + ... + πn, Xn

may evolve as either of Xi, depending on which of the communication capabilities πi is the
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first one to complete in the current context, thus representing a race condition between a

set of processes. In a graphical presentation, each edge from node X to node Xi is labelled

with an action πi and denotes an alternative execution path in the system (Fig. 2.1(b)).

A process X given by

X ::= X1 | . . . | Xn

denotes a composition of processes X1, ..., Xn running in parallel. Graphically, X can be

modelled as in Fig. 2.1(c), where each edge from node X to node Xi denotes a concurrent

execution path in the system. Node X is represented as a solid rectangle.

The creation of a private channel r within the scope of the given process X is achieved

by the expression

(new r(λ)) X

which yields a new process in which channel r with rate λ is bound. Only processes that

share a private channel may interact using that channel. Name binding is represented

graphically as a bubble labelled with the restricted name r around the node X (Fig.

2.1(d)). Timing is incorporated into π-calculus models by associating each channel r with

the rate governed by the exponential distribution with the mean 1/λ.

r!{y}, X′ | r?{z}, Y′ → X′ | Y′[z/y]
. . . + r!{y}, X + . . . | . . . + r?{z}, Y + . . . → X | Y[z/y]

if X → X′ then X | Y → X′ | Y
if X → X′ then (new r) X → (new r) X′

Table 2.1: Operational semantics of π-calculus.

A translation scheme that maps molecular signalling pathways into π-calculus programs

was first introduced in [Regev and Shapiro, 2002, Regev and Shapiro, 2004]. Molecular

entities can be coded in π-calculus as processes that participate in reactions by communi-
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r ! {y} r ? {z}

X

X’

Y

Y’ [y/z]

(a)

X1 Xn

X�1 �n
(b)

X1 Xn

(c)

X

( r )

(d)

Figure 2.1: Basic stochastic π-calculus operations: (a) communication, (b) choice, (c)
parallel composition, and (d) scope restriction primitives.

cating over channels. State transitions resulting from process communication correspond

to covalent modification, association/dissociation, or degradation of signalling molecules.

By design, all actions in π-calculus necessitate precisely two participants. Let us consider

how reactions of different orders are modelled. Zero-order reactions require definition

of a fictitious constant reactant process that transforms them into first-order reactions.

First-order reaction Rm of the form

Rm : X →

N∑

n=1

rnXn

can be represented in π-calculus by defining the following processes:

X::= m ! [ ], Y.

Y::= X1 | . . . | X1
︸ ︷︷ ︸

r1 times

| . . . | XN | . . . | XN
︸ ︷︷ ︸

rN times

.

where process Xn is the realisation of biochemical species Xn. The model has to be supplied
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with a constant process Clock that enables a pairwise communication on m:

Clock ::= . . . + m ? [ ], Clock + . . .

For example, first-order reaction A → A∗ + B in which molecule A phosphorylates and

recruits molecule B, can be represented in π-calculus as

A ::= m ! [ ], A∗ | B.

Second-order reaction of the form

Rm : X1 + X2 →
∑

n

rnXn

is modelled by complementary binding motifs between molecular species that allows them

to participate in an association reaction. We denote these motifs by the pair of input and

output communication capabilities on channel m:

X1::= m ! [ ], Y1.

X2::= m ? [ ], Y2.

The parallel composition of the resulting processes Y1 and Y2 has to contain rn instances

of process Xn for each n, running in parallel. One possibility to represent these is shown

below:

Y1::= X1 | . . . | X1
︸ ︷︷ ︸

r1 times

| . . . | XN | . . . | XN
︸ ︷︷ ︸

rN times

.

Y2::= 0.
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Cases of higher order reactions with three or more reactants cannot be directly imple-

mented in the π-calculus. Such situations can be approximated by introducing the inter-

mediate complexes corresponding to the cascade of pairwise component bindings. Since

the reaction occurrence is based on the probability of collision between reactant molecules

within a small interval of time, which is small for larger reactant numbers, higher order

reactions are rare.

Molecules with several independent functional domains are represented as a parallel

composition of π-calculus processes. If molecule X contains j independent binding and

phosphorylation sites, the process X will be implemented as a parallel composition of j

processes:

X ::= X1 | . . . | Xj.

The state of each X1, ..., Xj reflects the set of activities in which the site can participate. In

the ODE approach the modeller would be required to write reaction rules and equations

for all modification states of X which grow exponentially with the number of independent

sites j. In π-calculus, each process X1, ..., Xj contains the definition for reaction rules

in which the respective site participates. In this way, the number of reactions needed to

describe X in π-calculus grows linearly with the number of sites.

There are two major simulation platforms available for the analysis of π-calculus mod-

els, BioSPI [Regev and Shapiro, 2004] and SPiM [Phillips and Cardelli, 2005]. In this the-

sis, we use BioSPI for performing simulations of the constructed pathway models because

it enables compartment-based models (analysed in Chapter 5), in contrast to SPiM. The

BioSPI platform receives as input π-calculus code in textual format. A complete π-calculus

program consists of a set of public channel declarations, a set of process definitions, and an

initial process S which is to be reduced with respect to these declarations and definitions.

Simulations are performed using an adaptation of the Gillespie algorithm. By taking a
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component-based, rather than reaction-based approach implemented by the Gillespie al-

gorithm, π-calculus simulations avoid the problem of combinatorial explosion. There is no

global space that lists all states of X; instead local state spaces are used to derive values

of each subcomponent of X.

Consider a simple biochemical system consisting of two molecular species, A and B.

Species A uses its binding site to associate with species B. Assume as well that in addition

to binding site, molecule A possesses n independent phosphorylation sites. Using BioSPI

notation, this system can be described as follows:

A::= Bind | Ph1 | . . . | Phn.

Bind::= bind!{rel}, rel?[ ], Bind.

B::= bind?{rel}, rel![ ], B.

(2.4)

Reactions involving subprocess Bind which describes the state of binding between A and

B, are modelled independently of reactions involving phosphorylation sites Ph1, ..., Phn.

This is in contrast to approaches that represent the global state space of molecule A, such

as deterministic ODE-based approach and stochastic approach based on the Gillespie

algorithm. The global state space of molecule A contains all possible combinations of

binding and phosphorylation sites, thus 2n+1 states in total. The number of reactions

needed to describe binding between A and B grows proportionally.

2.2.4 Signalling networks in PRISM

Probabilistic model checking and the probabilistic model checker PRISM

[Kwiatkowska et al., 2007] is an alternative framework for modelling and analysis of bio-

chemical networks. One of the benefits of this approach is the ability to automatically

calculate exact quantitative measures of the stochastic system under study based on its
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systematic and exhaustive exploration. The applicability of these techniques has been

demonstrated for complex systems from a broad range of domains, including security

and communication protocols, distributed algorithms and power management. Recently,

PRISM has also been applied to modelling and analysis of several biochemical reaction

networks such as MAPK [Calder et al., 2006] and FGF pathways [Heath et al., 2007].

As with with the π-calculus approach, the system under study has first to be described

in the PRISM modelling language. Each of the basic molecular and genetic components

of the pathway is represented by a separate PRISM module. The different forms which

each protein can take are represented by one or more finite-ranging variables within the

module.

Synchronisation between modules is used to model reactions involving interactions of

multiple elements. PRISM is based on multi-way synchronisation rather than on binary

channel communication of π-calculus. PRISM model for (2.1) can be written as shown

in Fig. 2.2. Here we model the state of the system by the vector of counts of different

molecular species Xn, n = 1, ..., N , represented by N modules, each with one variable

xn storing the count of Xn present in the system. The behaviour of each module Xn is

specified by a number of guarded commands of the form [a] g → r : u. If the predicate, or

guard, g is true, the system is updated according to u at the rate r. For example, if the

value of variable x changes as a result of this command, this is denoted by x′ = . . . . The

action label a denotes that the state of several modules changes simultaneously. When

the reaction Rm occurs, variable xn changes as described by stoichiometric coefficients lnm

and νnm = lnm − rnm, for each n = 1, ..., N . The rate of reaction Rm is proportional to

the product of counts of reactant species xn factored by lnm, denoted as xlnm
n . PRISM

computes the rate of a combined transition as the product of the rates for all transitions

synchronised on the same guard Rm. We include the stochastic rate constant cm in a
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module Xn

xn : [0..Nx] init N0
x ;

...
//if Xn is a substrate in the reaction Rm, ie lnm > 0
[Rm] xn ≥ lnm & xn ≤ Nx − νnm → xlnm

n : (x′

n = xn + νnm);

//otherwise
[Rm] xn ≤ Nx − νnm → 1 : (x′

n = xn + νnm);
...

endmodule

module basal
dummy : [0..1] init 0;

...
[Rm] true → cm : true;
...

endmodule

Figure 2.2: Biochemical reactions in PRISM

separate module. Note that the action label a may be omitted for transitions involving a

single module.

Different states Xs
n, s = 1, ..., Sn, of molecule Xn can be represented by values of

the variable xn within module Xn. Independent domains of the same molecule can be

modelled as independent variables within one module. Example 2.4 can be modelled in

PRISM as follows: In this way, a model description in PRISM avoids exponential state

explosion [Heath et al., 2007].

From a model description, PRISM builds a system representation, typically a labelled

state-transition system in which each state represents a possible configuration and the

transitions represent the evolution of the system from one configuration to another over

time. Transitions are annotated with rates which are interpreted as parameters of a

negative exponential distribution. Models are analysed by exhaustive exploration of the

paths of the system in order to reason about the probability that a model behaves in a
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module A
bind : [0..Na] init 0;
ph1 : [0..Na] init 0;
...
phn : [0..Na] init 0;

[bind] bind ≤ Na − 1 → (Na − bind) : (bind′ = bind + 1);

[rel] bind ≥ 1 → bind : (bind′ = bind − 1);
...

endmodule

module B
b : [0..Nb] init 0;

[bind] b ≤ Nb − 1 → (Nb − b) : (b′ = b + 1);

[rel] b ≥ 1 → b : (b′ = b − 1)
endmodule

certain fashion, as well as other quantitative measures relating to the temporal evolution

of the model.

The main contribution of PRISM is the formalisation of qualitative and quantitative

properties of the system in temporal logic. PRISM models can be augmented with re-

wards associated either with system states or transitions. A state reward is accumulated

in proportion to the time spent in a given state. A transition reward is accumulated every

time the transition is taken. PRISM can then analyse properties which relate to the ex-

pected values of these rewards. Properties are specified using R operator, e.g., expression

R=?[ rewardprop ] returns the expected value of the reward associated with rewardprop

(see [Kwiatkowska et al., 2007] for formal definition of reward-based properties). For ex-

ample, one might be interested in the following properties:

• What is the expected number of molecules of species X at time instant t. This is
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expressed by the formula:

R=?[ I = t ]

with reward x indicating the number of molecules X is associated with every state.

• What is the expected number of reactions of a certain type that occurred by time t.

The respective formula is:

R=?[ C ≤ t ]

with reward of 1 associated with every transition corresponding to the reaction of

interest.

• What is the expected time until the number of molecules X reaches a threshold Tx.

This is expressed as:

R=?[F(x ≥ Tx) ]

and reward of 1 associated with every state.

The formalisation allows one to automatically verify whether or not each property is

satisfied.

Because probabilistic model checking carries out analysis of the global state of the

system, at the stage of model analysis it faces a problem of an exponential state explosion

in the number of components of the underlying model. PRISM supports state-of-the-art

techniques which tackle this problem, thus increasing the size of systems that can be

analysed [Kwiatkowska et al., 2007].

The stochastic π-calculus and PRISM approaches differ in their ability to represent

non-linear kinetics of biochemical reactions. π-calculus is limited to two-way synchro-

nisation between system components which allows to represent basic zero-, first- and

second-order reactions. On the other hand, PRISM model may contain reactions with
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more complex non-linear dynamics, such as Michaelis-Menten enzymatic reaction or Hill

exponent reactions. However, π-calculus notion of mobility may be used to model infi-

nite arrays of processes (molecules, cells, etc) and channels (reactions), which cannot be

expressed in PRISM.

2.3 Analysis techniques

2.3.1 Simulation

The majority of analysis techniques used in both deterministic and stochastic frameworks

rely on simulation which generates time trajectories of chosen properties of the system.

Simulation is a simple but powerful tool for studying behaviour of signalling networks.

Using simulation, time-dependent profile of molecular species can be compared over a

wide range of rate parameters, initial concentrations, and reaction network topologies. To

simulate the effect of a kinase inhibitor, for example, a model is run with the reduced

rate of phosphorylation reaction. The rate of protein interactions with its partners can

be varied to study the effect of mutations affecting the structure of this protein. In each

case, simulated data can be compared to experimental data such as quantitative western

blotting, ELISA test, or flow cytometry.

2.3.2 Sensitivity analysis

Sensitivity analysis is used to determine which concentrations and rate constants in a

model have the most influence on the overall system behaviour. In addition, this type of

analysis is valuable in ascertaining which parameters should be the focus of direct mea-

surement or experimental perturbation. In order to determine sensitivity of the model, we

need to formulate the objective function Z (e.g., maximum number of signalling molecules)
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and determine the set of model variables pj over which the sensitivity analysis should be

performed. The sensitivity coefficients SZ
pj

describe the change in the objective function

Z due to variations in the parameters pj . Sensitivity measure independent from the units

of Z and pj is as follows:

SZ
pj

=
pj

Z

∂Z

∂pj

=
∂ ln Z

∂ ln pj

(2.5)

Sensitivity coefficients can be found analytically for relatively simple systems or calculated

numerically using a variety of methods such as the direct method, the decoupled direct

method, Green functions, and others [Varma et al., 1999].

Sensitivity analysis in the case of stochastic systems measures the overall changes in

the probability density function. A system state is a random variable with the probability

density function P (x, t) which follows a CME (2.3). We define the output as a function of

the state Z(x, t). A direct analog of sensitivity coefficients (2.5) for a discrete stochastic

system with respect to the output Z, can be defined as the expectation of sensitivity

measure:

SZ
pj

= E

[
∂ ln Z(x, t)

∂ ln pj

]

=
∑

x

∂ ln Z(x, t)

∂ ln pj
P (x, t). (2.6)

The dependence of the state x on the parameter pj is implicitly assumed.

Sensitivity as defined by (2.5) or (2.6) is context specific, that is, it is performed around

a particular point in the parameter space. However, calculating sensitivity by simultane-

ously altering multiple parameters provides a more global view of network behaviour. To

estimate the total sensitivity of Z to pj, a reference state is perturbed by random mod-

ifications of system variables pj. Each alteration of the reference system is characterised

by the total parameter variation σ defined as log(σ) =
∑

j | log(p∗j/pj)|, where p∗j are the

biochemical parameters of the altered system. Z is plotted as a function of the total

parameter variation σ, for an ensemble of model systems.
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2.3.3 Changes in the trajectory

Another approach to analysing models is qualitative and based on determining the classes

of physiologically distinct behaviours that the system can produce. Bistability, oscillations,

wave propagation, and pattern formation are among nonlinear dynamic phenomena crucial

for the regulation of biological processes. Bifurcation analysis focuses on determining

whether parameter changes can lead to a dramatic transition between different trajectories

through the phase space which is defined as a space in which each coordinate stands for a

time-dependent variable in the model. For example, a steady-state solution corresponding

to a single point in the phase space may lose stability and be replaced by a stable limit

cycle solution (a closed curve in the phase space corresponding to periodic behaviour of

the model). This is called a Hopf bifurcation. A bifurcation diagram is used to graphically

represent how the trajectory changes as a function of a model parameter.

2.3.4 Experimental validation

This section summarises measurement technologies that are available for proving very spe-

cific predictive hypothesis resulting from computational modelling. Different experimental

technologies can be used to verify gene or protein properties predicted by the model un-

der study (reviewed in [Albeck et al., 2006, Kingsmore, 2006]). They vary in their cost,

throughput, sample size, and their applicability to a single cell or population of cells.

Because of the relative ease of immunoblotting, this technique has become the most

widely used method for characterising protein size and the relative abundance. Im-

munoblots are primarily used to compare relative abundance of a particular protein present

in samples under different physiological and experimental conditions; thus different im-

munoblots cannot be directly compared to each other. Immunoblotting can be used to

determine protein size, and therefore it has been a key method for detecting mutations
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that result in abnormal protein size. The main limitations of this method stem from

the inability to fully control the experimental conditions which frequently results in large

fluctuations in the output.

Enzyme-linked immunosorbent assay (ELISA) is an experimental technique for quan-

titation of antigen or antibody in which enzyme-labeled antibody or antigen is bound to

a solid support. ELISA shows sensitivity more than 100-fold higher than immunoblot and

can predict smaller changes occurring during signalling. Immunoblots are often used to

confirm the specificity of antibodies which are detected by ELISA procedures.

Polymerase chain reaction (PCR) is a highly efficient method to amplify low levels

of specific DNA sequences in a sample in order to reach the threshold of detection. The

extreme sensitivity of PCR has made it the favoured technique in quantitation of low

abundance DNA. In designing a quantitative PCR assay, several variables that influence

DNA amplification must be determined and controlled, thus complicating the use of PCR.

Fluorescence-based techniques and imaging can be used to quantify signals at cellular

or subcellular resolutions. Sensitivity of detection is one limiting factor of such techniques,

as is low throughput. Simultaneous measurement of a maximum of 10 different signals

is practical. However, fluorescence-based techniques are necessary when it is essential to

monitor changes in a single cell.

The optimal choice of the experimental technique depends on the system under study.

Immunoblotting is generally a logical first step in the characterization of protein concen-

tration as it allows visualisation of intact protein and provides information about protein

size. For applications in which sensitivity or absolute concentrations are important, ELISA

and PCT are more suitable choices.
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2.4 Examples of signalling mechanisms

In this section, we use the described modelling frameworks to study the properties of simple

biochemical systems. In subsequent discussion, we use the term module to describe the

set of interacting components which carry out a specific cellular function. Such modules

are often reused in the complex biochemical networks to execute the respective function.

2.4.1 Receptor module

We start with a simple modelling system, in which external stimulus S binds and promotes

activation by phosphorylation of the receptor molecule A. Activated receptor A∗ sends a

signal to downstream components. To ensure termination of successful signal transduction,

the phosphorylated receptor complex is degraded. We also include a low-level synthesis

and phosphorylation of non-active receptor molecules. The reaction network is represented

graphically as

S

A A*

Solid arrows indicate activation of system components and dashed arrows represent stimulus-

induced changes of these activation events.

The π-calculus model for the receptor module is shown in Fig. 2.3 (please refer to the

Appendix A for the textual representation). It includes processes A and S corresponding

to unbound and unphosphorylated receptor and stimulus molecules. A constant process

Syn transits periodically on channel syn to create a new instance of the receptor process.

The non-active receptor synchronises with the stimulus on channel bind and changes its
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Syn

S

syn ! []

deg ! []bind ! []

deg ! [] rel ! [] bind ? []

rel ! []

A*

AS

A

bind ? []

A*S

phos ! []
basalphos ! []

basalphos ! []

Figure 2.3: Implementation of the receptor module in π-calculus.

state to AS. The resulting process AS can either release the stimulus (transition marked

by channel rel) or be phosphorylated to become A∗S (channel phos). An active form of

the receptor complex can either disassociate (channel rel) or degrade (channel deg). A

low-level phosphorylation of both unbound and bound forms of the receptor, A and AS,

proceeds on channel basalphos. We also define a constant auxiliary process Clock which

contains input capabilities on channels syn, rel, basalphos, phos and deg (not shown).

Rate constants associated with first-order reactions (crel, cbasalphos, cphos, and cdeg) do

not depend on the units of reaction species and are therefore the same for stochastic and

deterministic models. Association reaction is binary and hence cbind has to be adjusted

by reaction volume Ω to be equal to the deterministic rate of the reaction cbind = kbind/Ω.

Zero-order reaction rate csyn is similarly adjusted cbind = kbind ∗ Ω.

The model is first analysed using BioSPI engine to reveal how the response component

A∗ is regulated by the incoming signal S. In Fig. 2.4(a)-2.4(d), we plot the transient
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response of the receptor module at two different values of S (both single run and an

average over 100 runs is shown). The rate constants used in simulations are as follows:

cbind = 0.1/Ω, crel = 0.1, cbasalphos = 0.0005, cphos = 0.1, cdeg = 0.005, csyn = 0.005 ∗ Ω, with

the initial number of receptor molecules #R(0) = Ω and Ω = 100.

In order to determine the characteristics of the underlying stochastic process, we im-

plement the receptor reactions in the PRISM probabilistic checker. In the PRISM model,

we adopt a population-based approach by describing the evolution of molecular counts,

rather than interactions between individual molecules. PRISM modules representing pop-

ulations of S and A are given in Fig. 2.5. The receptor module contains variables repre-

senting counts of free, bound, and phosphorylated receptor molecules. The only variable

in the stimulus module corresponds to the number of unbound stimulus molecules. These

modules synchronise on actions bind and rel, which increase and decrease the number of

receptor complex molecules, respectively. The other commands of the module receptor

are zero-order synthesis, first-order phosphorylation and first-order degradation which are

independent of stimulus (thus no action label).

To check whether the PRISM model produces results similar to the π-calculus model,

we first examined the expected number of active receptors A∗ using the temporal logic

property R=?[I = t] with the reward of the number of a∗ + a∗s molecules assigned to each

state and t ranging between 0 and the maximum observation time of one hour. The results

closely match those in Fig. 2.4 (data not shown). Using probabilistic model checking we

further examine the probability distribution of molecular counts. The properties that we

check are as follows (see results in Fig. 2.6):

• What is the probability distribution of the number of signalling molecules A∗ at time
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Figure 2.4: Temporal evolution of the receptor subsystem: a single stochastic run (a and
b), an average of 100 stochastic runs (c and d) and deterministic solution (e and f) for
#S(0) = 0.1 ∗ Ω and #S(0) = Ω, respectively.
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module receptor
a : [0..Na] init N0

a ;
as : [0..Na] init 0;
a∗ : [0..Na] init 0;
a∗s : [0..Na] init 0;

//receptor synthesis
[] a < Na → csyn : (a′ = a + 1);

//association and disassociation
[bind] a > 0 & as < Na → cbind ∗ a : (a′ = a − 1) & (as′ = as + 1);
[bind] a∗ > 0 & a∗s < Na → cbind ∗ a∗ : (a∗′ = a∗ − 1) & (a∗s′ = a∗s + 1);
[rel] a < Na & as > 0 → crel ∗ as : (a′ = a + 1) & (as′ = as − 1);
[rel] a∗ < Na & a∗s > 0 → crel ∗ a∗s : (a∗′ = a∗ + 1) & (a∗s′ = a∗s − 1);

//phosphorylation
[] as > 0 & a∗s < Na → cphos ∗ as : (as′ = as − 1) & (a∗s′ = a∗s + 1);
[] as > 0 & a∗s < Na → cbasalphos ∗ as : (as′ = as − 1) & (a∗s′ = a∗s + 1);
[] a > 0 & a∗ < Na → cbasalphos ∗ a : (a′ = a − 1) & (a∗′ = a∗ + 1);

//degradation
[] a∗ > 0 → cdeg ∗ a∗ : (a∗′ = a∗ − 1);
[] a∗s > 0 → cdeg ∗ a∗s : (a∗s′ = a∗s − 1);

endmodule

module stimulus
s : [0..Ns] init Ns;

[bind] s > 0 → s : (s′ = s − 1);
[rel] s < Ns → 1 : (s′ = s + 1);

endmodule

Figure 2.5: Receptor module in PRISM

point t? This is given by the formula:

P=?[true U [t,t] a∗ + a∗s = i]

where t is time and i is an integer parameter from the range [0, N ] which stands
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for the number of active receptor molecules A∗. As expected, higher stimulus levels

lead to higher numbers of activated receptors. At the same time, this increases the

A∗ degradation rate, thereby leading to the faster elimination of an active signal.

As shown in Fig. 2.6(a), at time point t = 10 min, the average number of signalling

molecules A∗ is 12 for S = 10 and only 6 for S = 100. The probability distribution

becomes narrower as its mean decreases.

• What is the expected number of bindings for each stimulus molecule S before degra-

dation occurs? This is given by:

R=?[F(s = 0 ∧ as = 0 ∧ a∗s = 0)]

Predicate s = 0 ∧ as = 0 ∧ a∗s = 0 is true if there are no stimulus molecules in

the system (in either free or bound form). Reward of 1/Ns is associated with every

transition labelled by bind. The curve in Fig. 2.6(b) peaks at S = 1 reaching about

90 bindings per stimulus molecule. As S increases, the number of bindings decreases,

levelling out at about 40.

The deterministic analog of the receptor model can be derived using the law of mass

action. The ODE system (2.7) states that the rate of change of the concentration [A]

is made up of a gain from basal synthesis and dissociation of the [AS] complex, as well

as a loss proportional to basal phosphorylation and binding to stimulus. Recall that

deterministic reaction rate constants km relate to stochastic rate constants cm by the

factor Ω1−n, where Ω is the reaction volume and n is the order of the reaction. Rates of
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Figure 2.6: Properties of the receptor module: (a) The probability distribution of the
number of active receptor molecules at time t = 10 min; (b) The expected number of
bindings per stimulus molecule depending on the stimulus strength.

change of other components are defined similarly:

d[A]

dt
= ksyn − kbasalphos[A] + krel[AS] − kbind[A][S]

d[AS]

dt
= −(kbasalphos + kphos + krel)[AS] + kbind[A][S]

d[A∗S]

dt
= −(kdeg + krel)[A

∗S] + (kbasalphos + kphos)[AS] + kbind[A
∗][S]

d[A∗]

t
= kbasalphos[A] − kdeg[A

∗] + krel[A
∗S] − kbind[A

∗][S]

d[S]

dt
= krel[A

∗S] + krel[AS] − kbind[A][S] − kbind[A
∗][S]

(2.7)

The ODE system (2.7) is solved numerically to derive the temporal evolution of the

concentration of the activated receptor. As can be seen in Fig. 2.4(e) and 2.4(f), the

results match closely the results of the stochastic simulation, after averaging the latter.

Table 2.2 shows the relative importance of the rate constants in determining the max-

imum amplitude and duration of signalling. Signalling amplitude is regulated primarily

by the strength of the stimulus-receptor complex disassociation (crel), the rate of receptor
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Parameter SAmp SDur

cbind 0.005 -0.003
crel 0.274 -0.067
cbasalphos 0.057 -0.013
cphos 0.22 -0.1
cdeg -0.557 -0.848
csyn 0.003 0.028

Table 2.2: Sensitivity coefficients of the receptor module calculated for the amplitude Amp
and duration Dur of the response component A∗.

phosphorylation (cphos), and the rate of active receptor degradation (cdeg). Duration of

signalling is controlled almost exclusively by the rate of receptor degradation (cdeg). We

also observe that the increase of crel and cphos leads to amplitude upregulation, while the

duration is downregulated.

2.4.2 Positive feedback module

To maintain, optimise or adapt to the conditions, a signalling process may use information

about its current state, feeding the measurement of the output back into the decision

process. Feedback loops are found frequently in biochemical networks. A component of

the system is subject to positive feedback if it increases its own level of activity. An

important system-level property of positive-feedback systems is the potential to produce

bistability. A bistable system is one that switches between two discrete, alternative stable

steady states. Bistable systems are thought to be involved in the generation of switch-like

responses and the production of self-sustaining biochemical memories of transient stimuli.

The reaction diagram of the previously described receptor module is modified to include

the induction of a non-active form of A molecules by the activated response component

A∗. Depending on the characteristics of the feedback loop, such a system can exhibit a

behaviour qualitatively different from that of a simple linear module. We further study
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S

A*A

the properties of positive feedback systems by building and analysing stochastic and de-

terministic models.

The π-calculus model includes an additional transition (marked by channel syn) that

leads to the creation of further instances of process A. The rate of this transition is

proportional to the total number of activated receptors in the system. Because π-calculus

models contain only binary communication channels that rely on exponential distribution,

there is no direct method for representing more complicated cases of feedback dependency

in this formalism.

A*

A

syn![] syn![]

A*S

Figure 2.7: Linear positive feedback in π-calculus

A more general case of feedback is represented in PRISM and ODEs. Models from

previous sections are modified as shown in Fig. 2.8 and equation (2.8).

d[A]

dt
= . . . + f([A∗] + [A∗S]) (2.8)
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module receptor
. . .

//synthesis of A
[feed] a < Na & a∗ > 0 & a∗s > 0 → csyn ∗ f(a∗ + a∗s) : (a′ = a + 1);

. . .
endmodule

Figure 2.8: General form of feedback in PRISM

We consider two forms of feedback function f : linear

f(x) = csynx

and saturated

f(x) =
csynx

ch

csynxch + cch
m

.

Figure 2.9 demonstrates the transient response of the linear feedback function module

for two different values of stimulus strength S. Parameters used in these simulations are as

follows: csyn = 0.005, cdeg = 0.005, cbind = 10/Ω, crel = 0.1, cphos = 0.1, cbasalphos = 0.0005,

#A(0) = 10/Ω, Ω = 100. The primary effect of the feedback is prolonged signalling (com-

pare signal decay t1/2 =0.2 hr compared to only 0.07 hr in the receptor module). Once

the signal is activated, it induces the expression of the feedback protein that helps main-

tain the activity of the pathway. Feedback proteins cannot, however, maintain signalling

activity without continued stimulation.

We next test the case when the dependency of f(x) on x has a sigmoid shape: activity of

feedback is near zero for low values of x. Over a range of x centered about cm, the activity

increases rather steeply to the maximal value of one. The steepness is proportional to ch

(called the Hill coefficient). In Fig. 2.10, we show simulation results of the pathway with

saturated feedback (parameters used in simulations are as follows: csyn = 0.1, cm = 10,
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Figure 2.9: Temporal evolution of the linear feedback system: single stochastic run (a
and b), average of 100 stochastic runs (c and d) and deterministic solution (e and f) for
#S(0) = 0 and #S(0) = 0.1 ∗ Ω.
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ch = 3, and the rest as in Fig. 2.9).

If feedback is a saturating function, the system can produce a bistable response; de-

pending on the stimulus strength, the system stabilises at low (Fig. 2.10(a), 2.10(c) and

2.10(e)) or high values (Fig. 2.10(b), 2.10(d) and 2.10(f)). High stimulus is not only

sufficient for initial upregulation of the signalling amplitude, but also for the generation of

a sustained response in which the system ”memorises” the effect of transient stimuli. In-

creased sensitivity of the network to changes in the incoming signal is crucial for producing

sustained signal.

We also observe that the results of the deterministic and stochastic systems differ. The

average value of the amplitude in the long run is 200 nM in case of the deterministic model,

and only about 120 nM for the stochastic model. Figure 2.10(b) shows two stochastic sim-

ulation runs of the model. In one case, the system evolution closely resembles that of the

deterministic system. The signal approaches the value of 200 nM within 2 hr of stimu-

lus induction, and stays in vicinity of this value for the rest of simulation. But inherent

noise can also result in complete abolishment of signalling through degradation of initially

small number of the activated receptor A∗. Coexistance of these separate phenotypes

leads to significantly lower signalling amplitude when averaged over many stochastic runs

(Fig. 2.10(d)). Thus, the stochastic approach is more accurate for representing positive

feedback systems in which the incoming signal and random fluctuations are amplified.

Using PRISM, we check the properties of the probability distribution of the system

state. The following properties were formulated:

• What is the steady state probability distribution of activated signalling molecules

A∗? This is expressed as:

S=?[a
∗ + a∗s = i]

where i is in the range [0, N ]. Figure 2.11(a) confirms that the A∗ probability
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Figure 2.10: Positive feedback and bistability: results of individual stochastic runs (a and
b), average of 100 runs (c and d), and deterministic solution (e and f) for #S(0) = 0 and
#S(0) = 0.1 ∗ Ω, respectively.
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Figure 2.11: Probability distribution and the number of synthesised receptors in the pos-
itive feedback model.

distribution peaks at both 0 and 200 nM.

• What is the expected number of receptor molecules produced by time t due to the

feedback activation? The formula is:

R=?[C ≤ t]

with the reward of 1 associated with each transition marked as feed.

Table 2.3 shows the relative importance of the rate constants in determining maximum

amplitude and duration of signalling. Contrary to the simple activation module in the

previous section, the system exhibits significant sensitivity for parameters csyn and cdeg.

The ability of the system to generate sustained response is controlled by these parameters.
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Parameter SAmp SDur

cbind 2 × 10−6 0.003
crel 4 × 10−5 0.06
cbasalphos 0.001 0.085
cphos 5 × 10−5 0.066
cdeg -5.25 -5.13
csyn 4.78 5.14

Table 2.3: Sensitivity coefficients of the positive feedback model determined for the am-
plitude Amp and duration Dur of A∗.

2.4.3 Negative feedback module

Finally, we consider a system with negative feedback control. Negative feedback is de-

scribed by the inhibition of the component’s activity by itself. While the response of the

receptor system changes proportionally to the change in input, the response of the system

containing negative feedback is generally not changed significantly with changes of the

stimulus. This condition is also known as homeostasis, where the response to an external

signal is approximately constant over a wide range of signal strength. Negative feedback

generally stabilises the behaviour of the process and makes it resistant to perturbations.

Similar to the examples in previous sections, we consider a reaction system in which

molecule A changes between phosphorylated and dephosphorylated states. When phos-

phorylated, A inhibits a signalling response molecule B. The incoming signal S regulates

the ability of A∗ to bind and inhibit B, leading to accumulation of B in the cell. To close

the negative feedback loop, B activates the transcription of its inhibitor A.

Bar-headed arrows indicate inhibition of system components.

In the stochastic model, the mechanism for inhibition of B follows a three-step model

that includes binding of A∗ to B, followed by either disassociation of the A∗ : B complex or

degradation of B while bound to A∗. The stochastic π-calculus model for negative feedback

reaction system is shown in Fig. 2.12. Again, molecules A and B are implemented as π-
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which can subsequently dissociate on channel rel or eliminate B by degradation on channel

deg. Zero-order synthesis of B, first-order degradation of both A and B, and first-order
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Figure 2.12: Negative feedback module implementation in π-calculus.

In the ODE model, we assume that inactivation of B by a phosphorylated form of A
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follows a Michaelis-Menten kinetic model, leading to the following system of equations:

d[A]

dt
= −(kphos + kadeg)[A] + kdephos[A

∗] + kasyn[B], (2.9a)

d[A∗]

dt
= kphos[A] − (kdephos + kadeg)[A

∗], (2.9b)

d[B]

dt
= kbsyn − kbdeg[B] −

V inhibit
max [S][A∗][B]

Kinhibit
m + [B]

(2.9c)

where V inhibit
max and Kinhibit

m are parameters of the Michaelis-Menten kinetic function.

We run simulations using the following parameter values: cbsyn = Ω, cbdeg = 0.01,

casyn = 0.2, cadeg = 0.1, cinhibit = 10 ∗ S/Ω, crel = 1, cdeg = 5, cphos = 0.05, cdephos = 0.001,

#A(0) = Ω, #B(0) = 0.1 ∗ Ω, and Ω = 100. In Fig. 2.13, we plot the solution for

response component B at different values of the incoming stimulus S for the deterministic

and stochastic variants of the model. We observe that varying the level of the incoming

stimulus induces qualitative changes of system behaviour. At low stimulation, the system

reaches the steady state (Fig. 2.13(a) and 2.13(b)). As the stimulus increases, the system

displays damped and stable oscillations around the steady state (Fig. 2.13(c) and 2.13(d)).

The value of S influences the strength of damping and amplifying and the amplitude of

the limit cycle. For a strong enough stimulus, the system reaches a stable limit cycle (Fig.

2.13(e) and 2.13(f)).

Again, we observe that the stochastic system behaves qualitatively differently compared

to its deterministic counterpart. In the stochastic model, oscillations are produced at a

much wider region of S values. Random fluctuations present in the stochastic system

cause the solution to deviate from the steady state. The system then undergoes a long

excursion in the phase space before returning to the steady state. The deterministic model

does not include random perturbations that initiate a new cycle, and thus the trajectory

stays in a steady state.
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Figure 2.13: Negative feedback and oscillations: results of the π-calculus (a, c, and e) and
the ODE (b, d, and f) models at #S(0) = 0.01 ∗ Ω, #S(0) = 0.1 ∗ Ω and #S(0) = Ω,
respectively.
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In Fig. 2.14, we plot the temporary evolution of the amplitude and duration of the

response component B. In the deterministic model, there is a clear separation between

stable (solid line) and oscillating ranges (dashed line) of B amplitude (Fig. 2.14(a)).

The amplitude of the oscillations depends on the stimulus S as shown by a dashed curve

that corresponds to maximal and minimal values of the amplitude. In the case of the

stochastic model, the amplitude shows oscillations at a much broader range of S (Fig.

2.14(b)). As S decreases, oscillations become obliterated with noise. As a result, the

duration graph shows lesser variability as stimulus increases (Fig. 2.14(d), compared with

the deterministic duration in Fig. 2.14(c)).

Another parameter influencing oscillatory behaviour of the stochastic system is system

volume Ω. We expect that at high values of Ω the results of deterministic and stochastic

models would be similar. Figure 2.15 illustrates the results of stochastic simulations

during which the reaction volume Ω varies from 100 to 1000. At Ω = 100 the number

of B molecules varies from 0 to 250 (mean 40). For such small numbers of molecules,

oscillations can still be clearly distinguished. Rhythmicity of the limit cycle (Fig. 2.15(e))

becomes obliterated by noise. For a larger reaction volume Ω = 1000, robust oscillations

are obtained, in which the number of B molecules is varied in the range of 0-1700. In

this case, the effect of molecular noise is to merely induce variability in the maximum

of the oscillations (Fig. 2.15(f)). This effect is reflected by the noisy appearance of the

limit cycle and a thickening of its upper portion linking the maximum expression in both

proteins. The histogram of periods in Fig. 2.15(d) indicates that the average period

becomes closer to the deterministic period value, and the standard deviation is decreased

greatly, compared to the previous case of smaller reaction volume Ω = 100 (Fig. 2.15(c)).

The sensitivity coefficients of the negative feedback module are shown in Table 2.4.

50



10
−2

10
−1

10
0

10
1

10
2

10
3

0  

50

100

150

200

S

S
ig

na
l a

m
pl

itu
de

(a)

10
−2

10
−1

10
0

10
1

10
2

10
3

0  

50 

100

150

200

S

S
ig

na
l a

m
pl

itu
de

(b)

10
−2

10
−1

10
0

10
1

10
2

10
3

0  

0.2

0.4

0.6

0.8

1   

S

S
ig

na
l d

ur
at

io
n

(c)

10
−2

10
−1

10
0

10
1

10
2

10
3

0  

0.2

0.4

0.6

0.8

1  

S
ig

na
l d

ur
at

io
n

S

(d)

Figure 2.14: Signalling amplitude and duration depending on the value of incoming stim-
ulus S for deterministic (a and c) and stochastic (b and d) systems, respectively.
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Parameter SAmp SDur

cbsyn 1 0.12
cbdeg -0.02 -0.02
cinhibit 0.02 0.08
crel -0.02 -0.08
cdeg -0.7 -0.1
casyn -0.7 -0.13
cadeg 1.5 0.72
cphos -0.5 -0.02
cdephos 0.008 0.006

Table 2.4: Sensitivity coefficients of the negative feedback system, determined for for the
amplitude Amp and duration Dur of B.

Signal amplitude shows dramatically reduced sensitivity to the rates of A:B complex

association (cinhibit) and B degradation (cbdeg) which are now balanced by the synthesis of

A molecules (cadeg).

2.5 Conclusions

We surveyed complementary representations of signalling networks, including continuous

deterministic and discrete stochastic models. These were applied to analyse general types

of biochemical control modules such as receptor activation, positive and negative feedback

modules. We have shown that negative feedback loops can stabilise a system, keep the

signal level bounded, and make the system robust against changes in parameter values.

Positive feedback systems have the ability to generate a bistable response and allow the

system to memorise effects of transient stimuli. Perturbations of such systems were shown

to have a dramatic impact on the behaviour of the system. A stochastic description of

the system demonstrated the impact of inherent fluctuations on the regulatory system.

Stochastic fluctuations were shown to produce qualitative changes in the dynamics.
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Figure 2.15: Variability of oscillations: (a and b) the number of molecules B, (c and d)
the corresponding limit cycle and (e and f) the histogram of the cycle periods for Ω = 100
and Ω = 1000, respectively.
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Chapter 3

FGF signalling pathway

3.1 Introduction

In this chapter, we apply the π-calculus approach to model the FGF (Fibroblast growth

factor) signalling pathway. We have chosen this pathway because mutations which affect

quantitative features of pathway dynamics have been identified both as highly significant

in common forms of human cancer [Greenman et al., 2007] and as the underlying cause of

developmental skeletal dysmorphology syndromes [Kan et al., 2002]. It is not, however,

immediately obvious how these mutations might lead to pathogenic outcomes. Our goal

is to use computational modelling supported by reasoning to characterise key parameters

that shape pathway dynamics, which, in turn, can influence the prioritisation of biological

experiments and development of effective therapeutic interventions.

3.1.1 FGF biology

The binding of FGF ligand to its receptor triggers the sequence of downstream events

which culminates in the activation of the Ras-MAPK (ERK) pathway. This proceeds
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Figure 3.1: Diagram of the possible bindings of the FGF receptor.

via binding of the scaffold protein FRS2 to the activated receptor. FRS2 subsequently

phosphorylates and recruits multiple protein molecules, including Grb2, Src, and Shp2.

Figure 3.1 shows different communication partners of the FGFR:FRS2 complex. Binding

of Grb2 is followed by Sos binding and subsequent activation of the ERK pathway. Other

binding partners of FRS2 act to downregulate FGF signal transduction by ubiquitination,

internalisation or degradation. Src binding to FRS2 is reported to attenuate the signal

through internalisation of the active receptor complex. Spry is a direct physiological sub-

strate of Src which also antagonises FGF signalling through Cbl-dependent ubiquitination

and subsequent degradation of the receptor complex. It is also known that Shp2 induces

dephosphorylation of the FRS2 docking sites, thus preventing them from binding their

respective partner molecules.

In this chapter, we develop and analyse a family of stochastic π-calculus models of

the FGF pathway. Simulation results for the derived models closely resemble the known

dynamic behaviour of the system under normal physiological conditions. By interrogation
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of parameter space and component dependencies (in silico genetics) we show that the be-

haviour of the pathway is dominated by two inter-linked variables: the rate of receptor ki-

nase activation and the rate of signal attenuation by receptor complex internalisation. We

confirm these findings in living cells by experimental intervention, which reveals that the

interplay between receptor activation and attenuation exhibits counter-intuitive features,

and that pathogenic mutations in FGF receptors lead to sustained signalling properties

which are accentuated at low levels of receptor occupancy, thereby yielding novel insight

into the function of oncogenic mutations.

3.2 Related work

Different subnetworks of the FGF and related signalling networks were the subject of

previous modelling studies [Yamada et al., 2004, Schoeberl et al., 2002]. A comprehen-

sive model of the EGF pathway which shares most of its components with FGF was

developed in [Schoeberl et al., 2002]. This paper has applied the law of mass action to

derive an ODE model of the pathway. The model was then analysed to infer changes over

time in pathway components following stimulation with the growth factor. The authors

concluded that growth factor concentration, as well as the affinity of ligand-receptor inter-

actions are the main determinants of the strength of the signal activation. The model of

[Schoeberl et al., 2002] comprises 103 species and 83 kinetic parameters. The large dimen-

sion of the model makes it difficult to manipulate the model and to gain an understanding

of signalling dynamics beyond experimentally known and observable effects.

Models of the FGF and EGF signalling pathways, as well as the differences between

them, were analysed in [Yamada et al., 2004]. Each model comprises around 40 ODEs.

The authors try to avoid an exponential explosion problem by allowing only pre-ordered

sequential association of several molecules into a complex. The effect of such simplifications
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on the model behaviour is not considered there. Analysis indicates that a scaffold protein

FRS2 which participates in the FGF, but not the EGF pathway, plays a key role in

amplifying the signal and generating a sustained signal activation. This generally known

effect of the scaffold protein is reproduced only by overexpression of the receptor. The

increase of the level of FGF ligand is also predicted to result in the rapid increase of the

signalling amplitude.

Unlike models of [Yamada et al., 2004, Schoeberl et al., 2002], the FGF pathway model

developed in this chapter is easily manipulable and thus allows us to reason about the

effect of different pathway components under varying hypothesised scenarios. The model

is also suitable for determining the effect of stochasticity and random perturbations on

the signalling output.

3.3 FGF model design

3.3.1 Components and interactions of the FGF pathway

We derive the FGF model based upon information from literature on the early steps of FGF

signal propagation. In particular, we incorporate several features in the model which have

been reported to negatively regulate FGF signal propagation (reviewed

[Dikic and Giordano, 2003, Tsang and Dawid, 2004]).

The reactions encoded in the model are as follows (shown in Fig. 3.2):

1. FGF ligand binds to the FGF receptor (FGFRs) creating a complex of two FGFRs

and two FGF ligands.

2. The existence of an FGFR dimer leads to phosphorylation of FGFRs on two residues

Y653 and Y654 in the activation loop of the receptor. Mutagenesis and structural
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Figure 3.2: Schematic representation of molecular interactions in the FGF pathway
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studies [Mohammadi et al., 1997, Furdui et al., 2006] have shown that phosphoryla-

tion of these residues is required for activation of FGFR kinase activity and phos-

phorylation of other substrates.

3. The dual Y653/654 form of the receptor leads to phosphorylation of other FGFR

receptor residues (Y663, Y583, Y585, Y766) which have been shown in a num-

ber of studies to be required for execution of FGFR dependent signalling functions

[Foehr et al., 2001]. In this thesis, we only consider Y766 further.

4. FRS2 binds both phosphorylated and dephosphorylated forms of the FGFR. FRS2

has been shown in multiple studies to be an essential mediator of FGFR functions

as a consequence of recruitment of effectors to specific phosphorylated sites on FRS2

[Xu and Goldfarb, 2001].

5. The dual Y653/654 form of the receptor leads to phosphorylation of the FGFR

substrate FRS2.

6. We incorporate a step in which FRS2 is dephosphorylated by a phosphatase (denoted

Shp2). Shp2 has been shown experimentally to be a negative regulator of FRS2

functions [Hadari et al., 1998].

7. A number of effector proteins interact with the phosphorylated form of FRS2. In

this model we include Src binding to residue FRS2 Y196, Grb2:Sos binding to FRS2

Y306, and Shp2 binding to FRS2 Y471 [Schlessinger, 2004, Li et al., 2004].

8. We incorporate signal attenuation by relocation (i.e., endocytosis and/or degrada-

tion) of FGFR:FRS2 when Src is activated by association with the phosphorylated

FRS2 Y219.
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9. Another method of attenuating signal propagation is by PLCgamma bound to Y766

of FGFR leading to relocation/degradation of FGFR [Sorokin et al., 1994].

10. The signal attenuator Sprouty is a known inhibitor of FGFR signalling and is syn-

thesised in response to signal activation [Hanafusa et al., 2002]. Here we include

a variable to regulate the arrival of Sprouty into the system in a time dependent

manner.

11. We incorporate the association of Sprouty with Src and concomitant phosphorylation

of Sprouty residue Y55 [Li et al., 2004].

12. The Y55 phosphorylated form of Sprouty binds Cbl, which leads to ubiquitin mod-

ification of FRS2 and a decrease in FRS2 concentration by ubiquitin mediated pro-

teolysis [Fong et al., 2003].

13. Y55P form of Sprouty is dephosphorylated by Shp2 bound to FRS2.

14. Sprouty Y55P competes with FRS2 for binding Grb2 as has been suggested from

some studies in the literature [Hanafusa et al., 2002].

We note the difficulty of representing the pathway graphically, due to exponential explosion

of the number of molecular states. Molecules FGFR and FRS2 comprise independent

residues that interact with different partner molecules. For example, phosphorylation of

FRS2 residues enables FRS2 interaction with Src, Grb2, and Shp2, or any combination

of these (e.g., binding of Src does not influence the ability of the molecule to bind Grb2

or Shp2). However, since the traditional graphical pathway map depicts the global state

of FRS2, exponential explosion occurs when trying to display all combinations of FRS2

association with its partners. Figure 3.2 is therefore not an exact representation of pathway

reactions; rather, it helps the reader to understand the textual description provided earlier.
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3.3.2 Choice of parameter values

The values of rates of the FGF pathway reactions 1-14 were assembled based on the lit-

erature (Table 3.1). The stochastic π-calculus assumes exponentially distributed reaction

rates (with the mean value in the Table 3.1); this is justified since, if collision times are

small compared to the times between collisions, molecules are moving chaotically, and a

constant ratio of overall collisions leads to reactions.

The model is idealised in that it does not take into account variations in composition,

affinities or rate constants that might occur in different cell types or physiological condi-

tions. We explore the ability of the computational modelling approach based on π-calculus

to accommodate future quantitative or qualitative modifications to the core model. We

explicitly address this issue by evaluation of parameter dependencies below.

3.3.3 π-calculus model of FGF signalling

Figure 3.3 shows how the process representing multi-functional molecule FRS2 is imple-

mented in π-calculus. The process FRS2 contains four independent subprocesses repre-

senting the state of:

• association with FGFR;

• activation of residue Y196 and its association with Src;

• activation of residue Y306 and its association with Grb2;

• activation of residue Y417 and its association with Shp2.

State transitions of the FGFR subprocess in Fig. 3.3 correspond to the FRS2 interactions

with the FGF receptor. Since both phosphorylated and unphosphorylated forms of recep-

tor bind FRS2, the transition on channel bindFGFR does not have any preconditions. Once
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bound to FGFR, FRS2 can disassociate by transition on channel relFGFR. If the bound

receptor is phosphorylated, it informs its FRS2 partner about this state change on channel

preFGFR. Binding to the phosphorylated form of the receptor enables phosphorylation of

the rest of FRS2 components: Y196, Y306 and Y471. This is modelled by the message

on channel preFRS being sent from FGFR-bound residue to others. This message is only

delivered when FRS2 residues are not phosphorylated.

Once FRS2 residues are informed about the possibility to phosphorylate, they proceed

with phosphorylation on the channel phFRS. Phosphorylated forms of FRS2 Y196, Y306

and Y471 can bind their respective partner molecules: Src, Grb2 and Shp2. Whenever

FRS2 Y471 is bound to Shp2, it can trigger dephosphorylation of either of three residues

Y196, Y306 or Y471. These transitions are modelled by process interactions on channel

dphFRS. Dephosphorylation is immediately followed by dissociation, if respective residues

are bound to their communication partners.

FRS2 association with and activation of Src leads to internalisation of FRS2 together

with all bound components. We initially model internalisation as termination of signalling

by which the activated complex disappears. This is shown as process interaction on channel

degSrc, followed by notification message deg to other residues of FRS2 after which Src-

bound residue degrades. When FRS2 residue receives a message on deg, it immediately

notifies its communication partner and degrades. Similarly, degradation messages are sent

when FRS2 is ubiquitinated through interaction with Cbl.

Notice how the π-calculus model avoids exponential explosion of the state space.

Rather than specifying a global state of the FRS2 molecule, we use the parallel com-

position of molecular residues, each of which derives values from its local state space. For

example, binding between FRS2 and Src is not affected by the state of association with

either Grb2 or Shp2. The complete stochastic π-calculus model of the FGF pathway is

62



dphFRS?[]

deg?[]

deg?[]

Y471P Shp

deg?[]

FGFR FGFRP

Y196P

Y306 GrbY306P

dphFRS![]

deg?[] deg?[]

bindGrb!{relGrb,remGrb}

relGrb?[]

preFRS?[] phFRS![]

remSrc![]

phFRS![]

dphFRS?[]

preFRS?[]

dphFRS?[]

remGrb![]

remGrb![]

relSrc?[]

dphFRS![]

Src

deg![]

deg![]

bindSrc!{relSrc,remSrc,degSrc,degCbl} degSrc?[]

degCbl?[]

FGFR_Binding
relFGFR?[]

relFGFR?[]

degFGFR![]
deg?[]

dphFRS![]
dphFRS![]

preFRS?[]

dphFRS![]

phFRS![]

Y471

remShp![]

bindShp!{relShp,remShp}

relShp?[]

deg?[]deg?[]deg?[]

Y196

deg?[]

deg![]

remShp![]

dphFRS?[]

FRS2
bindFGFR!{relFGFR,preFGFR,remFGFR,degFGFR}

preFRS![]

preFGFR?[]

deg?[]

Figure 3.3: Representation of FRS2 molecule in π-calculus.
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Figure 3.4: Src-induced receptor recruitment in π-calculus.

available in the Appendix B.

Alternative network architectures

The mechanism by which activated FGF receptors are internalised inside the cell is not

completely understood. Another important aspect of our modelling study is therefore to

explore the behaviour of the pathway under different hypothesised scenarios of internal-

isation. In our initial model, Src encoded an abstraction of internalisation. Following

the conventional view of internalisation as termination of signalling, we assumed that the

internalised receptor complex disappears without specifying its subsequent fate.

Recent experimental observations of our group [Sandilands et al., 2007] and others

(reviewed [Clague and Urbe, 2001, Miaczynska et al., 2004]) suggest both negative and

positive effects of receptor internalisation on signalling. Src exerts additional positive

control on the initial phase of signalling by increasing the rate at which FGFR is recycled

back to the membrane to re-engage with ligand. Initially, a low number of receptors is

capable of transducing a low-level signal. After the signalling network becomes activated,

activated Src increases the number of receptors available for signalling. In Fig. 3.4, we show

the modification of the signalling network architecture that incorporates a Src-mediated

positive feedback loop (FGFR → Src → FGFR).
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3.3.4 ODE model of the FGF pathway

In addition, we develop an ODE model of the FGF signalling pathway. The key difficulty

with using an ODE framework for representing the FGF signalling pathway is combi-

natorial explosion of the number of equations. This results in more that 370 equations

required to represent all possible states of the receptor complex in Fig. 3.1. This also

makes a detailed simulation study difficult. The average time needed for its simulation

varies between 4 and 42 hours, compared to 2-15 min for the stochastic π-calculus model

of the same signalling mechanism. The complexity of the deterministic model does not

allow one to apply analytic techniques to its analysis (see [Gaffney et al., 2007] for a de-

scription of simplification techniques used to reduce the size of the model, not used here).

This significantly limits the ability to manipulate and reason about the behaviour of the

model.

The ODE model of the FGF signalling pathway is given on the supporting website

[FGF, 2008]. Simulations of the model under normal physiological conditions closely re-

semble results from the stochastic model. Limited by the time and size complexity of the

ODE model, we chose to perform systematic analysis of the pathway dynamics using the

stochastic framework only.

3.4 Biological implications of the model

We perform simulations of the derived stochastic π-calculus model starting with the initial

concentrations of FGF, unphosphorylated and unbound FGFR, unphosphorylated FRS2,

Src, Grb2, Shp2, and Plc equal to 100nM. The model accurately predicts the behaviour of

the FGF pathway for known conditions described in the literature. The concentration of

the signalling response component FRS2:Grb2 shows a rapid increase shortly after expo-
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sure to FGF ligand stimulation, reaching its maximum level at about 10 min. Activation

of the negative feedback loops (steps 8, 9, 12, and 14) results in signal downregulation

after its successful transduction, thus preventing sustained pathway activation.

We interrogate the model in two ways: by exploration of parameter space to establish

the key variables and by removing individual components to study their role in signal

propagation. These steps are explicitly designed to build in silico experiments, develop

new biological hypotheses, and test them by in vitro experiments that provide further

modelling input.

A detailed approach for understanding the parameter space is to study the effect of

parameter variations on the main features of the FRS2:Grb2 concentration profile. We

consider the impact of kinetic parameters on two dynamic characteristics of the pathway

response: the maximum amplitude and the duration of the FRS2:Grb2 activation. Our

sensitivity analysis indicates that the pathway is organised in a way that decouples kinetic

parameters that influence the signalling amplitude and duration. We found that the

duration was most sensitive to the endocytosis reaction, as shown in Fig. 3.6(a), which is

modelled as the decay of the receptor complex bound to Src. In contrast, the amplitude

was found to be most sensitive to the rate of FGFR phosphorylation (Fig. 3.5(a)) and

the level of FGF ligand (Fig. 3.5(b)). The decoupled control provides more flexibility of

the pathway to control its output, which is crucial as the FGF pathway regulates a large

variety of cellular processes.

The responses of the average signalling amplitude and duration upon changes in the

rates of individual reactions are shown in Table 3.2. In most cases, the resulting deviations

of the signalling responses do not exceed 5% of the changes of the respective parameters,

proving that the system is robust against parameter perturbations. The only sensitive

parameters are those controlling Src-mediated relocation of the receptor complex and
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Figure 3.5: Varying FGFR kinase activity and FGF levels: (a) 10- and 100-fold decrease
of FGFR kinase rate compared with the default rate; (b) 100%, 10% and 5% of the FGF
level.

FGFR kinase activation.

Reducing the rate constant of FGFR kinase activity leads to the reduction of maximal

value of the signal, which now occurs after considerable delay. Fig. 3.5(a) shows the

outcome of the 10- and 100-fold reduction of the rate of FGFR phosphorylation. Maximal

signal expression reaches 90 and 60% of its initial value and is delayed by 15 and 40

min, respectively. A similar signal reduction and delay occurs in simulations in which the

concentration of FGF was reduced to 10 and 5% (Fig. 3.5(b)).

3.4.1 In silico mutagenesis predicts the roles of pathway compo-

nents

The model reactions 8, 9, 12, and 14 incorporate different negative regulation mechanisms

that inhibit response after initial signal activation. The consequences of these signal

attenuation mechanisms are evaluated by in silico mutagenesis: a 10-fold reduction of the

level of various model components before simulation. We observe that inhibition of Sprouty

67



(Fig. 3.6(a)) does not affect the initial phase of signal upregulation, since it is synthesised

after the signal passes its maximum value. Later, Sprouty attenuates signalling, primarily

due to the competition for Grb2.

A similar pattern of FRS2:Grb2 expression is generated when Shp2 is not present

(Fig. 3.6(a)). When phosphatase Shp2 is inhibited, the initial signalling response reaches

a greater peak, but in a longer term the signal stabilises at lower level.

Another key determinant of FGFR signalling dynamics in the model is the rate of

internalisation, which we have encoded (perhaps speculatively) by the action of Src. As

Table 2.4 and Fig. 3.6(a) demonstrate, the suppression of Src activity is predicted to have

a major impact on signalling dynamics; after a fast increase, the signal fails to decrease

substantially. This suggests that, in particular, other negative feedback mechanisms are

not sufficient to reduce the signal if internalisation is abolished.

In sum, parameter variation and component removal studies of the model indicate that

the overall dynamics of this system is dominated by two key variables: the rate of FGFR

activation - as judged by varying the concentration of FGF ligand or the rate constants of

FGF receptor phosphorylation - and the rate of endocytosis modelled by the recruitment

and activation of Src.

3.4.2 Dual role of Src in signal regulation: from model to ex-

periments and back

Prolonged signalling as a result of the suppression of Src activity is an important and

previously unrecognised prediction for the regulation of FGF signalling response which

emerged from the computational model. To test whether this prediction is valid in vitro, we

utilised an experimental model of activation of the Ras-MAPK (ERK) pathway in mouse

embryonic fibroblasts (MEFs) stimulated with FGF2, using quantitation of phospho-ERK
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Figure 3.6: In silico mutagenesis: (a) simulations with inhibited Spry, Shp2, and Src
compared to the model containing all these components; (b) inhibition of Src in the revised
model; (c and d) experimental confirmation of predictions with inhibited Src (experiment
was not repeated, see text for explanation).
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(pERK) by western blotting as the experimental readout. This approach assumes that the

level of experimental pERK is a faithful surrogate for the computed value of the Grb2:FRS2

used in the modelling studies. We take this assumption to hold, as the quantitative

behaviour of this output closely resembles the computed value in experimental reports

and our own investigations.

The prediction we addressed was that inhibition of Src kinase activity would lead to

prolongation of signalling as a consequence of Src acting to remove the activated receptor

complex. Quiescent MEFs were stimulated with 50ng/ml FGF2 for varying time points

in the presence or absence of the highly specific Src family kinase inhibitor Dasatinib,

harvested and examined for the presence of pERK. These results clearly show that un-

treated MEFs exhibit an FGF stimulus response that conforms to the predicted kinetics,

and that pharmacological suppression of Src kinase activity (western blots in Fig. 3.6(d)

which are quantified in Fig. 3.6(c)) indeed produces the predicted extended duration of

pERK activation (Fig. 3.6(a)). Note that data points in Fig. 3.6(c) are not supplied with

error bars because the experiment was not repeated. However, similar results showing

Src-dependent extended signalling are presented in [Sandilands et al., 2007].

The outcome of these experimental studies also shows the decreased signal which hap-

pens after a delay when Src is inhibited. Therefore, we revise the model by incorporating

a positive feedback loop, in which initial low-level activation of FGFR leads to activa-

tion of Src which subsequently recruits more receptors to the membrane to be engaged

in signalling (FGFR → Src → FGFR). Simulations of the revised model demonstrate a

delayed signal which reaches lower amplitude but fails to attenuate when Src is inhibited

(Fig. 3.6(b)), consistent with the experimental data (Fig. 3.6(c)). Through reiteration of

modelling and experiments we thus uncovered a positive feedback loop activated at the

initial phase of signalling.
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3.4.3 Cross-regulation between receptor activation and attenu-

ation

Mutations in FGFR which increase the affinity of receptor-ligand interaction were recently

identified as pathogenic driver mutations which cause cancer cells to grow

[Greenman et al., 2007]. Thus we utilise the computational model of the FGF pathway

to determine whether changing the strength of ligand binding to the receptor affects sig-

nalling dynamics. The initial model, which does not account for a positive Src regulation,

is not able to produce a phenotypic difference between normal and mutant signalling (Fig.

3.7(a) and also shown as the related sensitivity coefficients S << 1 in Table 3.2). Sur-

prisingly, the revised model predicts that the pathway amplitude is upregulated in the

long run due to recycling of more receptors to the membrane in the mutant (Fig. 3.7(b)).

Increased ligand binding shifts the equilibrium between activation and attenuation roles

of Src which results in delayed signal attenuation.

We addressed the question whether increasing the rate of receptor activation would

lead to accelerated activation and delayed attenuation of signalling in vitro. For this pur-

pose we employed a matched pair of MEFs: one derived from normal mouse embryos

and the second derived from embryos harbouring the mutant Pro252Arg form of FGFR1

[Hajihosseini et al., 2004]. The MEFs were rendered quiescent by serum starvation and

then stimulated for varying time points with 0.1 ng/ml FGF2 and harvested for analysis

as in the previous experiment. The result (Fig. 3.7(c) and 3.7(d)) reveals that the intro-

duction of a single gene copy of the mutant driver form of FGFR1 has a marked effect on

signalling upon exposure to limiting concentrations of ligand. In the mutant cells peak

amplitude is reached rapidly (∼5 min) compared to the wild type (∼30 min) and signal

duration is prolonged in the mutant cells, as the model predicts (Fig. 3.7(b)).

Decreasing the rate of FGFR activation by simulating the effects of FGFR kinase
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Figure 3.7: Effects of FGFR mutations: simulations with 10-fold inhibition of FGF:FGFR
disassociation rate compared to the normal rate in the initial (a) and revised (b) model;
(c and d) experimental validation of the phenotypic changes in mutant. Experiments were
repeated twice (thus no error bars) with consistent results.
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inhibitors accords well with many published studies and should come as no surprise.

We showed, however, that increasing the rate of FGFR kinase activation, by which we

simulate the effect of pathological mutations in the FGF receptor associated with skele-

tal development syndromes [Anderson et al., 1998, Hajihosseini et al., 2004] and cancer

[Greenman et al., 2007] - leads to an extended duration of signalling which is not over-

come by the action of negative regulators such as Sprouty or degradation of the receptor

complex.

3.5 Conclusions

In this chapter, we developed a model of the FGF signalling pathway and carried out

quantitative analysis of interactions between pathway components. We identified key

parameters that shape pathway dynamics and investigated the roles of several proposed

negative regulators of signalling. Informed by these in silico studies, we experimentally

tested and confirmed two counter-intuitive predictions of the model: that suppression of

Src kinase prolongs the duration of FGF signalling and that driver mutations in FGFR

exhibit fast activation and slow attenuation in response to low level stimulation.
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Reaction Parameter Value References

1 FGF binding/release 5 × 106 M−1s−1 [Felder et al., 1993, Mohammadi et al., 2005],
5 × 10−3 s−1

2 FGFR Y653/654 phosphorylation 0.013 s−1 [Furdui et al., 2006]
3 FGFR Y766 phosphorylation 0.004 s−1 [Furdui et al., 2006]
4,7,9 FRS2, Src, Grb2, Shp2, Plc binding/release 2.5 × 106 M−1s−1 [Panayotou et al., 1993, Skolnik et al., 1993]

5 × 10−2 s−1

5 FRS2 phosphorylation 0.005 s−1 [Furdui et al., 2006]
6,13 FRS2, Spry dephosphorylation 12 s−1 [Montalibet et al., 2005]
7,11,14,12 Sos, Spry, Cbl binding/release 105 M−1s−1 [Sastry et al., 1995]

10−4 s−1

8 FRS2:Src relocation (t1/2) 15 min [Ware et al., 1997]
9 FGFR:Plc relocation (t1/2) 60 min [Sorokin et al., 1994]
10 Spry induction 0.083 nMs−1 [Hanafusa et al., 2002]
11 Spry phosphorylation 10 s−1 estimated
12 FRS2 ubiquitination and proteolysis (t1/2) 25 min [Wong et al., 2001]

Table 3.1: Kinetic parameter values of the FGF pathway
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Parameter SAmp SDur

FGF binding 0.003 0
FGF release -0.002 0
FGFR Y653/654 phosphorylation 0.12 -0.02
FGFR Y766 phosphorylation ∼0 0
FRS2 binding −2 × 10−5 0
FRS2 release 0.008 -0.001
Src binding -0.001 -0.03
Src release 4 × 10−4 0.02
Grb2 binding 0.008 0.004
Grb2 release -0.005 -0.003
Shp2 binding −3 × 10−4 0
Shp2 release ∼0 0
Plc binding ∼0 0
Plc release −2 × 10−5 0
FRS2 phosphorylation 0.01 -0.01
FRS2 dephosphorylation 2 × 10−4 0
Spry binding -0.006 -0.006
Spry release ∼0 0
Cbl binding 0.0003 -0.002
Cbl release ∼0 0
Spry phosphorylation -0.0007 0
Spry dephosphorylation 0.013 0.011
Src-mediated degradation -0.14 -0.97
Plc-mediated degradation 0.0005 0
Spry synthesis -0.002 -0.004
Spry-induced degradation -0.02 -0.04

Table 3.2: Sensitivity coefficients for the amplitude Amp and duration Dur of the sig-
nalling response component FRS2 : Grb2. Bold indicates sensitive parameters (in this
particular example, sensitivity threshold of 0.05 is chosen). Values smaller than 10−5 are
annotated as ∼0.
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Chapter 4

Wnt signalling

4.1 Introduction

It is now recognised that Wnt signalling is involved in many aspects of embryonic devel-

opment and homeostatic self-renewal in a number of adult tissues. Germline mutations

in the Wnt pathway cause several hereditary diseases, and somatic mutations are as-

sociated with cancer of the intestine and a variety of other tissues [Kinzler et al., 1991,

Gaspar and Fodde, 2004]. In addition to the involvement of this pathway in cancers, it

is also implicated in neurodegenerative diseases, tooth agenesis, and regulation of bone

density [Moon et al., 2004]. Additional information is available at the Wnt homepage

http://www.stanford.edu/∼rnusse/wntwindow.html.

4.1.1 Wnt biology

The canonical Wnt signalling pathway includes more than 50 known components, exhibit-

ing a complexity that is still to be appreciated by researchers. In the absence of Wnt

signalling, a cytoplasmic destruction complex consisting of Axin and APC proteins, and
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glycogen synthase kinase-3 (GSK3), recruits and phosphorylates β-catenin. This leads to

interaction of β-catenin with β-transducin-repeat-containing protein (β-TrCP), resulting

in the ubiquitination of β-catenin and its degradation by the proteasome. Thus, at a

steady state without Wnt signalling, β-catenin is rapidly degraded in the cytoplasm.

The pathway is activated by secreted Wnts which interact with Frizzled receptors and

with co-receptors such as low-density lipoprotein receptor-related protein-5 and -6 (LRP5

and 6). Receptor complex activation leads to phosphorylation of the cytoplasmic protein

Dishevelled (Dvl). Activated Dvl has been reported to function through binding compo-

nents of the destruction complex to reduce the function of GSK3 and Axin. This in turn

reduces the phosphorylation and degradation of β-catenin, leading to its accumulation in

the nucleus. Elevation of β-catenin levels by Wnt signalling leads to binding of β-catenin to

the TCF/LEF transcription factor. This starts a transcriptional program that is involved

in cell cycle progression, and possibly self-renewal [Reya et al., 2003, Lee et al., 2004].

Constitutive activation of the Wnt/β-catenin pathway has been observed in transformed

cells due to inactivating mutations in APC and Axin that reduce β-catenin degradation

[Kinzler et al., 1991, Gaspar and Fodde, 2004].

Wnt signalling is auto-regulated at different levels by negative feedback loops, demon-

strating the importance of limiting the induction of the target genes (reviewed in

[Logan and Nusse, 2004]). By stimulating β-catenin degradation, Axin plays a key role

in maintaining β-catenin levels low in normal cells. Interestingly, Axin transcription is

induced by β-catenin itself. The resulting negative feedback loop (Axin ⊣ β-catenin

→ Axin) guarantees that β-catenin is downregulated after successful signal transduc-

tion. Other negative feedback loops include β-catenin-dependent transcription of Naked

(Nkd) that directly binds and inhibits Dvl [Rousset et al., 2001], and induction of Dick-

kopf (Dkk) which is able to bind LRP and thus act as extracellular inhibitor of Wnt
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[Gonzalez-Sancho et al., 2005].

The apparent complexity of the Wnt pathway architecture emphasises the need to

study molecular interactions and time-dependent changes in response to Wnt, using com-

putational modelling. In this chapter, we employ a number of modelling techniques to

discover the properties of pathway dynamic behaviour that emerge from a specific path-

way architecture. We analyse the robustness of the system against stochastic noise and

mutations. We show that, depending on the stimulus level, the system can exhibit complex

oscillatory behaviour that is further amplified by random fluctuations in concentrations of

system components. We further validate our predictions with appropriate experiments.

4.2 Related models

We have analysed a model of the Wnt signal transduction proposed previously by

[Lee et al., 2003] and its further extensions by [Cho et al., 2006, van Leeuwen et al., 2007,

Wawra et al., 2007]. The initial model of [Lee et al., 2003] implements and validates the

mechanisms of the destruction complex assembly and activation that culminates in β-

catenin degradation in unstimulated cells. Due to unavailability of the experimental data

at the time, however, the specifics of Wnt signal transduction across the cell membrane

is not included in the model. In particular, the recruitment of Axin to the membrane is

omitted. Furthermore, the impact of negative control elements is not analysed. In the

current modelling effort, we encode the updated biological knowledge of the Wnt path-

way components. We then study the response of this pathway to extracellular stimulus

gradient in the tissue, as well as its optimality in the presence of stochastic noise.

Results derived from the differential equation models [Lee et al., 2003, Cho et al., 2006,

van Leeuwen et al., 2007, Wawra et al., 2007] rely heavily on the assumption that molecules

of each species are present in large numbers and treat their populations as variables vary-

78



ing on a continuous scale. It has, however, been suggested that members of the β-catenin

destruction complex such as Axin may be present at low quantities, varying from a few

hundreds down to only a few tens of molecules in each cell [Lee et al., 2003]. The low num-

bers of reacting species may be responsible for random fluctuations that can destabilise

the behaviour of the signalling network.

We use a combination of both continuous deterministic and discrete stochastic ap-

proaches to study the molecular basis of cellular response to Wnt. We focus on the

oscillatory phenomenon that arises from integration of multiple feedback loops in the Wnt

architecture. We then examine qualitative changes of the pathway response which arise

due to the inclusion of fluctuations in the description of the system.

4.3 Model design

4.3.1 Reactions included in the model

To build a formal model of the Wnt signalling pathway we identify the set of elementary

reactions. The rate constants for these reaction steps, given in Table 4.1, were obtained

from literature.

1. Gsk binds Axin leading to its phosphorylation [Ikeda et al., 1998, Willert et al., 1999].

2. Phosphorylated Axin forms a destruction complex with APC which is subsequently

phosphorylated [Hart et al., 1998, Kishida et al., 1998].

3. β-catenin binds the destruction complex and is phosphorylated by GSK3

[Choi et al., 2006, Rubinfeld et al., 1996].

4. Phosphorylation of β-catenin leads to its ubiquitination, followed by degradation in

the proteasome [Aberle et al., 1997].
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5. β-catenin binds the non-active form of APC at a low rate [Choi et al., 2006].

6. Wnt signals by activating the receptor complex containing Frizzled and LRP

[Cong et al., 2004].

7. Activated receptor complex recruits Axin and GSK3 resulting in the sequences of

phosphorylation steps. As the result, Axin is inhibited and degraded [Mao et al., 2001,

Willert et al., 1999, Kikuchi, 1999].

8. Increased cytoplasmic concentration of β-catenin leads to its translocation

into the nucleus where it binds TCF to activate target genes

[Clevers and van de Wetering, 1997].

9. In a negative feedback loop, Axin is transcribed by the β-catenin:TCF complex

[Lustig et al., 2002, Leung et al., 2002].

10. β-catenin is synthesised at a constant rate and is degraded by additional mechanisms

independent of the APC:Axin complex.

11. Axin is degraded at a rate dependent on its phosphorylation status

[Yamamoto et al., 1999].

4.3.2 Wnt model in π-calculus

We employed the stochastic π-calculus formalism to model the Wnt signalling pathway,

and used simulation engine BioSPI to perform analysis of this model. Following the

previously described scheme, pathway molecules are mapped into π-calculus processes.

Molecular processes transduce a signal by undergoing state transitions. The state of the

signalling molecule is characterised by phosphorylation and association with its partner

molecules. State transitions are implemented as pair-wise communication of processes
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Figure 4.1: Schematic description of molecular reactions of the Wnt pathway
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Reaction Parameter Value References

1 Axin binding to Gsk 65 nM [Ikeda et al., 1998]
1 Axin phosphorylation 0.03 − 0.2 min−1 [Ikeda et al., 1998]
1 Axin dephosphorylation 0.1 min−1 [Lee et al., 2003]u

2 APC binding to Axin 100 nM [Kishida et al., 1998]
2 APC phosphorylation 0.2 min−1 [Ha et al., 2004]
2 APC dephosphorylation 0.1 min−1 same as 1
3 β-catenin binding to 10 nM [Ha et al., 2004, Choi et al., 2006]

phosphorylated APC
3 β-catenin phosphorylation 5 min−1 [Aberle et al., 1997]e

4 β-catenin degradation 5 min−1 [Aberle et al., 1997]e

5 β-catenin binding to non- 3.1 µM [Ha et al., 2004, Choi et al., 2006]
active form of APC

6 Wnt binding to the receptor 5 nM [Rulifson et al., 2000]
7 Receptor complex binding to 0.5 − 1 nM−1min−1 [Mao et al., 2001]

Axin:Gsk
7 Wnt-dependent Axin degradation 0.04 min−1 [Willert et al., 1999, Lustig et al., 2002]e

8 β-catenin:TCF binding 35 nM [Knapp et al., 2001, Choi et al., 2006]
9 Transcriptional/translational 90 min [Lustig et al., 2002]e

delay
9 Axin transcription 0.048 min−1 [Lustig et al., 2002]e

10 β-catenin synthesis 0.423 nMmin−1 [Lee et al., 2003]u

10 APC independent β-catenin 0.001 min−1 [Lee et al., 2003]u

degradation
11 Axin degradation 0.005 min−1 [Yamamoto et al., 1999]e

11 AxinP degradation 0.002 min−1 [Yamamoto et al., 1999]e

Table 4.1: Kinetic parameter values of the Wnt pathway. Superscripte indicates that values were determined based on
time courses presented in respective papers. Superscriptu indicates that we remain uncertain about respective values
because the measurements were not reproduced by independent studies.
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over channels using a scheme described in Chapter 2. A molecule might contain sev-

eral independent binding and phosphorylation sites. These are modelled as independent

subprocesses within a molecular process.

As a basis for the Wnt model, we use a negative feedback module described in Chapter

2, in which molecules A and B correspond to the Axin:APC destruction complex and

β-catenin, respectively. Figure 4.2 depicts the representation of Axin and APC molecules

in the calculus. Process Axin contains two independent sites which facilitate Axin bind-

ing to Gsk and APC, respectively. After the molecule binds Gsk (transition labelled by

channel bindGsk), it undergoes phosphorylation (channel phAxin), which in turn enables

the binding of the second Axin site to APC (channel bindAPC). Axin:Gsk complex can

also be recruited to the membrane in response to Wnt signalling. We represent this as

Axin:Gsk binding with Wnt (transition on channel bindWnt), followed by either disassoci-

ation of the newly created complex (channel relWnt), or Wnt-induced Axin degradation

(channel degWnt). In addition, Axin is degraded at a constant rate (different for phospho-

rylated and dephosphorylated forms of the molecule) which we represent by transitions

on channels degAxin and degAxinP.

Similarly, we model APC as a process containing independent sites for binding Axin

and β-catenin. After association with Axin, APC undergoes phosphorylation which en-

ables its binding to β-catenin at a much higher rate (channels bindBeta and bindBetaP).

When β-catenin is bound to phosphorylated APC, β-catenin itself undergoes phosphory-

lation (transition on channel phBeta) and subsequently degrades (channel degBetaP). The

complete model also includes processes for Wnt, Fz, LRP, β-catenin, and TCF (available

in the Appendix C). The model is simulated using parameter values given in Table 4.1.

We analyse stochastic simulation results to determine such statistics as the average am-

plitude of β-catenin and, in case of oscillations in β-catenin levels, the average amplitude
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Figure 4.2: Representation of Axin and APC molecules in π-calculus.
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and period of oscillations. The period of oscillations is determined as the time interval

separating two successive upward crossings of the 100 nM level of β-catenin.

4.3.3 Wnt model in ODE

The deterministic model is constructed from the list of reactions in Table 4.1 using mass

action kinetics. The components of the ODE model are the concentrations of β-catenin

([Beta]), elements of the destruction complex ([APC], [Axin], [GSK]), TCF transcription

factor ([TCF]), and receptors ([Fz] and [LRP]). Additionally, [Axin], [APC] and [Beta]

can change their state by becoming phosphorylated, which we denote as [AxinP], [APCP],

and [BetaP], respectively. The concentration of the extracellular Wnt ([Wnt]) is an input

parameter of the model.

Based on the law of mass action, we describe the temporal evolution of Axin using the

following equation:

d[Axin]

dt
= krelAPC([APCAxin] + [APCPAxin] + [APCAxinBeta] + [APCPAxinBeta]

+ [APCAxinBetaP] + [APCPAxinBetaP]) − kbindGsk[Axin][Gsk] + krelGsk[AxinGsk]

+ kdphAxin[AxinP] + ksynAxin[BetaTCF∗] − kdegAxin[Axin]

This equation specifies that the rate of change of Axin concentration consists of a gain

from Axin:GSK3 complex disassociation (at the rate krelGsk), Axin:APC complex disasso-

ciation (rate krelAPC), Axin synthesis by activated β-catenin:TCF complex (rate ksynAxin);

and a loss proportional to Axin binding to GSK3 (rate kbindGsk), and Axin degradation

(constant rate kdegAxin). Similarly, we define changes of the concentrations of Axin:Gsk,
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phosphorylated AxinP:Gsk, and Axin recruited to the membrane in response to Wnt:

d[AxinP]

dt
= krelAPC([APCAxinP] + [APCPAxinP] + [APCAxinPBeta]

+ [APCPAxinPBeta] + [APCAxinPBetaP] + [APCPAxinPBetaP])

− kbindGsk[AxinP][Gsk] + krelGsk[AxinPGsk]

− kdphAxin[AxinP] − kdegAxinP [AxinP]

d[AxinGsk]

dt
= krelAPC([APCAxinGsk] + [APCPAxinGsk] + [APCAxinGskBeta]

+ [APCPAxinGskBeta] + [APCAxinGskBetaP] + [APCPAxinGskBetaP])

kbindGsk[Axin][Gsk] − krelGsk[AxinGsk] − kphAxin[AxinGsk]

+ kdphAxin[AxinPGsk] − kdegAxin[AxinGsk]

d[AxinPGsk]

dt
= −kbindAPC([APC][AxinPGsk] + [APCP][AxinPGsk]

+ [APCBeta][AxinPGsk] + [APCPBeta][AxinPGsk] + [APCBetaP][AxinPGsk]

+ [APCPBetaP][AxinPGsk])

+ krelAPC([APCAxinPGsk] + [APCPAxinPGsk] + [APCAxinPGskBeta]

+ [APCPAxinPGskBeta] + [APCAxinPGskBetaP] + [APCPAxinPGskBetaP])

+ kbindGsk[AxinP][Gsk] − krelGskP [AxinPGsk]

− kbindWnt[AxinPGsk][WntFzLRP] + krelWnt[WntFzLRPAxinPGsk])

+ kphAxin[AxinGsk] − kdphAxin[AxinPGsk] − kdegAxinP [AxinPGsk]

d[WntFzLRPAxinPGsk]

dt
= kbindWnt[AxinPGsk][WntFzLRP]

− krelWnt[WntFzLRPAxinPGsk] − kdegWnt[WntFzLRPAxinPGsk]

86



Note that only Gsk-bound and phosphorylated form of Axin can bind APC.

We again run into a combinatorial explosion problem at the stage of model construc-

tion. The complete ODE model contains a separate equation for every molecular state of

Axin. Axin interaction with APC then requires additional ten equations (for all possible

combinations of Axin and APC):

d[APC]

dt
= −kbindBeta[APC][Beta] + krelBeta[APCBeta] − kbindAPC[APC][AxinPGsk])

+ krelAPC([APCAxin] + [APCAxinP] + [APCAxinPGsk] + [APCAxinGsk])

+ kdphAPC[APCP] + kdegBeta[APCBeta] + kdegBetaP [APCBetaP]

+ kdegAxinP ([APCAxinP] + [APCAxinPGsk]) + kdegAxin([APCAxin] + [APCAxinGsk])

d[APCAxin]

dt
= −kbindBeta[APCAxin][Beta] + krelBeta[APCAxinBeta]

− krelAPC[APCAxin] − kbindGsk[APCAxin][Gsk] + krelGsk[APCAxinGsk]

+ kdphAxin[APCAxinP] − kphAPC[APCAxin] + kdphAPC[APCPAxin]

+ kdegBeta[APCAxinBeta] + kdegBetaP [APCAxinBetaP] − kdegAxin[APCAxin]

d[APCAxinP]

dt
= −kbindBeta[APCAxinP][Beta] + krelBeta[APCAxinPBeta]

− krelAPC[APCAxinP] − kbindGsk[APCAxinP][Gsk] + krelGskP [APCAxinPGsk]

− kdphAxin[APCAxinP] − kphAPC[APCAxinP] + kdphAPC[APCPAxinP]

+ kdegBeta[APCAxinPBeta] + kdegBetaP [APCAxinPBetaP] − kdegAxinP [APCAxinP]
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d[APCAxinGsk]

dt
= −kbindBeta[APCAxinGsk][Beta] + krelBeta[APCAxinGskBeta]

− krelAPC[APCAxinGsk] + kbindGsk[APCAxin][Gsk] − krelGsk[APCAxinGsk]

− kphAxin[APCAxinGsk] + kdphAxin[APCAxinPGsk] − kphAPC[APCAxinGsk]

+ kdphAPC[APCPAxinGsk] + kdegBeta[APCAxinGskBeta]

+ kdegBetaP [APCAxinGskBetaP] − kdegAxin[APCAxinGsk]

d[APCAxinPGsk]

dt
= −kbindBeta[APCAxinPGsk][Beta] + krelBeta[APCAxinPGskBeta]

+ kbindAPC [APC][AxinPGsk] − krelAPC[APCAxinPGsk] + kbindGsk[APCAxinP][Gsk]

− krelGskP [APCAxinPGsk] + kphAxin[APCAxinGsk] − kdphAxin[APCAxinPGsk]

− kphAPC[APCAxinPGsk] + kdphAPC[APCPAxinPGsk] + kdegBeta[APCAxinPGskBeta]

+ kdegBetaP [APCAxinPGskBetaP] − kdegAxinP [APCAxinPGsk]

d[APCP]

dt
= −kbindBetaP [APCP][Beta] + krelBeta[APCPBeta]

+ krelAPC([APCPAxin] + [APCPAxinP] + [APCPAxinGsk] + [APCPAxinPGsk])

− kdphAPC[APCP] + kdegBeta[APCPBeta] + kdegBetaP [APCPBetaP]

+ kdegAxin([APCPAxin] + [APCPAxinGsk]) + kdegAxinP ([APCPAxinP] + [APCPAxinPGsk])

d[APCPAxin]

dt
= −kbindBetaP [APCPAxin][Beta] + krelBeta[APCPAxinBeta]

− krelAPC[APCPAxin] − kbindGsk[APCPAxin][Gsk] − krelGsk[APCPAxinGsk]

+ kphAPC[APCAxin] − kdphAPC[APCPAxin] + kdegBeta[APCPAxinBeta]

+ kdegBetaP [APCPAxinBetaP] − kdegAxin[APCPAxin]
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d[APCPAxinP]

dt
= −kbindBetaP [APCPAxinP][Beta] + krelBetaP [APCPAxinPBeta]

− krelAPC[APCPAxinP] − kbindGsk[APCPAxinP][Gsk] + krelGsk[APCPAxinPGsk]

− kdphAxin[APCPAxinP] + kphAPC[APCAxinP] − kdphAPC[APCPAxinP]

+ kdegBeta[APCPAxinPBeta] + kdegBetaP [APCPAxinPBetaP] − kdegAxinP [APCAxinP]

d[APCPAxinGsk]

dt
= −kbindBetaP [APCPAxinGsk][Beta] + krelBeta[APCPAxinGskBeta]

− krelAPC[APCPAxinGsk] + kbindGsk[APCPAxin] − krelGsk[APCPAxinGsk]

− kphAxin[APCPAxinGsk] + kdphAxin[APCPAxinPGsk] + kphAPC[APCAxinGsk]

− kdphAPC[APCPAxinGsk] + kdegBeta[APCPAxinGskBeta]

+ kdegBetaP [APCPAxinGskBetaP] − kdegAxin[APCPAxinGsk]

d[APCPAxinPGsk]

dt
= −kbindBetaP [APCPAxinPGsk][Beta] + krelBeta[APCPAxinPGskBeta]

+ kbinAPC [APCP][AxinPGsk] − krelAPC[APCPAxinPGsk] + kbindGsk[APCPAxinP][Gsk]

− krelGskP [APCPAxinPGsk] + kphAxin[APCPAxinGsk] − kdphAxin[APCPAxinPGsk]

+ kphAPC[APCAxinPGsk] − kdphAPC[APCPAxinPGsk] + kdegBeta[APCPAxinPGskBeta]

+ kdegBetaP [APCPAxinPGskBetaP] − kdegAxinP [APCPAxinPGsk]

Additionally, APC binding to β-catenin on the second binding site leads to further

model growth which now must include equations for all combinations between β-catenin

and APC:Axin complex (adding 20 more equations to the model). The complete model

containing 46 rate equations is available on the supporting website [Wnt, 2008]. Model

simulations were performed with the continuous presence of Wnt stimulus in the system.
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4.4 Model predictions

In the absence of Wnt signal, model results are in agreement with previously published ex-

perimental data on the rate of β-catenin degradation (half-life 60 min) [Aberle et al., 1997,

Salic et al., 2000], and Axin degradation (half-life 4-8 hr) [Yamamoto et al., 1999]. The

temporal profile of the response to Wnt stimulation by β-catenin accumulation and Axin

transcription which suppresses β-catenin matches closely that reported in

[Lustig et al., 2002]. The effect of changing the values of the parameters on the output of

the system is analysed in subsequent sections.

4.4.1 Two dynamic oscillatory regimes

We observe that inclusion of the Axin feedback loop in the deterministic model leads to

stable oscillations with a period of ∼10 hr at persistent Wnt stimulation (Fig. 4.3(a)).

The stochastic model gives a similar result (Fig. 4.3(b)). The mechanism responsible

for oscillations is illustrated in Fig. 4.3(c) by a schematic representation of the phase

portrait of the system. In Fig. 4.3(c), dashed lines represent β-catenin and Axin nullclines

β-catenin′ = 0 and Axin′ = 0. The solid line corresponds to the trajectory of the system

(a limit cycle). Starting with low numbers of initial β-catenin molecules and high numbers

of Axin, the trajectory (1) quickly moves downwards, corresponding to inhibition of Axin

until it hits the nullcline where Axin production and degradation rates are equal. Here,

low levels of Axin allow β-catenin to accumulate, corresponding to a slow move of the

trajectory to the right (2). The trajectory overshoots the stable point due to a delay

in the transcription of Axin, and β-catenin increases further, which gradually turns on

Axin production. When sufficient levels of Axin remove β-catenin from the system, the

trajectory moves left (3), reaching nullcline, where it turns downward to initiate a new

cycle.
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Figure 4.3: Oscillations in β-catenin concentration predicted by deterministic (a) and
stochastic (b) versions of the model. (c) shows a schematic phase portrait of the deter-
ministic oscillator.
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The deterministic model predicts that, if the Wnt level exceeds a certain threshold, the

signalling network undergoes sustained oscillations of the limit cycle type, whereas, at low

Wnt stimulus, the network operates in a stable steady state regime with low β-catenin

activity (Fig. 4.4(a)). The stochastic system predicts a different time course if Wnt

stimulus is kept low. The presence of random fluctuations causes stochastic oscillations of

β-catenin activity (Fig. 4.4(b)). The system always evolves toward a stable fixed point,

as sketched in Fig. 4.4(c). In Fig. 4.4(c), the grey line illustrates how fluctuations initiate

a single excursion in the phase space. However, due to low numbers of molecules1, the

intrinsic fluctuations near the fixed point are significant enough to continually send the

system in the fast phase of Axin degradation which is necessarily followed by a transient

activation of β-catenin. This behaviour results in sustained noise-induced oscillations with

a significantly longer period of ∼26 hr. This is contrary to the deterministic system, where

there are no perturbations to initiate a new cycle; therefore the trajectory stays at a fixed

point.

Cell proliferation is regulated by Wnt signals in various tissues. In the intestine, Wnt

is required for proliferation of progenitor cells [Korinek et al., 1998, Pinto et al., 2003].

A strong expression of β-catenin coincides with a rapid proliferation of transit partially-

differentiated cells. This is consistent with the model prediction of limit cycle regime of

β-catenin at high Wnt concentrations (Fig. 4.3).

The model also implies that, in the low Wnt region, the system switches from the

deterministic limit cycle solution to autonomous noise-induced oscillations of β-catenin

with a markedly longer period (26 hr versus 10 hr). This would provide an explanation as

to how the same molecular mechanism can drive both rapid proliferation of cells exposed

to the maximal Wnt levels and continually push quiescent cells into the new cycle at low

1Indeed, in at least one experimental system the number of Axin molecules per cell was found to be
as low as 100 [Lee et al., 2003].
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Figure 4.4: Time evolution of β-catenin concentration in deterministic (a) and stochastic
(b) systems. (c) shows a phase portrait of the deterministic systems that falls into a stable
steady state (•) and a noise-induced excursion through a phase space of the stochastic
system.
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Wnt.

4.4.2 Experimental validation

Theoretically, it has been proposed that Wnt oscillations form the basis of the boundary

formation in developing tissues, in particular, control segmentation process in somito-

genesis (see experimental results in [Aulehla et al., 2003] and computational analysis in

[Wawra et al., 2007]). However, the question whether oscillatory response appears in cell

cultures responsive to Wnt has not yet been addressed.

Thus, we addressed the question whether Wnt stimulation triggers oscillatory expres-

sion of known β-catenin targets in vitro. The cyclical nature of the response to Wnt

would not be apparent in many experiments, since Wnt signalling is followed routinely us-

ing a TOPFLASH reporter [Korinek et al., 1997], where the stable nature of the luciferase

protein produced and measured integrates the transcription over time.

HeLa cells were treated with a Wnt3A-conditioned medium. Cells were harvested

every two hours post treatment for 24 hours. Real-time PCR quantitation of relative

Axin2 and NKD1 mRNA expression was calculated for each time point against time zero

(no treatment) according to the comparative CT method. The first step in the calculations

is the normalisation of the Axin2 and NKD1 gene to the epithelial cell specific KRT8 gene

in order to control for quantity and quality of the cDNA samples.

Figures 4.5(a) and 4.5(c) demonstrate a synchronised cyclic expression of Axin2 and

NKD1 determined by in vitro experiments. The first cycle persists for about 12 hours post

treatment and peaks at 6 hours in both genes. After 12 hours of treatment, both genes

show a further cycle of induction, with NKD1 peaking at 16 hours and Axin2 peaking at

20 hours, and finally dropping off after 24 hours of treatment.

We analyse the results to detect whether there is a periodic component in observed

94



0 5 10 15 20 25
−5

0

5

10

15

20

25

30

35

Time (hr)

A
xi

n 
ex

pr
es

si
on

 le
ve

l

(a)

0 0.04 0.08 0.12 0.16 0.2 0.24
0

50

100

150

200

Frequency (hr−1)
R

el
at

iv
e 

si
gn

ifi
ca

nc
e

(b)

0 5 10 15 20 25
0

5

10

15

20

25

30

Time (hr)

N
kd

 e
xp

re
ss

io
n 

le
ve

l

(c)

0 0.04 0.08 0.12 0.16 0.2 0.24
0

50

100

150

Frequency (hr−1)

R
el

at
iv

e 
si

gn
ifi

ca
nc

e

(d)
6

Frequency peak

Figure 4.5: Experimental validation of the model predictions: real-time analysis of Axin2
(a) and NKD1 (c) expression in HeLa cells following treatment with Wnt3A conditioned
medium; periodogram computed for Axin2 (b) and NKD1 (d) time series.
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time series data {y1, ..., yN}, where N is the sample size. We build a frequency domain

representation of the time series, known as periodogram and defined as follows:

I(ω) =
1

N
|

N∑

n=1

yne−iωn|2, ω ∈ [0, π].

The periodogram is further analysed at Fourier frequencies ωk = 2πk/N, k = 1, ..., [(N−

1)/2]. If a time series has a significant sinusoidal component with frequency ω0, then the

periodogram exhibits a peak at that frequency with high probability. Conversely, if the

time series is a purely random process, then the plot of the periodogram I(ω) against the

Fourier frequencies approaches a straight line [Wichert et al., 2004].

The periodograms computed for the Axin2 and NKD1 time series are shown in Fig.

4.5(b) and 4.5(d), respectively. These graphs exhibit a peak at frequency 0.083 hr−1

(corresponding to a period of ∼12 hr), indicating that both time series do have a cyclic

component. Despite the fact that the length of the analysed time series is relatively short

and there is a high level of noise inherent to such an experimental system, the periodogram

can clearly detect the presence of a dominant frequency. Formal statistical significance

tests that produce the p-value of 0.2 are not able to detect a dominant frequency due to

the short sample size. The experimental frequency estimate is consistent with the model

predictions of an oscillation period of ∼10 hr. It should be noted that the true frequency

can slightly differ due to the sampling size used, and requires further experimentation. In

Fig. 4.5(a) and 4.5(c) we used the estimated oscillatory frequency to fit amplitude and

phase to data, using a least squares estimator.
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4.4.3 Inherent robustness and adaptability

Negative feedback systems generally exhibit reduced sensitivity to variations of their com-

ponents. We perform formal sensitivity analysis of the Wnt system to determine which

rate constants in the model have the greatest influence on the overall system behaviour.

The sensitivity coefficients, shown in Table 4.2, are defined as the relative change in the

objective function Z upon a relative change in the parameter p, as defined by relations

(2.5) and (2.6). In our case, the objective function Z relates to the level of β-catenin.

When Wnt stimulus is low, we calculate the sensitivity of the β-catenin concentration at

steady state (SAV G).

To determine sensitivity of β-catenin levels in the oscillatory domain at higher Wnt,

the periodic signal is expanded into a series of sine and cosine functions:

z(t) = A0 +
∞∑

n=1

(an cos nωt + bn sin nωt),

where A0 is the mean value of the signal, an and bn, n ≥ 1, are the amplitudes of the

cosine and sine of the nth component, ω is the frequency of the signal. The amplitude

can then be studied in terms of An =
√

a2
n + b2

n. In the oscillatory domain at higher

Wnt, sensitivity of frequency (SFREQ) and amplitude of oscillations (mean amplitude SA0
,

absolute amplitude of the first and second components of oscillating trajectory, SA1
and

SA2
) is calculated, using Fourier transform of Z.

Our sensitivity analysis predicts that β-catenin dynamics in the system is primarily

controlled by the strength of β-catenin binding to the nuclear transcription factor TCF,

by the synthesis rate of β-catenin and its inhibitor Axin, and the rate of Axin inhibition

in response to Wnt stimulation.

Interestingly, the model predicts that APC mutations affect dynamic oscillatory be-
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Parameter SAV G SFREQ SA0
SA1

SA2

Wnt binds the receptor 0.11 -0.01 0.2 0.12 -0.005
Wnt release -0.08 -0.004 -0.18 -0.18 -0.15
Axin:Gsk binding -0.09 -0.05 -0.1 -0.06 -0.014
Axin:Gsk release 0.03 0.02 0.03 0.006 -0.02
Axin∗:Gsk release 0.03 -0.005 0.03 -0.005 -0.05
Axin∗:APC binding -0.04 -0.07 -0.06 -0.08 -0.1
Axin∗:APC release 0.03 0.005 0.06 0.06 -0.009
APC:β-catenin binding -0.0003 0.003 -0.002 -0.009 -0.02
APC∗:β-catenin binding -0.17 -0.09 -0.13 0.03 0.1
APC:β-catenin release 0.004 0 0.005 0.009 0.02
TCF binding -0.82 -0.02 -0.8 -0.72 -0.4
TCF release 1.16 -0.26 1.27 0.68 -0.19
Axin phosphorylation -0.03 -0.06 -0.05 -0.08 -0.12
Axin dephosphorylation 0.01 -0.004 0.008 0.001 -0.01
APC phosphorylation -0.08 -0.05 -0.09 -0.05 0.02
APC dephosphorylation 0.09 0.01 0.1 0.02 -0.1
β-catenin phosphorylation -0.007 -0.009 -0.008 -0.009 -0.008
Wnt degradation -0.79 0.06 -1.22 -0.79 -0.12
β-catenin synthesis 0.19 -0.06 0.28 0.73 1.44
β-catenin degradation 0.11 -0.04 0.09 -0.08 -0.35
β-catenin∗ degradation -0.001 -0.007 -0.004 -0.01 -0.01
Axin synthesis -0.92 0.0003 -1.29 -0.69 0.14
Transcriptional delay -0.46 -0.11 -0.66 -0.45 -0.12
Axin degradation 0.1 -0.03 0.08 0.005 -0.08
Axin∗ degradation 0.09 -0.02 0.02 -0.008 -0.04
Wnt:LRP-Axin binding 0.01 0.02 0.05 0.14 0.25
Wnt:LRP-dependent Axin 0.75 -0.14 1.15 0.66 -0.16
degradation

Table 4.2: Sensitivity coefficients that characterise the average value, frequency, and ampli-
tude of β-catenin. Bold indicates highly sensitive parameters (in this particular example,
sensitivity threshold of 0.12 is chosen).
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haviour in a non-intuitive fashion. Mutations that decrease the rate of APC*:β-catenin

binding lead to upregulation of the mean amplitude of the signal (AV G and A0). At

the same time, these mutations decrease the amplitude of the oscillatory components (A1

and A2), thereby reducing the region of dynamic oscillations of β-catenin. The interval of

stochastic oscillations also diminishes when such mutations occur.

4.5 Biological significance of Wnt oscillations

In recent years, broad effects of Wnt signalling have emerged in a variety of different

systems. A large proportion of experimental systems for studying the effects of Wnt are

based on the segmentation process in somitogenesis. These studies have suggested that

Wnt/β-catenin signalling is involved in a segmentation clock [Aulehla et al., 2003].

Another context in which the role of Wnt is important is proliferation, differentia-

tion, and self-renewal of stem cells and their progeny. In the intestine, Wnt inhibition

by dominant negative mutation of Tcf4 or by Dkk1 overexpression results in a loss of

tissue [Korinek et al., 1998]. Mutations that stabilise β-catenin lead to cell population

expansion and intestinal tumours [Kinzler et al., 1991]. In the hematopoietic system,

stem and progenitor cells show enhanced proliferation in the presence of purified Wnt

[Reya et al., 2003, Willert et al., 2003]. Contrary to these studies, active Wnt signalling

promotes cell differentiation rather than self-renewal in the neural crest and human em-

bryonic cells [Lee et al., 2004, Dravid et al., 2005].

These disparate observations underscore the importance of preserving a balance be-

tween proliferation and differentiation cell fate, despite naturally occurring perturbations

and mutations. It also underscores the complexity of the cell fate determination mecha-

nism mediated by Wnt. However, the only model discussed by biologists in this context is

an intuitive linear threshold model which associates high Wnt with the increased ampli-
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tude of β-catenin followed by subsequent cell fate change. The cellular context in which

Wnt signalling occurs, possibly through involvement of other pathways such as Notch and

BMP, is then responsible for cell-specific response to Wnt.

Formal modelling allows us to address a question: whether or not these different re-

sponses to Wnt could be generated by a common fate-determination mechanism that maps

cell-specific signalling activation events into cell-specific responses. We demonstrate that,

depending on the stimulus strength, Wnt/β-catenin pathway induces two distinct cellular

responses. Low-level Wnt stimulation is sufficient to upregulate pathway targets to a sig-

nificant amplitude, but only for a limited duration. After such an outbreak of activity, the

cell returns to a quiescent state that helps it to eliminate a secondary response and pre-

serve its fate. At moderate to high Wnt levels, cells are exposed to continuous oscillations

of β-catenin levels of high amplitude and duration, resulting in a faster induction of the

early targets which are sufficient to trigger a secondary response. Such secondary targets

may be responsible for the onset of cell differentiation, observed in rapidly proliferating

transit cells that are direct descendants of stem cells.

Our model also predicts that the stochastically induced short activation cycles of β-

catenin are limited to the low Wnt region. Mutations that incapacitate the Axin:APC

destruction complex and increase the average concentration of β-catenin also gradually

decrease the domain of stochastic oscillations. While the number of cells responding

to Wnt increases in mutants, the fraction of cells triggering primary but not secondary

response decreases. If stem cell properties are generated by the initial cell response phase

only, such architecture would therefore protect the tissue from exponential growth when

mutations occur.
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4.6 Conclusions

In this chapter, we derived deterministic and stochastic models of the Wnt signalling path-

way. Model analysis has been performed to infer the properties of the pathway dynamic

behaviour. We concluded that, depending on stimulation levels, the proposed negative

feedback might lead to complex oscillatory behaviour of the components of the Wnt path-

way. We were able to confirm this behaviour in cell cultures. We later suggested how the

oscillatory behaviour can have functional significance in Wnt-dependent cell decisions.
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Chapter 5

Cellular decisions

5.1 Introduction

Recent advances in Wnt signalling suggest that this pathway may be involved in the control

of tissue homeostasis [van de Wetering et al., 2002, Reya et al., 2003, Sato et al., 2004,

Lowry et al., 2005, Dravid et al., 2005, He et al., 2007]. In particular, it has been pro-

posed that Wnt signalling regulates cell proliferation and renewal in the large intestinal

epithelium. In this chapter, we study the problem of how Wnt signalling ensures that a

fine balance between cell proliferation and differentiation is maintained in the large intesti-

nal epithelium. We formally test the feasibility of the mechanisms proposed by different

groups of experimentalists. Our approach is based on designing a family of models that

couple cellular decisions with the state of the intracellular Wnt cascade and cell microen-

vironment. We then analyse these models to reveal signalling characteristics that ensure

accuracy and robustness of Wnt-mediated determination of proliferative cell fate and lead

to tissue architecture which is resistant to mutations.
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5.1.1 Crypt biology

The large intestinal tract is built of geometric tubular structures called crypts. Intesti-

nal homeostasis involves cell generation by division at the crypt base, progressive cell

differentiation while they migrate to the top of the crypt, and cell death followed by ex-

trusion when they reach the top. Stem cells, believed to reside at the crypt bottom, have

the unique ability to maintain the entire epithelium. As they divide and move up, stem

cells must constantly adjust their behaviour by entering partially differentiated popula-

tion (called transit) prior to terminally differentiating. Simultaneously, the proliferative

capability of transit cells is the highest and decreases as cells move upward. Cancer is

a genetic disorder that arises through the loss of strict control over cell proliferation and

differentiation. The question that arises is which factors control the ability of intestinal

cells to keep a fine-tuned balance between cell division and differentiation.

In this chapter, we test the feasibility of different biological hypotheses about the

influence of Wnt signalling on cell fate and the emergence of the robust regulation of cell

numbers in the tissue. The function of Wnt cannot be measured experimentally; rather,

only the average behaviour of the collection of cells in response to Wnt factors can be

observed. We therefore employ computational modelling to examine whether the specific

properties of the Wnt pathway architecture can provide the conditions necessary for the

emergence of the robust regulation mechanism that ensures homeostasis in the intestine.

We base our approach on a conceptual extension of the stochastic π-calculus for span-

ning multiple scales. We describe in detail how to build a multi-scale model that couples

signal transduction network to cellular decisions to proliferate and differentiate. We then

analyse the model to reveal how a population of cells interacts and develops into a tissue

under the influence of the environment.
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5.2 Related work

Several modelling approaches for studying the self-renewal process in the intestine ex-

ist [Johnston et al., 2007, Loeffler et al., 1997, Gerike et al., 1998]. A recent model by

[Johnston et al., 2007] is representative of the class of deterministic spatially-uniform mod-

els. The authors describe the evolution of cell numbers in stem, transit, and differentiated

compartments, assuming constant compartment-dependent rates of renewal, differentia-

tion and death. The model is shown to be very sensitive to changes in these macroscopic

rate constants. The authors subsequently investigate the impact of the hypothetical nega-

tive feedback mechanism that, based on regulation of the rate at which cells differentiate,

allows the crypt to maintain an equilibrium in cell numbers.

In a similar compartment-based but stochastic approach [Loeffler et al., 1997], crypt

growth is described by a Markov process that models a stem cell population in which

each stem cell produces zero, one, or two stem cells, according to a fixed probability

distribution that does not vary from individual to individual. In the same manner as

[Johnston et al., 2007], the probability of self-renewal versus differentiation is assumed

to be pre-programmed and independent of the conditions, except in the case of stem

cells knowing their number. Both models, however, do not give an indication of how

the knowledge of stem cell numbers can be acquired and propagated between physically

separated cells. No experimental evidence exists that supports this assumption.

The incorporation of a spatial cell fate control mechanism is achieved in

[Gerike et al., 1998], where a deterministic model for crypt proliferation regulated by dif-

fusible growth factor is presented. The epithelium is modelled as a one-dimensional array

of cells. Each cell enters a cell cycle only if the growth factor concentration in the re-

spective cell exceeds a certain threshold. The growth factor is spread by diffusion starting

from the bottom of the crypt, but the concentration of the growth factor in the tissue
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is constant. The model mechanism ensures the dynamic regulation of cell proliferation

without the need to impose a static type-dependent program executed by every cell. How-

ever, under more realistic conditions of a stochastic time-varying growth-factor field, the

accuracy of this mechanism would collapse, resulting in a high variability in the numbers

of proliferative cells and crypt size.

5.3 Extending π-calculus to model cells

We are interested in testing possible hypotheses about Wnt signalling-based control of cell

proliferation and differentiation in the intestine. To test the feasibility of the mechanisms

proposed by different research groups, we build a π-calculus model that couples cellular

decisions with the state of the Wnt signalling network embedded in every cell. Next, we

explain how an extension of the π-calculus can be used for spanning different scales of the

biological system.

5.3.1 Cells as mobile ambients

In order to extend the model with cell-level dynamics, we first acquire a mechanism for

embedding molecules into cells. We use ambients [Cardelli and Gordon, 2006] to define

a bounded place where interactions between local agents happen. Enrichment of the

stochastic π-calculus with ambients, introduced in [Regev et al., 2004] and described be-

low, provides the ability to specify communication between π-calculus processes based on

their location within a common boundary.

An ambient is a location where computation happens: cell[X] stands for the pro-

cess X running at the location cell (i.e., in an ambient cell). Locations may reside

within locations: in cell[mol[A] | mol[B]] two ambients mol are incorporated into
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expel x

exit x

(a)

accept x

enter x

(b)

merge+ x

merge− x

(c)

Figure 5.1: Ambient capabilities

the ambient cell. In ambient calculus, a computation may contain the reconfiguration

of a hierarchy of locations. In the following, we graphically represent an ambient as a

dashed rectangle around the processes and the sub-ambients it contains, possibly labelled

with the ambient name. The derived models are simulated using the BioSPI platform

[Regev and Shapiro, 2004] which supports ambients without modifying the semantics of

the Stochastic Simulation Algorithm [Gillespie, 1976].

Spatial configuration of the ambient system can be changed using capabilities such

as exit/expel from the ambient (graphically shown in Fig. 5.1(a)), accept/enter to

the ambient (Fig. 5.1(b)), or merge with the ambient (Fig. 5.1(c)). Communication

abstraction is extended to represent compartment restriction on interactions based on

their locations. Three types of communication restrictions are: local (between processes

in the same ambient, as graphically represented in Fig. 5.2(a)), s2s (between processes

in sibling ambients in Fig. 5.2(b)), and p2c/c2p (between processes in parent and child

ambients in Fig. 5.2(c)).

To represent cells, allowing molecules to be assigned and re-assigned to specific cells,

we abstract cells as ambients. Consequently, molecular interaction within one cell is

abstracted by the s2s communication direction. For communicating the state of the

intracellular molecular network to the cell decision-making process, we use the p2c/c2p
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local x ? {z}

local x ! {y}

(a)

s2s x ! {y}

s2s x ? {z}

(b)

c2p x ? {z}

p2c x ! {y}

(c)

Figure 5.2: Communication directions between ambients

direction.

5.3.2 Cell division

Here, we consider the simplest possible model of cell division in which the time a cell

spends to complete one division cycle follows an exponential distribution with the rate

of the channel cycle. Upon completion of communication on the channel cycle, process

Cycle creates another instance of a cell which is immediately extruded from the mother

cell (Fig. 5.3). If we choose to simulate the re-distribution of molecules between mother

and daughter cells, the process Cycle has to send a message (marked by channel move in

Fig. 5.3) to every molecule instructing it to exit a mother cell and enter a daughter cell.

The competition between channels move and die ensures that only a certain proportion

of molecules will be re-assigned to the daughter cell.

5.3.3 Modelling space and cell movement

Most biochemical models do not incorporate explicit spatial information with the excep-

tion of the system volume Ω which is treated as a uniformly mixed solution. Although
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p2c move!{daughter}expel mother

die

enter
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daughter

cycle
cell
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Cycle Cycle

A

c2p move?{daughter}

mol mol

cell

(daughter)

cell

mol

exit mother

Figure 5.3: Cell division in π-calculus. The probability of reassigning a molecule to a
daughter cell converges to 1/2, if the rates of channels move and die are equal.
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this is clearly not how molecules are arranged within living cells, the omission of spatial

heterogeneity has been the norm in biochemical simulations because it greatly facilitates

modelling and reduces the computational complexity of simulations.

Here we present the spatial abstraction that describes the diffusion of the extracellular

morphogene in one direction in the tissue. The pressure exerted by cell division due to

higher amounts of the morphogene directs the cells to move away from the morphogene

source. This would accommodate the scenario of Wnt morphogene distribution along the

crypt length and cell movement to the top of the crypt. An analogous extension of the

π-calculus framework with spatial information is necessary when the desired objective is

to simulate diffusion of extracellular growth or inhibitory factors, competition for space

between different cells, or cell adhesion.

To model spatial abstraction, we define a neighbourhood relationship between cells.

Two cells are neighbours if they share a private channel which is used to send instructions

from one neighbour to another. In one-dimensional space, it is sufficient for each cell to

keep the reference to its upper neighbour (channel next in Fig. 5.4(a)). An extracellular

signal (as modelled by interactions on channel pos) and cell movement (interactions on

channel move) are functions of the neighbourhood. Following cell division, the upper

neighbour is requested to free its position by moving upwards (input on channel next). A

daughter cell is then inserted in the neighbouring position, as illustrated in Fig. 5.4(b).

The extension of the lattice abstraction in two-dimensional space is straightforward; each

cell contains references to its upper, left, and right neighbours (refer to the Attachment

for details).

Diffusion of the external morphogene is simulated by calculating the concentration of

the external factor field at each cell position rather than simulating the movement of factor

molecules within the spatial lattice. The channel pos with an appropriate rate is carried
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L

move!{pos, next}

Cell Mol
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Figure 5.4: Cell organisation: (a) linear array of cells referencing upper neighbour; (b)
lattice representation in π-calculus.

by each cell to indicate its distance to the morphogene source. The rate of the channel

pos decays exponentially with distance from the source.

5.4 A model of intra- and inter-cellular dynamics of

the crypt

Numerous and often inconsistent evidence exists suggesting that Wnt signalling controls

the balance between cell proliferation and differentiation in the intestinal crypts and

other tissues. Wnt is suggested to influence cell advance or withdrawal from the cell cy-

cle [van de Wetering et al., 2002, Reya et al., 2003, Sato et al., 2004], and cell ability to

maintain its stem-cell phenotype or differentiate [Dravid et al., 2005, Lowry et al., 2005,

He et al., 2007]. To test different hypotheses about the Wnt-based regulatory mechanisms

involved in the intestinal homeostasis, we build a multi-scale model that couples the state

of the intracellular network to different decisions that the cell might make. The extracel-
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lular diffusible Wnt triggers changes in the intracellular state and thus influences cellular

behaviour. We examine how these mechanisms influence the robust turnover of cells in

the intestinal crypt and its disregulation in cancer.

5.4.1 Intracellular signal transduction network

We adapt a model of the Wnt signalling pathway from Chapter 4 (Fig. 5.5). Pathway

molecules are represented as processes incorporated into ambients. Molecular complex

formation is modelled as ambient merge (e.g., transitions merge- bindBeta and merge+

bindBeta of processes AxinP and Beta). These can later disassociate by exiting the

complex ambient (transitions exit breakAxin and expel breakAxin). Communications

of molecules located in sibling ambients are marked by a direction s2s, while interactions

within one ambient (e.g., molecular complex) are assigned a local direction. The coupling

between subcellular and cellular scales is modelled by dependency of cellular decisions on

the state of the intracellular network embedded in every cell ambient. c2p/p2c directions

are used to communicate the state of the molecular network to the cell ambient.

5.4.2 Proliferative and differentiated cell fate

In our model, we adopt two threshold mechanisms in order to decide whether the cell

undergoes proliferation, differentiation, or stays quiescent. Increased β-catenin activity

influences the initiation of a new cell cycle. The time to complete the cycle is assumed

to follow an exponential distribution. Variability of the cycle length is thus incorporated

into the delay needed for the cell to make a decision to proliferate.

In addition, the β-catenin expression is linked to the ability of a stem cell to preserve

its phenotype. We assume that once the cell starts expressing differentiation markers,

differentiation is irreversible. While a stem cell divides to produce two cells with an equal

111



Axin BetaAxinP AxinP

molAxinmolAxin

s2s degAxin![]
c2p degCell?[]

s2s degAxin![]
c2p degCell?[] c2p degCell?[]

local degAxin![]

local degBeta?[]
local degBetaP?[]

molAxin

Rec AxinP

molAxin

c2p degCell?[]
local degWnt?[]

local relWnt?[] exit breakAxinmolAxin

Beta Axin

molAxin

Axin

molAxinexit breakAxin

molBeta
c2p molcycle![]
c2p moldiff![]

local degBetaP![]
local degBeta![]
c2p degCell?[]

s2s degBeta![]
c2p degCell?[]

s2s synAxin![] merge+ bindBeta

local degAxin?[]

expel breakAxin

local relBeta![]

s2s dphAxin![]

s2s phAxin![]

merge− bindWnt

merge− bindBeta
exit breakAxinlocal relBeta?[]

Figure 5.5: Adaptation of the Wnt subsystem in a multi-scale model.
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stem-cell capability, a differentiated cell divides to produce two identical differentiated

cells. Differentiated cells are also assumed to have a limited life span, as opposed to stem

cells which are subjected to only a low-level apoptosis.

The alternative hypothesised scenarios of cell-fate decisions which we compare are:

Hypothesis 1. Transient activation of β-catenin in the cell triggers initiation of a new

cell cycle. High levels of β-catenin are required to preserve stem cell properties.

Hypothesis 2. Transient activation of β-catenin is sufficient to push the cell into a new

cycle while prolonged β-catenin signalling causes the stem cell to start expressing

differentiation markers.

Each threshold mechanism is associated with a channel which transmits a signal to the

cell once the level of the intracellular β-catenin exceeds a threshold. In Fig. 5.6, channel

molcycle is used to instruct the cell to enter a new cycle. Another threshold moldiff

blocks (Hypothesis 1) or triggers (Hypothesis 2) cell differentiation (Fig. 5.6). Complete

model of the multi-scale cellular system is available in the Appendix D.

5.4.3 Wnt gradient in the tissue

Because Wnt targets are widely expressed in the stem and proliferative cell compart-

ment, it is widely accepted that Wnt factors are produced at the bottom of the crypt

and are then transported by diffusion [Brittan and Wright, 2004]. However, it has re-

cently been suggested that the Wnt gradient follows a more complex pattern due to a

surprisingly strong expression of the extracellular Wnt inhibitors at the bottom of the

crypt [Gregorieff et al., 2005]. We approximate this by additionally decreasing the rate at

which Wnt is received by cells located at the bottom of the crypt spatial lattice (channel

pos in Fig. 5.6).
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posInc/pos,
next/move,
nextInc/next]

[

s2s next?{posInc,nextInc}

Rec

molRec

posInc/pos,
next/move,
nextInc/next]

[

s2s move!{pos,next}

p2c molcycle?[] c2p cycle![] s2s next?{posInc,nextInc}
Stem

Diff

p2c moldiff?[]

Stem

c2p pos![]

cell

c2p die![]
p2c degCell![]

Stem

cell

cell

Figure 5.6: Stem cell evolution: a cell undergoes proliferation, differentiation, or death.
Additionally, the cell is constantly receiving information about the environment, and ad-
justs its position within the spatial lattice to accommodate newly born cells.
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5.5 Robust cell fate determination by Wnt signalling

When a cell senses Wnt in its neighbourhood, changes in its intracellular signalling network

occur, which in turn determines cellular decision to proliferate or differentiate. Cellular

behaviour is assumed to be stochastic and discrete: a cell enters cell cycle or differen-

tiates with the probability proportional to the concentrations of the signalling response

component β-catenin (as determined by the rates of channels molcycle and moldiff).

Using the BioSPI platform, we perform extensive simulations of the described scenarios

in order to derive the properties of the multi-scale cellular system whose regulatory control

is the extracellular diffusible factor Wnt. The derived models are subsequently analysed

with respect to the number of cell divisions as a function of cell position along the crypt

axis (i.e., distance to the Wnt source), the total number of cells in the crypt, and the

influence of stochasticity and random parameter perturbations on the tissue response.

The first family of models implement the cellular decision mechanism described by

Hypothesis 1. Our analysis shows that under these assumptions the fate that the cell

assumes is very sensitive to the level of Wnt to which it is exposed. The distribution of

proliferating cells mimics the distribution of the Wnt factors along the crypt axis. The

result is a high variability in the size of the proliferative cell compartment and crypt size,

which is inconsistent with the experimental observations. Moreover, activating mutations

in the Wnt pathway, which increase the level of intracellular β-catenin, lead to significant

expansion of the stem cell compartment. Consequently, the number of cells in the crypt

becomes unstable and results in exponential growth. We conclude that Hypothesis 1 is

unable to reproduce the tissue response observed experimentally.

Simulations of the model based on Hypothesis 2 reveal that this combination of intra-

cellular and cellular dynamics ensures robust tissue response mediated by Wnt (Fig. 5.7).

Rather than being scattered throughout the crypt length, proliferative cells are confined
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to the restricted compartment at the bottom of the crypt. This is consistent with the

experimental data [Potten et al., 1992, Wong et al., 2002] (Fig. 5.7(b)). The number of

proliferative cells as well as the total number of cells in the crypt shows little variability,

despite random noise and stochastic perturbations present in the model. This is consistent

with the reports of a surprisingly narrow distribution of crypt sizes, a fact that has not

yet been reproduced in modelling studies.

We next investigate the effects of the mutations in the Wnt pathway which were iden-

tified in concrete cancer models: Familial Adenomatous Polyposis [Potten et al., 1992],

and hyperplastic and adenomatous polyps [Wong et al., 2002, Sansom et al., 2004]. To

simulate the effect of mutations, we decrease the rate of the β-catenin inhibition by the

active APC/Axin destruction complex (channel bindBetaP in Fig. 5.5). An up to 5-

fold decrease of the β-catenin inhibition rate results primarily in a shift of the prolifer-

ative cells toward the top of the crypt (Fig. 5.7(a)). The size of the crypt is increased

only slightly. These predictions are in good agreement with the experimental evidence

[Potten et al., 1992, Wong et al., 2002]. Figure 5.7(b), adapted from [Potten et al., 1992],

shows experimental evidence of changes in the structure of the proliferative compartment

resulting from mutations that decrease the activity of β-catenin inhibitor complex.

Further inhibition of the destruction complex leads to more advanced forms of in-

testinal cancer: colorectal adenomas [Wong et al., 2002, Sansom et al., 2004]. While cell

proliferation shifts upwards at the initial stage, the model predicts the break up of the

mechanism that confines proliferative cells to the bottom of the crypt. This is consis-

tent with the experimental observations of proliferation in adenomas being almost evenly

distributed throughout crypt length [Wong et al., 2002, Sansom et al., 2004].

Our model provides an explanation of the observed phenomena. Cell proliferation

is triggered by even modest increase of the Wnt levels which is sufficient to upregulate
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Figure 5.7: Cell fate control by the Wnt pathway: (a) model predictions of the proliferative
cell distribution in both healthy and mutant tissues agree well with (b) the experimental
data.

β-catenin to high amplitude. As Wnt increases, stochastic oscillations in β-catenin expres-

sion become deterministic and their frequency increases along with the cell proliferation

rate. Analysis of the model also shows that stem cell fate which is preserved only at the

region of stochastic oscillations of β-catenin activity, is limited to low Wnt region and

decreases under mutant conditions. Thus, the model is not only consistent with the re-

ports of low β-catenin activity in stem cells [Lowry et al., 2005, Dravid et al., 2005] and

the reduced proliferation rate of stem cells caused by rare outbreaks of β-catenin, but

it also suggests the protection mechanism against the stem cell expansion that would

immediately lead to the exponential growth of tumours [Johnston et al., 2007].

5.6 Conclusions

In this chapter, we employed formal modelling techniques based on the stochastic π-

calculus to examine different hypotheses about the influence of the Wnt pathway on

homeostasis of the intestinal epithelium, and its role in tumourigenesis. We proposed
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that possible function of Wnt is to ensure robust cell fate determination. The model of

Wnt signalling was subsequently coupled to the cellular behaviour and the environment to

test its role in maintaining a fine-tuned balance between cell division and differentiation.

The result of the model is consistent with different characteristics of the distribution of

cells in the crypt. The model can explain both the stability of healthy regulation and

the changes seen in mutant phenotypes. The model also suggests which characteristics

of tissue architecture can protect it from unbounded growth. Increased predictive power

of the multi-scale model demonstrates its usefulness to the understanding of the cellular

machinery underlying robustness and adaptability.
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Chapter 6

Conclusions and future work

In this thesis, we have applied modelling approaches based on process algebras, in par-

ticular stochastic π-calculus, to study problems relevant to systems biology. We have

built models of various molecular signalling networks that offer a comprehensive and ex-

act description of both static and dynamic information about pathway elements. We have

analysed these models to derive properties of the collective action of molecular compo-

nents, emphasising the importance of detecting feedback loops and non-linearities present

in these systems. We have identified possible hypotheses about the structure and dynam-

ics of systems under study, and have evaluated these hypotheses according to qualitative

changes of possible system behaviour under both physiologically normal and perturbed

conditions.

Two real-life signalling pathways which we analysed using this approach are FGF and

Wnt. In both cases, by deriving exact descriptions of reaction networks, we were able

to uncover previously unknown qualities of the overall behaviour of these pathways. We

characterised pathway components according to their ability to amplify and downregulate

signalling, and induce short- and long-term changes in intracellular network dynamics. We

also demonstrated how malignant mutations in these pathways induce phenotypic changes
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in their dynamic behaviour.

In the case of the FGF pathway, we identified the rate of receptor kinase activation

and the rate of receptor complex internalisation as the key variables controlling signalling

dynamics. The model predicted that inhibition of receptor internalisation would result in

prolonged signalling. This hypothesis was later validated by in vitro experiments which

also added further details to the model. The refined model showed the complex interplay

between receptor activation and attenuation which gave a new insight into the nature of

pathogenic mutations in FGF receptors.

The model of the Wnt signalling pathway also predicted previously unknown dynamic

behaviour of the pathway. Depending on the level of extracellular stimulus, the cell ex-

hibits slow noise-induced or fast regular oscillations in the β-catenin levels. Existence of

β-catenin oscillations in a population of cells was later confirmed experimentally. An open

question that remains is whether low levels of extracellular Wnt cause stochastic oscilla-

tions at the single cell level that become more regular as Wnt increases. In future work,

we aim to validate this prediction experimentally.

Additionally, we have incorporated the intracellular dynamics into a higher-level model

that includes cells and their interactions with each other and with the environment. The

proposed scheme is based on the extension of stochastic π-calculus with ambients, which

has allowed us to perform simulations without changing the underlying stochastic compu-

tational engine. Based on this extension, we performed a study of the cellular interactions

and decision-making which are involved in intestinal homeostasis and cancer initiation.

We hypothesised that cell decision to divide or differentiate depends on the level of in-

tracellular β-catenin. We showed which threshold model of cellular decisions is consistent

with the experimental evidence of proliferative cell distributions in the intestinal epithelial

tissue. Moreover, the hypothesised model ensures robustness of cell-fate determination and
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leads to tissue architecture robust to mutations. In the future it remains to be determined

whether the proposed scenario is valid in cellular systems.

Our studies have proved the utility of the π-calculus modelling approach for deriving

new insights into normal and pathological dynamics of processes occurring in multicellular

systems at different scales. π-calculus offers a concise way to encode biological knowledge,

formulate hypotheses, evaluate, and select those scenarios that are consistent with existing

experimental evidence. Simulations of π-calculus models do not build the global state of

the system and therefore avoid exponential explosion of the state space. Finally, the

stochastic nature of process algebra makes it suitable for analysing the impact of random

fluctuations on the behaviour of the system.

Among the limitations of the stochastic π-calculus modelling approach is the insuffi-

cient tool support for analysing models, including visualisation of the model results. This

is particularly important in case of multi-level and compartmental models. Additionally,

it would be greatly beneficial to extend the simulation algorithm to support more complex

reaction rates governed by general probability distributions. Future work has to account

for these extensions of the π-calculus simulation platform.
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Appendix A

Implementation of elementary
signalling modules

A.1 Receptor module

-language(spifcp).

%public channels

public(bind(0.001), rel(0.001)) .

public(basalphos(0.0005), phos(0.1)) .

public(syn(0.5), deg(0.005)) .

System(N1, N2) ::= <<

CREATE_A(N1) | CREATE_S(N2) | Syn | Clock .

CREATE_A(N) ::= {N =< 0}, true ; {N > 0}, {N--} | A | self .

CREATE_S(N) ::= {N =< 0}, true ; {N > 0}, {N--} | S | self >> .

S ::= bind ! [], 0 . %stimulus binding to the receptor

A ::= bind ? [], AS ;

basalphos ! [], AP . %low-level phosphorylation

AS ::= rel ! [], (A | S) ; %receptor complex dissociation

phos ! [], APS ; %phosphorylation of the bound receptor

basalphos ! [], APS .

APS ::= rel ! [], (AP | S) ;

deg ! [], 0 . %degradation of the phosphorylated receptor complex

AP ::= bind ? [], APS ;

deg ! [], 0 . %degradation of the phosphorylated receptor

Syn ::= syn ! [], (A | Syn) . %constant synthesis of non-active receptor
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Clock ::= rel ? [], Clock ;

syn ? [], Clock ;

deg ? [], Clock ;

phos ? [], Clock ;

basalphos ? [], Clock .

A.2 Positive feedback module

-language(spifcp).

%public channels

public(bind(0.1), rel(0.001)) .

public(basalphos(0.0005), phos(0.1) .

public(syn(0.005), deg(0.005)).

System(N1, N2) ::= <<

CREATE_A(N1) | CREATE_S(N2) | Clock .

CREATE_A(N) ::= {N =< 0}, true ; {N > 0}, {N--} | A | self .

CREATE_S(N) ::= {N =< 0}, true ; {N > 0}, {N--} | S | self >> .

S ::= bind ! [], 0 .

A ::= bind ? [], AS ;

basalphos ! [], AP . %low-level phosphorylation

AS ::= rel ! [], (A | S) ; %receptor complex dissociation

phos ! [], APS ; %phosphorylation of the bound receptor

basalphos ! [], APS .

APS ::= rel ! [], (AP | S) ;

syn ! [], (APS | A) ; %receptor synthesis in a feedback loop

deg ! [], 0 . %degradation of the phosphorylated receptor complex

AP ::= bind ? [], APS ;

syn ! [], (AP | A) ;

deg ! [], 0 .

Clock ::= rel ? [], Clock ;

syn ? [], Clock ;

deg ? [], Clock ;

phos ? [], Clock ;

basalphos ? [], Clock .
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A.3 Negative feedback module

-language(spifcp).

%public channel declaration

public(inhibit(10.0), phos(0.05), dephos(0.001)).

public(asyn(0.2), adeg(0.1)).

%vary bsyn to reflect stimulus induction

public(bsyn(100.0), bdeg(0.01)).

System(N1, N2) ::= <<

CREATE_A(N1) | CREATE_B(N2) | Syn | Clock .

CREATE_A(N) ::= {N=<0}, 0 ; {N>0}, {N--} | A | self .

CREATE_B(N) ::= {N=<0}, 0 ; {N>0}, {N--} | B | self >> .

A ::= << rel(0.1), deg(5.0), a(infinite), b(infinite) .

phos ! [], AP ; %inhibitor activation

adeg ! [], true . %low-level degradation

AP ::= inhibit ! {rel, deg, a, b}, AP_Bound ; %inhibition of B

dephos ! [], A ; %deactivation of the inhibitor

adeg ! [], true .

AP_Bound ::= rel ? [], AP ; %dissociation from B

deg ? [], AP ;

b ? [], AP ;

adeg ! [], a ! [], true >> .

B ::= << rel(0.1), deg(5.0), a(infinite), b(infinite).

inhibit ? {rel, deg, a, b}, BA ;

asyn ! [], (B | A) ; %inhibitor synthesis in a feedback loop

bdeg ! [], true . %low-level degradation

BA ::= rel ! [], B ;

a ? [], B ;

deg ! [], true ;

bdeg ! [], b ! [], true >> .

Syn ::= bsyn ! [], (Syn | B) . %constant synthesis of activator molecules

Clock ::= phos ? [], Clock ;

dephos ? [], Clock ;

asyn ? [], Clock ;

adeg ? [], Clock ;

bsyn ? [], Clock ;

bdeg ? [], Clock .
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Appendix B

Modelling FGF pathway

-language(spifcp).

FAST=>10000.0.

%public channels

public(bindFGF(0.005)).

public(bindFGFR(0.0025), bindPlc(0.0025)).

public(bindSrc(0.0025), bindGrb(0.0025), bindShp(0.0025), bindGSpry(0.0025)).

public(bindSpry(0.01), bindCbl(0.01), bindSos(0.01)).

public(ph653(0.013), ph766(0.004), phFRS(0.005), phSpry(10), dphFRS(12)).

public(create_spry(0.083)).

%Initial process accepts three arguments:

% #1: the initial number of FGFR, Src, Grb2, Shp, Plc, and Cbl molecules

% and the maximum number of Spry molecules

% #2: the initial number of FGF molecules

% #3: the initial number of FRS2 molecules

System(N1,N2,N3) ::= << CREATE_FGFR(N1) | CREATE_FGF(N2) | CREATE_FRS(N3) |

CREATE_SRC(N1) | CREATE_SHP(N1) | CREATE_GRB(N1) | CREATE_PLC(N1) |

CREATE_CBL(N1) | CREATE_SOS(N1) | CREATE_DSPRY(N1) | Clock .

CREATE_FGF(N) ::= {N =< 0}, true ; {N > 0}, {N--} | FGF | self .

CREATE_FGFR(N) ::= {N =< 0}, true ; {N > 0}, {N--} | FGFR | self .

CREATE_FRS(N) ::= {N =< 0}, true ; {N > 0}, {N--} | FRS2 | self .

CREATE_SRC(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Src | self .

CREATE_GRB(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Grb2 | self .

CREATE_SHP(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Shp | self .

CREATE_CBL(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Cbl | self .

CREATE_PLC(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Plc | self .

CREATE_SOS(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Sos | self .

CREATE_DSPRY(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Spry | Dself(N) .
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Dself(N) ::= create_spry![], CREATE_DSPRY(N) >> .

FGF ::= << relFGF(0.005), remFGF(infinite), degFGF(infinite) . %private channels

bindFGF ? {relFGF, remFGF, degFGF}, FGF_Bound . %binding to the receptor

FGF_Bound ::= relFGF![], FGF ; %dissociation from FGFR

remFGF?[], FGF ; %immediate dissociation

degFGF?[], true >> . %degradation

FGFR ::= << relFGF(0.005), remFGF(infinite), degFGF(infinite),

relFGFR(0.05), remFGFR(infinite), degFGFR(infinite),

preFRS(FAST),

relPlc(0.05), degPlc(0.00028), degPlcI(infinite),

pre653(infinite), pre766(infinite), deg1(infinite), deg2(infinite) .

%contains four sites that engage in independent activities

FGFR_Ligand_Binding | FGFR_FRS2_Binding | FGFR_Y653 | FGFR_Y766 .

FGFR_Ligand_Binding ::= bindFGF ! {relFGF, remFGF, degFGF}, FGFR_Ligand; %binds FGF

deg1?[], true; deg2?[], true. %synchronises with other sites on degradation

FGFR_Ligand ::= relFGF?[], FGFR_Ligand_Binding ; %dissociaties from FGF

pre653![], FGFR_Ligand ; %allows phosphorylation of Y653 while bound

deg1?[], remFGF![], true ; deg2?[], degFGF![], true .

FGFR_FRS2_Binding ::=

bindFGFR ! {relFGFR, preFRS, remFGFR, degFGFR}, FGFR_FRS2 ; %binds FRS2

deg1?[], true .

FGFR_FRS2 ::= relFGFR?[], FGFR_FRS2_Binding ; %FRS2 dissociation

remFGFR?[], FGFR_FRS2_Binding ; %immediate dissociation from FRS2

degFGFR?[], deg2![], deg2![], deg2![], true ; %removes all bound partners

deg1?[], (remFGFR![], true ; remFGFR?[], true) .

FGFR_Y653 ::= pre653?[], (ph653![], FGFR_Y653P ; %phosphorylates after binding FGF

deg1?[], true ; deg2?[], true ) ;

deg1?[], true ; deg2?[], true .

FGFR_Y653P ::= preFRS![], FGFR_Y653P ; %synchronises with FRS2 for phosphorylation

pre766![], FGFR_Y653P ; %synchronises with Y766 for phosphorylation

deg1?[], true ; deg2?[], true .

%residue Y766 phosphorylates after phosphorylation on Y653 is complete

FGFR_Y766 ::= pre766?[], (ph766![], FGFR_Y766P ; deg2?[], true ) ;

deg2?[], true .

FGFR_Y766P ::= bindPlc ! {relPlc, degPlc, degPlcI}, FGFR_Plc_Bound ; %binds Plc

deg2?[], true .
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FGFR_Plc_Bound ::= relPlc?[], FGFR_Y766P ; %dissociates from Plc

degPlc?[], ( deg1![], deg1![], deg1![], true ; %degrades leaving partners

deg2?[], true ) ;

deg2?[], degPlcI![], true >> .

FRS2 ::= << relFGFR(0.05), degFGFR(infinite), remFGFR(infinite),

preFGFR(FAST), preFRS(FAST),

relSrc(0.05), remSrc(infinite), degSrc(0.00111),

relGrb(0.05), remGrb(infinite), degGrb(infinite),

relShp(0.05), remShp(infinite), degShp(infinite),

postFRS(infinite), degCbl(infinite), deg1(infinite), deg2(infinite) .

FRS2_FGFR_Binding | FRS2_Y196 | FRS2_Y306 | FRS2_Y471. %4 independent sites

FRS2_FGFR_Binding ::=

bindFGFR ? {relFGFR, preFGFR, remFGFR, degFGFR}, FRS2_FGFR ; %binds FGF

deg1?[], true ; deg2?[], true . %synchronises with others for degradation

FRS2_FGFR ::= preFGFR?[], FRS2_FGFRP ; %notified of FGFR phosphorylation

relFGFR![], FRS2_FGFR_Binding ; %dissociates from FGFR

remFGFR?[], FRS2_FGFR_Binding ;

deg1?[], remFGFR![], true ;

deg2?[], (degFGFR![], true ; remFGFR?[], true) .

FRS2_FGFRP ::= relFGFR![], FRS2_FGFR_Binding ;

remFGFR?[], FRS2_FGFR_Binding ;

preFRS![], FRS2_FGFRP ; %synchronises with other sites for phosphorylation

deg1?[], remFGFR![], true ;

deg2?[], (degFGFR![], true ; remFGFR?[], true) .

FRS2_Y196 ::= preFRS?[], (phFRS![], FRS2_Y196P; %phosphorylates if bound to FGFRP

postFRS?[], FRS2_Y196 ) ;

postFRS?[], FRS2_Y196 .

FRS2_Y196P ::= bindSrc ! {relSrc, degCbl, remSrc, degSrc}, FRS2_Src ; %binds Src

postFRS?[], FRS2_Y196 .

FRS2_Src ::= relSrc?[], FRS2_Y196P ; %dissociates from Src

degCbl?[], deg1![], deg1![], deg1![], true ; %leaves all bound partners

degSrc?[], deg2![], deg2![], deg2![], true ; %removes all bound partners

postFRS?[], remSrc![], FRS2_Y196 .

FRS2_Y306 ::= preFRS?[], (phFRS![], FRS2_Y306P ;

postFRS?[], FRS2_Y306 ;

deg1?[], true ; deg2?[], true) ;

postFRS?[], FRS2_Y306 ;

deg1?[], true ; deg2?[], true .

FRS2_Y306P ::= bindGrb ! {relGrb, remGrb, degGrb}, FRS2_Grb ; %binds Grb2
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postFRS?[], FRS2_Y306 ;

deg1?[], true ; deg2?[], true .

FRS2_Grb ::= relGrb?[], FRS2_Y306P ; %dissociates from Grb

postFRS?[], remGrb![], FRS2_Y306 ;

deg1?[], remGrb![], true ;

deg2?[], degGrb![], true .

FRS2_Y471 ::= preFRS?[], (phFRS![], FRS2_Y471P ;

deg1?[], true ; deg2?[], true) ;

deg1?[], true ; deg2?[], true .

FRS2_Y471P ::= bindShp ! {relShp, remShp, degShp}, FRS2_Shp ; %binds Shp

deg1?[], true ; deg2?[], true .

FRS2_Shp ::= relShp?[], FRS2_Y471P ;

dphFRS![], postFRS![], FRS2_Shp ; %dephosphorylation of Y196

dphFRS![], postFRS![], FRS2_Shp ; %dephosphorylation of Y306

dphFRS![], remShp![], FRS2_Y471 ; %dephosphorylation of Y471

deg1?[], remShp![], true ;

deg2?[], degShp![], true >> .

Src ::= << relSrc(0.05), remSrc(infinite), degSrc(0.00111),

relSpry(0.01), relSpryP(0.0001), remSpry(infinite), degSpry(infinite),

degCbl2(infinite), degCbl3(infinite).

%Src contains independent FRS2 and Spry binding sites

Src_FRS_Binding | Src_Spry_Binding .

Src_FRS_Binding ::=

bindSrc ? {relSrc, degCbl3, remSrc, degSrc}, Src_FRS ; %binds FRS2 Y196

degCbl2?[], Src_FRS_Binding .

Src_FRS ::= relSrc![], Src_FRS_Binding ; %dissociation from Src

remSrc?[], Src_FRS_Binding ;

degSrc![], degSpry![], true ;

degCbl2?[], ( degCbl3![], Src_FRS_Binding ; %pass instructions to FRS2

remSrc?[], Src_FRS_Binding ;

degSrc![], degSpry![], true ) .

Src_Spry_Binding ::= bindSpry ! {relSpry, relSpryP, remSpry, degCbl2}, Src_Spry;

degSpry?[], true .

Src_Spry ::= relSpry?[], Src_Spry_Binding ;

relSpryP?[], Src_Spry_Binding ;

degSpry?[], remSpry![], true >> .

Spry ::= << relSpry(0.01), relSpryP(0.0001), remSpry(infinite),

relGSpry(0.05), degGrb(infinite), remGrb(infinite),
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relCbl(0.0001), remCbl(infinite), degCbl1(0.00067),

degCbl(infinite), degCbl2(infinite), deg(infinite),

preSpry(infinite), postSpry(infinite) .

%independent binding to Src, Cbl and Grb

Spry_Src_Binding | Spry_Cbl_Binding | Spry_Grb_Binding .

Spry_Grb_Binding ::= preSpry?[], SpryP_Grb_Binding ; %binds Grb if phosphorylated

deg?[], true .

SpryP_Grb_Binding ::= bindGSpry ! {relGSpry, remGrb, degGrb}, SpryP_Grb ;

postSpry?[], Spry_Grb_Binding ;

deg?[], true .

SpryP_Grb ::= relGSpry?[], SpryP_Grb_Binding ; %dissociates from Grb

postSpry?[], ( remGrb![], Spry_Grb_Binding ; deg?[], degGrb![], true) ;

deg?[], degGrb![], true .

Spry_Cbl_Binding ::= preSpry?[], SpryP_Cbl_Binding ; %binds Cbl if phosphorylated

deg?[], true .

SpryP_Cbl_Binding ::= bindCbl ! {relCbl, remCbl, degCbl}, SpryP_Cbl ;

postSpry?[], Spry_Cbl_Binding ;

deg?[], true .

SpryP_Cbl ::= relCbl?[], SpryP_Cbl_Binding ; %dissociates from Cbl

postSpry?[], ( remCbl![], Spry_Cbl_Binding ; deg?[], degCbl![], true) ;

degCbl1![], SpryP_Cbl ;

deg?[], degCbl![], true .

Spry_Src_Binding ::= bindSpry ? {relSpry, relSpryP, remSpry, degCbl2}, Spry_Src ;

postSpry![], Spry_Src_Binding .

Spry_Src ::= phSpry![], SpryP_Src ; %phosphorylates after binding to Src

relSpry![], Spry_Src_Binding ; %dissociates from Src

remSpry?[], deg![], deg![], true ;

postSpry![], Spry_Src .

SpryP_Src ::=

relSpryP![], SpryP_Src_Binding ; %slower dissociation from Src

remSpry?[], deg![], deg![], true ;

degCbl1?[], ( degCbl2![], SpryP_Src ; remSpry?[], deg![], deg![], true) ;

preSpry![], SpryP_Src . %synchronisation for phosphorylation

SpryP_Src_Binding ::= bindSpry ? {relSpry, relSpryP, remSpry, degCbl2}, SpryP_Src;

degCbl1?[], SpryP_Src_Binding ;

preSpry![], SpryP_Src_Binding >> .

Cbl ::= << relCbl(0.0001), remCbl(infinite), degCbl(infinite) .

bindCbl ? {relCbl, remCbl, degCbl}, Cbl_Bound .
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Cbl_Bound ::= relCbl![], Cbl ; %binds SpryP

remCbl?[], Cbl ;

degCbl?[], true >> .

Grb2 ::= << relGrb(0.05), remGrb(infinite), relGSpry(0.05),

degGrb(infinite), relSos(0.0001), remSos(infinite), degSos(infinite) .

%competition between FRS2 and SpryP for binding Grb2

bindGrb ? {relGrb, remGrb, degGrb}, Grb2_FRS ; %binds FRS2 Y306

bindGSpry ? {relGSpry, remGrb, degGrb}, Grb2_Spry_Bound . %binds SpryP

Grb2_FRS ::= bindSos ! {relSos, remSos, degSos}, Grb2_FRS_Sos ; %binds Sos

relGrb![], Grb2 ;

remGrb?[], Grb2 ;

degGrb?[], true .

Grb2_FRS_Sos ::= relSos?[], Grb2_FRS ;

relGrb![], remSos![], Grb2 ;

remGrb?[], remSos![], Grb2 ;

degGrb?[], degSos![], true .

Grb2_Spry_Bound ::= relGSpry![], Grb2 ;

degGrb?[], true ;

remGrb?[], Grb2 >> .

Sos ::= << relSos(0.0001), remSos(infinite), degSos(infinite) .

bindSos ? {relSos, remSos, degSos}, Sos_Grb . %binds FRS2:Grb2

Sos_Grb ::= relSos![], Sos ; degSos?[], true ; remSos?[], Sos >> .

Shp ::= << relShp(0.05), remShp(infinite), degShp(infinite) .

bindShp ? {relShp, remShp, degShp}, Shp_FRS . %binds FRS2 Y471

Shp_FRS ::= relShp![], Shp ; remShp?[], Shp; degShp?[], true >> .

Plc ::= << relPlc(0.05), degPlc(0.00028), degPlcI(infinite).

bindPlc ? {relPlc, degPlc, degPlcI}, Plc_FGFR. %binds FGFR Y766

Plc_FGFR ::= relPlc![], Plc; degPlc![], true ; degPlcI?[], true >>.

%Complements communication on channels that correspond to first-order reactions

Clock ::= ph653?[], Clock ; ph766?[], Clock ;

phFRS?[], Clock ; dphFRS?[], Clock ;

phSpry?[], Clock ; create_spry?[], Clock .
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Appendix C

Implementation of Wnt pathway
model

-language(spifcp).

public(bindFz(0.02), bindLRP(0.02)).

public(bindWnt(1.0)).

public(bindGsk(0.0015)).

public(phAxin(0.2), dphAxin(0.1)).

public(bindAPC(0.001)).

public(phAPC(0.2), dphAPC(0.1)).

public(bindBeta(0.00003), bindBetaP(0.01)).

public(bindTCF(0.0003)).

public(phBeta(5.0)).

public(degBeta1(0.001)).

public(transcription(0.0111), synAxin(0.048)).

public(synBeta(0.423)).

%stochastic oscillations are at synWnt=0.05, deterministic are at synWnt=0.2

public(synWnt(0.05)).

public(degLig1(0.008)).

%Initial process takes three arguments:

% #1 is the initial number of Fz, LRP, APC, Gsk, TCF molecules,

% #2 is the initial number of Axin molecules, and

% #3 is the initial number of beta-catenin molecules

System(N1,N2,N3) ::= <<

CREATE_FZ(N1) | CREATE_LRP(N1) | CREATE_APC(N1) | CREATE_GSK(N1) |

CREATE_TCF(N1) | CREATE_Axin(N2) | CREATE_Beta(N3) | Clock | Syn .

CREATE_FZ(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Fz | self .

CREATE_LRP(N) ::= {N =< 0}, true ; {N > 0}, {N--} | LRP | self .

CREATE_Axin(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Axin | self .

CREATE_APC(N) ::= {N =< 0}, true ; {N > 0}, {N--} | APC | self .
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CREATE_GSK(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Gsk | self .

CREATE_Beta(N) ::= {N =< 0}, true ; {N > 0}, {N--} | Beta | self .

CREATE_TCF(N) ::= {N =< 0}, true ; {N > 0}, {N--} | TCF | self >> .

Wnt ::= << %private channels

relFz(0.1), degLig(0.008), remFz(0.04),

relLRP(0.1), remLRP(infinite),

relWnt(0.001), remWnt(infinite), degWnt(infinite) .

bindFz ! {relFz, degLig, remFz}, WntFz ; %binding to the receptor

degLig1![], true . %degradation of free ligand

WntFz ::= bindLRP ! {relLRP, remLRP}, WntFzLRP ; %sequentially binds Fz and LRP

relFz?[], Wnt ;

degLig![], true . %ensures termination of signalling

%Activated receptor complex recruits Axin:Gsk

WntFzLRP ::= bindWnt ? {relWnt, remWnt, degWnt}, WntFzLRPAxinGsk ;

relLRP?[], WntFz ;

degLig![], remLRP![], true .

WntFzLRPAxinGsk ::= relWnt![], WntFzLRP ; %dissociates from Axin complex

relFz?[], remLRP![], remWnt![], Wnt ; %dissociates from Fz

degLig![], remLRP![], remWnt![], true ; %degrades leaving all partners

remFz![], remLRP![], degWnt![], Wnt >> . %inhibits Axin

Fz ::= << relFz(0.1), degLig(0.008), remFz(0.04) .

bindFz ? {relFz, degLig, remFz}, FzBound . %binds Wnt

FzBound ::= relFz![], Fz ; %dissociates from Wnt

degLig?[], Fz ;

remFz?[], Fz >> .

%LRP is activated by Wnt and recruits and deactivates Axin

LRP ::= << relLRP(0.1), remLRP(infinite) .

bindLRP ? {relLRP, remLRP}, LRP_Bound . % bind Wnt:Fz complex

LRP_Bound ::= relLRP![], LRP ;

remLRP?[], LRP >> .

Gsk ::= << relGsk(0.1), relGskP(0.01), remGsk(infinite) .

bindGsk ? {relGsk, relGskP, remGsk}, Gsk_Bound . %kinase binds Axin

Gsk_Bound ::= relGsk![], Gsk ;

relGskP![], Gsk ;
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remGsk?[], Gsk >> .

Axin ::= << prePh(infinite), postPh(infinite),

degAxin(0.005), degAxinP(0.002), degIAxin(infinite),

relGsk(0.1), relGskP(0.01), remGsk(infinite),

relWnt(0.001), remWnt(infinite), degWnt(infinite),

relAPC(0.1), remAPC(infinite) .

%Axin molecule contains two sites that bind Gsk and APC independently

Axin_Gsk_Binding | Axin_APC_Binding .

Axin_Gsk_Binding ::= bindGsk ! {relGsk, relGskP, remGsk}, Axin_Gsk ; %binds Gsk

degAxin![], true ;

postPh![], Axin_Gsk_Binding . %synchronises for dephosphorylation

Axin_GskP_Binding ::= bindGsk ! {relGsk, relGskP, remGsk}, Axin_GskP ;

dphAxin![], Axin_Gsk_Binding ; %Axin dephosphorylation

degAxinP![], true .

Axin_Gsk ::= phAxin![], Axin_GskP ; %Gsk-bound Axin undergoes phosphorylation

%Gsk-bound form of Axin is recruited to the activated receptor complex

bindWnt ! {relWnt, remWnt, degWnt}, Axin_Wnt_Gsk ;

relGsk?[], Axin_Gsk_Binding ;

degAxin![], remGsk![], true ;

postPh![], Axin_Gsk .

Axin_GskP ::= relGskP?[], Axin_GskP_Binding ; %slow dissociation of AxinP

dphAxin![], Axin_Gsk_Binding ;

bindWnt ! {relWnt, remWnt, degWnt}, Axin_Wnt_GskP ;

degAxinP![], remGsk![], true ; %slow degradation when phosphorylated

prePh![], Axin_GskP . %synchronisation on phosphorylation

Axin_Wnt_Gsk ::= relWnt?[], Axin_Gsk ;

remWnt?[], Axin_Gsk ;

degWnt?[], remGsk![], degIAxin![], true ;

postPh![], Axin_Wnt_Gsk .

Axin_Wnt_GskP ::= relWnt?[], Axin_GskP ;

remWnt?[], Axin_GskP ;

degWnt?[], remGsk![], degIAxin![], true .

Axin_APC_Binding ::= prePh?[], AxinP_APC_Binding ; %awaits phosphorylation by Gsk

degAxin?[], true ; degAxinP?[], true ; %sites synchronise for degradation

degIAxin?[], true .

AxinP_APC_Binding ::= bindAPC ! {relAPC, remAPC}, AxinP_APC ; %binding to APC

degAxin?[], true ; degAxinP?[], true ;

degIAxin?[], true ;

postPh?[], Axin_APC_Binding . %first site is no longer phosphorylated

Axin_APC ::= relAPC?[], Axin_APC_Binding ; %dissociation from APC
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degAxin?[], remAPC![], true ; degAxinP?[], remAPC![], true ;

degIAxin?[], remAPC![], true ;

prePh?[], AxinP_APC .

AxinP_APC ::= relAPC?[], AxinP_APC_Binding ;

degAxin?[], remAPC![], true ; degAxinP?[], remAPC![], true ;

degIAxin?[], remAPC![], true ;

postPh?[], Axin_APC >> .

APC ::= << prePh(infinite), postPh(infinite),

relAPC(0.1), remAPC(infinite),

relBeta(0.1), degBeta(0.001), degBetaP(5.0) .

%contains two independent binding site to bind Axin and beta-catenin

APC_Axin_Binding | APC_Beta_Binding .

APC_Axin_Binding ::= bindAPC ? {relAPC, remAPC}, APC_Axin ; %binds AxinP

postPh![], APC_Axin_Binding .

APC_AxinP_Binding ::= bindAPC ? {relAPC, remAPC}, APC_AxinP ;

dphAPC![], APC_Axin_Binding .

APC_Axin ::= phAPC![], APC_AxinP ; %phosphorylates when bound to AxinP

relAPC![], APC_Axin_Binding ; %dissociates from AxinP

remAPC?[], APC_Axin_Binding ;

postPh![], APC_Axin . %synchronises with another site on dephosphorylation

APC_AxinP ::= dphAPC![], APC_Axin ; %dephosphorylates

relAPC?[], APC_AxinP_Binding ;

remAPC?[], APC_AxinP_Binding ;

prePh![], APC_AxinP . %synchronises with another site on phosphorylation

%The rate of beta-catenin binding depends on the APC phosphorylation state

APC_Beta_Binding ::= bindBeta ! {relBeta, degBeta, degBetaP}, APC_Beta ;

prePh?[], APC_BetaP_Binding . %two sites synchronise on phosphorylation

APC_BetaP_Binding ::= bindBetaP ! {relBeta, degBeta, degBetaP}, APC_BetaP ;

postPh?[], APC_Beta_Binding .

APC_Beta ::= relBeta?[], APC_Beta_Binding ;

degBeta?[], APC_Beta_Binding ; %slow degradation when unphosphorylated

prePh?[], APC_BetaP .

APC_BetaP ::= phBeta![], APCP_BetaP ; %phosphorylate when bound to APC

relBeta?[], APC_BetaP_Binding ;

degBeta?[], APC_BetaP_Binding ;

postPh?[], APC_Beta .

APCP_BetaP ::= degBeta?[], APC_BetaP_Binding ;

degBetaP?[], APC_BetaP_Binding >> .%phospho-beta-catenin rapidly degrades
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Beta ::= << relTCF(0.01), degBeta(0.001), relBeta(0.1), degBetaP(5.0) .

bindTCF ? {relTCF, degBeta}, Beta_TCF ; %beta-catenin can bind TCF

bindBeta ? {relBeta, degBeta, degBetaP}, Beta_APC ; %binds APC slowly

bindBetaP ? {relBeta, degBeta, degBetaP}, Beta_APC ; %binds APCP rapidly

degBeta1![], true . %low-level degradation of free beta-catenin

Beta_TCF ::= relTCF![], Beta ; %dissociates from TCF

degBeta![], true .

Beta_APC ::= relBeta![], Beta ; %dissociates from APC

degBeta![], true ;

degBetaP![], true >> . %rapidly degrades when phosphorylated

TCF ::= << relTCF(0.01), degBeta(0.001) .

bindTCF ! {relTCF, degBeta}, TCFBound . %TCF binding to beta-catenin

TCFBound ::= relTCF?[], TCF ;

degBeta?[], TCF ; %synchronises with beta-catenin for degradation

transcription![], TCFTrans . %TCF initiates transcription of target genes

TCFTrans ::= synAxin![], (TCFTrans | Axin) ; %target genes include Axin

relTCF?[], TCF ; degBeta?[], TCF >> .

%allows constant synthesis of beta-catenin and Wnt molecules

Syn ::= synBeta![], (Beta | Syn) ; synWnt![], (Wnt | Syn) .

%Clock complements all transitions corresponding to first-order reactions

Clock ::= degLig1?[], Clock ;

phAxin?[], Clock ; dphAxin?[], Clock ;

phAPC?[], Clock ; dphAPC?[], Clock ;

phBeta?[], Clock ; degBeta1?[], Clock ; transcription?[], Clock ;

synAxin?[], Clock ; synBeta?[], Clock ; synWnt?[], Clock .
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Appendix D

Multi-scale model of cellular
decisions

-language(biospi).

FAST=>1000.0.

SLOW=>60.0.

public(synBeta(0.423), bindBeta(0.01), relBeta(0.1), degBetaP(5), degBeta(0.001)).

public(synAxin(0.012),phAxin(0.2),dphAxin(0.1),degAxin(0.00167),breakAxin(infinite)).

public(bindWnt(1), relWnt(0.008), degAxinWnt(0.008), degWnt(0.005)).

public(molcycle(0.0001), moldiff(0.00001), degCell(infinite), dieCell(SLOW)).

public(cycleStem(0.0014), cycleDiff(0.0014), dieStem(0.0001), dieDiff(0.0005)) .

public(one(15), two(30), three(80), four(50), five(30), six(10), seven(1), eight(0),

nine(0), ten(0), nil(1), latticeA(infinite), latticeQ(infinite), count(FAST)).

System ::= << move(infinite), next1(infinite), next2(infinite), next3(infinite),

next4(infinite), next5(infinite), next6(infinite), next7(infinite),

next8(infinite), next9(infinite) .

%initially a crypt contains a row of ten cells (four stem cells located

%at the crypt bottom and six differentiated cells at the crypt top)

cell(<<SCell(one,move,next1) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<SCell(two,next1,next2) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<SCell(three,next2,next3) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<SCell(four,next3,next4) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(five,next4,next5) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(six,next5,next6) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(seven,next6,next7) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(eight,next7,next8) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(nine,next8,next9) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |

cell(<<DCell(ten,next9,nil) | Axin10 | clk(<<CellClock>>) | CellSyn>>) |
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Lattice | Clock | CellCounter >> .

%Every cell contains a molecular network which evolves with time depending on the

%level of the environmental signal to which cell is exposed. The intracellular

%signalling network is based on the simplified model of the Wnt pathway.

Rec ::= merge+ bindWnt, Rec_Axin ;

s2s degWnt![], true ;

c2p degCell?[], true .

Rec_Axin ::= local relWnt?[], expel breakAxin, Rec ;

local degAxinWnt?[], Rec ;

local degWnt![], true ;

c2p degCell?[], true .

Axin ::= s2s phAxin![], AxinP ;

s2s degAxin![], true ;

c2p degCell?[], true .

AxinP ::= merge- bindBeta, AxinP_Beta ;

merge- bindWnt, AxinP_Rec ;

s2s dphAxin![], Axin ;

s2s degAxin![], true ;

c2p degCell?[], true .

AxinP_Beta ::= local relBeta![], molAxin(<<exit breakAxin, AxinP>>) ;

local degBetaP![], AxinP ;

local degBeta?[], AxinP ;

local degAxin![], true ;

c2p degCell?[], true .

AxinP_Rec ::= local relWnt![], molAxin(<<exit breakAxin, AxinP>>) ;

local degAxinWnt![], true ;

local degWnt?[], AxinP ;

c2p degCell?[], true .

Beta ::= merge+ bindBeta, Beta_Axin ;

c2p synAxin![], Beta ;

s2s degBeta![], true ;

c2p molcycle![], Beta ;

c2p moldiff![], Beta ;

c2p degCell?[], true .

Beta_Axin ::= local relBeta?[], expel breakAxin, Beta ;

local degBetaP?[], true ;

local degBeta![], true ;

local degAxin?[], Beta ;

c2p degCell?[], true .

CellSyn ::= p2c synBeta![], (CellSyn | molBeta(<<Beta>>)) ;

147



p2c synAxin?[], (CellSyn | molAxin(<<Axin>>)) .

CellClock ::= p2c phAxin?[], CellClock ;

s2s dphAxin?[], CellClock ;

s2s degAxin?[], CellClock ;

s2s degBeta?[], CellClock ;

s2s degWnt?[], CellClock ;

c2p synBeta?[], CellClock .

%Every newly created cell contains 10 Axin molecules and no beta-catenin

Axin10 ::= molAxin(<<Axin>>) | molAxin(<<Axin>>) | molAxin(<<Axin>>) |

molAxin(<<Axin>>) | molAxin(<<Axin>>) | molAxin(<<Axin>>) |

molAxin(<<Axin>>) | molAxin(<<Axin>>) | molAxin(<<Axin>>) |

molAxin(<<Axin>>) .

%When beta-catenin level exceeds Th(molcycle), a stem cell divides

%producing two stem cells. When beta-catenin level exceeds Th(moldiff),

%a stem cell differentiates.

SCell(pos,move,next) ::= << next1(infinite) .

%special case of next==nil corresponds to cell without upper neighbour

<< next=?=nil,

( c2p pos![], SDiffuse ;

s2s move ! {pos, next1}, SMoveNil ;

p2c molcycle?[], SCycleNil(pos, move, next) ;

p2c moldiff?[], DCell(pos, move, next) ;

c2p dieStem![], SDie ) ;

otherwise,

( c2p pos![], SDiffuse ;

s2s move ! {pos, next}, SMove ;

p2c molcycle?[], SCycle(pos, move, next) ;

p2c moldiff?[], DCell(pos, move, next) ;

c2p dieStem![], SDie ) >> .

SDiffuse ::= SCell(pos,move,next) | molRec(<<Rec>>) .

%If a cell has no upper neighbour, it asks the Lattice process about the value of

%channel pos at the next position

SMoveNil ::= c2p latticeQ!{pos}, c2p latticeA?{posNext}, SCell(posNext,next1,nil) .

SMove ::= s2s next ? {posNext, nextNext}, SCell(posNext,next,nextNext) .

SCycleNil(pos, move, next) ::= c2p cycleStem ! {pos,move,next1}, SDivideNil ;

c2p pos![], SCycleNilDiffuse ;

s2s move ! {pos, next1}, SCycleNilMove .

SDivideNil ::= c2p latticeQ ! {pos}, c2p latticeA ? {posNext}, c2p count![],
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SCell(posNext, next1, nil) .

SCycleNilDiffuse ::= SCycleNil(pos, move, next) | molRec(<<Rec>>) .

SCycleNilMove ::= c2p latticeQ ! {pos}, c2p latticeA ? {posNext},

SCycleNil(posNext, next1, nil).

SCycle(pos, move, next) ::= c2p cycleStem ! {pos,move,next}, SDivide ;

c2p pos![], SCycleDiffuse ; %still receives environmental signal

s2s move ! {pos, next}, SCycleMove.

SDivide ::= s2s next ? {posNext, nextNext}, c2p count![],

SCell(posNext,next,nextNext) .

SCycleDiffuse ::= SCycle(pos, move, next) | molRec(<<Rec>>) .

SCycleMove ::= s2s next ? {posNext, nextNext}, SCycle(posNext, next, nextNext) .

%Dead cell is removed only after another cell is placed at its position

SDie ::= p2c degCell![], SDie ;

c2p dieCell![], SDead .

SDead ::= s2s move ! {pos, next}, true >> .

%When beta-catenin level exceeds Th(molcycle), a differentiated cell divides

%producing two differentiated cells. Differentiated cell has limited lifespan.

DCell(pos,move,next) ::= << next1(infinite) .

<< next=?=nil,

( c2p pos![], DDiffuse ;

s2s move ! {pos, next1}, DMoveNil ;

p2c molcycle?[], DCycleNil(pos, move, next) ;

c2p dieDiff![], DDie ) ;

otherwise,

( c2p pos![], DDiffuse ;

s2s move ! {pos, next}, DMove ;

p2c molcycle?[], DCycle(pos, move, next) ;

c2p dieDiff![], DDie ) >> .

DDiffuse ::= DCell(pos,move,next) | molRec(<<Rec>>) .

DMoveNil ::= c2p latticeQ!{pos}, c2p latticeA?{posNext}, DCell(posNext,next1,nil) .

DMove ::= s2s next ? {posNext, nextNext}, DCell(posNext,next,nextNext) .

DCycleNil(pos, move, next) ::= c2p cycleDiff ! {pos,move,next1}, DDivideNil ;

c2p pos![], DCycleNilDiffuse ;

s2s move ! {pos, next1}, DCycleNilMove .

DDivideNil ::= c2p latticeQ ! {pos}, c2p latticeA ? {posNext}, c2p count![],

DCell(posNext, next1, nil) .

DCycleNilDiffuse ::= DCycleNil(pos, move, next) | molRec(<<Rec>>) .

DCycleNilMove ::= c2p latticeQ ! {pos}, c2p latticeA ? {posNext},
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DCycleNil(posNext, next1, nil).

DCycle(pos, move, next) ::= c2p cycleDiff ! {pos,move,next}, DDivide ;

c2p pos![], DCycleDiffuse ;

s2s move ! {pos, next}, DCycleMove.

DDivide ::= s2s next ? {posNext, nextNext}, c2p count![],

DCell(posNext,next,nextNext) .

DCycleDiffuse ::= DCycle(pos, move, next) | molRec(<<Rec>>) .

DCycleMove ::= s2s next ? {posNext, nextNext}, DCycle(posNext, next, nextNext) .

DDie ::= p2c degCell![], DDie ;

c2p dieCell![], DDead .

DDead ::= s2s move ! {pos, next}, true >> .

%Lattice abstraction used by cells to find a neighbouring position.

Lattice ::= p2c latticeQ ? {pos}, << pos=?=one, p2c latticeA ! {two}, Lattice ;

pos=?=two, p2c latticeA ! {three}, Lattice ;

pos=?=three, p2c latticeA ! {four}, Lattice ;

pos=?=four, p2c latticeA ! {five}, Lattice ;

pos=?=five, p2c latticeA ! {six}, Lattice ;

pos=?=six, p2c latticeA ! {seven}, Lattice ;

pos=?=seven, p2c latticeA ! {eight}, Lattice ;

pos=?=eight, p2c latticeA ! {nine}, Lattice ;

pos=?=nine, p2c latticeA ! {ten}, Lattice ;

otherwise, p2c latticeA ! {ten}, Lattice >> .

Clock ::= p2c cycleStem ? {pos,move,next}, ( Clock |

cell(<<SCell(pos,move,next) | Axin10 | CellClock | CellSyn>>) ) ;

p2c cycleDiff ? {pos,move,next}, ( Clock |

cell(<<DCell(pos,move,next) | Axin10 | CellClock | CellSyn>>) ) ;

p2c dieCell?[], Clock ;

p2c dieStem?[], Clock ; p2c dieDiff?[], Clock ;

p2c one?[], Clock ; p2c two?[], Clock ;

p2c three?[], Clock ; p2c four?[], Clock;

p2c five?[], Clock; p2c six?[], Clock;

p2c seven?[], Clock; p2c eight?[], Clock;

p2c nine?[], Clock; p2c ten?[], Clock .

%Auxiliary process tracking the number of cells created in the system

CellCounter ::= p2c count ? [], CellCounter | CellCounter .
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Appendix E

Glossary

Catalyst is an element of the biochemical reaction that increases the rate of reaction
without being permanently changed.

Data normalization is the adjustment of measured values to account for possible run-
to-run and day-to-day variability in the assays.

ELISA (Enzyme-linked-immunosorbent assay) is an experimental technique used
to measure amounts of a particular protein in solution, using specific antibodies to
identify proteins. ELISA involves adsorbing or coupling capture of antibodies to
a microtitre plate. Following protein capture, a target protein is detected, either
directly or indirectly, through a labelled detection antibody.

Flow cytometry is a method in which fluorescence-intensity data are recorded from
particles in solution as they flow past a detector.

Fluorescence speckle microscopy associates fluorophores with macromolecular struc-
tures that are tracked by live-cell imaging. The information in the dynamic be-
haviour of these speckles is converted into a quantitative spatio-temporal readout of
cytoskeleton-polymer transport and turnover.

Gel electrophoresis is a method of using gels and an electric field to pull the sample
through the gel. As they migrate through a gel, proteins and nucleic acids separate
into bands according to size.

Hill exponent is an exponent (h) that traditionally quantifies the extent of cooperative
binding of multiple proteins, but is also used to describe sigmoidal steepness.

Homeostasis defines the conditions of a system when it is able to maintain its essential
variables within limits acceptable to its own function in the face of unexpected
disturbances.
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Immunoblot (also known as a western blot) is a standard method to determine pro-
tein abundance and state of modification in a given sample. Following gel-based
separation by mass, proteins are transferred to a sheet in which they can be probed
with target-specific antibodies.

Mass spectrometry is a physical method for determining molecular mass. It contains
three general components: an ion source in which gas-phase molecular ions are
produced from the analyte molecules, a mass analyser in which electrical or magnetic
fields are used to separate the analyte ions by their different mass-to-charge ratios,
and a detector for recording the separated ions.

Michaelis-Menten kinetics is an approximation of mass action kinetics used for enzyme-
substrate interactions when the concentration of the substrate is in excess of the
enzyme.

Nothern blotting is used to study the expression patterns of a specific type of RNA
molecule as a relative comparison among a set of different samples of RNA. In this
process RNA is separated based on size and is then transferred to a membrane that
is then probed with a labeled complement of a sequence of interest.

Null hypothesis is a statement that is tested for possible rejection under the assumption
that it is true.

P-value is the probability of obtaining a test-statistic at least as extreme as the one
observed, assuming that the null hypothesis is true. It is effectively the probability
of wrongly rejecting the null hypothesis when it is actually true.

PCR (Polymerase chain reaction) is an experimental technique which allows the ex-
ponential copying of part of a DNA molecule using a DNA polymerase enzyme that
is tolerant to elevated temperatures. The amplified DNA can be quantified after a
certain number of amplification cycles. Reverse transcription polymerase chain re-
action (RT-PCR) refers to a two-step procedure in which the RNA strand is reversly
transcribed into cDNA followed by amplification of the resulting DNA using PCR.

Phosphorylation is a modification of a protein state where phosphate groups are added
to polypeptide chain. Phosphorylation often affects protein structure and function.
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