215 research outputs found

    Hydrogen production from plastic waste: A comprehensive simulation and machine learning study

    Get PDF
    Gasification, a highly efficient method, is under extensive investigation due to its potential to convert biomass and plastic waste into eco-friendly energy sources and valuable fuels. Nevertheless, there exists a gap in comprehension regarding the integrated thermochemical process of polystyrene (PS) and polypropylene (PP) and its capability to produce hydrogen (H2) fuel. In this study a comprehensive process simulation using a quasi-equilibrium approach based on minimizing Gibbs free energy has been introduced. To enhance H2 content, a water-gas shift (WGS) reactor and a pressure swing adsorption (PSA) unit were integrated for effective H2 separation, increasing H2 production to 27.81 kg/h. To investigate the operating conditions on the process the effects of three key variables in a gasification reactor namely gasification temperature, feedstock flow rate and gasification pressure have been explored using sensitivity analysis. Furthermore, several machine learning models have been utilized to discover and optimize maximum capacity of the process for H2 production. The sensitivity analysis reveals that elevating the gasification temperature from 500 °C to 1200 °C results in higher production of H2 up to 23 % and carbon monoxide (CO). However, generating H2 above 900 °C does not lead to a significant upturn in process capacity. Conversely, an increase in pressure within the gasification reactor is shown to decrease the system capacity for generating both H2 and CO. Moreover, increasing the mass flow rate of the gasifying agent to 250 kg/h in the gasification reactor has shown to be merely productive in process capacity for H2 generation, almost a 5 % increase. Regarding pressure, the hydrogen yield decreases from 22.64 % to 17.4 % with an increase in pressure from 1 to 10 bar. It has been also revealed that gasification temperature has more predominant effect on Cold gas efficiency (CGE) compared to gasification pressure and Highest CGE Has been shown by PP at 1200 °C. Among the various machine learning models, Random Forest (RF) model demonstrates robust performance, achieving R2 values exceeding 0.99

    Analysis of the fire propagation in a sublevel coal mine

    Get PDF
    A fire has been analyzed in a real underground coal mine, using a sublevel method, duringan entire year. The study was focused on the collapsed area, reproducing a real mixture formed bycoal, waste, and air gap. The analysis was done by means of an experimental analysis, a computationalfuid dynamic model (CFD), and simulations using a mine ventilation software. Three scenarios weredetermined and studied regarding their influence on the evolution of the fire: (a) development ofthe fire without taking any action, (b) sealing offthe affected areas, and (c) sealing and reducing theventilation in the affected area and surrounding drifts. The study revealed the behavior of the fire ina real mine and the effectiveness of the main fire-fighting measures over time, verifying that none ofthe measures taken could eliminate the fire-induced in the collapsed area.This research was funded by the Junta de Castilla y LeĂłn (Spain), project LE167G18, as well as the European Union through the programs ECSC and RFCS, grant numbers 7220-PR/061 and RFCR-CT-2010-00005.Peer ReviewedPostprint (published version

    Online Dynamic Prediction of Potassium Concentration in Biomass Fuels through Flame Spectroscopic Analysis and Recurrent Neural Network Modelling

    Get PDF
    Biomass fuels are widely used as a renewable source for heat and power generation. Alkali metals in a biomass fuel have an significant impact on furnace safety as such metals lead to fouling and slagging in the furnace and corrosion of water pipes. This paper presents a technique for dynamic predicting Potassium (K) concentration in a biomass fuel based on spectroscopic analysis and different recurrent neural networks. A miniature spectrometer is employed to acquire the spectroscopic signals of K in different biomass fuels, including peanut shell, willow, corn cob, corn straw and wheat straw, and their blends. The spectroscopic features of K are extracted. The factors that influence the spectral intensity of K in the biomass fuels are investigated. A basic recurrent neural network (RNN), and its variants, i.e., long short-term memory neural network (LSTM-NN) and deep recurrent neural network (DRNN), are constructed using the spectroscopic signal of K from the spectrometer. The performances of the neural networks for the dynamic prediction of K concentration are compared and analysed theoretically and experimentally. It is found that the relative error in the K concentration prediction through the use of the DRNN model is within 6.34% whilst the LSTM-NN and RNN models give errors slightly greater than this

    Prediction of combustion state through a semi-supervised learning model and flame imaging

    Get PDF
    Accurate prediction of combustion state is crucial for an in-depth understanding of furnace performance and optimize operation conditions. Traditional data-driven approaches such as artificial neural networks and support vector machine incorporate distinct features which require prior knowledge for feature extraction and suffers poor generalization for unseen combustion states. Therefore, it is necessary to develop an advanced and accurate prediction model to resolve these limitations. This study presents a novel semi-supervised learning model integrating denoising autoencoder (DAE), generative adversarial network (GAN) and Gaussian process classifier (GPC). The DAE network is established to extract representative features of flame images and the network trained through the adversarial learning mechanism of the GAN. Structural similarity (SSIM) metric is introduced as a novel loss function to improve the feature learning ability of the DAE network. The extracted features are then fed into the GPC to predict the seen and unseen combustion states. The effectiveness of the proposed semi-supervised learning model, i.e., DAE-GAN-GPC was evaluated through 4.2 MW heavy oil-fired boiler furnace flame images captured under different combustion states. The averaged prediction accuracy of 99.83% was achieved for the seen combustion states. The new states (unseen) were predicted accurately through the proposed model by fine-tuning of GPC without retraining the DAE-GAN and averaged prediction accuracy of 98.36% was achieved for the unseen states. A comparative study was also carried out with other deep neural networks and classifiers. Results suggested that the proposed model provides better prediction accuracy and robustness capability compared to other traditional prediction models

    Machine learning-based prediction of a BOS reactor performance from operating parameters

    Get PDF
    A machine learning-based analysis was applied to process data obtained from a Basic Oxygen Steelmaking (BOS) pilot plant. The first purpose was to identify correlations between operating parameters and reactor performance, defined as rate of decarburization (dc/dt). Correlation analysis showed, as expected a strong positive correlation between the rate of decarburization (dc/dt) and total oxygen flow. On the other hand, the decarburization rate exhibited a negative correlation with lance height. Less obviously, the decarburization rate, also showed a positive correlation with temperature of the waste gas and CO2 content in the waste gas. The second purpose was to train the pilot-plant dataset and develop a neural network based regression to predict the decarburization rate. This was used to predict the decarburization rate in a BOS furnace in an actual manufacturing plant based on lance height and total oxygen flow. The performance was satisfactory with a coefficient of determination of 0.98, confirming that the trained model can adequately predict the variation in the decarburization rate (dc/dt) within BOS reactors. View Full-Tex

    DEVELOPMENT OF UNIVARIATE AND MULTIVARIATE FORECASTING MODELS FOR METHANE GAS EMISSIONS IN UNDERGROUND COAL MINES

    Get PDF
    Methane gas management continues to be a challenge concerning underground coal mine safety and productivity worldwide despite the extraordinary effort of the mining industry, governmental agencies, and academia to develop new technologies to monitor and control methane gas emissions more efficiently. The risk of hazardous methane gas concentrations in underground environments cannot be underestimated. Statistical data for the last 100 years indicate that around 80% of the accidents and 90% of the fatalities in the underground coal mining industry in the US were related to methane gas explosions. Modern underground mine operations monitor and evaluate atmospheric parameters such as barometric pressure, temperature, gas concentrations, and ventilation parameters (e.g., fan performance and airflow) by means of Automated Atmospheric Monitoring Systems, which use sensors that collect a massive amount of data implemented by mine operators to make decisions concerning mine safety and operate ventilation systems more effectively. In addition, however, some of these data can be statistically studied to develop forecast models to help improve the safety and health parameters of underground coal mining operations. The research presented in this dissertation investigates potential correlations between methane gas concentrations and independent variables such as barometric pressure and coal production rate to build reliable forecasting models capable of predicting future concentrations of methane gas, mainly based on time series data collected by the Atmospheric Monitoring System of three active underground coal mining operations in the eastern US and weather data retrieved from public weather stations in the proximity of the case studies. The mine and weather data were stored and pre-processed using an Atmospheric Monitoring Analysis and Database Management system explicitly designed to manage Atmospheric Monitoring Systems data. Furthermore, various statistical techniques were implemented to assess the potential association (e.g., autocorrelation and cross-correlation) between methane gas concentration time series and the independent variables. Such associations were employed to develop univariate and multivariate forecasting models for methane gas emissions in underground coal mines. Finally, the optimal model is selected using the Akaike Information Criterion, and the results obtained from the different forecast approaches (univariate and multivariate) are compared using cross-validation metrics to determine the best model. It was concluded that the ARIMA, VAR, and ARIMAX methane gas forecasting methodologies proposed in this research can accurately predict methane gas concentrations in underground coal mines operations. The methane gas forecasted from the models matched the validation data consistently, and their linear correlation was positive and strong in most cases. In addition, the 95% confidence interval consistently captured the forecast and validation data

    DEVELOPMENT OF UNIVARIATE AND MULTIVARIATE FORECASTING MODELS FOR METHANE GAS EMISSIONS IN UNDERGROUND COAL MINES

    Get PDF
    Methane gas management continues to be a challenge concerning underground coal mine safety and productivity worldwide despite the extraordinary effort of the mining industry, governmental agencies, and academia to develop new technologies to monitor and control methane gas emissions more efficiently. The risk of hazardous methane gas concentrations in underground environments cannot be underestimated. Statistical data for the last 100 years indicate that around 80% of the accidents and 90% of the fatalities in the underground coal mining industry in the US were related to methane gas explosions. Modern underground mine operations monitor and evaluate atmospheric parameters such as barometric pressure, temperature, gas concentrations, and ventilation parameters (e.g., fan performance and airflow) by means of Automated Atmospheric Monitoring Systems, which use sensors that collect a massive amount of data implemented by mine operators to make decisions concerning mine safety and operate ventilation systems more effectively. In addition, however, some of these data can be statistically studied to develop forecast models to help improve the safety and health parameters of underground coal mining operations. The research presented in this dissertation investigates potential correlations between methane gas concentrations and independent variables such as barometric pressure and coal production rate to build reliable forecasting models capable of predicting future concentrations of methane gas, mainly based on time series data collected by the Atmospheric Monitoring System of three active underground coal mining operations in the eastern US and weather data retrieved from public weather stations in the proximity of the case studies. The mine and weather data were stored and pre-processed using an Atmospheric Monitoring Analysis and Database Management system explicitly designed to manage Atmospheric Monitoring Systems data. Furthermore, various statistical techniques were implemented to assess the potential association (e.g., autocorrelation and cross-correlation) between methane gas concentration time series and the independent variables. Such associations were employed to develop univariate and multivariate forecasting models for methane gas emissions in underground coal mines. Finally, the optimal model is selected using the Akaike Information Criterion, and the results obtained from the different forecast approaches (univariate and multivariate) are compared using cross-validation metrics to determine the best model. It was concluded that the ARIMA, VAR, and ARIMAX methane gas forecasting methodologies proposed in this research can accurately predict methane gas concentrations in underground coal mines operations. The methane gas forecasted from the models matched the validation data consistently, and their linear correlation was positive and strong in most cases. In addition, the 95% confidence interval consistently captured the forecast and validation data

    Particle-scale numerical study on screening processes

    Get PDF
    The present study aimed to increase the understanding of the industrial screening process by using the discrete element method simulation (DEM) and machine learning modelling. Thus, the study focused on understanding the fundamentals of the complicated screening processes by investigating the process model with different controlling factors through particle-scale analysis. The particle-scale analysis was also linked to several macroscopic models and screening processes such as percolation of particles under vibration, the local passing of particles from the screen, choking of screening, non-spherical shaped particles contact detection and packing and machine learning modelling. The computational and theoretical analyses as well as machine leaning helped to clarify the use of particle-scale analysis and screening processes in several areas. The outcomes of this thesis include: (i) the percolation of particles under vibration and the machine learning modelling of percolation velocity to predict the size ratio threshold; (ii) a better understanding of screening process based on local passing of inclined and multi-deck screen and physics informed machine learning modelling to predict the particles passing; (iii) a logical model to predict the choking judgement of screen while combining the numerical results and machine learning and (iv) a novel contact force model for non-spherical particles by Fourier transformation and packing. The research in this thesis is useful for the fundamental understanding of the effect of particles’ contact force, operational conditions, particle properties, percolation and sieving on the screening process. Moreover, the novel process models based on artificial intelligence modelling, DEM simulation, and physics laws can help the design, control and optimisation of screening processes

    Flame stability and burner condition monitoring through optical sensing and digital imaging

    Get PDF
    This thesis describes the design, implementation and experimental evaluation of a prototype instrumentation system for flame stability and burner condition monitoring on fossil-fuel-fired furnaces. A review of methodologies and technologies for the monitoring of flame stability and burner condition is given, together with the discussions of existing problems and technical requirements in their applications. A technical strategy, incorporating optical sensing, digital imaging, digital signal/image processing and soft computing techniques, is proposed. Based on this strategy, a prototype flame imaging system is developed. The system consists of a rigid optical probe, an optical-bearn-splitting unit, an embedded photodetector and signal-processing board, a digital camera, and a mini-motherboard with associated application software. Detailed system design, implementation, calibration and evaluation are reported. A number of flame characteristic parameters are extracted from flame images and radiation signals. Power spectral density, oscillation frequency, and a proposed universal flame stability index are used for the assessment of flame stability. Kernel-based soft computing techniques are employed for burner condition monitoring. Specifically, kernel principal components analysis is used for the detection of abnormal conditions in a combustion process, whilst support vector machines are used for the prediction of NO x emission and the identification of flame state. Extensive experimental work was conducted on a 9MW th heavy-oil-fired combustion test facility to evaluate the performance of the prototype system and developed algorithms. Further tests were carried out on a 660MWth heavy-oil-fired boiler to investigate the cause of the boiler vibration from a flame stability point of view. Results Obtained from the tests are presented and discussed
    • …
    corecore