2,062 research outputs found

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    The impact of repetitive unclamped inductive switching on the electrical parameters of low-voltage trench power nMOSFETs

    Get PDF
    The impact of hot-carrier injection (HCI) due to repetitive unclamped inductive switching (UIS) on the electrical performance of low-voltage trench power n-type MOSFETs (nMOSFETs) is assessed. Trench power nMOSFETs with 20- and 30-V breakdown voltage ratings in TO-220 packages have been fabricated and subjected to over 100 million cycles of repetitive UIS with different avalanche currents IAV at a mounting base temperature TMB of 150°C. Impact ionization during avalanche conduction in the channel causes hot-hole injection into the gate dielectric, which results in a reduction of the threshold voltage VGSTX, as the number of avalanche cycles N increases. The experimental data reveal a power-law relationship between the change in the threshold voltage ΔVGSTX and N. The results show that the power-law prefactor is directly proportional to the avalanche current. After 100 million cycles, it was observed in the 20-V rated MOSFETs that the power-law prefactor increased by 30% when IAV was increased from 160 to 225 A, thereby approximating a linear relationship. A stable subthreshold slope with avalanche cycling indicates that interface trap generation may not be an active degradation mechanism. The impact of the cell pitch on avalanche ruggedness is also investigated by testing 2.5- and 4- m cell-pitch 30-V rated MOSFETs. Measurements showed that the power-law prefactor reduced by 40% when the cell pitch was reduced by 37.5%. The improved VGSTX stability with the smaller cell-pitch MOSFETs is attributed to a lower avalanche current per unit cell resulting in less hot-hole injection and, hence, smaller VGSTX shift. The 2.5-m cell-pitch MOSFETs also show 25% improved on -state resistance RDSON, better RDSON stability, and 20% less subthreshold slope compared with the 4-m cell-pitch MOSFETs, although with 100% higher initial IDSS and less IDSS stability with avalanche cycling. These results are important for manufacturers of automotive MOSFETs where multiple avalanche occurrences over the lifetime of the MOSFET are expected

    Can deep-sub-micron device noise be used as the basis for probabilistic neural computation?

    Get PDF
    This thesis explores the potential of probabilistic neural architectures for computation with future nanoscale Metal-Oxide-Semiconductor Field Effect Transistors (MOSFETs). In particular, the performance of a Continuous Restricted Boltzmann Machine {CRBM) implemented with generated noise of Random Telegraph Signal (RTS) and 1/ f form has been studied with reference to the 'typical' Gaussian implementation. In this study, a time domain RTS based noise analysis capability has been developed based upon future nanoscale MOSFETs, to represent the effect of nanoscale MOSFET noise on circuit implementation in particular the synaptic analogue multiplier which is subsequently used to implement stochastic behaviour of the CRBM. The result of this thesis indicates little degradation in performance from that of the typical Gaussian CRBM. Through simulation experiments, the CRBM with nanoscale MOSFET noise shows the ability to reconstruct training data, although it takes longer to converge to equilibrium. The results in this thesis do not prove that nanoscale MOSFET noise can be exploited in all contexts and with all data, for probabilistic computation. However, the result indicates, for the first time, that nanoscale MOSFET noise has the potential to be used for probabilistic neural computation hardware implementation. This thesis thus introduces a methodology for a form of technology-downstreaming and highlights the potential of probabilistic architecture for computation with future nanoscale MOSFETs

    Reliability analysis of planar and symmetrical & asymmetrical trench discrete SiC Power MOSFETs

    Get PDF
    Silicon Carbide MOSFETs are shown in research to outperform Silicon counterparts on many performance metrics, including switching rates and power losses. To further improve their performance, trench and double-trench structures have recently been developed. To replace conventional planar SiC MOSFETs, besides the performance parameters which are mostly stated in datasheets, reliability studies under stress are also needed. This thesis presents a comprehensive comparison between 3rd generation trench SiC power MOSFETs, namely symmetrical double-trench and asymmetrical trench with planar SiC power MOSFETs on four aspects of: switching slew rates (dI/dt & dV/dt), crosstalk characteristics, bias temperature instability and power cycling stability.First, the dynamic performance in both 1st quadrant and 3rd quadrant has been eval- uated on the differences in stress by dI/dt & dV/dt and resultant losses. This is key in understanding many other reliability criterions, i.e. severity of crosstalk induced switchings. In the 1st quadrant, the source current and drain-source voltage switching rates at both turn-ON and turn-OFF are measured under a range of test conditions. Both the symmetrical and asymmetrical trench MOSFETs have up to 2 times faster voltage and current slew rates compared with the planar one. They also indicate only slight changes in switching rate with junction temperature. In the 3rd quadrant, the reverse recovery peak current and total reverse recovery charge are measured with respect to junction temper- ature and load current level. Both the symmetrical and asymmetrical trench MOSFETs have less than half of the reverse recovery charge of that of the planar SiC MOSFET.In the evaluation of crosstalk characteristics, peak shoot-through current and induced gate voltage at crosstalk are measured with respect to junction temperature and external gate resistance. With particularly large external gate resistances connected to intentionally induce parasitic turn-ON, the symmetrical double-trench MOSFET is shown to be more prone to crosstalk with 23 A peak shoot-through current measured while it is only 10 A for asymmetrical trench and 4 A for planar MOSFET under similar test conditions. As the temperature increase, the peak shoot-through current drops for the symmetrical double-trench, while constant for the asymmetrical trench and rising for the planar device.Threshold voltage drift is also measured to reflect the degradation happened with bias temperature instability at various junction temperatures, stressing voltages and time periods. Under low-magnitude gate stress (within the range of datasheets) in both positive and negative bias cases, there is more threshold drift observed on the two trench MOSFETs at all junction temperatures than the planar MOSFET. When the stress magnitude is raised, there is less threshold drift observed on the two trench MOSFETs.To evaluate the ruggedness in continuous switchings, the devices are placed under repetitive turn-ON events. The thermal performance under such operation are compared. The asymmetrical trench MOSFET experiences the highest case temperature rise while the least is observed for the planar MOSFET. With an external heatsink equipped to achieve more efficient cooling, the repetitive turn-ON test transforms into the conventional power cycling. In this condition, both the symmetrical and asymmetrical trench MOSFETs fail earlier than the degraded (but not failed) planar MOSFET

    Analytical modelling and performance analysis of Double-Gate MOSFET-based circuit including ballistic/quasi-ballistic effects

    Get PDF
    International audienceIn this paper we present a compact model of Double-Gate MOSFET architecture including ballistic and quasi-ballistic transport down to 20 nm channel length. In addition, this original model takes into account short channel effects (SCE/DIBL) by a simple analytical approach. The quasi-ballistic transport description is based on Lundstrom's backscattering coefficient given by the so-called flux method. We also include an original description of scattering of processes by introducing the “dynamical mean free path” formalism. Moreover, we implemented our model in a Verilog-A environment, and applied it to the simulation of circuit elements such as CMOS inverters and Ring Oscillators to analyze the impact of ballistic/quasi-ballistic transport on circuit performances. Finally, in order to validate our work, we confronted this model with numerical simulation of CMOS and Ring Oscillator in ballistic case

    Statistical circuit simulations - from ‘atomistic’ compact models to statistical standard cell characterisation

    Get PDF
    This thesis describes the development and application of statistical circuit simulation methodologies to analyse digital circuits subject to intrinsic parameter fluctuations. The specific nature of intrinsic parameter fluctuations are discussed, and we explain the crucial importance to the semiconductor industry of developing design tools which accurately account for their effects. Current work in the area is reviewed, and three important factors are made clear: any statistical circuit simulation methodology must be based on physically correct, predictive models of device variability; the statistical compact models describing device operation must be characterised for accurate transient analysis of circuits; analysis must be carried out on realistic circuit components. Improving on previous efforts in the field, we posit a statistical circuit simulation methodology which accounts for all three of these factors. The established 3-D Glasgow atomistic simulator is employed to predict electrical characteristics for devices aimed at digital circuit applications, with gate lengths from 35 nm to 13 nm. Using these electrical characteristics, extraction of BSIM4 compact models is carried out and their accuracy in performing transient analysis using SPICE is validated against well characterised mixed-mode TCAD simulation results for 35 nm devices. Static d.c. simulations are performed to test the methodology, and a useful analytic model to predict hard logic fault limitations on CMOS supply voltage scaling is derived as part of this work. Using our toolset, the effect of statistical variability introduced by random discrete dopants on the dynamic behaviour of inverters is studied in detail. As devices scaled, dynamic noise margin variation of an inverter is increased and higher output load or input slew rate improves the noise margins and its variation. Intrinsic delay variation based on CV/I delay metric is also compared using ION and IEFF definitions where the best estimate is obtained when considering ION and input transition time variations. Critical delay distribution of a path is also investigated where it is shown non-Gaussian. Finally, the impact of the cell input slew rate definition on the accuracy of the inverter cell timing characterisation in NLDM format is investigated

    Simulation study of scaling design, performance characterization, statistical variability and reliability of decananometer MOSFETs

    Get PDF
    This thesis describes a comprehensive, simulation based scaling study – including device design, performance characterization, and the impact of statistical variability – on deca-nanometer bulk MOSFETs. After careful calibration of fabrication processes and electrical characteristics for n- and p-MOSFETs with 35 nm physical gate length, 1 nm EOT and stress engineering, the simulated devices closely match the performance of contemporary 45 nm CMOS technologies. Scaling to 25 nm, 18 nm and 13 nm gate length n and p devices follows generalized scaling rules, augmented by physically realistic constraints and the introduction of high-k/metal-gate stacks. The scaled devices attain the performance stipulated by the ITRS. Device a.c. performance is analyzed, at device and circuit level. Extrinsic parasitics become critical to nano-CMOS device performance. The thesis describes device capacitance components, analyzes the CMOS inverter, and obtains new insights into the inverter propagation delay in nano-CMOS. The projection of a.c. performance of scaled devices is obtained. The statistical variability of electrical characteristics, due to intrinsic parameter fluctuation sources, in contemporary and scaled decananometer MOSFETs is systematically investigated for the first time. The statistical variability sources: random discrete dopants, gate line edge roughness and poly-silicon granularity are simulated, in combination, in an ensemble of microscopically different devices. An increasing trend in the standard deviation of the threshold voltage as a function of scaling is observed. The introduction of high-k/metal gates improves electrostatic integrity and slows this trend. Statistical evaluations of variability in Ion and Ioff as a function of scaling are also performed. For the first time, the impact of strain on statistical variability is studied. Gate line edge roughness results in areas of local channel shortening, accompanied by locally increased strain, both effects increasing the local current. Variations are observed in both the drive current, and in the drive current enhancement normally expected from the application of strain. In addition, the effects of shallow trench isolation (STI) on MOSFET performance and on its statistical variability are investigated for the first time. The inverse-narrow-width effect of STI enhances the current density adjacent to it. This leads to a local enhancement of the influence of junction shapes adjacent to the STI. There is also a statistical impact on the threshold voltage due to random STI induced traps at the silicon/oxide interface
    corecore