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Abstract 

This thesis explores the potential of probabilistic neural architectures for computation with fu-

ture nanoscale Metal-Oxide-Semiconductor Field Effect Transistors (MOSFET5). In partic-

ular, the performance of a Continuous Restricted Boltzmann Machine (CRBM) implemented 

with generated noise of Random Telegraph Signal (RTS) and 1/f form has been studied with 

reference to the 'typical' Gaussian implementation. In this study, a time domain RTS based 

noise analysis capability has been developed based upon future nanoscale MOSFETs, to rep-

resent the effect of nanoscale MOSFET noise on circuit implementation in particular the 

synaptic analogue multiplier which is subsequently used to implement stochastic behaviour 

of the CRBM. The result of this thesis indicates little degradation in performance from that 

of the typical Gaussian CRBM. Through simulation experiments, the CRBM with nanoscale 

MOSFET noise shows the ability to reconstruct training data, although it takes longer to con-

verge to equilibrium. The results in this thesis do not prove that nanoscale MOSFET noise 

can be exploited in all contexts and with all data, for probabilistic computation. However, 

the result indicates, for the first time, that nanoscale MOSFET noise has the potential to be 

used for probabilistic neural computation hardware implementation. This thesis thus intro-

duces a methodology for a form of technology-downstreaming and highlights the potential of 

probabilistic architecture for computation with future nanoscale MOSFETs. 
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Chapter 1 
Introduction 

This thesis explores the prospects of using future nanoscale MOSFETs to implement proba-

bilistic computation in hardware, based on modelled future nanoscale MOSFETs and specific 

probabilistic neural computation architecture. The word 'future' refers to MOSFETs which 

are not yet available although their performance is predictable through current research ef-

forts, while the word 'nanoscale' refers to MOSFETs with dimensions less than lOnm (sub-

1 Onm) in physical gate length. The motivation of this research is described in Sec. 1.1, and 

the contribution to knowledge is clarified in Sec. 1.2. Finally, the structure of this thesis is 

described in Sec.l.3. 

1.1 Motivation 

The success of metal-oxide-semiconductor field-effect transistors (MOSFETs) as the basic 

building block of most digital and analogue very large scale integrated (VLSI) circuits is pre-

dicted to continue for some years. Currently, 90nm (with a physical gate length of 50nm) is 

the state-of-the-art MOSFET process technology and it is projected that by 2018, sub-lOnm 

physical gate length MOSFETs will be available [6]. The drive toward miniaturisation is 

led by the promise of improved circuit performance, reduced chip sizes, and the potential of 

higher levels of integration. However, as MOSFET dimensions continue to shrink, consider -

able challenges arise in the area of device performance and reliability uncertainty [7, 8]. 

One of the contributing factors towards performance and reliability uncertainty is the in-

crease in low frequency drain current noise. Drain current noise in MOSFETs is predicted 

to increase as the channel length shrinks [9-12]. Random Telegraph Signal (RTS) noise 

and 1/f noise are the primary forms of low frequency noises that are predicted in future 

nanoscale MOSFETs. In current technology these are minimised or suppressed through de-

sign and/or additional fabrication steps. As MOSFET dimensions continue to shrink, their 
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presence will become increasingly significant. Recent studies show low frequency drain cur-

rent noise amplitudes in excess of 60% in Deep Sub-Micrometer (DSM) MOSFET' [13]. 

As MOSFETs continue to scale, the low frequency drain current noise in nanoscale MOS-

FETs2  is expected to become a serious issue [14], leading to severely limited functionality, 

performance, and compromised reliability. A conventional solution would avoid or minimise 

nanoscale MOSFET noise through additional fabrication processes. For large MOSFETs, 

fabrication processes may be controlled to reduce noise [6]. However, in nanoscale fabrica-

tion process, precise fabrication process control may be impossible and the performance gain 

of nanoscale MOSFETs may not justify the enormous fabrication cost. Furthermore, many 

of the sources of noise and unreliability in DSM MOSFETs are fundamental and will not 

yield to improved or more careful processing. Solutions based on alternative architectural 

paradigms, such that the unreliable performance of these nanoscale MOSFETs could be tol-

erated or useful, become very attractive. For example, the architectures proposed in [15-17] 

use redundant circuits to form error correction to deal with this uncertainty. Other approaches 

are adaptive (neural network and probabilistic computing), forcing errors introduced by these 

nanoscale MOSFETs noise to adapt to a known (trained) system outcome or acceptable-error 

marked [18-20]. These fault tolerant architectural approaches provide reliability via redun-

dancy, at the expense of circuit area and speed. An unconventional architectural approach 

that allows for stochasticity, or that even exploits nanoscale MOSFET noise, is therefore an 

exciting alternative. 

Solving the nanoscale MOSFET noise issue requires something of a paradigm shift, wherein 

noise is viewed as a necessary element of useful computation. This is different from the 

approach reported in [16-18] where artificial neural networks are used because of their in-

herent hardware redundancy, error tolerance and self-organisation features, offering a very 

effective means to counteract the inherent weaknesses of nanoscale MOSFETs. Naturally, it 

would be unwise to claim that the proposed approach will solve all conventional computing 

problems. Rather, it provides an opportunity for new computation architectures such as a 

probabilistic neural architecture to be implemented in hardware more efficiently, extending 

'Deep Sub-Micrometer (DSM) refers to MOSFET with physical gate length less than 1 OOnm but greater 
than lOnm. 

2 Low frequency noise in nanoscale MOSFETs will henceforth be referred to as nanoscale MOSFET noise. 
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the compatibility of nanoscale MOSFETs to specific real-world application. 

The Continuous Restricted Boltzmann Machine (CRBM) aims to deal with real-time data 

in a noisy environment; potentially for a complex multi-sensory micro-system implementa-

tion such as a Lab-On-Chip system [21, 22], coincidentally an area where nano scale technol-

ogy may be highly desirable for reasons of size. Data often encodes biological or chemical 

information, of relatively low bandwidth. Probabilistic neural systems are arguably well-

positioned to address nanoscale MOSFET noise as they use stochasticity to extract and to 

classify important features in real-world data. This project explores the use of nanoscale 

MOSFET noise in a probabilistic neural architecture which has been shown great potential 

for realising intelligent embedded system [21-24]. 

The work therefore must build a bridge between future nanoscale MOSFET physics and 

this probabilistic neural computation, in order to determine whether intrinsic low frequency 

drain current noise in future nanoscale MOSFETs is useful for probabilistic computation. 

If unreliable nanoscale MOSFETs can be shown to be useful in such an application, the 

technological and economic consequences of their practical implementation may become 

extremely significant. Furthermore, the methodology developed to make this study has more 

generic usefulness, as will be discussed in this thesis. 

1.2 Contribution to knowledge 

This project sets out to explore the suggestion that 

Low frequency drain current noise in future nanoscale MOSFETs can underpin useful prob-

abilistic computation. 

In examining this hypothesis, the project will develop new methods to link DSM device 

physics, through compact circuit models, to behavioural-level simulations of a relatively -

well-understood probabilistic paradigm. 

The Continuous Restricted Boltzmann Machine (CRBM) has been chosen as an experimental 

platform. While both nanoscale MOSFET noise [10-12,25-29] and CRBM [3,21-24,30-- 
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32] have been the subject of extensive research, the use of nanoscale MOSFET noise for 

computation in the CRBM has not been studied, and it is hoped that this project will point 

the way towards hardware implementations of nano-embedded intelligent systems. 

To achieve the objective of this project, temporal fluctuations of nanoscale MOSFET noise 

must be incorporated into the CRBM. Unfortunately, nanoscale devices are at least a decade 

away from everyday reality [6]. To pursue this project, temporal fluctuations in nanoscale 

MOSFETs will be simulated, based upon theoretical compact models of nanoscale MOS-

FETs extracted from atomistic simulation [25-27,33]. Current simulators cannot support the 

requirement for time domain noise analysis based on nanoscale MOSFET noise character-

istics (RTS). Therefore, in order to still pursue on the main objective of this project, a time 

domain RTS noise based simulation capability must be developed. 

1.3 Chapter layout 

This thesis can be separated into two relatively independent sections, A and B as illustrated 

by Fig. 1.1. Part A deals with nanoscale MOSFET noise while part B discusses the chosen 

probabilistic neural model, the CRBM. Chapter 7 brings these together, linking nanoscale 

MOSFET characteristics and probabilistic neural computation into one common goal, pro-

viding useful computation. The chapters are:- 

. Chapter 2 reviews the nanoscaleMOSFET drain current low frequency noise: RTS and 

1/f noise. 

o Chapter 3 discusses the modelling of a noisy MOSFET for time domain noise analysis 

capability. 

. Chapter 4 analyses the time domain output noise of the noisy analogue multipliers 

implementation, based on the capability developed in Chapter 3 

• Chapter 5 reviews the CRBM algorithm and architecture. 

• Chapter 6 analyses the effect of noise on the CRBM performance. 

4 
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• Chapter 7 presents the CRBM with nanoscale MOSFET noise implementation, and 

explore the performance of this implementation. 

• Chapter 8 concludes the contribution and the future work of this research. 



Introduction 

Can DSM device noise be 
used as the basis for 
probabilistic neural 

computation? 

Part A 

Chapter 2 
Low Frequency Noise in 

Nanoscale MOSFETs 

Chapter 3 
Modelling 'Noisy' 
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Chapter 4 
Noisy Circuit 
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chap/er 5 
Probabilistic Neural 
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Chapter 6 
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CRBM with Nanoscale 
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DSM: Deep-Sub-Micrometer 

CRBM Continuous Restricted Boltzman Machine 

Figure 1.1: The flowchart illustrating the chapter flow in this thesis. 
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Chapter 2 
Low Frequency Noise in Nanoscale 

MOSFETs 

2.1 Introduction 

Low frequency noise becomes a dominant limiting factor in the practical use of MOSFETs in 

a circuit implementation as the devices enter nanoscale dimensions. It sets a lower limit to the 

level of signal that can be reliably processed by the circuit. Excessive low frequency noise 

could lead to serious performance and functionality limitations. Therefore, low frequency 

noise in MOSFETs has been studied extensively in the last few decades [4, 9, 11-14, 27, 34, 

35]. 

Random Telegraph Signal (RTS) noise and 1/f noise are the two forms of low frequency 

noise that are predicted to dominate future nanoscale MOSFETs [9, 11, 12, 14]. In cur-

rent technology, their existence is insignificant, and in most cases minimised or suppressed 

through either design or additional fabrication processes [6]. As MOSFET dimensions con-

tinue to shrink, their presence (noise) is predicted to become increasingly significant. Recent 

studies have shown low frequency drain current noise amplitude in excess of 60% in Deep-

Sub-Micrometer (DSM) MOSFETs [13]. 

Fig.2.1 shows an example of simulated time domain 1-trap RTS and 11f noise for a 35nm 

gate-length NMOS transistor based on a noisy MOSFET model developed in [2]. In reality, 

1/f noise in general is more relevant to larger MOSFETs (>5-10 m2 [1 1]), while as MOS-

FETs shrink to nanometer scale, RTS noise becomes dominant [4]. It is commonly agreed 

that the superposition of multiple RTS noise sources gives rise to 11f noise. Understanding 

the microscopic origin of RTS noise therefore contributes to the understanding of the origin 

of 11f noise. 

7 
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Figure 2.1: Sample of(a) single trap RTS and (b)flicker noise. 

2.2 Random Telegraph Signal (RTS) Noise 

Recent studies show that the low frequency performance of nanoscale MOSFETs is domi-

nated by RTS noise [11, 13]. RTS noise arises from the capture and emission (trapping and 

detrapping) of hot electrons in the channel by traps (defects) at the interface of Si - S02 , 

causing discretised drain current fluctuations, as seen in Fig.2. 1(a) [2]. 

RTS noise is characterised by three parameters: the average amplitude of fluctuation LID, 

the mean capture time , and the mean emission time e•  All these parameters vary over wide 

ranges with devices sizes, temperature, and bias conditions, where models to describe their 

dependencies have been developed [4,27,28,36]. 

2.2.1 Origin of traps 

There are four kinds of defects or traps commonly associated with a Si - Si02  interface: 

mobile ions, fixed charges, interfacial traps, and induced charges [1]. Illustrated by Fig.2.2, 

the defects/traps are briefly described below based on the detailed descriptions in [1]. 

• Mobile ions, typically Na and K, lying within the Si02  interface are introduced 

through contamination during the fabrication process. They move around or redis-

tribute under bias-temperature stressing, producing instability in the MOSFET's char- 
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Figure 2.2: An illustration of the traps and charges in Si - Si02  structures. (Adapted from 
[1]). 

acteristics. 

. Fixed charges exist due to excess ionic silicon that has broken away during the oxidis-

ing reaction at the Si - Si0 2  interface. This explains the location of fixed charges in 

Si02 . Unlike mobile ions, these fixed charges are consistent for a given set of fabrica-

tion conditions. 

• Interfacial traps, which are situated at the Si - Si02  interface, are believed to arise 

from unsatisfied chemical bonds, or so-called "dangling bonds", at the surface of the 

Si during thermal formation of the Si0 2  layer. The interfacial traps introduce energy 

levels in the forbidden band gap at the Si - Si02  interface and remain fixed in energy 

relative to the conduction band and valence band energies. 

Induced charges are introduced into the Si02  due to ionising radiation, or hot carrier 

stress. The induced charges may be positively or negatively charged. They influence 

the MOSFET's characteristics by increasing or reducing the threshold voltage. 

Interface traps and induced charges, unlike the mobile ions and fixed charges, are readily 

influenced by the bias conditions of the MOSFET. If they are within the tunnelling distance 
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(<2 mm) of the hot electrons, they can be charged or discharged, creating fluctuations in the 

MOSFET's characteristics (i.e. the drain current IDs),  of the form of RTS. 

2.2.2 RTS noise amplitude 

The discretised drain current noise in a nanoscale MOSFETs is the combined effect of carrier 

number fluctuations and carrier mobility fluctuations [9,37]. The normalised amplitude of 

this discrete fluctuation is described in the following general relation: 

tIDLN ± zI2  
113 N 

(2.1) 

where N is the number of channel carriers per unit area and 12  is carrier mobility. The term 

AL () in Eq.(2.1) describes the effect of mobility fluctuations caused by Coulombic scatter-

ing of the charged traps [4, 37-39]. The sign (±) indicates the electronic state of the traps 

(i.e. charged (+) or neutral (-)) [36], after capturing electrons [37]. A trap that is charged 

after capturing an electron increases the scattering effect which subsequently increases the 

noise amplitude LID  [37]. If a trap becomes neutral after capturing an electron (charged 

when empty), the Coulombic scattering becomes weaker, reducing the noise amplitude Lu'D 

[37]. As the MOSFET enters nanoscale dimensions, the carrier number fluctuations () 

become dominant [9]. Therefore, the term (±) in Eq.(2.1) can be dropped. ($) de-

scribes the carrier number fluctuations caused by the capture and emission of electrons by the 

trap. When a trap captures an electron from the channel, the effective drain to source current 

drops. When the trapped electron is released into the channel, the effective drain to source 

current increases. The normalised amplitude (LID/ID) dominated by () can therefore be 

described by [40,41]: 

'D 	g 	q 	
( - 
	), 	

(2.2) = a1• WLC
0 	t0  

where g is channel transconductance, W is channel width, L is channel length, C0x  is gate 

oxide capacitance, t0x  is gate oxide thickness, Xt is trap depth measured from the Si - Si0 2  

interface. a in Eq.(2.2) is a semi-empirical parameter used to account for the wide variation 
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Figure 2.3: RTS noise amplitude variation with gate VGS  and drain V1  voltages for three 
different trap depths (x t  = 0.11, 0.40, 0.80 nm) located in the middle ofgate ('Yt = 
1 6nrn) for an implementation based on 35nm NMOS modelled in [2]. 

of RTS amplitude [40] caused by the short channel effect in MOSFETs operating in weak 

inversion [41]. a is in the range of 0.1 to 100 [42]. 

The dependence of typical RTS noise amplitudes on bias is shown in Fig.2.3. The noise 

amplitudes peak at low gate voltages (weak inversion), while at higher gate voltages, the 

amplitudes decrease. Recent studies have shown that RTS noise amplitudes vary by some 

40% in weak inversion compared to 5% for strong inversion [27]. In addition, it has been 

reported that shallower traps (small Xt) produce a larger RTS noise amplitude [37], which is 

in agreement with Eq.(2.2). 

2.2.3 RTS average capture and average emission time 

The capture and emission of electrons cause fluctuations in channel conductance, which in 

turn causes the drain current to fluctuate. Capture and emission are stochastic events, obeying 

Poisson statistics, and are normally described by the average values of e  and t,, respectively 

[36]. T, represents the mean time that a trap is empty before capturing an electron and 

represents the mean time in which a trapped electron is freed. Eq.(2.3) and Eq.(2.4) [4] 
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describe the basic empirical model for t, and f,. that are used in this work. 

= exp (L) 	

(2.3) 
UoVjhfl 

- 	exp[(zEB  +LECT)/kT] 
Te = 	 ( 2.4) 

gcroVth 1 

In Eq.(2.3) and Eq.(2.4), a0  is the trap cross-section pre-factor, z.E8  is the barrier energy 

for capture (also known as activation energy for capture), LECT is the trap binding energy, 

LEB + SECT is the emission activation energy, is the average thermal velocity, ri is the 

channel electron concentration, k is the Boltzmann constant, T is the absolute temperature, 

and g is the degeneracy factor which is normally set to 1 [4]. 

The capture and emission time are thermally activated processes which are inversely pro-

portional to temperature, as described in both Eq.(2.3) and Eq.(2.4). For a fixed operating 

temperature, the capture and emission time are affected by bias conditions through o, 

and LEcy. It has been reported that U() and zE 7  depend strongly and positively on gate 

voltage, 17GS  while LEB  does not depend on either VGs  or VDS  [4, 5, 28]. The channel elec-

tron concentration's, dependence on drain voltage, VDS, is strongly influenced by the position 

along the channel at which the trap is located. For an n-MOSFET, ii near the source is not 

affected by VDS while ii near the drain shows a strong inverse relationship with VDS [2]. An 

example of mean capture and emission time variation with bias conditions for a trap near the 

Si - Si02  interface (x 1 = 0.1 lnm) located in the middle of the channel (y= 16nm) is shown 

in Fig.2.4. 

2.2.4 Discussion 

The capture and emission (trapping and de-trapping) of channel hot electrons by a trap (de-

fect) at the interface of Si—Si0 2 , causes discretised drain current fluctuations with amplitude 

exhibiting a non-Gaussian distribution [11]. The power spectral density (PSD) of 1-trap RTS 

noise exhibits a Lorentzian spectrum, described by [4, 28,29]: 
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Figure 2.4: Average capture '. and average emission t, vs gate VGS  and drain VDS  voltages 
for trap located at x1  = 0.1 mm and Yt = I6nm for an implementation based on 
35nrn NMOS modelled in [2]. 

4 (zI) 
S(f) =9 	 , 	 ( 2.5) 

( + T) 	
+ 	

+ (2f)1
'[ ( 

The number of discrete levels of drain current clearly depends on the number of traps. In 

practical MOSFETs of 1.0 x 0.15 jim 2  dimensions, the number of interface trap densities are 

usually in the order of 10 1°eV' cm 2  [43], of which several could be active (i.e. energy 

level within kT) causing multi-level RTS noise. For multi-trap RTS, Eq.(2.5) is generalised 

to [4]: 

Ntrps 	
4 	

(2.6) S1 (f)= 

k=1( + e)k 	+ 	
+ (2f)] 

where Ntraps  represents the total number of active traps contained within the Si - Si02  

interface and S1 (f) is the current noise power spectral density summed over all traps k = 

1, 2, 3.....Ntraps . For a large number of active traps, Ntrap, uniformly distributed (both 

throughout the oxide and in energy [44]) with a wide distribution of time constant (t, and ), 

the superposition of Lorentzian spectra in Eq.(2.6) gives rise to S1 (f) with a 11f form [4, 12]. 

13 
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This provides a physical justification that the superposition of several RTS noises gives rise 

to 1/f noise in MOSFETs. 

2.3 Flicker (11f 
) 

Noise 

The origin of 11f noise in MOSFETs has been extensively studied for more than a decade 

[9, 14,44-46]. It has been agreed recently that 1/f noise in MOSFETs is associated with 

both carrier number fluctuations and correlated carrier mobility fluctuations [4,47]. Carrier 

number fluctuations come from the random trapping and detrapping of free carriers in the 

oxide traps near the Si - Si0 2  interface, where the trapped carriers limit the mobility of the 

free carriers near the interface by Coulombic scattering [4]. 

2.11 11f noise model 

In practice, MOSFET drain current 11f noise is commonly described by its Power Spectral 

Density (PSD). A typical MOSFET drain current 11f noise PSD has the following form [48]: 

S(f) - K
1Ij 

- COX Le2 	f' 	 (2.7) 
ffJ 

where Kf and af are process-dependent constants and may vary from sample to sample. 

The noise exponent af is typically between 0.5 and 2 [49]. The 11f noise cOefficient K1  

was claimed in [47] to be bias-dependent but in common practice [48], K1  is considered 

constant. The frequency exponent, e1, is a bias-dependent parameter with a typical value 

ranging between 0.7 and 1.2 [50]. C0  is the gate oxide capacitance and L eff is the effective 

channel length of a MOSFET. 

A unified model of a MOSFET's drain current 11f noise PSD incorporating both carrier 

number fluctuation and mobility fluctuation has been proposed by Hung [45]. The widely 

adopted analytical expression of the unified model in strong inversion is given by [48] 

14 
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S(f) - kTq2It11 
1A in N0 + N* + B (N0 - NL) + C (N - Ny)] - fefL2C L NL+N* 

+LL kTI 
	A + BNL  + CN 

dmfefWL2 X 
 (NL + N*)2 	

(2.8) 

where 

	

qN0 = Co.(Vcs - Vth) 	 (2.9) 

qNL = C0  (VGS - 	- VDS) 	 (2.10) 

and N* = (kT /q2) (Co,+  Cd + Cd and Cit  are depletion layers and interface trap 

capacitance respectively. 'y is the attenuation coefficient of the electron wave function in the 

oxide, with a typical value of 10 8cm 1 [48]. A, B, and C are technology-dependent model 

parameters. L.Ld m  refers to the electrical channel length reduction due to channel length 

modulation. No and NL are the charge densities at the source and the drain ends of the 

channel respectively. 

2.3.2 Discussion 

Eq.(2.7) is a simple model of the MOSFET's drain current 1/f noise PSD, used largely for 

'long channel' MOSFETs [47]. Nevertheless, it is able to explain the general frequency and 

size dependence of 11f noise in any MOSFET correctly. In practice, Eq.(2.7) is much easier 

to understand and implement, especially for the initial low frequency noise characteristic 

approximation of a MOSFET. 

The approach to carrier trapping-detrapping 1/f noise provides a better physical explanation 

of 11f noise in MOSFETs. Eq.(2.8) is a complex model based on this approach and is con- 
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sidered to be a 'complete' model, capable of expressing 11f noise in all MOSFET operation 

regions in strong inversion. In the absence of technology-dependent model parameters and 

charge density estimations, Eq.(2.8) may not be immediately useful to describe 'accurate' low 

frequency noise in MOSFETs. In this case, Eq.(2.7) provides a reasonable approximation of 

Eq.(2.8). 

2.4 Summary 

This chapter has drawn together results from the extensive research and literature of Deep-

Sub-Micrometer (DSM) noise modelling. It has been established that an approach based on 

the capture and emission of electrons by traps near the vicinity of the Si - Si0 2  interface 

provides a clear and simple explanation of dominant low frequency noise sources (RTS and 

11f) in nanoscale MOSFETs, which accounts for both the effect of earner number fluctua-

tion and carrier mobility fluctuation. In general, low frequency noise is inversely proportional 

to MOSFET gate area. For a small MOSFET, RTS noise dominates the low frequency, pro-

ducing discretised drain current. For large MOSFETs, the superposition of RTS noise gives 

rise to 11f noise. 



Chapter 3 
Modelling 'Noisy' MOSFETs 

This thesis aims to demonstrate the principle that nanoscale MOSFET low frequency noise 

can underpin useful probabilistic behaviour. The low frequency noise is used as a source of 

probabilistic behaviour in a modelled nanoscale silicon 'neuron' that adapts to the natural 

variability in input data. For this purpose, a noisy MOSFET model that accurately represents 

the temporal fluctuation of a real nanoscale MOSFET is required. This chapter describes the 

method used to model the noisy MOSFET. The capability to represent the dominant nanoscale 

MOSFET low frequency noises (RTS and 11f) will be demonstrated and verified. The noisy 

MOSFET model will be used to implement a key circuit for the silicon 'neuron' in Chapter 

4. 

3.1 Introduction 

The aim of this study is to develop a SPICE-based behavioural model of a 'noisy' MOS-

FET, preserving the underlying, essential MOSFET transfer characteristics, as illustrated in 

Fig.3.l. 

A credible, computationally-simple noisy MOSFET model is critical to this work. At this 

concept-proving stage, however, simplicity and simulation speed are more important than 

great accuracy. It is not, therefore, the objective of this study to develop a complex, arbitrarily 

accurate noisy DSM MOSFET model. Rather, the focus is to develop a model that produces 

a correct form of noise behaviour, valid in all operating regimes, and is easy to implement in 

a readily-available circuit simulator. 

The work described in this chapter focuses on two low frequency MOSFET noise models: 

11f noise and RTS noise. 11f noise in general is more relevant to the larger area MOSFETs 

17 
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Figure 3.1: (a) Standard n-channel MOS drain-source current IDS  for a given VGS voltage. 
(b) noisy n-channel MOS drain current for a given VGS voltage. 

(>5— 10m 2  [11]), while as the MOSFET shrinks to nanometer scale, the RTS noise become 

dominant [11,36]. Current models predict that the superposition of RTS noise produces 11f 

noise, and that the transition from a 11f -dominated regime to that of true RTS noise is 

gradual—not in the form of a first-order 'phase transition' [4, 11,45]. 

3.2 Methodology Overview 

The noisy MOSFET was modelled by augmenting a conventional noiseless MOSFET with a 

noise source, m(t) (Fig.3.2). In this study, the initial MOSFET model was that for a 0.35pm 

AMS CMOS technology. However, the overall and final implementation of the noisy MOS-

FET was based upon a 35mm gate length MOSFET, for 90mm CMOS technology node, ex-

tracted from atomistic simulation [25,26, 33]. 

The noiseless MOSFET is used to generate the 'DS  response of the noisy MOSFET at a 

particular time instance t, for the given bias conditions (lcs  and VDS).  As bias conditions 

change in time, the noisy MOSFET drain current therefore changes correspondingly. The 

methodology uses 'DS  static model in transient analysis. This is valid as the 'DS  reaches 

steady state in pico-seconds [51] while the low frequency noise fluctuates in micro-seconds. 

In 
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Figure 3.2: Noisy MOSFET components. The noiseless MOSFET is a standard MOSFET[ 
having a typical I-V characteristic corresponding to the technology used. The 
noise source n(t) generates noise data with the speqflc physical characteristics 
of the low frequency noise it models. 

The noise source n(t) represents the 1/f or RTS behaviour of the noisy MOSFET. Time-

domain models of 11f noise are calculated from the 11f Power Spectral Density (PSD) 

(described in Sec.2.3.1) generated for each bias point of the MOSFET. For RTS noise, time-

domain models are developed using RTS parameters (amplitude and time statistics) calculated 

at each bias point of the MOSFET. Details are illustrated in Sections 3.3 and 3.4. 

To ensure that the methodology used for generating noise does indeed produce time-domain 

noise with the intended spectral characteristics, the PSD of the generated time-domain noise 

is calculated using a PSD extraction algorithm. 

In general, the DC drain-source current, 'DS,  generated at a given time t, is used by the noise 

source n(t) to generate one noise datum. The noise data generated in time space have the cor-

rectform of noise behaviour that the noise source m(t) is supposed to model. If bias conditions 

change in time, the noise source m(t) generates non-stationary noise data corresponding to 

the changing DC response of the noiseless MOSFET. 
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The noisy MOSFET model is used as a 'standard' component in circuits. It is essential that 

the method of generating noisy drain current does not otherwise disrupt the use of the circuit 

simulation under transient analysis. Therefore, a high-level analogue behavioural language, 

called Verilog-A, is used to model the noisy MOSFET. Implementation using Venlog-A al-

lows full control of the noisy MOSFET behaviour, in addition to implementation flexibility 

for future modification. 

3.3 Generating 11f Noise 

The objective of generating time-domain 1/f noise is somewhat different from that of most 

other work [52, 53]. Although the method chosen has been used to develop commercial 

transient noise analysis [53], this is not the aim of this work. The aim is to model a noisy 

MOSFET in a circuit implementation of a particular computational architecture, in order to 

explore the effects of noise on its performance. 

3.3.1 Methodology: 11f noise 

The critical part in modelling the noisy MOSFET is the implementation of the 11f noise 

source, n(t). The 1/f noise source should exhibit the correct form of noise characteristic 

corresponding to the MOSFET technology and bias conditions. 

In this work, 1/f noise was generated based on the Sum-of-Sinusoids technique adapted from 

[52]. This is the best approach for the use with Verilog-A implementation, even though other 

approaches are possible. The technique generates the time domain 1/f noise data, n(t), by 

summing a fixed number N1  of random phase sinusoids in a specified frequency band [52]: 

Nf 

m(t) = 	a(t) sin(27f2 t + 	 (3.1) 

where a2  is the magnitude, f2 is the frequency and çoj is the random phase defining the i ll  

sinusoid. 

20 



Modelling 'Noisy' MOSFETs 

N1  represents the number of sinusoids used to approximate noise data at a given time t. For a 

fixed frequency band (band-limited) PSD S(f) (Eq.(2.7)), Nf  depends on the division of the 

frequency band into frequency steps, Lf. A smaller Lf means more sinusoids, better n(t) 

approximation, and longer transient data representation. Depending on the shape of 8(f), the 

frequency band may be divided linearly or logarithmically. 

For each frequency interval f2 and  f2 + zf of a given PSD S(f) shown in Fig.3.3, the 

magnitude a2  is approximated as: 

f+&f 
a = 2f 	S(f)df. 	 (3.2) 

During simulation, as bias conditions change, S(f) changes accordingly. For 11f noise, the 

PSD is proportional to the drain-source current, 'DS,  as described by Eq.(2.7) in Sec.2.3.1. 

Consequently, according to Eq.(3.2), the magnitude a 2  will also change. The values for a 2  

are updated at each time step to cater for changes in bias conditions. Changes in bias con-

ditions therefore affect generated 11f noise magnitude and spectrum characteristics through 

Eq.(3.2) and Eq.(3.1). This enables the modelled noise generated to be of non-stationarity 

characteristics in the case where bias conditions change with time, at the expense of lengthy 

simulations. 

f2  represents the frequency of the i1h  sinusoid. çoj  is a random phase angle, uniformly dis-

tnbuted between 0 and 27. values are unique for each sinusoid across t. 

3.3.2 Implementation: 11f noise 

The initial n-channel MOSFET (NMOS) used to establish our methodology was based upon 

a 0.35pm AMS CMOS model. Gate length L, width W, and oxide thickness T0  were set 

to 0.35 /tm, 1gm, and 7.7nm, respectively. The 1/f noise coefficient K1 , exponent a1 , and 

frequency exponent e1 values were set to 2.81e-27 A . F, 1.4, and 1, respectively. These 

values were taken from the AMS CMOS technology file used in simulation. In order to 

generate statistically significant noise amplitudes useful for this work, K1  was arbitrarily 

increased to 2.81e-23 A . F. 
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Figure 3.3: Illustration of 11f power spectral density S(f). 

DSM implementation was based upon a 35nm gate length NMOS model developed using 

atomistic simulation. We set L35nm, W=O. 1 tim, T0 0.88nm. The flicker noise parameters 

were not available in this 35nm NMOS model. Therefore, in this study, the values used for 

0.35pm CMOS technology were re-used for the 35nm NMOS implementation. 

These values and this approach are not acceptable for a thorough exploration of noise in 

35nm MOSFETs. However as explained in Sec.3.3, they are more than adequate for the aims 

of this study, capturing as they do the most important characteristics of DSM noise at circuit 

level. 

Using these parameters, the 11f noise source n(t) was implemented based on the method 

in Sec.3.3.1. It is thought that 1/f noise is important below 10kHz [9,46], and we chose to 

generate 11f noise between 100 Hz (frnin)  and 10 kHz (fmax).  So, for a given bias conditions 

(i.e. IDs),  frequency band, and MOSFET parameters, a corresponding PSD can be generated 

based on Eq.(2.7). 

This PSD is then used to generate the amplitudes of the sinusoids in Eq.(3 1) using Eq.(3.2). 

The frequency band was initially divided linearly with Lf set to 100 Hz. Therefore, based 
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upon the set frequency band and frequency step, there are 99 terms in equation Eq.(3. 1). 

It should be noted that this calculation is performed to generate one noise datum at a particular 

time instance t and then the noise datum, LIDS(t), is added to generate (IDS(t) + LIDs(t)). 

At the next simulation time step, the process is repeated. 

The implementation steps for generating time domain 11f noise are summarised as follows: 

At t = 0 (initialisation) 

• Set the lowest frequency fmin  and highest frequency fmax 

• Set the frequency step Lf for dividing the band-limited PSD S(f). 

• Calculate the number of sinusoids: Nf = fmafmin 
Af 

• Generate N1 random phase angle using random number generator. 

Probe the noiseless MOSFET drain-source current 'DS  at time t. 

Use the 'DS  to generate band-limited (1mm ' fmax) PSD S(f) using Eq.(2.7) 

Approximate the magnitude a i  for each frequency interval f2 and f+/f using Eq.(3.2). 

Calculate the noise datum n(t) using Eq.(3.1). 

Add the noise datum n(t) to 'DS  to produce noisy 'DS. 

Repeat 1-6 until the end of simulation time. 

3.4 Generating RTS Noise 

RTS noise in MOSFETs has been accepted and studied for some time [4,37,54,55]. Most 

agree that the physical origin of RTS noise is the trapping and de-trapping of electrons by 

traps located at or near the vicinity of the Si - Si02  interface [28,43] and RTS noise causes 

discretised drain current fluctuations. However, a 'standard' and generally accepted model 

for RTS noise that is valid for all operating regimes does not yet exist [28]. 
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The number of discrete values of 'DS  depends on the number of traps [38]. Most RTS noise 

models are based upon single trap capture and emission activity [4,28], and restricted to room 

temperature operation in ohmic regimes at strong inversion [4,28,43]. 

In this work, we assembled a more wide-ranging RTS model based upon previously-published 

work [4,28,36,37,41,55-57], and made some pragmatic assumptions to enable the models 

to be used in our circuit and target architecture. 

3.4.1 Assumptions: RTS noise 

The RTS noise is generated based upon existing models, which were developed and extended, 

with the following assumptions and restrictions:- 

Only electron traps are considered and the noisy-MOSFET modelling was limited to 

n-type devices at this stage, as very few models of hole traps have been reported. 

All traps are considered neutral when empty. Attractive and neutral traps have larger 

cross-sections (in the range of 10-14 - 10 12 cm2  and 1018 - 10 4cm2 , respectively) 

than do repulsive (negative) traps with a cross-section smaller than 10 18 cm2 , and a 

concomitantly low capture probability [58]. Neutral traps produce larger RTS ampli-

tudes compared to the attractive traps and therefore representing the normally observ-

able, hence analyzable RTS noise [37]. 

Active traps reside in the volume between the Si - Si02  interface and oxide at depth 

within the tunnelling distance (2 mm) of any hot electrons, limited by gate oxide 

thickness t0 . 

Adjacent traps are at least 2nm apart. This is important to ensure that traps are elec-

trostatically isolated [34], and thus there is no interaction such as tunnelling between 

traps [4]. 

The capture and emission of an electron by a single trap are mutually exclusive events. 

Only one electron can be trapped by each trap at any particular time. It was reported 
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by [4] that RTS noise due to multi-electron trapping by a single trap can occur for traps 

located in Si rather than the Si - Si02  interface. 

No Coulombic scattering effect (channel blocking). Coulombic scattering would cause 

trapped electrons to become a mid-filter that repels the further capturing process of 

electrons. This effect is mainly prominent in strong inversion and in very weak inver-

sion [4]. 

It is assumed that capture and emission time are not affected by electron temperature. 

However, according to [4], by applying a drain-source voltage, the electron tempera-

ture can be raised above the underlying lattice temperature, giving rise to temperature-

dependent capture and emission as evident by Eq.(2.3) and Eq.(2.4). By ignoring the 

effects of electron temperature, this assumption introduces inaccuracy to capture and 

emission time approximation especially for high bias conditions. 

The amplitude of RTS is not affected by lateral trap position along the channel region. 

With these assumptions, a suitably accurateform of RTS noise, valid for low bias conditions 

and typical temperatures can be generated while at high bias conditions and corresponding 

high temperatures, the accuracy will be compromised. It is acknowledged again that RTS 

noise thus generated may not be a completely accurate representation of real RTS noise in 

MOSFETs. As stated in Sec.3.1, that is not the main aim of this study. 

3.4.2 RTS Amplitude 

When a trap captures an electron from the channel, the effective drain to source current drops. 

When the trapped electron is released into the channel, the effective drain to source current 

increases. The normalised amplitude (LID/ID) of current fluctuation between the capture 

and emission of an electron by the trap is described by Eq.(2.2) in Sec.2.2.2 [40,41] 

Eq.(2.2) assumes RTS noise amplitude does not depend on the position of the trap along 

the channel region. Evidently, this assumption is not wholly accurate [27,57]. The RTS 

amplitude has been shown to peak when the trap is located at the centre of the channel region, 
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and reduces for locations toward the source or drain [27, 57]. However, for simplicity, in this 

study it is assumed that Eq.(2.2) is sufficient to describe RTS amplitude that depends solely 

on trap depth Xt. It is acknowledged that it is crucial to refine Eq.(2.2) to include the effect 

of trap position along the channel on noise amplitude in future models. From Eq.(2.2), the 

deeper the trap location into the oxide from the Si - Si0 2  interface, the smaller the amplitude. 

The maximum amplitude occurs when the trap lies at the interface, Xt = 0, where Eq.(2.2) 

reduces to: 

'D 	9M 	q 

1D 	 WLCOX 	
(3.3) 

RTS amplitude varies by some 40% in weak inversion compared to 5% for strong inversion 

[27]. This suggests that RTS noise will depend strongly on the bias point of the MOSFET. In 

Eq.(2.2), the bias dependence of RTS amplitude is modelled through the channel transcon-

ductance g. 

Transconductance is generally calculated as g m  = 	In this study gm =is calculated 

based on the inversion layer approximation [59] in order to cater for weak inversion operation 

of the MOSFET in which significant RTS amplitude has been found: 

g can be approximated as [59]: 

'DS 

nkT/q (3.4) 

for weak inversion, and 

I2pC0 

()  
9m 	 'S (1 + AVDS) 	 (3.5) = 4! 	 D  

vn 

for strong inversion, where A is the channel length modulation parameter. 

For high drain voltage, 9m  is calculated using the velocity saturation approximation [59]: 
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g = WCox V sat. 	 (3.6) 

The transition between weak and strong inversion is approximated using the transition current 

'DSWS [59]: 

2  
'DSWS 

= 	

w 
. - 2n 

kT
_) , 	 (3.7) 

( 

	

2n L 	q 

and the transition from strong inversion to velocity saturation is approximated by the transi-

tion current 'DSSV  [59]: 

'DSSV 
8nWLC - V sat  

(3.8)
-  

3.4.3 RTS mean capture and emission time 

The capture and emission of electrons cause fluctuations in the channel conductance, which 

in turns causes the drain current to fluctuate. f, represents the mean time that a trap is empty 

before capturing an electron and ? represents the mean time of a trapped electron is freed. 

and e  are described by Eq.(2.3) and Eq.(2.4) respectively in Sec.2.2.3. 

The trap cross-section pre-factor u o , activation energy for capture LE2 , and trap binding 

energy LECT are parameters specific for each trap at a given trap location, bias conditions 

and temperature [4,28]. a o  and LECT depend strongly and positively on gate voltage, VGS, 

while LEB  does not depend on either VGS or VDS  [4,5,28]. There has been no reported 

explicit relation describing do and LECT dependence to bias and/or temperature. In most 

cases, their values were extracted from the study of temperature- and bias-dependence of 

RTS noise from which they were found as fitting parameters [4,5,28]. 

The channel electron concentration, n is a further important parameter in Eq.(2.3) and Eq.(2.4). 

In linear operation (assuming constant electron concentration along the channel), n is typi-

cally described by [4,28]: 

27 



Modelling 'Noisy' MOSFETs 

1'l= 
IDSLeI 

qLVDst jnv Weff' 
(3.9) 

where is electron mobility, tin, is the inversion layer thickness, and Wef f and L ei1 are the 

effective channel width and length, respectively. In saturation operation, Eq.(3.9) is no longer 

applicable, as electron concentration can no longer be approximated by a constant channel. 

A general description of electron concentration at a specific location in the channel is given 

by [58]: 

n(x, y) 	- exp [q (''(x) - V(y)) /kTJ, 	 (3.10) 

where x is the depth measured from the Si - Si02  interface, y is the lateral location mea-

sured from source, ni  is the intrinsic carrier concentration, (x) is the band bending potential 

at depthx, V(y) is thequasi-Fermi potential at lateral locationy, and Na  is the substrate dop-

ing concentration. Eq.(3.10) is too complex to be used here, as it wOuld involve numerical 

methods to solve for b(x) [58]. In this work, the charge sheet approximation was assumed, 

within which Eq.(3.10) becomes: 

n(O,y) = j/-exp[q((0) —V(y))/kT], 	 (3.11) 

where 0(0) 	I's  is the surface potential. A description of surface potential /s  and quasi- 

Fermi potential V(y) can be found in Appendix A. 

Finally, and f are inversely proportional to thermal velocity, Vth,  which is described by 

[4]: 

Vth 
I8kT 

= 1/ V lrm* 

where m*is  the effective mass of an electron. 

(3.12) 
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Figure 3.4: (a) Single trap RTS noise Power Spectral Density, S(f) generated using Eq. (2.5). 
(7) Time domain RTS noise generated from Power Spectral Density S(f) using 
Sum-of-Sinusoids techniques. 

3.4.4 Methodology: RTS noise 

The method used to generate 11f noise is not applicable for RTS noise, as it cannot generate 

the discrete noise levels that characterise RTS noise. Fig.3 .4(b) shows RTS noise generated 

from the a single trap RTS noise PSD in Fig.3.4(a) described by Eq.(2.5). The inability of 

the method described in Sec.3.3. 1 to generate the correct time-domain form of RTS noise is 

clear. 

An alternative method was therefore developed, that generates RTS amplitude and mean time 

statistics using the Monte Carlo simulation method. 

The lifetime of a filled trap (lowered 'DS  current) and an empty trap (high 'DS  current) obey 

Poisson statistics [4, 11,28]. The probability that an empty trap captures an electron is [4]: 

p(t) = —exp ( -- ) , 	 (3.13) 
Tc 	\ TcJ 

and the probability that a full trap emits an electron is: 
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1 
p(t) = -_- exp

(-Tle)
- 	 (3.14) 

e  

where p(t) and pe (t) are the normalised probabilities: 

r pcie (t)dt = 1. 	 (3.15) 

where Pc/e  (t) represents either Pc  (t) or p (t). Based on a Monte Carlo method [60], Eq.(3.15) 

is generalised to: 

PtT,.an 

/ 	pc1e (t)dt = P(ttran). 	 (3.16) 
Jo 

where P(tTran) is the probability of capture or emission by the transition time tTran,  having 

values from O(tTran  = 0) to 1 (tTran  = cc). Performing the integration results in: 

1 - exp
(- tTran 

= P(tTran). 	 (3.17) 
c/e I 

Eq.(3. 17) can be manipulated algebraically to obtain the following 

/ 	r \ 
exp I - 

tTan 
 1 	1 - P(tTran). 	 (3.18) 

\. 	c/e) 

Taking the natural log of both side of Eq.(3.18) and performing another algebraic manipula-

tion gives 

tTran = — c1e  in (1 - P(tTran)). 	 (3.19) 

If random number generator is used to generate the probability P(tTran), Eq.(3.19) can be 

used to detennined the corresponding transition time tTra.  However, since P(tTran) is 

evenly distributed between 0 and 1, Eq(3.19) can be re-written as 

tTran = '/ in (P(tTran)) 	 (3.20) 
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xt(nm) I Temp (K) I VGS(V)  I ao (cm2 ) I LEB (eV) I LEcT (eV) 

1.1 310 3 2.1Oe-19 0.411 0.076 
1.3 320 0.86 8.40e-20 0.186 0.218 
1.4 330 1.45 5.80e-15 0.645 0.102 
0.9 270 3.67 3.80e-15 0.480 0.078 

1 300 1.9 2.04e-15 0.593 0.108 
1.2 300 0.86 7.00e-20 0.300 0.750 

1.25 300 1.25 8.90e-18 0.320 0.060 

Table 3.1: Fitting parameters Oj, /EB , LEcT , for seven room temperature traps observed 
in 0.4 jim 2  n-channel MOSFETs with corresponding estimated trap depth Xt [4, 5]. 

Eq.(3.20) can be used to determine the transition time tTrafl. It is assumed that the capture 

and emission of an electron by a trap are mutually exclusive events. When a trap is empty, 

the only transition possible is capture and vice versa. Therefore, the generated probability of 

transition P(tTran) applies to either for electron capture or emission. 

Fig.3.5(a) and Fig.3.5(b) are examples of single trap and multi(3)-trap RTS noise generated 

using the amplitude given in (2.2), and the transition time generated using Eq.(3.20). 

3.4.5 Implementation: RTS noise 

In this initial study, the position of the single trap in each noisy MOSFET channel is set 

arbitrarily to an appropriate lateral position and depth between source and drain. Trap depth 

Xt is selected from Table 3.1. These are experimental values [4,5,28]. In order to use the 

trap depth Xt for the 35mm MOSFET model, the values were scaled down by a factor of 10 

to cater for a thin gate oxide (-- 7 - 8). 

Depending on bias conditions, the transconductance g n  was calculated according to Eq.(3.4), 

Eq.(3.5), or Eq.(3.6). Using the calculated g and MOSFET parameters W, L, C O3  and t0 , 

the RTS noise amplitude AID  for a trap located at (Xt, lit) was generated based on Eq.(2.2). 

At the same time, the mean capture and mean emission f, time were determined according 

to Eq.(2.3) and Eq.(2.4), respectively. cr0 , LEB, and LECT are selected from Table 3.1 for 

the appropriate value of the trap depth Xt. It is assumed that /EB is a fixed value for all bias 
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Figure 3.5: (a) Single trap RTS noise. (b) multi(3)-trap RTS noise. 
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conditions. This is a reasonable assumption as LEB has shown no dependence on bias [4]. 

On the other hand, LECT was reported to show dependence on both gate voltage VGS and 

drain voltage VDS [4]. This dependence is described by [4]: 

- q (6VGS - 	Xt 
ó(L.ECT) 	 +q&L's, 	 (3.21) 

- 	ttox 

where 5(LECT) and 6VGS are calculated with reference to the values (LECT and VGS) ob- 

tamed from Table 3.1 for the trap depth Xt selected. The reference VGS from Table 3.1 was 

scaled (VGS x 	to cater for lower operating voltage for the 35mm based implementation. 3.5 

8 1's is the change in surface potential with reference to initial 'i/g, calculated based on a given 

trap lateral location Yt  and drain voltage VDS. 

Similarly, a0  depends strongly on the gate voltage VGS but to the best of our knowledge, no 

explicit mathematical model of the relationship has yet been reported. For simplicity, a o  was 

set to be a fixed parameter for all bias conditions. It is acknowledged that this assumption 

leads to a less accurate model; however, for the purpose of this work, this is sufficient. The 

channel electron concentration n is calculated from Eq.(3.11). The quasi-Fermi potential 

(V,) and surface potential 0 S were calculated for the trap location (Xt, yt) from equation 

Eq.(A. 1, A.2, A.4) and Eq.(A.6), respectively, in Appendix A. 

The average capture and emission times were used to determine the transition from Eq.(3.20). 

As stated in the assumptions, a trap can either be filled or emptied at a particular time instance 

t. The initial state (fill or empty) is random. Once the trap state is determined, the transition 

probability P(tTran ) is generated. The probability p(tTrafl ) is used in Eq.(3.20) to determine 

the transition time tTran.  If the simulation time t coincides with transition time tTran,  a 

transition will take place. During this transition time, if an empty trap is filled, L\ID  is 

deducted from the drain current 'D,  and vice versa. 

The implementation steps for generating time domain RTS noise are summarised as follows: 

Select the number of traps. 

Assign to each trap the depth Xt, the trap lateral Yt,  and the corresponding fitting pa-

rameters (a0 , LEB, LECT), based on values in Table 3.1. 

33 



Modelling 'Noisy' MOSFETs 

3. Determine the current time t: 

• If t = 0 (initialisation) 

Probe the noiseless MOSFET drain to source current 'DS. 

Randomly generate the trap(s) initial state (empty or full). 

• If t 0 (ongoing) 

Determine the trap(s) last state (empty or flill). 

Determine the previous effective drain to source current 'DS. 

4. Calculate transconductance g using Eq.(3.4), Eq.(3.5), or Eq.(3.6), depending on the 

operating regime of the noiseless MOSFET. 

5. For each trap: 

Calculate RTS amplitude LIDS using transconductance g and Eq.(2.2). 

Calculate the electron concentration n using Eq.(3. 11). 

Calculate the effective trap binding energy /ECT(eff) by subtracting Eq.(3.21) 

from the initial 2ECT (Table 3.1), i.e. /.ECT(ef f) = /ECT - 8 (LEc ). 

Calculate the mean capture and the emission IT, time using parameters in Table 

3.1, and Eq.(2.3) and Eq.(2.4) respectively. 

Calculate the capture Pc  (t) and emission Pe  (t) probability using the calculated 

and ?e , and Eq.(3.13) and Eq.(3.14) respectively. 

Approximate the transition time tTran  using the calculated capture p(t) and emis-

sion pe(t) probability and Eq.(??). 

6. Calculating the effective 'DS  at current time t. 

• If current time t = transition time tTran  or 0 (initial)' 

(a) If the trap(s) was(were) empty, subtract LIDS of the empty trap from 'DS 

and set the trap(s) to full. 

'The initial (t = 0) RTS amplitude LIDS of each trap was calculated based on noiseless 'Ds  (or empty 
trap). Therefore, the initial noisy 'DS is not accurate if the initial state of the trap(s) (generated randomly) 
was(were) not empty. 
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Figure 3.6: I-V characteristic for (a) 0.351um (L=0.35m, W=1tm), and (b) 35 nm 
(L=35nm, W=O.ljim) 'noiseless' MOSFET. 

(b) If the trap(s) was(were) full, add LIDS of the full trap to 'DS  and set the 

trap(s) to empty. 

. Else, Go to step 7. 

7. Repeat 1-6 until end of simulation time. 

3.5 Results and Comparison: 11f and RTS Noise 

To explore and visualise the noise signals, the noisy MOSFET was simulated via transient 

analysis with the gate and drain biased between 0 and 1.5 Volts, while the source and body 

were fixed at 0 Volts. All analyses were performed at room temperature (270 C). 

Initially, the noiseless I-V characteristic was determined by setting the amplitude of the noise 

source n(t) to zero. The drain voltage VDS  was swept from 0 to 1.5 Volts in 1 second for 

each gate voltage, VGS. Fig.3.6 shows the I-V characteristics for noiseless 0.35gm and 35nm 

NMOS implemented using an AMS CMOS technology and an atomistic-based CMOS tech-

nology, respectively. The I-V characteristics of the 0.35m NMOS and 35mm NMOS clearly 

have the correct form. The implementation of the noisy MOSFETs has not changed the un-

derlying I-V characteristics of the 0.35m and 35mm NMOS. 
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Figure 3.7: I-V characteristic for 1/f based noisy (a) 0.35m (L=0.35pm, W=ltm), and 
(b) 35 mm (L=35mm, W=O.lpm) NMOS. 

The characteristics of the 1/f-based and RTS-based noisy 0.35pm NMOS, and noisy 35nm 

NMOS transistors are shown in Figs.3.7 and 3.8, respectively. The impact of device down-

scaling is evident. The noise amplitude generated by noisy 35nm NMOS is almost double the 

noise amplitude generated by noisy 0.35 /tm NMOS. This observation becomes prominent in 

Fig.3 .9. 

It is vital to confirm that the noise generated has the correct spectral form given in Eq.(2.7) 

and Eq.(2.5). The noisy MOSFET was therefore simulated for a fixed combination of drain 

(VDS) and gate (VGS) voltage (i.e. fixing the IDs).  Fig.3.9 shows the time domain noise for 

the 11f based noisy 0.35tm and 35mm MOSFET, while Fig.3.10 shows the RTS noise in 

the 35mm MOSFET. The time-domain noises show the correct form of noise generated. The 

corresponding PSDs (extracted using periodogram function in Matlab) are shown in Fig.3. 11 

and Fig.3.12, respectively. The PSDs generated for the time-domain noises show the correct 

11f and RTS characteristics match the PSDs predicted by Eq.(2.7) and Eq.(2.5). 

In order to understand how the trap position affects the noise generated in RTS based noisy 

MOSFETs, a simulation .was setup to further analyse the dependence of RTS amplitude, 

mean capture t,, and emission f time on trap location (Xt, yt). The dependence of RTS 

amplitude on trap depth and lateral location are shown in Figs.3.13(a) and (b), respectively. 

Deeper traps produce smaller noise amplitude while lateral position does not influence noise 
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Figure 3.8: I-V characteristics for RTS based noisy (a) 0.35,.tm (with L=0.35m, W=11-m, 
trap depth Xt = 1.1nm and lateral location Yt = 160nm) and (b) 35 mm 
(L=35nm, W=0.1[tm, trap depth Xt = 0.11mm and lateral location Yt = 16mm) 
MOSFETs. The values o, /.EB, LECT  and trap Vs were selected from 
Table3. 1 corresponding to trap depth Xt 1.1mm. 
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Figure 3.9: Time domain noise generated by (a) 0.35um and (b) 35 nm noisy MOSFET 
simulated at static bias conditions (VDS = 1.5V and VS = 1V)for ims. 
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Figure 3.10: The Drain-Source current noise (LIDs)for a 35nm (L35nm, W=O. 1jtm) sin-
gle trap RTS, based noisy MOSFET biased at VGS = 1.OV and VDS = 0.6V. 
The drain current with DC value (IDS = 84jiA) removed. (Note that a longer 
simulation time (1 second) was needed in order to capture more RTS noise). 
Based on the fixed bias conditions, LIDS, f andf, in the RTS based noisy 
MOSFET were generated to be 2.62e-6 A, 2.918e-3 s, and 1.279e-2 s, respec-
tively. 
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Figure 3.11: The Power Spectral Density (PSD), S(f) corresponding to the time domain 
noises shown in Fig.3.9. The dash-dot lines are 1/f PSDs generated using 
Eq.(2.7). 
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Figure 3.12: The Power Spectral Density (PSD), S(f) of a single trap RTS plotted in 
Fig.3.10. The dashed-line is the calculated PSD based on Eq.(2.5). 
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amplitude. RTS noise amplitude shows strong gate voltage (Vcs) dependence, where at weak 

inversion, the amplitude peaks. These results are consistent with the characteristics reported 

in [27, 41,57]. 

From the same simulation, the mean capture and emission times were plotted in Fig.3.14 

and Fig.3.15. Trap depth has a significant effect on mean emission time dependence on 

gate voltage, while mean capture time appears unaffected. At weak inversion (low lcs), 

deeper traps are unable to retain electrons, however, as the voltage increases, the retention 

time becomes longer. Trap lateral position influences the dependence of mean capture f, and 

emission fe  time on drain voltage (VDS). and e  for a trap located near the source appear 

to be independent of VDS  while dependence become very obvious for a trap located near 

the drain. This effect corresponds to drain bias influence on channel electron concentration 

described by Eq.(3.1 1). 

Finally, multi-trap RTS noise was studied in the same context. 3-trap RTS noise and 10-

trap RTS noise was injected into MOSFETs. The variation between traps was based on 

implementing different trap depth (Xt) and lateral positioning (yt).  Figs.3. 16(a) and (b) show 

3-trap RTS noise and 10-trap RTS noise simulated for is. The number of noise discrete levels 

increases with the number of traps. However, due to limited simulation time, the full spread 

of current level (i.e. for 3-trap RTS, 8 levels are expected) is not seen. Using the Matlab 

periodogram function, the PSD of the 3-trap and 10-trap RTS noise was extracted and plotted 

in Fig.3.17. The PSDs approach 11f PSDs as the number of traps increases. 

3.6 Discussion: Noise Modeling 

Both 11f and RTS- noisy MOSFET models have been implemented in Verilog-A. The method-

ology used to generate 11f noise is based on the sum-of-sinusoid approximation [52,53] 

while RTS noise is generated based on both noise parameters (amplitude and time statistics) 

and Monte-Carlo simulation [57]. It was found that while the sum-of-sinusoids technique is 

simple and easy to implement, extensive computing power is required to generate a better 

representation of 11f noise. The technique used to generate RTS noise is more intuitive and 

straightforward to implement. However, as the number of traps increases, the implementation 
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becomes increasingly complex. 

It has been shown so far that the techniques used are capable of generating the correct noise 

fonn (11f or RTS). It has been confirmed that PSDs of generated time-domain noises match 

the predicted PSDs in Eq.(2.7) and Eq.(2.5). It has been noted that superposition of the RTS 

noise produces 1/f noise, in agreement with finding reported by [4, 11,45]. Multi-trap (3 and 

10 traps) RTS noisy MOSFETs were implemented. The time domain plots of these multi-trap 

noisy MOSFETs (Fig.3.16) show multi-level switching as expected. Fig.3.17 compares the 

PSDs generated from these time-domain RTS noises. Using power series non-linear least 

square fitting function (in Matlab), the 10-trap RTS noise fitted well to a theoretical 1111.2  
PSD. This suggests that as the number of switching levels increase (i.e. increase number of 

traps), the generated noise becomes more like the 11f. 

3.7 Summary 

Low frequency noise will have dramatic effects on future nanoscale MOSFETs and circuits. 

A noisy MOSFET has been modelled to emulate the predicted noisy behaviour of future 

nanoscale MOSFETs. Both 1/f and Random Telegraph Signal (RTS) noise have been stud-

ied. A pragmatic approach has been taken to include the effect of this form of noise in 

MOSFETs, such that the modelled noise can be included in circuit simulations. In effect, a 

methodology has been put in place that builds a modelling bridge between atomistic models 

of DSM devices (and the physical devices upon which they were based), through look-up 

table models of the noise in such devices, to circuit models of noisy DSM devices and cir-

cuits that can be simulated in reasonable time and using conventional analogue simulators. 

The methodology opens up the opportunity to explore and investigate the effect of noise in 

nanoscale MOSFET circuits. 
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Chapter 4 
Noisy Circuit Implementation 

In this chapter, the effects of nanoscale MOSFET noise on circuit performance are explored. 

For the reason that will be discussed in Chapter 6, the implementation of the noisy circuit 

focuses on an analogue multiplier as the benchmark architecture. A 2-quadrant analogue 

multiplier described in [61] will be used in the implementation. With a simple modification 

[3], a stable 4-quadrant multiplier will be implemented. The noisy 2-quadrant and 4-quadrant 

analogue multipliers will be implemented by replacing the key MOSFETs with the noisy 

MOSFET models developed in Chapter 3. The performance of these noisy analogue multi-

pliers will be presented and discussed. 

4.1 Noisy 2-Quadrant Multiplier 

Analogue multipliers are used extensively in almost all forms of neural architecture, repre-

senting, primarily, the effect of synaptic gating. Many forms of multiplier have been used 

[61-64]; however, simple circuit form and a current-mode output are essential for reducing 

power- and area- consumption and introducing scaling flexibility in massively-parallel neural 

architectures [32]. 

The 2-quadrant multiplier discussed in [61] enjoys a wide input range and simple design [61], 

without having to have additional biasing circuitry [3]. These are the preferable attributes for 

neural architecture hardware implementation, and therefore become the basis of our choice 

in this chapter. 

4.1.1 Circuit Description 

Fig.4. 1 shows a 2-quadrant Chible multiplier configured as a synaptic (weight) multiplier. 

The weight V,, voltage determines I, which is then multiplied by V2,, referenced to Vrf, to 
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Figure 4.1: 2-quadrant Chible multiplier. 

produce 'out• 

All MOSFETs are in strong inversion and in saturation, so the output current 'out  is given by 

(channel length modulation is neglected) [61]: 

I/3/34 ,5  
'out = 	2  (V — TLVTH2 — VTH1) (1/ — V rei), 	 (4.1) 

where 04 ,5 refers to the transfer parameters for M 4  and M 5 , respectively and ,3n  is given by: 

1 	1 	1 
= 	+ n x=. 	 (4.2) 

,31  and 01 are the transfer parameters for Mn, and M2 respectively. The transfer parameters 

are defined as,31 = ii x C0 (- ) and /32 = P2 x G. ()2• VTH1 and VTH2  are the threshold 

voltage for Mn, and M2, respectively, and n is the slope factor usually smaller than 2 which 

tends to 1 for very large values of gate voltage [61]. V > VTH1 + VTH1 must be satisfied. 
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4.1.2 Circuit Implementation 

The 2-quadrant multiplier was implemented in an artificially-modelled 35mm CMOS technol-

ogy. MOSFETs M 1 , M 4 , and M 5  are modelled as noisy MOSFETs, to introduce noise to 

the signal path without compromising the performance of the multiplier. The current mirrors 

remain noise-free. This caveat is reasonable, as M2, M3, M6, and M7 are large, to provide 

good transfer characteristics. 

4.1.3 Simulation Results and Discussion 

The 2-quadrant multiplier shown in Fig.4. 1 has been simulated using the SPECTRE simulator 

with BSIM3v3 version 3.1 models. VDD was set to 1 .5V and Vf to 0.75 V. Using transient 

analysis, the circuit was simulated by sweeping the weight voltage V,, from OV to 1 .5V for 

each input voltage 1/ which is also varied between 0.5V and 0.9V with a 0.025 V step size. 

The output current for no injected noise 'out  are shown in Fig.4.2. The output current 'out 

shown in Fig.4.2 matches the behaviour predicted by Eq.(4. 1). However, a slight deviation 

can be observed for l4nVrei,  where  'out  0 as predicted by Eq.(4. 1). This observation is 

attributed to the effect of channel length modulation [49,59] in M6-M7. A remedy to this 

problem is to use a cascode current mirror in place of M6-M7 and increase the gate length of 

the current mirror MOSFETs. 

In Fig.4.3(a) shows the output of a 11f noisy multiplier and Fig.4.3(b) shows that of an 

RTS noisy multiplier implemented using 11f and single-trap RTS noisy MOSFET models 

respectively. In Fig.4.3(a) and Fig.4.3(b), the multiplier output noises depict dependence on 

both V, and Vi,, with significant noise amplitude observed for V, 1, = 1.5V and Vi,., = 0.7V. 

In order to analyse the output current noise characteristic, the noisy 2-quadrant multiplier was 

simulated using fixed bias transient analysis. Fig.4.4(a) and Fig.4.4(b) show the noisy output 

current, 'out,  for implementation using 1/f-based noisy MOSFET models and single-trap 

RTS-based noisy MOSFET models respectively. There is, however, no correlation between 

the amplitude produced by the 11f- and RTS-based implementations as the parameters used 

to generate 11f noise were artificially scaled to produce statistically significant noise ampli-

tudes. The output current noises shown in Fig.4.4(a) and Fig.4.4(b) exhibit the time domain 
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Figure 4.2: 35nm CMOS technology 2-quadrant multiplier output current 'outS 

noise characteristics expected from each implementation which are confirmed by their PSD 

plots as shown in Fig.4.5. 

For RTS, the output noise produces 6-7 discrete levels, corresponding to 3-traps activity in-

jected into the multiplier through M 1 , M 4 , and M 5 . Ideally, 8 discrete levels are expected, 

however for the given simulation time, it might not be possible to see them all. The PSDs 

(Fig.4.5) show that the output current noise inherits the characteristic noise behaviour of the 

noisy MOSFETs used. 

4.2 Noisy 4-Quadrant Multiplier 

Chible [6 1] suggested that a 4-quadrant multiplier can be implemented by augmenting the 

2-quadrant multiplier discussed in Sec.4. 1 . However, a major drawback of this suggestion 

is that the circuit's reference zero is dependent on the threshold-voltage, and is therefore 

process-dependent [3]. This is clearly evident in Eq.(4.1). The lack of a unique reference zero 

discourages the precise mapping of parameter values between the hardware implementation 

and the behavioural model in the Matlab simulation. To cater for this problem, a modified 
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Figure 4.5: Power spectral density generated from time domain noise data in Fig.4.4. 

Chible multiplier has been implemented in [3] with two identical computing cells, each of 

which corresponds to the Chible multiplier proposed in [61]. In this implementation, the 

reference zero can be externally set by the external inputs, Wrej and Srf. Due to its simple 

architecture and reliable performance, the modified Chible multiplier (Fig.4.6(b)) is adopted 

for this project. However, the modified Chible multiplier's computing cell architecture is 

changed slightly here to cater for the NMOS-based implementation, as the noisy MOSFET 

developed in Chapter 3 is NMOS. The computing cell is shown in Fig.4.6(a). 

4.2.1 Circuit Description 

A detailed description of the modified Chible multiplier circuit can be found in [3,32]. The 

change made in this project on the computing cell's architecture does not change the overall 

multiplier behaviour. From [3,32], the output current I, is described as: 

KN (l4T - IVre j) . ( Si -  Srei) , jf I > U"r(f 

IOU, = 	 ( 4.3) 

R' (14/j - 11 rei ) . ( S - Sre:i) , 	if1I < 
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where KN and Kp are constants that depend on the size of differential pair AI, - M 5  and 

M 6  - M, respectively. 

4.2.2 Circuit Implementation 

The 4-quadrant multiplier was implemented in an artificially-modelled 35rirn CMOS tech-

nology. AI, IVA,  M 5 , iVl, 16 , and M07  in both cell A and cell B are modelled as noisy 

MOSFETs, to introduce noise to the signal path without compromising the performance of 

the multiplier, while the current mirrors remain noise-free. The effect of different numbers of 

traps was explored by implementing a 4-quadrant multiplier based on 1-trap noisy MOSFETs, 

and 10-trap noisy MOSFETs, making the total number of active traps in each implementation 

10 and 100 respectively. In addition, a 4-trap, 4-quadrant multiplier (i.e. only 4 active traps in 

the full 4-quadrant multiplier) was also implemented to explore the effect of a small number 

of traps on output noise. 

4.2.3 Simulation Results and Discussion 

The 4-quadrant multiplier has been simulated using the SPECTRE simulator with BSIM3v3 

version 3.1 models. VDD  was set to 1.5V, V 1  to 0.75V and S'rej  to 0.75V. Using transient 

analysis, the circuit was simulated by sweeping weight voltage W, from OV to 1.5 V for each 

input voltage Sj, which was also varied between 0.55V and 0.95V with a 0.05V step size. 

The output current for no injected noise, 'out,  is shown in Fig.4.7. The output current 'out 

shown in Fig.4.7 matches the behaviour predicted by Eq.(4.3). 

To investigate the time domain noise characteristic, the noisy 4-quadrant multiplier was sim-

ulated using fixed-bias transient analysis. For this analysis, W is set to values within the 

range [0,1.5] (V) with a 0.1 5V step size, while S 1 is set to value within the range [0.55,0.95] 

(V) with a 0.05V step size. For each combination of 11 and Si , the multiplier was simulated 

for 250ms with a I jis time step. In order to observe significant trap activities (capture and 

emission) within this 'short' simulation time, the trap cross-section pre-factor o values in 

the mean capture Eq.(2.3) and emission Eq.(2.4) time models described in Chapter 3 were 
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Figure 4.7: 35nm CMOS technology 4-quadrant multiplier output current 'out 

increased arbitrarily. An example of time domain noisy 4-quadrant multiplier output noise 

is shown in Fig.4.8. The 4-trap implementation (Fig.4.8(a)) produces distinct levels of noise 

amplitudes, while 10-trap and 100-trap implementations (Fig.4.8(b) and Fig.4.8(c) respec-

tively) produce a continuous' level of noise amplitudes; the expected results based on the 

discussion in Sect.2.2.4. Their corresponding PSD plots shown in Fig.4.9 confirm to the ear-

lier findings that a large number of traps produces a noise closer to the 1/f characteristic. 

The peculiar (up-turn) characteristics observed at high frequency for 100-implementation is 

attributed to aliasing effect during PSD generation. 

Figs.4. 1 0(a-c) show the output noise amplitude from three different combinations of the 4-

quadrant multiplier input implemented based on 4-traps. These results are typical examples 

of output noise amplitude variation caused by changing bias conditions. 

The linear combination of normalised noise amplitude data for all input combinations gener-

ates distribution as shown in Fig.4.1 1(a). To perceive how noise amplitudes behave in com-

parison to Gaussian noise, a histogram-fit curve of Gaussian noise with u = 0.1 generated 

using Matlab is also included. Similar plots are done for 10-trap and 100-trap based imple- 
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Figure 4.9: The power spectral densities (PSDs) of the time domain noise data shown in 
Fig. 4.8, generated using periodogram function in Marlab. 

mentation (Fig.4.1 1(b) and (c)). It is important to note that noise amplitudes are grouped as 

16 levels only' for all RTS implementations (4, 10, and 100 traps) to visualise and compare 

the different implementation output noise as a histogram. The general noise amplitude distri-

bution follows a Gaussian distribution and as expected; the 100-trap output noise amplitude 

distribution is almost Gaussian. This is consistent with the central limit theorem of mathe-

matical statistics, that suggests the superposition of many independent random phenomena 

produces a Gaussian distribution [65]. Based on discussion in Sect.2.2.4, the large number of 

traps (i.e. 100 traps) give rise to 11f noise. 

4.3 Summary 

Noisy 2-quadrant and 4-quadrant multipliers have been implemented and simulated using 

noisy MOSFET models placed at the strategic locations to introduce noisy products without 

degrading the original performance of the multiplier itself. Simulation results indicate that 

'A 10-trap implementation can produce 1024 (210) possible levels, whilst a 100-trap implementation can 
produce 1.27 x iO° (2100)  possible levels. 
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Figure 4.10: 4-trap noisy synaptic multiplier output noise (20000 data points) for (a) V = 

O.8V. 
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Figure 4.11: Cumulative normalised noisy synaptic multiplier output noise amplitude imple-
mented with (a) 4-trap (b) 10-trap (c) 100-trap. 
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the multipliers retain the original performance, although the output becomes noisy. Small 

numbers of traps produce distinct levels of output noise amplitude while, as the number of 

traps become large, the levels become 'continuous', approximating a 11f characteristic. 
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Chapter 5 
Probabilistic Neural Computation 

5.1 Introduction 

Probabilistic (Stochastic) neural computation uses stochasticity to extract and classify im-

portant features in real-world data, in applications such as sensory fusion and classification 

[21-23,31,32]. 

The fundamental element of probabilistic neural computation is the stochastic neuron, which 

sums its inputs to decide the probability of the output state of the neurons. This probabilistic 

relationship gives a probabilistic neural system the ability to model the natural variability 

of real data. In addition, the probabilistic relationship enhances the system's fault tolerance 

[3,24, 32,66]; an important capability for the implementation of robust and reliable systems 

using future nanoscale MOSFETs. 

The ability to both adapt to and tolerate noise makes probabilistic neural computation at-

tractive for VLSI implementation. However, few probabilistic neural models are hardware-

amenable, and even fewer are capable of modelling continuous-valued (analogue) data. The 

Diffusion Network for example has been shown to be able to model analogue data [67,68], 

but a hardware implementation of this model is impractical because of its plethora of recur-

rent connections [3]. On the other hand, the PoEIRBM' hardware [3,69] has limited ability 

to model continuous-valued data [3]. The Continuous Restricted Boltzmann Machine, with 

a simple and unsupervised training algorithm, has been shown to have the ability to model 

continuous-value data [21-24] and is amenable in VLSI [3, 23, 31, 32]. For the purpose of this 

study, therefore, the CRBM is chosen to serve as a well-developed and well-understood ex-

perimental platform for the investigation of probabilistic neural computation using nanoscale 

MOSFET noise. The results have, however, wider implications and the methodology devel-

oped is generic. 

'POE/RBM is an abbreviation for Product of Experts in the Restricted Boltzmann Machine form. 
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5.2 Continuous Restricted Boltzmann Machine (CRBM) 

The Continuous Restricted Boltzmann Machine (CRBM) is a probabilistic neural architec-

ture capable of modelling analogue data and adapted ('trained') according to a simple, unsu-

pervised training algorithm based on minimising contrastive divergence [3, 23,24,32]. The 

CRBM is based on Hinton's Product of Experts [70], in Restricted Boltzmann Machine form 

(POEIRBM), comprising continuous stochastic neurons analogous to those of Diffusion Net-

works, with limited (Restricted) interconnectivity [24, 70]. The CRBM has been shown to be 

amenable to VLSI implementation and to be potentially useful as both a robust classifier and 

as a "novelty detector" [3, 30,31].. 

The probabilistic behaviour of the CRBM is introduced by the continuous stochastic neurons. 

The stochastic behaviour of the CRBM's neuron is driven by noise injection to its input. The 

noise inputs cause neurons to have continuous-valued, probabilistic outputs. Neurons with 

noise-induced stochasticity provide the ability to develop diverse stochastic behaviour (bi-

nary, continuous, deterministic) in the CRBM which leads to a modelling flexibility that is 

advantageous with real data. Experiments with both artificially-generated and real- biomedi-

cal [24] and chemical data [21,22] show that CRBM can model continuous data successfully 

with a simple, reliable training algorithm. 

5.2.1 General architecture 

The CRBM has one visible and one hidden layer with only interlayer connections. Fig.5. 1 

shows an example of CRBM with 3 visible neurons and 4 hidden neurons. The dark-grey 

circles (vo  and h0) represent two bias (permanently 'ON') neurons whose outputs are 1. The 

connection between bias neurons to a neuron is thus the threshold of the neuron. The in-

terlayer connections (between visible and hidden neurons) are bidirectional and symmetric 

(w23  = w32 ). The vector 00  denotes the weight vector of hidden neuron i. 

The restricted architecture enhances the distinctive functions of neurons in the visible and 

hidden layers [71]. Visible neurons pass and receive data to and from the 'outside world' 

(interface). Normally the number of visible neurons corresponds to the number of dimensions 
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Figure 5.1: CRBM network with 3 visible neurons and 4 hidden neurons. 

of data the CRBM must model. The function of hidden neurons, however, differs from that 

of visible neurons. Each hidden neuron represents an 'expert' whose weight vector encodes 

a particular feature of the input data. The number of hidden neurons therefore depends on 

the complexity of the features of the input data that the CRBM needs to model. A small 

number of hidden neurons may result in a poor modelling capability. However, increasing 

the number of hidden neurons (at the expense of bigger computation and network size) may 

not necessarily give a better capability [3,24]. For each given case, the number of hidden 

neurons is chosen empirically to maximise modelling ability while minimising the number of 

free parameters [24]. 

5.2.2 A continuous stochastic neuron 

The CRBM employs continuous valued stochastic neurons (Fig.5.2). Let si  be the output of 

neuron i, with inputs from neurons with states {s 3 
 } 

connected by a weight matrix {w 3  }. The 

behaviour of neuron i is [32]: 

Si = , 	+ ni 	 (5.1) 

with 	(x) = OL + (OH - 0L) 	
1 	

(5.2) 
1 + exp (—ax) 
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Figure 5.2: Continuous valued CRBM neuron. 

where o() is a sigmoid function with asymptotes at °H  and °L,  where ai  controls the slope 

of 
(.), 

and thus the nature of the neuron's stochastic behaviour [32]. If a i  is high, the neuron 

is essentially a binary-stochastic 'decision-make', while for a i  low, the neuron is more or less 

deterministic (i.e. comparable to a Multi-Layer Perceptron unit). Between those extremes, the 

neuron is able to model the noise and variability that is present in all real data. In the 'perfect 

CRBM' [3, 23, 24, 32], ni  = a. N(O, 1) represents a noise input component according to the 

probability distribution 

p 
(-n,

\  
p(Thj) 	 ex 

av/ 	
(5.3) 

a represents a 'noise'-scaling constant and N(O, 1) represents a Gaussian variable ('noise') 

with zero mean and unit variance. 

5.2.3 CRBM training 

The CRBM is trained by adapting both the weight {w 23 } and noise-control {a 2 } parameters 

by minimising "contrastive divergence" (MCD) between training data and the one-step Gibbs 

sampled data [72]. During training, the visible neurons are clamped with training data to 

produce f  vi 
 }. 

Then, the hidden neurons states 
{ 

h3 
} 

are sampled according to Eq.(5. 1). One-

step Gibbs sampled data are derived by repeating these procedure so that visible and hidden 

neurons are sampled once more to produce 
{} 

and I hj  1. Fig.5.3 illustrates the one-step 
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Figure 5.3: One-step Gibb sampling. 

Gibbs sampling of CRBM with two visible and three hidden neurons. The weight {w3 } and 

noise-control parameters {a 2 } of CRBM are updated according to the following simplified 2  
MCD training rules [3, 32]: 

	

= ]w 	- 
(

bi 
hi )) 1 

	 (5.4) 

and 

	

a 
	 (5.5) 

where vi and h3  refer to the state of visible neuron i and hidden neuron j respectively, and s, 

represents both vi  and h3 . 77,, and 7/a  are constants defining the learning rates of wij  and a 

respectively, and the brackets () in Eq.(5.4) and Eq.(5.5) denote the expectation value over 

all training data. 

The values of learning rate for visible i, hidden 77h  and weight i are determined empirically 

depending of the complexity of the training data. Typical learning rate for visible T/,, is set 

larger than (> 10 times) that of hidden 'q  and weight Thy.  This setting encourages faster 

adaption of the {a 2 } for the visible layers, compared to the weight w ij , and hidden noise 

control parameters {a2 }, to model the detail of the training data distribution [3, 21, 22]. 

2 Training algorithms are simplified to enable a CRBM implementation with only multiplication and addi-
tion/subtraction [23, 30]. 
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Figure 5.4: Typical CRBM neuron circuit implementation. 

5.2.4 CRBM in VLSI 

A full CRBM system implemented in VLSI, can reconstruct a variety of continuous data 

distributions [3]. The major improvement over previous probabilistic neural hardware imple-

mentations [66,73, 74] is the use and training of the continuous-stochastic neuron. As this 

element of the CRBM also incorporates the noise inputs, it deserves some detailed descrip-

tion. 

The CRBM's neuron circuit ([3]) is shown in Fig.5.4. The outputs of the four-quadrant ana- 

logue multipliers are summed into a current 'sum  representing 	 which is subse- 

quently threshold and transformed by the sigmoid-function block to produce output voltage 

Vs. The probabilistic behaviour of the CRBM's neuron is driven by injecting noise I7 j to 

tsum to produce current with stochastic behaviour controlled by the input voltage Va , 

as depicted in Fig.5.4. 
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In the VLSI CRBM, noise is generated on-chip and injected directly into the CRBM neuron. 

However, [3] found that, unsurprisingly, noise generators can interfere with the analogue ref-

erences, introducing extra computational errors. In addition, in large CRBM networks, the 

implementation of multiple, uncorrelated noise sources on- or off-chip becomes impractical, 

as unwanted correlations, reliability, area, and power problems increase. One solution is to 

localise fluctuations—introducing fluctuations only to the neurons but not to the determinis-

tic training circuit. This points to the use of intrinsic MOSFET noise to replace externally 

generated noise. 

5.3 Summary 

CRBM has demonstrated a promising modelling ability and hardware amenability suitable 

for realising intelligent embedded systems. The modelling ability is attributed to the noise-

induced, continuous-valued probabilistic behaviour of the CRBM neuron while hardware-

amenability owes to the simple training algorithm employed by the CRBM. 

The incorporation of artificially-generated noise is the distinctive feature of CRBM. Noise is 

added to the deterministic signal in the CRBM neuron to produce probabilistic output which 

is used to develop diverse stochastic behaviour in the CRBM. 

While a full CRBM system implemented in VLSI can reconstruct a variety of continuous data 

distributions, the problems associated with on- or off-chip noise generation limit the robust-

ness and flexibility of the CRBM VLSI system [3]. This leads to the idea of using intrinsic 

MOSFET noise to introduce noise localisation into each neuron, which would potentially 

alleviate the problems. 



Chapter 6 
Noise in the CRBM 

6.1 Introduction 

The 'Perfect CRBM' neurons use zero-mean Gaussian noise, injected from an external source 

to the pre-sigmoid sum of synaptic products, as shown in Fig.5.2. This artificially-generated 

noise (Eq.(5.3)) causes the neurons to have continuous-valued, probabilistic outputs. The 

injected noise variance (and hence, the effective maximum noise magnitude) is controlled 

by the global noise-scaling constant, ci. Small ci generates over-fitting and the CRBM sys-

tem becomes near-deterministic, while large a results to complete loss of the modelling 

capability—attributable to domination of the injected noise [32]. The optimal a value de-

pends upon the data distribution to be modelled. A useful rule-of-thumb, drawn from several 

CRBM-modelling projects, is to set a for visible neurons close to the standard deviation of 

the data to be modelled, while a for hidden neurons is set to intermediate values between 0.4 

and 0.6 [21,22, 24]. 

In VLSI implementation, the noise generator circuit must deliver uncorrelated noise, other -

wise the correlation will be 'detected' by the training rule, and subsequently will introduce 

training errors [3,66]. An efficient on-chip implementation of a multiple uncorrelated noise 

generator circuit has been reported in [3, 66], but this becomes unfeasible as the network size 

increases. 

The externally generated Gaussian noise could, in principle, be replaced by intrinsic nanoscale 

MOSFET noise. Intrinsic nanoscale MOSFET noise is unlikely to be Gaussian with a mean 

of zero. It is therefore crucial to investigate and to understand how the CRBM's performance 

is affected by non-ideal noise characteristics. Additionally, the possible locations in the neu-

ron architecture for the MOSFET noise source(s) have been investigated. 
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Figure 6.1: (a) Training data. (h) 20-step reconstruction of the CRBM with zero mean Gaus-
sian noise. 

6.2 Zero-mean Gaussian noise in CRBM 

For a benchmark performance measure, a (Matlab) CRBM network (Fig.5.1) with zero-mean 

Gaussian noise is used to model two well-separated clusters of 200 data points, shown in 

Fig.6.1(a). Artificially-generated zero-mean Gaussian noise is injected to the pre-sigmoid 

input of each neuron. The CRBM is trained with 7/w = 0.3, 7/av = 10 for visible neurons, 

77ah = 1 for hidden neurons, and a = 0.1 for 5000 epochs. Fig.6.1(b) shows the reconstruc-

tion of the trained CRBM by Gibbs sampling from 200 random initial data for 20-steps 1 . The 

hidden neurons' weight vectors are projected into the visible neurons' state space to reveal 

the contribution of each neuron to the distribution of the reconstructed data. This is done 

by passing {()} through the sigmoid function (.) in Eq.(5.1), i.e. r(1) = çü (()) shown 

in Fig.6.2. The projected weight vectors are treated as continuous-valued outputs of visible 

neurons which reveals the effects of hidden neurons on the distribution of reconstructed data. 

Fig.6.2 shows that the hidden neuron bias unit hO, hidden neuron hi, and hidden neuron h2, 

do not contribute to the reconstruction. On the other hand, the weight vector r 3  suggests that 

hidden neuron h3 encodes the training data clusters' (symmetric) positions. 

'The reconstruction of the trained CRBM network by Gibbs sampling from any given number of random 
initial data for 20-steps will be referred to as 20-step reconstruction, unless clearly stated otherwise. 
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Figure 6.2: (a) Weight vector for bias neuron (b) Weight vector for hidden neurons. 

In this model, the 'scatter' in the data is entirely attributable to the injected noise; not to the 

contribution of hidden neurons hi and h2. 

Fig.6.3(a) and Fig.6.3(b) show the evolution of {a} for visible neurons and hidden neurons 

during training, respectively. Fig.6.3(a) displays {a} evolving in a form of "autonomous 

annealing" [24, 32]; gradually reducing the noise level in the visible neurons, thus making the 

neurons near-deterministic. Fig.6.3(b) depicts similar {a. } evolution behaviour for the hidden 

neuron hi and h2 while hidden neuron h3 clearly performs a different function. The large 

{ a} of hidden neuron h3 suggests that the neuron is behaving near-binary, and allowing two 

clusters to be modelled. For this simple training data, hidden neurons hO-h2 can be removed 

without affecting the reconstruction quality. 

6.3 Non-zero mean Gaussian noise in CRBM 

Intrinsic nanoscale MOSFET noise may not be Gaussian with a mean of zero [4,39]. It is 

therefore crucial to investigate and to understand how the CRBM's performance is affected 

by this form of non-ideal noise characteristic. 

Before injecting MOSFET noise, the CRBM's ability to 'cope' with non-Gaussian noise in 

a pure software model will be demonstrated. With non-zero mean Gaussian noise, Eq.(5.1) 
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Figure 6.3: (a) Visible neurons and ('h) Hidden neurons noise control parameters evolution 
with training epoch. 

becomes: 

Si = , 

	

+flx()) 	 (6.1 

where flr(j)  represents a non-zero mean Gaussian noise source with distribution described as 

1 
P(n()) = cr/ exp 	2cr2 	

) 	
(6.2) 

A CRBM (Fig.5. 1) with non-zero mean noise was trained to model the data shown in Fig.6. 1(a). 

The CRBM is trained with 	= 0.3, Tlav  = 10 for visible neurons, 71(lh = 1 for hidden neu- 

rons, a = 0.1, and mean n.., = 0.8. After 5000 training epochs, the CRBM reconstructed data 

points by Gibbs sampling from 200 random initial data for 20 steps, is shown in Fig.6.4. 

The simulation is repeated with ñ 1  = 2. After 100000 epochs, the CRBM achieves a good 

20-step reconstruction. These results indicate that the CRBM's modelling capability remains 

good, although longer training times are required as the mean of the noise increases. 

To investigate how the CRBM responds to the injection of non-zero mean noise, the CRBM's 

20-step reconstructions after 500, 30000, 40000 training epochs are shown in Figs.6.5(a-c), 
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Figure 6.4: 20-step reconstruction of the CRBM injected with non-zero mean h i  = 0.8, 
trained for 5000 epochs. 

respectively. The evolution during training of the {a 1 } of visible neurons and hidden neurons 

and the hidden-visible weights are shown in Fig.6.6(a-c). At the initial stage of training, the 

CRBM performs a crude approximation to the training data as shown in Fig6.5(a). Fig.6.6(a) 

shows large {a} values for the visible neurons up to 2000 epochs, which inhibit the ability 

of the weights {w 3 } to model the correct distribution [24]. As training continues, the {a} 

values for the visible neurons are reduced, allowing weight adaptation (Fig.6.6(a)) to model 

the training data. Fig.6.5(b) shows that the CRBM has learnt the correct cluster separation 

but is still biased to the bottom-left corner. After 40000 epochs, the CRBM has modelled 

the training data well (Fig.6.5(c)). The weight evolution plot (Fig.6.6(c)) demonstrates that 

weights {w } are adapted to model the training data. The hidden to visible neuron bias 

weights (w 10  and w20) adapt to compensate for the large non-zero mean. 

As training progresses, the hidden neuron hi becomes near-binary (Fig.6.6(b)), allowing the 

two clusters to be modelled clearly. The other hidden neurons encode the variance of the 

clusters in different directions. These results suggest that the CRBM's ultimate performance 

is not affected by the large mean. It simply takes longer to converge. 

Finally, the CRBM with non-zero mean noise was used to model the non-symmetric training 

data shown in Fig.6.7(a). This training data is particularly interesting as it tests both the 
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Figure 6.5: 20-step reconstruction by the CRBM injected with non-zero mean Cni  = 2) Gaus- 
sian noise (a) after 500 training epochs (b) after 30000 epochs (c) after 40000 
epochs. 	 72 
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Figure 6.6: {a} for (a) visible, (b) hidden neurons, and (c) hidden-visible weight evolutions 
during training. wOl and w02 in (c) indicate the biased hidden neurons weight 
to visibles. 
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CRBM's ability to regenerate a non-symmetric distribution and also to model the probability 

distribution of the training data correctly. For this experiment, to accelerate training, both 

Tiah and 71av  were set to 7, q,, = 0.3 and ñ, = 2. After 10000 training epochs, the CRBM 

reconstructed data points by Gibbs sampled from 200 random initial data for 20 steps as 

shown in Fig.6.7(b). The results shown in Fig.6.7(b) indicate that the CRBM is able to adapt 

the non-zero mean noise to generate the correct data in position and probability. With 50 

non-symmetric training data with similar distribution shown in Fig.6.7(a), the CRBM with 

the non-zero mean noise was still able to generate the correct data position and distribution. 

6.4 Non-Gaussian 'Pseudo-RTS' noise in the CRBM 

The CRBM system has shown a good modelling ability by adapting its 'internal' noise (Gaus-

sian distribution) to model an input data distribution. 

Fig.6.8 shows the amplitude histogram of an artificial non-Gaussian noise source generated 

using Matlab to mimic RTS noise. The artificially-generated non-Gaussian noise is charac-

tensed by the separation x and distribution variance a. This is a very crude representation of 

real nanoscale MOSFET noise, but it can be used to give a rough indication as to whether 

nanoscale MOSFET noise would work in a CRBM. Chapter 7 discusses a CRBM implemen-

tation with real nanoscale MOSFET noise. 

The CRBM injected with a non-Gaussian (x 	2 and a = 0.1) noise is trained to model 

two sets of data shown in Fig.6. 1(a) and Fig.6.7(a) separately. Based on the non-zero mean 

Gaussian CRBM results, the separation x is expected to cause slow convergence. Therefore, 

in this experiment, the learning rates are set to 71w = 0.3, 1av = 7, and 7/ah = 7. The CRBM 

is trained for 30000 epochs and Figs.6.9(a) and (b) depict the 20-step reconstruction results of 

the trained CRBM. In general, the CRBM has been able to model the data cluster separation 

and distribution correctly. However, the CRBM generates paired-clusters distribution shown 

in Figs.6.9(a) and (b). The occurrence of these peculiar reconstruction results is attributed to 

the non-Gaussian noise. 

A simple experimentation found that by reducing x to zero, the additional clusters disappear. 
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Figure 6.7: (a) Non-symmetric distribution training data. (b) 20-step reconstruction of the 
CRBM injected with non-zero mean (A i  = 2) Gaussian noise after 10000 epochs. 

75 



Noise in the CRBM 

0 

0 a 

Amplitude (Arbitrary units) 

Figure 6.8: ArtJIcially generated non-Gaussian noise. 

The clusters become prominent as x increases. These analyses confirm the notion that the 

non-Gaussian noise distribution causes the extra clusters and that they are therefore unavoid-

able. 

6.5 CRBM with noise in Multiplier 

It was decided to localise noise in the synaptic multipliers as shown in Fig.5.2, as the multi-

plier is the most-repeated circuit in most architectures of this form and is thus the most likely 

candidate for the use of extremely small (nanoscale) devices. This analysis will be extended 

to other elements of this and alternative neural architectures in future work. - 

Eq.(5. 1) is re-arranged to form Eq.(6.3), as addition and multiplication are both linear opera-

tions. 

Si = i ( 
	

(w js + 	 (6.3) 

To demonstrate that the CRBM is not affected by this change, artificially-generated zero- 

mean Gaussian noise is injected into the neurons of a CRBM network with two visible and 

three hidden units, as shown in Fig.6.10. Using the training data shown in Fig.6.1(a), the 
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Figure 6.9: 20-step reconstruction of CRBM injected with non-Gaussian noise after 10000 
epochs for (a) symmetric distribution (b) non-symmetric distribution training 
data. 
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Figure 6.10: CRBM neurons with localised noise in synaptic multipliers. 

CRBM is trained with 71w  0.3, 7/av = 10 for visible neurons, 7/ah = 1 for hidden neurons, 

and a = 0.1. Fig.6.11(a) shows 20-step reconstructions after 5000 training epochs. This is a 

rather dispersed distribution, indicating that overall noise levels are too high. The experiment 

is repeated by setting smaller a, i.e 0.05 and 0.01, and the results are shown in Fig.6.1l(b) and 

Fig.6.11(c), respectively. While a = 0.05 gives the best reconstruction, the CRBM with a 

0.01 shows a rough reconstruction of the training data. When subjected to further training 

(10000 epochs), the CRBM with a = 0.01 produces similar performance to the CRBM with 

a = 0.05. For a perfect CRBM, the noise with a = 0.01 is unable to produce the correct 

reconstruction. These results indicate that injecting noise into the synaptic multiplier enables 

smaller noise magnitudes to be used, owing to the superposition effect as many synapses add 

their inputs to the receiving neuron's activity. 

6.6 Summary 

The ultimate goal of this study is to show that intrinsic low frequency nanoscale MOSFET 

noise can be used to implement a CRBM system. As the noise may not be Gaussian with 
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Figure 6.11: 20-step reconstruction with zero-mean Gaussian noise injected into every 
synaptic multiplier with noise variance set to (a) 0.1 (b) 0.05 (c) 0.01. 
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mean of zero, it is important to investigate how the CRBM's performance is affected by 

the non-ideal noise characteristics. As the first step towards achieving the goal, the CRBM 

system performance has been evaluated with artificially generated non-Gaussian noise. 

The results in Sec.6.4 show that the CRBM can display degraded, but usable, modelling 

performance when non-Gaussian noise sources with non-zero means are injected into the 

CRBM synaptic multipliers. Although the reconstmction results do not match the (essentially 

Gaussian) training data as faithfully as those with Gaussian noise, the CRBM is still able to 

capture the correct separation and distribution. These results suggest that nanoscale MOSFET 

noise has the potential to be used in CRBM implementation as long as the noise magnitude 

is relatively well matched to the distribution of the data. 

The following chapter presents and discusses the implementation of a CRBM system with 

intrinsic low frequency nanoscale MOSFET noise. 



Chapter 7 
CRBM with Nanoscale MOSFET Noise 

The experimental results discussed in Chapter 6 suggest that intrinsic MOSFET noise may 

indeed be able to replace externally-generated Gaussian noise. It is therefore the aim of 

this chapter to explore the potential of intrinsic nanoscale MOSFET noise to produce useful 

probabilistic behaviour of CRBM neurons. 

The chapter first describes the methodology used to inject the noise data generated by the 

noisy 4-quadrant multiplier in Chapter 4 to the synaptic multiplication in the CRBM neurons. 

The CRBM system was then trained to model continuous data sampled from a non-symmetric 

distribution. The CRBM system's performance in regenerating the continuous data distribu-

tion, through its noise-induced probabilistic behaviour will be explored. 

This chapter provides the necessary linkage between nanoscale device physics and proba-

bilistic neural computation from which a preliminary conclusion can be drawn as to whether 

intrinsic nanoscale MOSFET noise can be used in probabilistic computation. 

7.1 Methodology 

The temporal current fluctuations associated with nanoscale MOSFET noise are incorporated 

in the CRBM through the implementation of the noisy synaptic multiplications shown in 

Fig.7. 1. Full hardware implementation of a nanoscale-based CRBM system is not yet possi-

ble. Rather, the simulated temporal fluctuation of a noisy synaptic multiplier output, drawing 

on values stored in a look-up table (LUT) that represents both the multiplier's functionality 

and the noise associated with its DSM MOSFETs is incorporated. The synaptic multiplica-

tions are implemented using the noisy multipliers discussed in Chapter 4. 

The general method for incorporating noise data into CRBM neurons is described by Fig.7.2. 

The product of {w 3 } and {s 3 } is added with the corresponding noise datum extracted from 
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Figure 7.1: CRBM neuron with noisy synaptic multiplication. 

the LUT that stores time domain noise data of a noisy synaptic multiplier output. Ideally, one 

LUT represents output noise data unique for a given multiplier. For a 3 visible and 4 hidden 

network, 3 multipliers are required to perform synaptic multiplication for each hidden neuron 

and 4 multipliers for each visible neuron. The total number of multipliers needed for the 

ideal case is 12, and thus 12 LUTs of time domain noise data are needed. It is not practical 

to implement this number of LUTs in Matlab, as this requires very large memory usage with 

a consequently unacceptably long simulation time. For the purpose of this study, only one 

LUT is used for noisy synaptic multiplication of CRBM neurons. In order to differentiate 

between multipliers, the start of the time domain noise data is shifted at random for each 

multiplier. It is acknowledged that by doing this, the noise data injected in each synaptic 

multiplication can be correlated. However, for the purpose of this study, this is acceptable, 

as the main investigation is on the effect of DSM noise form on CRBM performance. This 

limitation of the study is acknowledged, although it is not believed to cast any doubt on the 

thesis conclusions. 

7.1.1 Noise data in look-up table 

The noisy multiplier was designed based on 35nm atomistic-based CMOS technology that 

operates with a supply voltage of 1 .5V (see Chapter 4). The multiplier inputs, i.e. the weight 
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Figure 7.2: An illustration of how noisy synaptic multiplication is implemented in Matlab. 
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I 	VLSI 	I Software 
s [0.55,0.95] (V) [-1,1] 

W ij  [0.0,1.5] (V) [-1.5,1.5] 
noise amplitude [-1,1] (pA) [-1,1] 

Table 7.1: Mapping noisy multiplier input bias voltage (hardware) to Matlab (software). 

V and the state input data V2 are confined to [0,1.5] (V) and [0.55,0.95] (V) respectively. 

The noisy multiplier output current fluctuates in the time domain with noise characteristics 

inherited from the noisy MOSFETs used in key locations. For the purpose of this work, these 

time domain noise data are stored in a LUT, indexed according to V and V1 . Due to limited 

data storage and computation bottlenecks, only a limited number of V 1, x l/  time domain 

noise data can be stored in the LUT. A compromise must be made between accuracy and 

computation time in representing output noise in Matlab. For this study, multiplier output 

noise data corresponding to V=[0:0.15:1.5]  (V) and %'=[0.55:0.05:0.95] (V) are stored in a 

LUT. For values that fall between the values stored, the closest-neighbour approximation is 

adopted. 

This study incorporates synaptic multiplier output noise generated in SPECTRE into the Mat-

lab implementation. The LUT method is adopted where the stored noise data are 'searched' 

and 'extracted' according to index parameters based on weight V,, and state l/  input volt-

ages. In order to simp1if' the implementation in Matlab, the values for LUT are normalised. 

The weight V and state Vi,, input voltage are normalised to {w 3 } and {s 2 } parameters in 

Matlab, respectively. The corresponding noisy multiplier output current noise which ranges 

between - lpA and 1 pA is normalised to value -1 to 1 in the LUT. Table 7.1 summarises the 

mapping of parameter values between the noisy multiplier hardware implementation and the 

software representation. 

7.1.2 Data look-up 

The flowchart in Fig.7.2 describes how noise data from a LUT is incorporated into synaptic 

multiplication {w 23  x s3 } to produce a probabilistic synaptic product. The flow is described 

as follow:- 
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Determine whether it is the start of a session, i.e. training (epoch = 1) or reconstruction 

(step= 1): 

Condition 1: If epoch = 1 or step = 1 (start of a session), randomly generate the start 

point tij  = 1 corresponding to the shaded row in the LUT shown in Fig.7.3, where 

index i and j identify a synaptic multiplier. 

Condition 2: If epoch 	1 or step 	1 (ongoing session), get the current epochlstep 

which corresponds to the row number in the LUT, i.e. t ij  = n where n is the current 

epoch or step. 

Get the current {w 3 } and {s 3 } values. 

Locate the corresponding noise datum for {w 23  x s3 
} 

from the selected row (the 'black-

shaded' location in the selected row in Fig.7.3) 

Add the noise datum to {w 23  x s3  } to produce the noisy synaptic product. 

Repeat 1 if it is not the end of simulation. 

Condition 1 provides a degree of 'randomness' in the noise data to be linked to each multiplier 

which subsequently minimises correlation between noise data 'generated' for each synap-

tic multiplication. Another shortcoming is that the methodology assumes an instantaneous 

change in noise amplitude (due to instantaneous change in trap-occupancy) with changing 

bias conditions. 

7.2 Modelling data with non-symmetric distribution 

The modelling capability of a CRBM system with nanoscale MOSFET noise is explored 

with a network of 3 visible and 4 hidden neurons. The CRBM is trained to model two 

well-separated clusters of 200 data points with the non-symmetric distribution (one circular-

Gaussian and one elliptic-Gaussian) shown in Fig.7.4(a). This training data is used as it tests 

the CRBM's capability to regenerate the non-symmetric cluster with the correct probability 
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Figure 7.3: Example of data extracted from the LUT The value for V and V i, are mapped 
to wij  and s3  respectively. 

distribution. However, the total number of training data is reduced to 50 to render simula-

tion times tolerable'. The simulation results in Sec.6.3 show that reducing the training data 

to 50 would not affect the ability of the CRBM to generate the correct data position and 

distribution. 

7.2.1 4-traps 

The CRBM with 4-trap RTS noise data has been trained with 77w  = 0.3, lav = 10 for visible 

neurons, and nah = 1 for the hidden neurons, for 30000 epochs. After training, the CRBM 

generated the 20-step reconstruction shown in Fig.7.4(b), Gibbs sampling from 200 random 

initial data. Although this CRBM is unable to reconstruct an exact match to the training data, 

the general reconstruction characteristics are encouraging. 

'On a Pentium 4 with 512MB cache PC workstation, it takes twenty hours to train CRBM with 200 training 
data point for 10000 epochs. On the other hand, 50 training data takes about 4 hours to complete 10000 epochs. 
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Figure 7.4: (a) Non-symmetric distribution training data (b) 20-step reconstruction after 
30000 epochs. 

Fig.7.5 shows the evolution of weight {w 3 } during training. During the initial 20000 epochs, 

the weights fluctuate significantly, indicating that the system is performing a noise-mediated, 

crude approximation to the training data. In comparison, the Gaussian CRBM weight evolu-

tion (Fig.6.6(c)) follows a less noisy trend. Fig.7.5 shows that most {w 3 } settle after 20000 

training epochs, indicating that the training process reaches equilibrium after 20000 epochs. 

Fig.7.5 demonstrates the CRBM system's adaptability and attempt to minimise contrastive 

divergence, despite significant noise variation during training. Fig.7.6(a) shows the final 

(learnt) weight vectors of the hidden neurons projected onto the state space of the visible 

neurons after 30000 epochs, highlighting the contribution of each hidden neuron to the data 

reconstruction. The large noise control parameter a (—* 3.5) of hidden neuron h3 (Fig.7.6(b)) 

indicates the neuron's 'near-binary' behaviour. The 'near-binary' hidden neuron h3 models 

cluster separation while other hidden neurons with smaller {a} encode the variance (dis-

tribution) of the cluster. In other words, the hidden neuron h3 decides which cluster each 

reconstruction point should belong to—the elliptic cluster or the circular cluster. 

7.2.2 10-trap and 100-trap RTS in a CRBM 

A CRBM has been implemented with more 'continuous' RTS noise based on 10-trap and 

100-trap RTS models. The term 'continuous' refers to the less obviously quantised noise 
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Figure 7.5: CRBM with 4-trap implementation weights {w 71 } evolution for 30000 epochs 
where visible neuron i and hidden neuron j and index 0 represents bias neurons 
during training. 
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Figure 7.7: 20-step reconstruction of CRBM implemented with (a) 10-trap and (b) 100-trap 
noisy synaptic multiplier output noise qfter 30000 epoch. 

amplitudes, in the presence of a larger number of traps [2]. 

In this experiment, 10-trap and 100-trap synaptic multiplier output noise data were used to 

implement a CRBM. The CRBM was trained with i, = 0.3, r = 10 for visible neurons, 

1 for hidden neurons for 30000 epochs. After training, the CRBM generated the 20-

step reconstruction shown in Fig.7.7(a)&(b). Both CRBM implementation (10-trap based and 

100-trap based) have modelled the data well and reconstructed continuous-valued data points 

with results comparable to those of a Gaussian CRBM. These promising results indicate that 

intrinsic nanoscale MOSFET noise can, indeed, be used to implement a CRBM—only with 

a slower convergence time during learning. 

7.3 Summary 

The objective of this work was to explore whether relatively accurately-modelled intrinsic 

nanoscale MOSFET noise can, in principle, be used to underpin useful probabilistic be-

haviour in a stochastic computing architecture—in this study, the CRBM. This was done, 

as a first step, by localising fluctuation to the synaptic multipliers, which are the dominant 

element in many neural architectures. The main challenge of this study is linking the synap-

tic multiplier output noise generated in the SPECTRE circuit simulator to the CRBM model 
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developed and simulated in Matlab. The linking is done through a Look-Up-Table that stores 

a synaptic multiplier's time domain output noise. 

The results in this section demonstrate that the intrinsic nanoscale MOSFET noise can, in-

deed, be used to implement probabilistic computation in the CRBM, whilst retaining mod-

elling ability comparable to that of a 'perfect' Gaussian CRBM. RTS noise takes the form of 

distinct discrete levels (i.e. 16 levels for 4-trap RTS implementation), but the CRBM Sec.6.4 

would seem to suggest that discretised reconstructions would occur, owing to the noise level's 

quantised probability. This would be the case if noise was taken from fixed MOSFET bias 

conditions. However, in reality, bias conditions change as a natural feature of multiplier 

activity. Thus, dynamic bias conditions enable a CRBM to reconstruct a continuous data 

distribution from discretised noise. In a software CRBM, the noise level in visible neurons 

and hidden neurons can be tuned to optimum level to enhance learning [23,24]. However, 

intrinsic nanoscale MOSFET noise cannot be tuned, and it is not, therefore, surprising that a 

CRBM with intrinsic nanoscale MOSFET noise performance is more difficult to train than a 

Gaussian software implementation. 

As evident in [2], the large number of traps produces noise amplitudes closer to a Gaussian 

noise distribution, which is in turn closer to the noise in a 'perfect' CRBM. It is therefore 

expected that 10-trap and 100-trap based CRBM implementation will perform better than 

a 4-trap implementation, owing to the more 'continuous' distribution of noise amplitude. 

Experiments confirm this expectation. 

91 



Chapter 8 
Summary and Conclusion 

8.1 Summary 

In future, RTS noise will become the dominant source of uncertainty in nanoscale MOSFETs. 

It will cause significant drain current fluctuation that limits the performance and functionality 

of a circuit. Several alternative architectural paradigms, such that the unreliable performance 

of these nanoscale MOSFETs could be tolerated (fault tolerance) or useful (adaptive), have 

been proposed [15-20]. This thesis investigates the use of DSM noise in an architecture 

that actually requires it. A 'demonstrator' architecture has been identified—the Continuous 

Restricted Boltzmann Machine (CRBM). 

In the original, 'pure' CRBM, stochastic behaviour is introduced through injection of Gaus-

sian noise from an external source [3,23,24, 32]. In hardware implementation, this requires 

additional circuitry and thus more silicon area [3]. In addition, the noise from external sources 

was found to introduce additional computational error to the system, making it less robust [3]. 

In this thesis, the noise source is localised in the synaptic multiplications of each stochastic 

neuron. An initial analysis with artificially generated 'pseudo-RTS' noise injected into a 

CRBM's synaptic multiplier shows that the CRBM retains a good modelling capability. This 

result encourages the potential of using nanoscale MOSFET noise in a CRBM system. The 

temporal current fluctuations associated with nanoscale MOSFET noise were incorporated in 

the CRBM through the implementation of noisy synaptic multiplications. 

Unfortunately, statistically significant intrinsic MOSFET noise is not yet available. There-

fore, a noisy MOSFET model has been developed to emulate the predicted noisy behaviour 

of future nanoscale MOSFET noise. Both 11f and RTS noise have been studied, and a prag-

matic approach has been taken to include the effect of this form of noise in MOSFETs, such 

that modelled noise can be included in circuit simulations. At this concept-proving stage, a 
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computationally-simple model is more important than detailed accuracy. The noisy MOSFET 

model has been shown to produce the correct form of noise behaviour, valid in all operating 

regimes, and implementable in a circuit simulator. 

A noisy analogue multiplier circuit has been implemented by replacing the key MOSFETs 

in the circuit with the noisy MOSFET models. This introduces noise to the signal path, 

producing a noisy output without compromising the underlying performance of the multiplier. 

Simulation results indicate that the multiplier retains the original performance, although the 

output become noisy. 

The noisy multiplications are used to replace the normal synaptic multiplication process of the 

stochastic CRBM neurons. A systematic approach that embeds the noisy synpatic multiplica-

tion in the CRBM has been implemented, drawing on values stored in a look-up table (LUT) 

that represents both the multiplier's functionality and the noise associated with the nanoscale 

MOSFETs. This approach provides the necessary linkage between nanoscale device physics 

and probabilistic computation. Subsequently, the nanoscale-based CRBM system has demon-

strated the ability to model data with simple, yet non-trivial distributions. 

8.2 Conclusion 

This thesis examined the suggestion that 

"Low frequency drain current noise in future nanoscale MOSFETs can underpin useful prob-

abilistic computation." 

In this research, a novel methodology has been developed that builds a modelling bridge 

between atomistic models of nanoscale devices (and the physical devices upon which they 

were based), through look-up table models of the noise in such devices, to circuit models of 

the noisy nanoscale devices and circuits that can be simulated in reasonable time and using 

a conventional analogue simulator has been presented. Although we have chosen to study a 

probabilistic architecture, the methodology is perfectly generic and could be used to explore 

and investigate the temporal effects of nanoscale device noise on conventional computational 

paradigms, significantly in advance of the availability of integrated circuits (ICs) with true 

93 



Summary and Conclusion 

nanoscale devices. Understanding how future noisy nanoscale devices may effect circuit 

performance may pave the way to new design paradigms, some of which may exploit the 

noise for reliable system implementation—as explored in this thesis. 

From the results presented, this research has demonstrated that intrinsic MOSFET noise 

can potentially be useful for probabilistic computation in future hardware implementation. 

Clearly, these results, taken from a single probabilistic architecture (the CRBM) with accu-

rate, but limited models of nanoscale RTS noise, are insufficient for claiming that the pro-

posed approach will solve all conventional computing problems. However, even with this 

simple caveat, these results indicate that a principled method can be developed to study the 

effects of nanoscale MOSFET noise in computational architectures and that early indications 

are that architectures can be developed that can 'make use of' such noise in their operation. 

While the outcomes of this study are encouraging, there are several limitations which must 

be acknowledged. 

Simplified nanoscale MOSFET noise models: the models were developed based on 

extensive assumptions listed in Sec.3.4.1 and fitting parameters (Table 3.1) adopted 

from large MOSFETs. Although it has been shown that the simplified models are able 

to produce the predicted noise characteristics in future nanoscale MOSFETs, detailed 

accuracy in the generated noise cannot be guaranteed. 

Representation inaccuracy from using LUT: since the full hardware implement of CRBM 

with nanoscale MOSFETs is not yet possible, a LUT was used to link noise data to the 

CRBM software implementation. Due to limited storage space and computation re-

sources, only limited data can be represented in the LUT. An approximation is done for 

any value not stored in the LUT and thus may introduce inaccuracies. In addition, since 

only one LUT was used to represent noise data from several noise sources (multipliers), 

it is possible that correlation may be introduced. 

Only one probabilistic architecture was studied: the CRBM was used as a 'demonstra-

tor' architecture and has shown encouraging results. Unfortunately, it is not possible 

to generalise the findings of this thesis to other architectures. In fact, the study on the 

CRBM system has not been done exhaustively with other variation of data. Therefore, 
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there is not enough evidence to comment about performance integrity of the CRBM 

with nanoscale MOSFET noise. 

8.3 Future work 

The work presented in this thesis is based on a simplified nanoscale MOSFET noise model. 

While the noise generated conformed to the predicted noise behaviour in future MOSFETs, 

real nanoscale MOSFET noise mechanisms will be more complex [4]. Once nanoscale MOS-

FET with significant noise become available, it will be important to repeat the work presented 

in this research with real noise data. 

The further development of time domain noise analysis based on the nanoscale MOSFET 

model as a standard capability in a commercially available simulator is recommended for 

future nanoscale circuit analysis. This capability will allow better understanding of circuit 

performance in the presence of significant temporal fluctuation of device performance. Once 

this capability becomes available, it would be useful to implement a full hardware simulation 

of a CRBM system. This eliminates the approximation errors introduced when mapping 

noise data into the software implementation, giving a closer representation of a real nanoscale 

hardware implementation. 

A promising modelling ability has been demonstrated, it is recommended to further explore 

the capability of nanoscale-based CRBM system to model more complex and realistic data, 

e.g. bio-medical data. This is important to prove that a nanoscale-based CRBM system can 

be exploited in all contexts and with all data for a real world applications. 

In this research, the CRBM system is a 'demonstrator' architecture for studying the feasibil-

ity of using nanoscale MOSFET noise for probabilistic computation. The CRBM was cho-

sen mainly due to its intrinsically-interesting probabilistic behaviour, which has been proven 

suitable for hardware implementation [3]. Furthermore, the CRBM system was developed 

locally, and thus expertises on this system was readily available. In order to generalise the 

findings of this research, it is encouraged to repeat the work with a different probabilistic 

architecture such as the Diffusion Network [67, 68]. 



Appendix A 
MOSFET Channel Voltage 

Approximation 

The mean capture Jr, and emission t, time are described by Eq.(2.3) and Eq.(2.4), respec-

tively. The bias dependency f, and f is reflected through the approximation of electron 

concentration n at the given trap location using Eq.(3.11). Using Eq.(3.11), effective elec-

tron concentration n at a specific location in a channel is determined by approximating the 

effective surface potential Os and quasi-Fermi potential V(y) at that location. 

A.1 Approximating the Quasi-Fermi Potential, V(y) 

The Quasi-Fermi potential V(y) describes the effective voltage approximated for a given 

lateral position along the channel. It is very dependent on bias conditions. 

In linear operation, the quasi-Fermi potential V(y)can be described by [58]: 

V(y) = Gy - /(C)2 —2(C) VDS+ 	 (A.1) 

where G represents Vc-Vth , y is the lateral location measured from the source, L is the 
channel length, and m is the body effect coefficient defined by 

In order to describe quasi-Fermi potential V(y) in saturation operation (VDS > VGS -Vt 
the MOSFET channel has to be divided into two sections defined by L and S, as seen in 
Fig.A.1. 

The section between source end and pinch-off point is denoted by the yL  axis. Along this 
axis, V(y'-') varies linearly and can be described by slight modification (A. 1) to be: 

we 
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Figure A.!: MOSFET cross-section for saturation operation with channel length modula-
tion. The pinch-off point is defined when VDS = VGS - Vth and denoted by 
VDSsat. 

V(y) = Gy  - 	 - 2Y X Gy  x VDSSat y X VISSat 

	

L - 	 + L - tL 
' 	 (A.2) 

where /2L refers to the amount of channel length modulation by the drain voltage and defined 

by: 

	

( VDS - VDS8at 
+ / ( I~DS  - VDS5at YAL = I in 	

lEsat 	 lEsat 	
+ 	(A.3) 

where y is measured between 0 to L - LL. 1 is a characteristic length defined by  Oli _ZX3  
and Esat is the lateral field at saturation point, and is defined by 	X, V sat, and /Jef f are 

Ileff 

junction depth, velocity saturation, and effective mobility, respectively and their values can 

be extracted from the technology process file. 

The section between pinch-off point and the drain, denoted by the yS  axis exhibits the effect 

of channel length modulation, where the pinch-off point moves towards the source end, cx- 
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posing a region (LL) depleted of inversion charge. In this region, the carriers reach saturation 

velocity (V sat). The quasi-Fermi potential V( ys) in this region is defined by: 

V(y) = VDSSat + lEsat  sinh (Y
1), 	 (A.4) 

where y is measured between L - LL and L. 

A.2 Approximating Surface Potential, /-'s 

In BSIM, MOSFET characteristics model are developed based on a threshold-voltage based 

model where surface potential bs is approximated as a fixed quantity, described by [48]: 

2kT( n Nch'\ 
s=— 

q 
.in -± 	 (A.5) 

where Nh is channel doping concentration, a process dependent parameter. While this ap-

proximation is acceptable for 'long' devices—with continuous down scaling of MOSFET 

towards nano-scale dimension—a more accurate approximation of surface potential Os  has 
been suggested in [75] which explicitly includes the effect of bias conditions applied to the 

MOSFET. In [75], surface potential is approximated as: 

f+Ut x In XS2  - f + 

Ut 	) 
(A.6) 

where XS  is given by 

VGB - VFB - I 
mx 

- 	 (Swi - I) 

(mx 	) x+ 
L 4ut  ] 

(A.7) 

VFB is the flat-band voltage, Ut IS the thermal voltage defined by Ut = 	, OF is the bulk 
Fermi potential defined by Ut x in (N),  and m is the body factor defined earlier. 'bs S 
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2 

the surface potential in weak inversion defined by (VVGB;~-:  VFB + 
- 

	
The smooth 

transition of s  from weak inversion to strong inversion is approximated by f, and is defined 

as: 

2 F + V(y) + 
	- x (swi - 	 - V(y)) 2 	 (A.8) 2 	2 	2 

where Eis a smoothing factor conveniently fixed at 2 x 10-2. 
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