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ABSTRACT

Conventional coal-fired burners are designed to operate within specific limits
that, in part, result from the need to efficiently burn the fuel, ensure stable
combustion and result in the lowest emissions. However, recent requirements
to reduce CO2 emissions from coal-fired boiler plant as part of the drive to
reduce the carbon footprint of energy suppliers has focussed on the co-firing
of biomass, primarily wood, either by delivering the pulverised biomass with
the coal or through separate burners. Typically this approach has taken place at
substitution levels of around 10 % or less by mass and at these levels the operation
of the burner and boiler are not adversely affected. However, as the proportion
of biomass is increased in a boiler designed for coal, the fuel characteristics of
the blend moves further away from the burner design parameters. This can lead
to combustion instabilities and in extreme cases extinction of the flame. In order
to co-fire higher concentrations of biomass a system or technique is required
that can detect the onset of these instabilities and warn before the combustion
conditions become dangerous.

This research presents an investigation of a system that monitored the com-
bustion flame using photodiodes with responses in the Ultra Violet (UV), Infrared
(IR) and Visible (VIS) bands. The collected data was then processed using the
Wigner-Ville Distribution (WVD) joint time-frequency method and subsequently
classified using a Self-organising Map (SOM). It was found that it was possible
to relate the classification of the sensor data to operational parameters such as
the burner airflow rate, CO and NOx emissions. Then using a simple rule based
approach the developed system was successfully tested at pilot scale (500 kWth)
where the ability of the system to optimise the combustion for a variety of unseen
coal/biomass blends was demonstrated.

With wide range of operating conditions and the inherent complex nature of
coal combustion, a set of stable conditions were recorded to be processed and
train the developed system. Such a trained system was subsequently used for
monitoring and was able to classify the conditions accurately. The system was
also able to relate the sensor data to varying combustion conditions and hence
suggest changes to bring the combustion back to a desired state. This system
is capable of making such predictions correctly even with some variation in fuel
properties and has been demonstrated to do so in both pilot and full scale power
plants.
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Chapter 1

INTRODUCTION

This chapter introduces the problem addressed by this work, defines the objec-
tives of the research undertaken and provides an outline of the overall layout of
the thesis.

1.1 Co-Firing Higher Proportions of Biomass

Coal is the world’s most abundant and widely distributed fossil fuel, and its
combustion generates a significant proportion of the global electricity production
[1]. Coal has been burnt in utility boilers for many years for the production of
electricity for either industrial or domestic use. Steady improvements have been
made in overall thermal efficiency, primarily through the development and use
of new high temperature materials [2, 3]. With worldwide demand for electricity
generally increasing, and in particular the rapid rise in demand in developing
countries such as India and China, there has been a rapid worldwide expansion
of coal fired utility boilers [2, 4, 5]. For example, India’s energy consumption has
doubled since 2000 with coal accounting for over 70 % of electricity generation
there [6] and China has been the largest contributor to the growth for global
energy usage for the past 20 years [7].

Coal burners and boilers have been used for electricity production for many
years and with increasing demand, a large number of new plants are being built
[8]. Burning coal produces CO2, NOx and other emissions which contribute to
the global emission of greenhouse gases and hence to global warming [2, 9–11].
This has led to countries making commitments to decrease net emissions by
switching to renewable sources of energy and new cleaner technologies [12]. Such
agreements have been made between many countries under the auspices of the
United Nations (UN) in Kyoto [13] to limit emissions in a sustainable way and
the latest in Paris [14] to be ratified by member countries to limit global warming
to 2 ◦C.

Pulverised Coal (PC) boilers are the most widely used type of utility boiler
due to their higher efficiency and account for most of the coal based generation of
electricity around the world [15, 16]. The carbon footprint of industrial processes
coupled with increasing energy demand has led many countries to look at low
carbon sources of energy, especially with the newer regulations and international
agreements. Biomass, defined as the biodegradable fraction of products, waste
and residues of biological origin, is considered a low carbon or carbon neutral
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source of fuel [17, 18]. Biomass combustion accounts for 95 % of all usage, of
which more than 50 % is used for domestic space heating and cooking [16]. Com-
bustion of biomass in larger scale plants, such as in district heating systems or
for the production of steam and/or electricity, has better emission control [16].

Combustion of biomass has many advantages, such as emission reduction in
PC boilers, socio-economic benefits such as being a source of energy, employment
and income, but requires investment in terms of combustion facilities [19, 20].
Biomass can be converted to energy using a variety of methods, though direct
combustion accounts for the majority of biomass usage. Of the various ways to
combust biomass, co-firing is being pursued aggressively as a short term approach
to increase biomass usage. This is due to needing lower investment, ease of
implementation and reducing the net CO2 emissions [18, 21, 22].

Figure 1.1: Common obstacles faced with cofiring [9, 23]

Co-firing biomass together with coal in pulverised coal burners has some
obstacles in terms of available technology and gaps in know-how as reviewed
by Sami et al. [9]. Summarily these are (as shown in Figure 1.1) the issue of
fouling and corrosion at high temperature, the prepared biomass particle size
and its use with existing feed mechanisms, and the pulveriser performance as
the lower calorific value of biomass requires higher fuel flow rates to maintain
thermal output levels [9, 23, 24].

Typically biomass substitution has remained at 10 % or less by mass for pul-
verised coal burners primarily due to the limitations of particle size and pulveriser
performance [9]. The push to meet CO2 targets has led DRAX in the UK which
had set itself a target of producing at least 10 % of energy from co-firing, to have

2



CHAPTER 1. INTRODUCTION

already converted three of their boilers to 100 % biomass combustion [25, 26].
The International Energy Agency (IEA) Clean Coal Centre’s publication high-
lights only two facilities in the UK that have co-fired higher than 10 % biomass,
Drax and Fiddler’s Ferry Plant [27]. The introduction of a higher percentage
of biomass can lead to unstable flame conditions as the coal biomass blend has
a lower heating value than coal alone, requiring a higher volume of fuel to be
burnt compared to the original design for coal only and hence pushing the oper-
ating boundary for the same thermal output. This increased fuel flow rate has
a tendency to move the flame further from the burner quarl which affects flame
stability and also can lead to higher NOx emissions [9].

1.1.1 Flame Monitoring

Monitoring is needed for the detection of changes in processes or systems, to
avoid faults or to rectify them [28, 29]. Early detection of fault conditions are
usually made by processing of measurable signals/parameters of the process be-
ing monitored [28]. When no or little information is known about a process,
experimentally trained classification methods are useful for fault detection [28,
29].

The monitoring regime of most large scale boilers combusting fossil fuels is
inadequate [30, 31]. Most burners have had installed safety devices that detect
the presence of a flame since the 1950s [32], but these are only useful as a safety
device to cut off further fuel being supplied to the burner. Measurement of
O2 and other emissions in the stack have been used as an indirect method to
control the combustion process [33], but this is not very efficient as local burner
conditions tend to differ from overall measurements at the stack. Also burning a
higher volume of fuel due to the lower calorific value of biomass tends to challenge
the stability of the burner designed for coal combustion and hence a method or
system to detect such changes in real time is required. There are advantages
to monitoring individual flames as this could be used for better control [33] and
could maximise the combustion efficiency of individual burners. Such monitoring
was shown to have interesting advantages such as the detection of near burner
slagging that can adversely affect the flame [34].

Flame diagnostics is widely believed to be of importance for better combus-
tion and in maintaining stability [35, 36]. Most detection techniques are depen-
dent on the chemiluminescence of the flame, that arises from excited species or
radicals which emit distinct wavelengths during their excited state [37, 38]. Ba-
sic flame detectors typically employed in utility boilers are passive, non-intrusive
safety devices, which operate in the Infrared (IR) region detecting the presence of
the flame [39, 40]. The flame is generally detected through a natural flicker which
is not affected by background blackbody radiation unlike methods dependent on
signal intensity alone [41].

Traditionally signal processing methods like Root Mean Square (RMS), Fast
Fourier Transform (FFT) and Power Spectral Density (PSD) have been em-
ployed to quantify signals. More advanced Joint Time Frequency (JTF) signal
processing methods like wavelet and Wigner-Ville Distribution (WVD) have been
utilised to process the sensor data. Artificial Neural Network (ANN) have been
applied to complex problems where conventional computing is unable to per-
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form adequately and have been used to monitor co-firing and other combustion
processes [42–44].

Combustion of coal and coal biomass blends is a complex process and despite
the considerable research to develop comprehensive models of the process, gaps
still remain in our understanding [45, 46]. It is not possible therefore to use a
model based approach to develop control algorithms for the boiler. An alter-
native approach is to focus on controlling individual burners. In order to safely
co-fire higher proportions of biomass a system capable of avoiding unstable oper-
ation whilst at the same time maintaining combustion efficiency and lowering the
emission of pollutants is required. With the increasingly stringent requirements
for emission control and carbon cost reduction, such a system would aid the
uptake of co-firing in utility boilers. In fact, this research work was undertaken
as part of an European Union (EU) funded Research Fund for Coal and Steel
(RFCS) project, under contract RFCR-CT-2008-00009 which aimed to increase
the biomass percentage being co-fired and investigate the associated problems,
one of which was development of a control system capable of detecting these
unfavourable flame conditions [47].

1.2 Aim and Objectives

The overall aim of the work presented here was the development and investigation
of the performance of a complete flame monitoring and control system that runs
in real-time to be able to detect abnormal combustion while co-firing biomass
in facilities built for coal combustion and make suggestions as to how to effect
change.

1.2.1 Objectives

To achieve the above mentioned aim, several objectives were defined. These
were:

1. Development of a novel three sensor optical monitoring instrumentation
system.

2. Application of a combination of advanced signal processing techniques in
a novel way to co-firing flames.

3. Investigation into the performance of the developed system at pilot and
full scale plants.

The rationale for these were to see if data can be extracted from the broad-
band sensors would be able to adequately detect changes seen in the flame with
variations to the input to the burner, through a systematic set of experiments to
be conducted at pilot scale. If relationships could be established through identi-
fication of a suitable signal processing method to input changes, then this could
be used to develop a rule based control and monitoring system that could be
initially tested off-line with the data acquired from the systematic set of experi-
ments. If that was successful then the performance of such a system to suggest
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changes to the burner operator to correct the operation to previously identi-
fied ideal conditions at both pilot and full scale plants would be carried out to
understand the viability of such a system to operate in real-time.

1.3 Thesis Structure

This thesis is organised into seven chapters that provide the reader with the
background to the methodology, experiments undertaken and results obtained
that together describe the outcome of this research.

Chapter 2 provides a brief introduction to coal, its application and impor-
tance in power production and energy security. Subsequently, problems with
emissions from coal combustion and the adverse environmental effects to the
efforts in stemming this issue are discussed, concentrating especially on the at-
tractive option to co-firing biomass in coal burners with little cost and infrastruc-
tural change. A critical review of combustion monitoring and related techniques
employed are discussed with the need for the current research to fill gaps in the
pathway to co-fire a higher percentage of biomass being identified. The signal
processing methods and an introduction to ANN are presented with references
to the numerous applications of such networks to fault detection and monitoring.

Chapter 3 describes the research methodology, the experimental apparatus
at both the pilot and full scale plants, the selection of appropriate sensors, data
acquisition techniques and related signal conditioning applied are discussed. This
chapter also tabulates all the experiments carried out towards the realisation of
the objectives of this research, at both the facilities together with the available
gas analysers to measure emissions from the combustion to be utilised for the
monitoring system development.

Chapter 4 presents the results from the systematic experiments carried out
at the pilot scale plant. The sensor data are discussed with the burner operation
parameters to illustrate the methodology used in the selection of the signal pro-
cessing. This discussion highlights the complex nature of the signal variations
with changes to burner conditions and the need for a method to classify the data
and so identify the complex relationships present in the input data that are not
readily visible with simple signal processing methods.

Chapter 5 discusses the development of the monitoring system capable of
identifying changes to the burner operating conditions. The various features
extracted from the three sensors and their application in various detection meth-
ods before arriving at the final system with a Self-organising Map (SOM) is
illustrated. The architecture of the ANN and the appropriate signal process-
ing methods and features used in the detection algorithm are explained. This
also shows the training and application of the SOM model for this Monitoring,
Control and Optimisation (MCO) system.

Chapter 6 discusses the results of the series of experiments carried out to test
the developed algorithm at the Combustion Test Facility (CTF). The limitations
and solution to large changes to the fuel properties are discussed. This is followed
by a discussion of the results obtained from the application of this novel system
during real-time experiments carried out at the full scale Dolna Odra power
plant.
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Chapter 7 draws the conclusions from this research project and the results
obtained with respect to the developed intelligent MCO system to detect changes
in flame conditions whilst co-firing coal and biomass. Further work that could
be of relevance to this research and other recommendations are presented in the
last section of this chapter.
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Chapter 2

LITERATURE REVIEW

This chapter discusses the most relevant literature regarding coal flame monitor-
ing together with the reasons for monitoring and a number of related topics in-
cluding coal usage, combustion efficiency, biomass, signal processing algorithms,
Artificial Neural Networks (ANN) and special instrumentation.

2.1 Energy Needs

Energy usage, especially electricity generation is linked to the prosperity of devel-
oped countries according to the International Energy Agency (IEA) [48]. Energy
usage has also been linked to poverty reduction, as a by-product of economic
growth, in developing and especially Asian countries [48]. A number of publica-
tions from the IEA have also highlighted the need for a balanced mix through
a range of cleaner fossil fuels, nuclear and renewable energy, together with im-
proved energy efficiency, to provide stability in the energy markets. This should
then maintain and promote prosperity / growth in developed and developing
countries [48, 49]. This need for development in the Asian economies is fuelling
more urbanisation and infrastructure development, which in turn drives demand
for electricity, steel and cement which are all very reliant on coal for their pro-
duction [48].

Energy demand is increasing, especially the usage of coal, due to the volatile
cost of oil and gas compared to the relatively stable price of coal. In addition, coal
has widespread availability and multiple sources of supply [48, 50–52]. Energy
demand globally is projected to increase by 55.1 % over the period to 2030,
compared to 2005 levels according to the World Energy Outlook [53]. Fossil
fuels fulfil 80 % of the energy need according to ‘The Future of Coal’ reported by
the Massachusetts Institute of Technology (MIT) in 2007, of which 25 % comes
from coal [52]. This can be expected to be maintained unless the usage of fossil
fuels is reduced to mitigate the impact on climate [48, 53]

Clean coal technologies aim to improve the energy efficiency of coal power
plants (in 2006 mean of 35 % efficiency) to more than 50 % by 2050, which would
also reduce CO2 emissions significantly [54]. The largest user of coal for electricity
- China, could save about 20 % of the coal used by improving the efficiency of its
plants to that of Japan for example [54].
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2.2 Importance of Coal

Coal is the result of the complex transformation of vegetation through decay
and geological pressure and heating [55]. Coal is a natural solid fuel which
consists primarily of pure carbon, hydrocarbons, mineral compounds and water
[45]. Chomiak’s textbook section on the combustion of coal provides a wealth
of details, including a basic description of the fractional analysis of coal. This
proximate analysis and classification of coal based on the organic rock nature
and petrographic based on the occurrence of the principal mineral types in coal
[45]. Primary energy is, to a large extent, derived from the combustion of fossil
fuels, one of which is coal [52, 56, 57]. Coal is the second most important source
of energy in the US, after oil, which is largely used for transportation [8, 57],
and accounts for 50 % of the electricity produced in the USA [3, 52]. The USA
is the largest user of coal for energy production with China being the overall
largest coal user across all industries [58]. Nine countries account for 90 % of the
reserves of coal in the world [8] of which USA, China and India have the largest
[52].

Global energy demand has been increasing due to economic growth, especially
from developing countries like Brazil, China & India, and has a direct link to
population growth [59, 60]. Oil, one of the primary sources of energy at 33.6 %,
is the largest contributor but this is due to use of oil predominantly in trans-
portation. Coal at 39 % has the biggest stake in electricity production in the
world [58, 61]. The importance of coal as a primary source of fuel, especially for
electricity production, is due to coal being cheaper than other fossil fuels, having
the largest proven reserves of any fossil fuel, thus providing energy security [3,
5, 8, 52, 58, 62]. In addition, the rapid development seen in Asian economies
is driving a rapid investment in new infrastructure, thus driving growth in the
consumption of steel and cement [48]. Coal is fundamental to steel and cement
production, which in turn is needed for these new infrastructure developments
[48, 50, 52].

In the European context, if current levels of growth in energy needs are to
be met by 2050 an additional 300 GW of capacity needs to be added to the grid
by then [60]. This additional need for capacity would be 500 GW if the growth
in electricity demand rises as expected [60]. If one also factors in the need to
replace the ageing fleet, a number of fuel options would have to be considered
and coal due to its availability and relatively steady price would be expected to
play a considerable part [60].

In spite of the stable price and availability advantage, coal impacts on the
environment while being extracted and also when burnt for energy, especially
through polluting the air [45, 52]. According to the UK Parliamentary Office of
Science and Technology (POST), coal is a major source of emissions, especially
from energy intensive industries [63] and is also responsible for 41 % of all CO2

emissions from energy production [52].

2.3 Coal Power Plants

Coal burners and boilers have been used for many years to produce electricity.
With the increasing worldwide demand for electricity, a large number of new
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plants have been or are in the process of being built [8], particularly in China
[52]. At the current pace of economic development, the need for electricity is so
high in China that its annual capacity is increasing at roughly the size of the
power grid of the UK [2, 52]. This in turn leads to increasing emissions of CO2,
NOx and SO2, the main causes of acid rain and global warming. Combustion
efficiency depends in part, on the burner and there have been improvements
in utility boiler thermal efficiency, though these have mainly been through the
development and use of high temperature materials in their construction that
allow the boiler to operate under supercritical conditions [2, 3].

According to Overend et al. [16] the major types of industrial and power
generation boilers in use are pile burners, grate boilers, suspension fired boilers,
fluidized beds and circulating fluidized beds. Of these, Pulverised Coal (PC)
boilers, also known as suspension fired boilers, so called due to the fuel or pul-
verised coal being suspended in air as it’s burnt in the boiler, have a higher
efficiency than other boiler types [15]. PC boilers are widely used and account
for 92 % of coal based generation in the USA [15, 16, 45, 57, 61].

The main design goals of burners and boilers are power efficiency, durability
and reliability [56]. Many complex chemical and physical transformations hap-
pen during the combustion of coal [45]. This makes modelling difficult due to
the complex interactions that occur. De-volatilization of the volatile matter in
coal during combustion, gas temperature, oxygen concentration and quality &
quantity of char varies based on the type of coal [45].

2.4 Carbon Footprint

According to the POST ‘carbon footprint’ refers to the overall CO2 and other
greenhouse gas emission emanating from the whole lifecycle of a process or prod-
uct [64]. This is usually calculated to evaluate the impact on the environment
over the entire lifetime, ‘cradle-to-grave’, of the said process or product [64].

2.4.1 Industrial Needs

As highlighted in sections 2.2 and 2.3, coal is used as an energy source in both
energy production and industrial processes. Many industrial processes require
combustion as one of the core process needs and hence, its efficiency has a huge
impact on economics and the possible environmental impact of the process [45,
51, 65]. Coal is the second largest CO2 emission source after oil, as oil is used for
transportation [8], even though coal has the highest emissions of CO2 per kW
of energy generated [64]. So, environmental factors and large emissions from the
combustion of fossil fuels highlight the need for low carbon or carbon neutral
technologies in an effort to reduce the carbon footprint from industrial processes
and power generation [8, 45, 51, 64, 66].

A number of measures, especially related to low carbon technologies, are being
pursued by many countries. One such measure is to reduce the emissions of man-
made greenhouse gas from large industrial and power plants in the European
Union (EU). The EU Emission Trading Scheme (ETS) which places emission
reduction targets on member countries to achieve through renewable energy usage
and efficiency improvement as part of the response to climate change [67, 68]. The
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target announced in October 2014 for EU member countries is a 40 % reduction of
greenhouse gas emission levels by 2030 (compared to 1990) [26]. Usually these low
carbon technologies utilise renewables or nuclear, but these are not completely
carbon emission free as they have indirect emissions emanating from preparation,
transportation and production and not directly during power production like
fossil fuels [64].

2.4.2 Coal’s Footprint

Coal combustion has the highest carbon foot print of any fossil fuel (or otherwise)
with conventional power plants especially producing emissions in the region of
1000 gCO2eq/kWh [58, 64].

A number of countries, especially in the EU, are attempting to reduce their
carbon foot prints, which would also enable them to reduce their dependence
on imported fossil fuels and also increase the amount of energy generated from
renewable sources. One of the sources of renewable energy is biomass and an
approach is to substitute coal with biomass in the coal burner, quite often with
very minimal changes to plant operation and cost compared to building new
biomass boilers. Biomass combustion has near zero net emission of CO2, so
the substitution of coal with biomass in the large number of coal power plants
throughout the world (installed capacity of 800 GWe) would effectively lead to a
significant reduction of CO2 [69–71]. This would also help the target set by the
European Parliament for the percentage of energy to be produced from renewable
sources in the near future, thereby giving incentives to further the use of biomass
in coal power plants [72]. The results used in this report are in fact part of a
project that had funding from the EC (SMARTBURN) for such research.

2.4.3 Policy Enabling / Moving Towards Carbon
Footprint Reduction

The United Nations’ Framework Convention on Climate Change agreed (Kyoto
Protocol 1997) to reduce the emission of greenhouse gases among all the signa-
tories of the protocol [13, 73]. This came into force from 2005, which required
the signatory countries to comply through promotion of energy efficiency, usage
of renewable sources of energy and other measures like taxation and duty on
activities that generate greenhouse gases to progressively reduce emissions [13].
The main mechanisms adopted for the Kyoto protocol were emissions trading,
sustainable sources of energy development and taking into account emission re-
duction measures funded in another country towards the funder’s emission total
[73].

One of the first regulations on emissions in the UK was by Her Majesty’s
Inspectorate of Pollution (HMIP) in Scotland on large combustion plants under
the Environmental Protection Act - 1990 (EPA) [31].

In the UK context, the Energy White Paper 2003 “Our energy future – cre-
ating a low carbon economy” calls for carbon reduction as the UK government’s
policy towards 2050 [74]. This is in addition to the UK’s very aspirational tar-
get of a 20 % reduction of the six main greenhouse gases, as agreed under the
Kyoto Protocol. Other energy strategies point towards the use of other sources
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of energy especially renewables. The Renewables Obligation placed on electric-
ity suppliers aims towards the usage of biomass and biomass co-firing [74]. The
Department of Trade and Industry (DTI), has highlighted the need for carbon
abatement and their current strategy is to switch to lower carbon alternatives of
which biomass is an important element with possible emission reductions of 5 to
10 % just from co-firing [75].

The Climate Change Act (CCA) signed into UK law in 2008 sets a target of
34 % and 80 % reduction of major greenhouse gases by 2020 and 2050 respectively,
compared to 1990 levels [63]. The Climate Change Levy (CCL) in the UK tries
to also improve efficiency in industry through taxation of electricity from coal
for example, while electricity from renewable sources are exempt from this levy
[63].

The EU wide ETS agreed between member states came into effect in 2005 [67,
68]. ETS is a cap and trade type system where the total permitted emissions are
set and the allowable limits allocated to different organisations and industries.
These organisations can trade these permits with others who have low emissions
in a way fixing the price according to demand and promoting measures in all those
industries to reduce the amount of greenhouse gas emissions [68]. ETS covers
a range of industries and processes covering 45 % of all emissions throughout
Europe [67].

Similar to ETS, a number of other countries including some states in the
USA, Canada, Japan, Australia, Switzerland, New Zealand, Mexico, South Ko-
rea and Taiwan have either proposed or implemented systems for carbon trading
[68]. Further, the EU and some of these countries are in discussion to have an
integrated system so as to avoid some of the so called ‘carbon leakage’, where
companies and industries move to other countries with little or no carbon pricing
without much effort in terms of emissions reduction [63, 68].

The EU Renewable Energy Directive (2009) calls for member countries to
implement and achieve mandatory targets for energy derived from renewables;
20 % for overall energy consumption and 10 % for transport by 2020 [17, 76]. In
addition, with such directives the demand for electricity might also rise (double
by 2050) as heating and road transport might increasingly use electricity to
achieve targets for the reduction of greenhouse gas emissions [76].

2.5 Combustion Efficiency Improvements

Most of the improvements seen until now in boiler efficiency have been from the
use of high temperature materials [2]. So there have been numerous projects
investigating methods to reduce pollutant emissions through intelligent monitor-
ing, control and optimisation of burner and boiler systems to improve combustion
efficiency [37, 77]. There is also a global trend to increase the sustainable produc-
tion of energy which brings with it the additional advantage of decreasing CO2

emissions as well as reduced usage of coal. One short term approach that is being
aggressively investigated and implemented is to supplement a proportion of the
calorific content of the coal with biomass [21, 70, 71]. This has the advantage
of using the same equipment with minimal changes reducing cost of adoption.
Other advantages are a reduction in the carbon foot print, as biomass is a car-
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bon neutral fuel, reduction in NOx and SO2, reduction in fuel costs and other
benefits, dependent upon the source of biomass, such as reduction / avoidance
of CH4 emissions from straw / crops after harvesting, which might otherwise end
up in landfill sites [9, 46, 70, 71].

2.5.1 NOx Effects

NOx is one of the emission products from the combustion of fossil fuels, which
is held chiefly responsible for smog problems affecting especially urban areas
[78–80]. NOx is also considered as a precursor to acid rain and contributes to
acidification of aquatic systems and reduction in visibility [79]. NOx also affects
human health, with the nervous system being affected by NO and irritation of
the lung and other complications with NO2 [45].

The options for NOx (and also SOx) reduction are combustion control, post
combustion techniques or a mixture of both [79]. NOx reduction through com-
bustion control reduces the NOx at source, as in, at the start of the combustion
process. There are three mechanisms of NOx formation, namely fuel NOx which
accounts for about 75 % from the oxidation of nitrogen in the fuel, thermal NOx

which accounts for about 25 % due to the reaction of nitrogen with oxygen in
the combustion air and very minimal amounts of prompt NOx from the complex
interaction of nitrogen with hydrocarbons in the flame front [45, 78, 79, 81].

In order to reduce NOx, combustion modifications included in low NOx burn-
ers aim to delay the mixing of the fuel and air, and hence reducing the temper-
ature and turbulence at the start of the flame to reduce NOx formation [79,
81, 82]. Even though these modifications reduce thermal NOx formation to a
large extent, they don’t completely eliminate it. At the same time, even small
fluctuations in the flow to the burner could affect fuel mixing and increase NOx

which necessitates better control techniques to identify such changes. Modelling
of NOx emission is difficult, as NOx formation is highly non-linear with regards
to boiler operational parameters [83]. In addition to that, low NOx burners can
also impact the fly ash quality due to un-burnt carbon (UBC) which has an eco-
nomic value by being sold to the cement industry and also high UBC can affect
particulate control systems and their effectiveness [79]. The EU directive for
Large Combustion Plant (LCP) implemented by member states and US Clean
Air Act Amendments (CAAA) employed by the US Environmental Protection
Agency (US EPA) regulate(s) NOx (and other) emissions from a large number
of sources of combustion which help mitigate or reduce NOx emissions, which to
a large extent applies to coal power plants [80, 84, 85].

2.6 Biomass

According to EU Directive 2009/28/EC, biomass is defined as “biodegradable
fraction of products, waste and residues from biological origin from agriculture
. . . , forestry and related industries . . . , as well as the biodegradable fraction of
industrial and municipal waste” [17].

Biomass is derived from photosynthesis where plants convert carbon dioxide
in the air using energy from the sun to chemical energy [16]. Biomass encom-
passes a variety of plant or organic matter and elemental analysis has shown
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about 50 % is carbon, especially in wood and grasses [16]. The major source
of energy derived from biomass currently comes from the residues of timber and
food crops, as they are being processed to other products and these residues usu-
ally equal the amount of grain or timber produced, e.g. 1 tonne of grain would
give 1 tonne of biomass residue from the plant [16].

In the US, small diameter trees and debris in forests add to fire hazard and
are regularly removed and are already utilised for fuel, like in other parts of the
world [16]. So biomass is converted to energy, for example, to supply heat or
run combined heat and power plants to change to electricity or other forms of
fuel [16, 70]. Biomass use has socio-economic benefits such as being a source of
energy, employment and income; and is also an impetus in some countries and
regions for increased power production in addition to other benefits like emission
reduction [19, 20].

2.6.1 Biomass for Energy

EU directive 2001/77/EC urges member countries to utilise more renewable
sources of energy for electricity production to achieve sustainable development,
for environmental protection, for local employment and also to contribute to the
security of energy supply from different fuels sourced, if possible, locally [86].
In addition to this, the EU has set targets for member states, for example to
achieve at least 12 % of all energy usage from renewables from just 6 % in 1997
or electricity from renewables of 22.1 % by 2010 [86, 87]. This target has been
further increased to 27 % contribution from renewables by 2030 [26]. The EU
green paper on energy security suggests the significance of biomass for the energy
security of the EU [19, 87]. Four countries, namely Portugal, Finland, Austria
and Sweden, account for significant use of renewable sources of energy (including
biomass and hydro) exceeding the 12 % target and a number of other countries
in the EU are either harmonising their laws to the EU directive or increasing
their share of renewables for energy, one of which is biomass [87].

According to Connor [88], UK government intentions towards renewables were
observed through, ‘Energy Paper 55 – Renewable energy in the UK: the way for-
ward’, published by the Department of Energy and Climate Change (DECC)
in 1988 through to ‘The renewables obligation statutory consultation’ from the
DTI in 2000, which promote the usage of / set targets for renewables in UK [88].
One of the main targets of the UK government publications, was the reduction
of emissions including greenhouse gases to meet both national and international
commitments in addition to providing sustainable energy supply and local em-
ployment [88].

According to Upreti et al. [89], UK governments’ long term grants for use
of renewables by electricity suppliers under the Renewables Obligations, is one
of the ways the government is promoting the use of renewables and this also
fulfils the UK government obligations towards various national and international
commitments [89, 90]. In 2010, biomass electricity capacity stood at 2.5GW,
which is the largest electricity contribution from any renewable source of energy
[91]. Cornelissen et al. have highlighted the potential of biomass for energy
production to meet all needs globally and also sustainably by 2050, and also
to avoid fossil fuels and hence reduce greenhouse gas emissions from the energy
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supply networks throughout the world [92].
Biomass is used for energy in a number of ways as follows [15, 16, 18, 91, 93,

94]:

1. direct combustion to produce heat which can be used for heating, and other
processes like producing electricity;

2. thermal gasification to produce gaseous fuel, which can also be converted
to liquid form for usage elsewhere as either gaseous or liquid fuels; and

3. other advanced conversion methods like anaerobic digestion.

Combustion of biomass accounts for 95 % of all biomass usage in the world
[16]. More than 50 % is accounted for by household use of biomass for cooking
and space heating, which is usually of poor combustion efficiency. Slightly better
efficiency is seen with wood log combustion for space heating around forested ar-
eas in the northern hemisphere and Latin America; and much improved efficiency
with reduced emissions from district heating systems burning biomass especially
in Europe [16]. Some of the large scale district heating systems also produce
steam for industries and electricity for the grid with better emission control [16].

Biomass can be a sustainable fuel with lean carbon and lower levels of pol-
lutants like SO2, compared to fossil fuels [95]. For example, Tilbury power sta-
tion would reduce SOx, NOx and particulate emissions considerably by burning
biomass for just the few years before it reaches its end of life [91]. Biomass can
also contribute to the economy and provide business opportunities to the local
area if sourced locally and also avoid release of CO2, and the 21 times more
potent methane (for the greenhouse effect), to the atmosphere, if left unused for
energy or other applications [91, 95]. Dalkia biomass plant in county Durham
uses waste wood that would have ended up at landfill and at the same time
produces electricity and heat and contributes socially through local jobs [91].

2.6.2 Biomass Combustion

Combustion is the major way biomass is used throughout the world, so this
section details some of its advantages and challenges [16]. Biomass is a high
volatile fuel, which can produce large amounts of gas during rapid combustion
unlike other solid fuels, so this has to be taken into consideration for combustors
[16]. As mentioned in section 2.6, biomass is directly burned in households either
for cooking or space heating without much effort in fuel preparation. Larger scale
systems for district heating achieve better efficiency according to Overend et al.
[16, 18] due to the larger scale and hence also lower emissions.

Industrial applications employ co-generation or combined heat and power
systems to generate heat and also produce electricity or use the heat to process or
dry other ingredients. For example, pulp or cane sugar manufacturing processes
burn the residue as a fuel and also use it to fulfil other process needs [16]. Biomass
is also used for power generation, usually requiring some transportation and fuel
processing, but with much lower or a neutral carbon footprint compared to other
fossil fuels and better efficiency than other methods of biomass combustion [15,
16, 18, 93].
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As mentioned in section 2.3, according to Overend et al. and Kayhanian et
al. PC boilers are the most widely used boilers for power generation [15, 16]. In
this context, biomass can be combusted in a few ways as follows:

1. In separate biomass boilers – this usually entails substantial capital outlay
for building and also, location of the boilers would impact the carbon foot-
print if the transportation of biomass becomes necessary when the source is
not local [18]. The advantages of direct burning are the availability of tech-
nology and ready turnkey suppliers but the disadvantages are the thermal
efficiency penalty for burning high moisture fuels (biomass); fouling due
to alkali compounds in the biomass; and, low efficiencies for steam power
plants due to the lower calorific value of biomass compared to fossil fuels
[15, 93].

2. Biomass burners with separate transportation mechanisms in existing PC
boilers - retrofitting of biomass burners in existing PC boilers to burn
100 % biomass separately needs planning and space to install the burners
and the additional biomass transport mechanisms to carry the biomass to
the burner. This suffers from most of the disadvantages of direct burning
except the low efficiency, as coal provides higher heat release; but then has
additional costs involved with the initial retrofit [93].

3. Co-firing - where a portion of coal is substituted with pulverised biomass
in the same transportation mechanisms to the PC boiler. The option to
use biomass in existing burners for co-firing with coal eliminates the need
for separate transport mechanisms and space consideration with respect
to the existing PC boiler. This also doesn’t suffer from the low thermal
efficiency of 100 % biomass burners due to coals’ higher heat release. Coal
usually contains a very high carbon content and takes a long time to burn,
unless pulverised [16], so adding pulverised biomass (which usually has
much lower carbon content than most fossil fuels) should be cheaper and
easier to achieve, without drastic changes to the operational conditions of
the PC boiler except for small reductions in the thermal capacity due to the
portion of fuel being substituted with biomass which has a lower heating
value [18, 66].

2.6.3 Co-Firing Biomass

As highlighted in the DECC UK Renewable Energy Roadmap [91], co-firing is
the second largest contributor to electricity generation at 21 % after generation
from waste for renewable energy sources. Biomass through co-firing on average
contributes 3 % of the energy produced from major UK power plants [96]. A
number of power plants in the EU have started combusting biomass, including
Drax in the UK [26]. In addition to that, ETS and the current carbon pricing
is likely to push co-firing competitiveness with many power plants adopting this
to reduce their cost on carbon pricing [18].

Co-firing is an alternative, where a portion of coal is replaced with biomass for
combustion in PC boilers as opposed to only biomass in PC boilers which either
were designed for coal or additional separate biomass burners in PC boilers with
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separate fuel transport mechanisms, which entail cost and space considerations
in proximity to the boiler [15, 18, 93]. Some of the advantages of co-firing are as
follows [15, 16, 18, 21, 26, 46, 57, 66, 71, 93, 97–101]:

1. A reduction of biomass wastes ending up in landfill (and the associated
costs) from industries such as lumber mills and paper companies

2. Sulphur emission reduction, which is relatively cheaper than other options

3. Fuel flexibility

4. CO2 reduction

5. Reduced ash-fouling issues (compared to biomass only burners or plants)

6. Maybe fulfilling emission targets depending on the location, as some coun-
tries give additional allowances for usage of renewable sources of energy in
PC boilers

7. NOx abatement

8. Lower investment costs (77 - 153 e per kW compared to 409 - 767 e per
kW for new decentralised biomass only plants1)

9. Rapid adaptation of PC boilers at modest cost implication (compared to
biomass only burners or plants)

10. Better combustion control with some coal types

One of the principal disadvantages of co-firing is the reduction in the capacity
of the boilers due to the lower energy density of biomass compared to coal and
the higher moisture content [15, 16].

As discussed in sections 2.4.2 and 2.5.1, one approach to the reduction of
emissions is to co-fire biomass with coal in PC boilers without major alterations
[18, 20–22, 24, 69, 77, 93]. Also with regulations like the industrial emissions
directives [103], there is continued pressure on many coal fired boilers to reduce
emissions further and co-firing is a short term approach to fulfil this need. Co-
firing biomass with coal in PC boilers has some obstacles in terms of the available
technology and gaps in knowledge according to Sami et al. [9] including: fouling
and corrosion in the boiler; grinding of biomass; delivery of the biomass to the
combustion zone and maintaining thermal output.

Until now biomass substitution has remained at around 10 % by mass or less,
as at these levels the burner characteristics are not adversely affected, primarily
to reduce the effect of these issues. In addition, the introduction of a higher
percentage of biomass has been observed to result in unstable flame conditions
as the blend has different combustion characteristics (compared to the original
design specifications for coal only combustors). This primarily results from the
increased fuel flow rate needed to maintain thermal performance which tends to
move the flame front further from the burner quarl which as well as affecting
flame stability can also lead to higher NOx emissions [9, 21].

1Conversion of Deutsche Mark (DEM) 1.955 83 to e 1 [102]
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One option to solve this issue of flame stability might be modelling of the com-
bustion process. Modelling of burner systems in large utility boilers is a resource
intensive process, and as such it’s not feasible at this point in time to do so in real
time for prediction of flame conditions. However, modelling of burner systems
and burner instabilities is an active area of research in the Computational Fluid
Dynamics (CFD) community, especially biomass combustion kinetics as these are
essential for modelling co-firing in industrial boilers [100]. In addition to this,
the interaction of two different sizes of particles from the coal and biomass adds
to the mix of inherent complexity of the combustion process and particle flow
parameters of large power station boilers. So to avert this possibility of burner
instability and in extreme cases flame extinction, a very important consideration
in view of the safety implications with increased usage of biomass, a monitoring
system capable of detecting these changes in real time is needed.

DECC’s ‘UK Renewable Energy Roadmap’ highlights the need for cost effec-
tive (fuel) monitoring and sampling systems to meet environmental legislation
requirements by renewable energy plants [91]. In fact, the research presented
here was funded by the EU, under the Research Fund for Coal and Steel (RFCS)
contract RFCR-CT-2008-00009 which aimed to increase the biomass percent-
age being co-fired and investigate the associated problems, one of which was
development of a control system capable of detecting these unfavourable flame
conditions [47].

2.7 Monitoring

Monitoring or supervision is needed for detecting changes in processes or systems,
which helps to resolve those changes to avoid faults in the system / process(es)
being monitored [28, 29]. The need for improved reliability and safety and eco-
nomic reasons, necessitates increasingly advanced monitoring and fault diagnosis
for various industrial processes [28, 104]. The main reason for such early detec-
tion and fault identification is to provide sufficient time for corrective actions
or stoppage for fault rectification before it’s compounded to a larger issue [28,
32], and this also enhances the economic advantage [29, 32]. Such early detec-
tion can be achieved by quantifying measurable parameters and applying with
known relationships between the different measured values to generate mathe-
matical models to represent the process [28]. When no or little information is
known about a process, experimentally trained classification methods are useful
for fault detection [28, 29].

There are two types of combustion based on the mixing of fuel and air, basi-
cally premixed and non-premixed. Non-premixed flames can be subdivided into
two, based on the flow of the air / oxidiser, laminar or turbulent. Out of the two,
turbulent non-premixed flames play a hugely important part in lots of industrial
processes due to the safety factor of prevention of the mixing of the fuel and ox-
idiser before combustion, but has a complex combustion chemistry and is more
difficult to control compared to the other combustion types mentioned earlier
[65]. Visual confirmation of flame performance is difficult for even experienced
operators due to the very turbulent nature of non-premixed coal flames found in
PC burners [65].
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So monitoring of boilers is important to achieve efficient and safe combustion
[32, 104]. This is usually of two types, direct and indirect measurements. Accord-
ing to Rodŕıguez et al. [30] these measurements can be classed as post combus-
tion, conventional intrusive probes, wall or contour sensors and pre-combustion
measurements. Again wall or contour sensors can be further divided into two:
passive measurement like cameras and infrared sensors, and active measurements
like acoustic emission systems with a transmitter and receiver [30]. As also high-
lighted by Rodŕıguez et al., the monitoring regime of most large scale boilers
combusting fossil fuels is inadequate [30, 31], but even then most burners have
safety devices monitoring the presence of a flame from the 1950s [32]. Beèr et al.
have also highlighted that indirect measurement of O2 and / or CO2 of a large
conventional boiler has many limitations and is not very efficient for control [33].

Monitoring the flame is an indirect approach to burner control, as the primary
parameters are the airflow and coal feed to the burner. According to Beèr et al.
[33], monitoring the flame front can provide flame quality information which
could be used for better control of the flame condition. However, in a power
station boiler the burners are arranged in a bank of maybe four or five burners
with only information relating to the bank generally being available to the control
system. For pollutant emissions there is generally only one measurement site
which is located in the exhaust stack. There are therefore advantages to taking
an indirect approach as the combustion efficiency and pollutant emissions can
be estimated for each flame and through individual burner control it should be
possible to minimise emissions and maximise the efficiency for each flame. In fact
this very dependence allows interesting features such as near burner slagging to
be detected [34].

2.7.1 Coal Flame Monitoring

As the flame is the ‘heart’ of the combustion system, estimating the character-
istics of the flame using flame diagnostics is widely believed to be of importance
for the quality of the combustion or stability of the combustion system [35, 36,
81, 105] and also the possibility of responding quickly to unforeseen events [106].
Local burner conditions differ from overall measurements at the stack and lead
to possible stoichiometric errors in the control of burners and hence there is a
need for individual burner control and monitoring compared to global control
[30, 31, 33, 81]. This compounds the identification of inefficient combustion in
multi-burner / boiler setups with a common flue, also highlighting the need for
individual burner control [31]. Rodri´guez et al. claim existing plants also have
limitations in terms of monitoring options as most were built when emissions or
efficiency wasn’t high up on the factors for design other than operational and
economic parameters [30]. In addition to that, coal flame detection is difficult
when compared to oil / gas fired boilers, due to particles of pulverised coal travel-
ling further into the furnace before ignition and the variation of intensity within
a flame and between burners [32, 107].

Generally, basic flame detectors are employed by most utility boilers in almost
all their burners as a safety device to detect if a flame is present, so as to stop
further fuel from being introduced to the boiler in case of flame blowout which
can be very dangerous [32, 107–109]. These detectors are simple devices that
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operate either in the Ultra Violet (UV), Visible (VIS) and/or Infrared (IR) region
monitoring flame flicker to monitor the presence of a flame, quite often together
with other parameters [39–41, 108]. Most diagnostic techniques depend on the
analysis of the light emitted by flames, particularly chemiluminescence, when
chemical reactions during combustion produce electronically excited species or
radicals which emit at distinct wavelengths before returning to their ground
states [32, 37, 38, 45, 104, 107, 108, 110–112].

Usually such flame monitoring (more a flame safety device), a type of pas-
sive wall or contour type measurement, is carried out by monitoring the spectral
characteristics of the flame [39, 41, 108], together with measurements of temper-
ature, fuel flow and air flow rates and flue gas emissions through other sensors
or flow meters to regulate the combustion in burners. This is then related to
flame stability and the efficiency of the burner [32, 106, 113]. Improvement of
flame stability and combustion control with the application of sensors and signal
processing has been discussed in previous works [30, 35, 37, 108, 114–116]. Con-
tinuous monitoring has also been attributed to be an advantage with regards to
energy saving and pollutant reduction [117].

Optical methods such as laser induced fluorescence though commonly used
in laboratories for flame temperature measurement is unsuitable for industrial
applications for online continuous monitoring (for accurate NOx predictions) due
to their cost and complexity of usage [117].

Some features looked at for quantifying a flame, like flame flicker, fluctuation
of the measured amplitude and fluctuation symmetry have been studied before by
others [118] and a lot of these flame visualisation based measurements are based
on optical sensors in a non-intrusive manner thereby not disturbing the actual
evolution of the flame under study [21, 41, 104, 118, 119]. These flame features
extracted from digital signal processing can then be interpreted as identifying
some ‘unique’ features of that particular flame together with the rest of the
measured physical parameters of the flame [118]. An additional advantage of
using such burner monitoring techniques is the ability to troubleshoot problems
with individual burners in multi burner boilers as has been highlighted by Kay
[31].

Other authors have also looked at modelling entire boilers to aid operation
of PC boilers, but these usually use black box modelling as not all the reactions
and variables are well known or understood in solid fossil fuel combustion [30,
45]. NOx production is highly non-linear with regards to burner operational
parameters as highlighted in section 2.5.1, hence black box modelling approach is
often used [83]. So most of these modelling or measurement methods utilise global
or stack values to evaluate the combustion efficiency or pollutant production
instead of local or direct flame measurements [30].

2.7.2 Camera & Image Processing

A number of researchers have undertaken flame condition monitoring using cam-
eras and image processing to characterise flame properties like flicker, geometry
and temperature [39, 117, 120, 121]. Though the cost of cameras, especially
solid state ones like CCD has reduced [117], the rest of the optical chain still
entails some cost and maintenance effort to keep it dust free. Image processing
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inevitably involves a lot of processing and usually requires the application of high
speed cameras. This increases the cost of employing such systems as the main-
tenance cost and the number of such cameras and the processing power required
to support the multi-burner setups usually found in utility boilers would be cost
prohibitive.

Colour flame images have been utilised, together with neural networks for
the prediction of NOx emission for a coal boiler [121]. An analogue camera with
a video card was used by Yu et al. for predicting the efficiency of a boiler and
also NOx and SO2 emissions [65], where luminous and colour features were ex-
tracted and analysed from a 2 dimensional image of a 3 dimensional flame. Yu et
al. discussed a link between flame measurement values (obtained through image
processing) from the cameras to that of existing process condition monitoring
data from the boiler control system [65]. Yu et al. and Chen et al. also demon-
strated the features with the greatest relevance from the data (extracted from the
processed camera images) could be obtained by applying Principal Component
Analysis (PCA) for monitoring the flame [65, 122]. PCA is a variable reduction
procedure, where by highly correlated variables are eliminated to just use the
variables that produce the most variance in the signal [123, 124].

The application of image processing (or other signal processing) generally in-
volves following three stages to identify flame features: Data acquisition, image
processing (and / or other signal processing) and the development of relationship
to other physical parameters being measured [118]. The relationship development
is a complex search as many of these features may not directly correlate to any
physical parameters and hence exhaustive experiments and a large signal process-
ing effort is required to relate these values to the combustion under observation
[118]. For example flame stability has been linked to geometrical and luminous
parameters being extracted from flame imaging [39, 125, 126]. This discussion
will now move to other monitoring methods and their characteristics compared
to camera based monitoring which have a less stringent need for processing and
a greater ease of use.

2.7.3 Flame Flicker Monitoring

The combustion process is dominated by the mixing of fuel and air through the
burner quarl and hence consists of many eddies of different amplitudes in and
around the combustion zone. These contribute to flame flicker as different sized
eddies produce different frequency components [116]. So flame sensors reflect
the turbulence of the flame region being monitored, usually the root of the flame
[127].

Most detection techniques are dependent on the chemiluminescence of the
flame, that arises from excited species or radicals which emit distinct wavelengths
during their excited state [37, 38]. Basic flame detectors typically employed in
utility boilers are passive, non-intrusive safety devices, which operate in the IR
region detecting the presence of the flame [39, 40]. The flame is generally detected
through a natural flicker which is not affected by background blackbody radiation
unlike methods dependent on signal intensity alone [41]. All flames are known to
pulsate and some fuels tend to have specific flicker frequency that is not affected
by burner dimensions or fuel flow [128].

20



CHAPTER 2. LITERATURE REVIEW

The usage of flicker characteristics of IR monitors in flame detection de-
pend upon the discrimination of the flicker observed between a flame on or off
condition, especially in multiburner cases [128]. The two common problems en-
countered with such flame presence detectors, especially for coal combustion are
the fail-safe operation of such detectors and the need for gain control, as coal
flames tend to vary hugely in brightness with varying firing rates [128].

Flame flicker has been employed in flame monitoring to increase the detect-
ing reliability of flame sensing as this method is not affected by the blackbody
background radiation and hence avoids the unreliability of visible and infrared
spectra sensing based on intensity alone [41]. Though the flicker frequency varies
with changes in load, fuel, other flow conditions to the burner and to the de-
sign and layout of burners, the typical dominant fundamental frequency is in the
range of 1 to 40 Hz [41, 107]. Flame flicker has also been related to combustion
stability and emissions [129]. Also flame flicker characteristics have been associ-
ated with combustion efficiency among others [127], which has been applied to
control and monitoring of coal flames. The main advantage of the detection of
flame flicker frequency is that the intensity level (direct current (DC) signal) of
the flame signals can be ignored, which usually varies when sensor(s) or the lens
becomes obstructed through dust or slagging [41].

As noted from literature above, the monitoring of flame flicker has many
advantages for the current research. Chiefly, the general type of flame monitors
being used for safety in most modern boilers employ such flame flicker methods
but only for checking presence of a flame, which could be extended in the future
if features from the processing of such raw signals can yield features that could
be related to various flame conditions and / or emissions. Secondly, flame flicker
is not affected by signal intensity levels there by avoiding issues with viewing
ports / lenses becoming obstructed through dust or slagging. The possibility of
reuse or extension of existing flame monitors to give flame quality information
has cost benefit as reduces cost of replacement for the boiler operator.

2.7.4 Emission Spectroscopy

Emission spectroscopy techniques have been used widely for the detection of
combustion radicals, especially in the UV region of 300 nm to 450 nm for the
emission radials OH∗ and CH∗ [104, 130]. This technique of flame monitoring
of combustion in power stations is simple and cost effective compared to laser
absorption techniques, as it just needs a lens assembly and the spectrometer
according to Leipertz et al. [38, 106].

As highlighted in section 2.7.1, emissions from electronically excited species
in the flame have been used for flame monitoring, using two types of sensors
depending on the wavelength ranges: narrowband and broadband sensors, as
discussed below. Chemiluminescence has been applied for the monitoring and
control of flames, especially premixed gas flames for OH∗ and CH∗ in the 300 nm
to 320 nm and 420 nm to 440 nm [40, 47, 130–132] using narrowband sensors, as
most hydrocarbon flames tend to emit these luminescent species [110, 133] in
the UV and visible spectral range [106, 130, 134]. This type of monitoring has
been carried out using sensors which are usually more expensive as the sensitivity
needed to amplify very small amplitude signals resulting from the very selective
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bandwidth ranges 10 or 20 nm need good optics and cooled sensors that are
highly amplified and with minimal noise.

Most burners have a flame detector as a safety device, usually using either UV
or VIS and / or IR based sensing element(s). Such commercially available detec-
tors have shown promising results with regard to control of burner performance
when applied with advanced data analysis techniques [109, 135]. So sensors with
relatively broad coverage of these frequency ranges, especially UV, VIS and near
IR have been utilised before [36, 47, 106, 109, 136]. So the thought process for us-
ing such broadband sensors, which are similar to commercially available sensors
for this research is the possibility of piggybacking onto existing sensors which
are already installed in power stations for flame presence monitoring. This could
also be used for detecting changes in flames with appropriate signal processing
and other detection algorithms provided the raw signals could be extracted. This
research makes use of broadband sensors in the UV, VIS and IR spectral region
with an appropriate lens assembly to record the spectral emissions from coal and
biomass blended flames.

2.7.5 Implications for Current Work

As discussed in section 2.7.4, the broadband sensors were chosen for monitoring
of the flame spectral emissions from individual flames as they closely resemble
commercially available flame detectors in terms of the wavelengths covered. If
the entire range can be covered from UV to near IR, a number of different
flame types can also be monitored using the same instrumentation adding to its
general applicability. Such optical, non-intrusive methods using various sensors
are known to be used for flame diagnostics as discussed by Thai et al. [36, 42,
137].

The general issue with sensors and electronics is that dust and temperature
affect their performance greatly, especially when placed next to high temperature
coal flames. Another issue is accessibility and space for placement of sensors, so
fibre optic cables have been employed before to avoid these issues by Tan et al.
[56, 109, 138, 139]. Advantages of fibre optic cable usage include portability and
smaller dimension, which eases usage of sensors in areas with limited accessibility
and space constraints [139]. Romero et al. applied bifurcated fibre-optic cables
with a spectrometer for monitoring gas burners used in glass melting as this
allowed usage in the high temperature environment [108]. Yamaguchi et al. also
utilised fibre optic cables with photodiodes to maintain combustion conditions
in a premix gas boiler, thus shielding the photodiode sensors from heat produced
during combustion [140].

2.8 Signal Processing

A signal can be represented or transformed in many different ways to aid under-
standing [141]. Quite often signals are non-stationary and tend to be represented
in the time domain to capture or understand the changes in amplitude of the sig-
nal over time. This simple representation only shows changes with time but the
other important nature of such signals is the variation interval, which is usually
represented in the frequency domain. Traditionally the Fast Fourier Transform
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(FFT) is used to convert between the time and frequency domains, where the
signal is decomposed as the sum of weighted sinusoidal frequencies [141, 142].

The data recorded during experiments for this research was initially analysed
with widely used signal processing methods such as Root Mean Square (RMS)
and Power Spectral Density (PSD) in the time domain and frequency domain
respectively. This analysis indicated that it was unlikely that a single feature
could be identified to predict the changes in flame conditions with respect to
changes in air and fuel flow rates, air / fuel ratio and emissions like NOx. This
led to an investigation of advanced signal processing methods like the Wigner-
Ville Distribution (WVD) and Gabor function to analyse the data to extract
features which correlate to changes in flame spectral characteristics with time.

According to Qian et al., a lot of real signals, like human speech, could be
better understood with joint time frequency analysis, as not only the frequency
components and change in amplitude of the whole signal is seen, but also the
moments at which each frequency component within the signal changes [141,
142]. Using the classical FFT for signals that change over short periods is also
unsuitable as it assumes a stationary signal, basically losing time information
when processed [142].

Coal combustion is a complex process and with flame flicker the spectral
emissions are of non-periodic in nature with complex variations. So these are
similar to human speech and the application of Joint Time Frequency (JTF)
methods is an appropriate area of application as discussed by Qian et al. [142].

2.8.1 Joint Time Frequency Domain

JTF domain analysis characterises the frequency information over the entire time
period, whereby it combines both the time and frequency domain analyses to
reveal a better understanding of the signal changes over time. This localises the
frequency information or spectral components as it changes with time. So this
has many advantages over either time or frequency domain analysis alone [141–
144]. Figure 2.1 shows a very simple sample signal, which consists of two distinct
frequencies over time. The higher frequency is present in the first half of the signal
and the lower frequency during the second half with no over lap. Simple time
domain analysis using FFT in figure 2.2 shows the two frequencies accurately
but completely loses the time domain data of when the frequencies were present.
This could be avoided to some extent by windowing and using smaller periods
but still wouldn’t be as good as some of the JTF methods. Figure 2.3 shows the
two frequencies present as well as when the transition happened.
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Figure 2.1: A sample signal with two distinct frequencies over time

Figure 2.2: FFT of sample signal

Figure 2.3: JTF of sample signal

The advantage and usage of JTF started with analysis undertaken for acous-
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tics and speech processing research, according to Thayaparan et al. [143], who
also quoted a number of fields in which JTF has been utilised such as radar
signal analysis, where they discuss in depth the various JTF methods available
and their effectiveness in various signal analysis [143].

As discussed in section 2.8, the frequency spectrum is estimated using a spec-
tral energy density function such as the FFT which show the various frequencies
present but don’t identify at what instance in time those frequencies were present
or if that changed. So JTF would be of great advantage to realise any changes in
frequency with time. This is particularly relevant to the research presented here
as there are signal fluctuations in a flame front that would be very important to
understand and have large implications for flame monitoring. This has also been
emphasised by Thayaparan et al. while dealing with non-stationary signals as
encountered in radar signal processing [143].

The WVD is one of the JTF methods as listed by Cohen [145] and Thayaparan
et al. [143] that has very good resolution in both the time and frequency domains
[144, 146–148]. This would be beneficial when applied to the flame monitoring
signal as the changes in the flame fluctuations could be utilised without loss of
resolution in either the time or frequency domains. As identified by Thayaparan
et al. [143], the technique does lead to the occurrence of interference cross terms
[141, 146, 147], but these wouldn’t be much of an issue in this research as the
output from the transform was not utilised to quantify the signal / frequency
present but to feed into pattern classification (section 2.9.6).

2.8.2 Wigner-Ville Distribution

Time-frequency analysis focuses on a distribution of the total energy of the signal
at a particular time and frequency. WVD was one of the first JTF techniques
to be introduced and has been extensively studied since. It was developed in
quantum mechanics by Wigner [149] and implemented as a signal processing
paradigm by Ville [150]. Many further developments have been made since, as
reviewed by Cohen [145].

The distribution was ‘rediscovered’ at the beginning of the 1980s in a series
of papers by Claasen and Mecklenbrauker [151–153] who also introduced the
first discrete approach to the WVD. These developments have resulted in the
application of the WVD to areas as varied as acoustics, speech processing, image
processing, detection and estimation problems, seismology, and engineering [144,
147, 148, 154].

WVD is a representation of the energy distribution of a signal in the time
and frequency domains and has better resolution in both domains compared
to other JTF analysis [142, 144, 146, 155]. Though the WVD is afflicted by
cross term interference, it possesses many characteristics desirable for analysis
[141, 142, 146–148]. Qian et al. [142] highlight this issue as one of the reasons
for the WVD being not used for real applications, which is not strictly true as
Thayaparan et al. [143] have shown examples of it being used elsewhere and
National Instruments Incorporated (NI) LabVIEW (authors of [142] work for
NI) also implements the WVD.

The Gabor spectrogram is similar to the WVD in many aspects but reduces
the cross term issues to some extent at lower resolution. However when the order
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of Gabor spectrogram is increased to increase the resolution, it tends towards
the WVD output with the addition of cross terms [142]. Shie et al. also mention
the WVD has better performance in terms of JTF domain analysis [142, 156]
and WVD decomposition is optimally concentrated in the joint time-frequency
domain and also results in improved computational speed [142].

WVD is not known to be applied in the monitoring of coal biomass blends
before, so this research would be one of the first to explore such usage. So the
choice of WVD would give the best possible resolution in both time and frequency
domains and performance, and the cross terms might not be a huge issue as the
signals are not being quantified as such to absolute values or flame conditions
but more as an output which is used in pattern classification as discussed in
Section 2.9.6.

2.9 Detection Algorithms

Detection algorithms are capable of identifying changes from a given input. In
this case the change in the flame conditions from the optimal condition which
needs to be detected to be rectified. As discussed in section 2.6.3, the modelling
of co-firing is of interest to the CFD community but hasn’t been implemented
in a way that could be readily used online and in real time, but is of great aid
while designing or retrofitting boilers.

There are many soft computing techniques used to learn from data, usually
grouped under machine learning, where machines or computers modify or adapt
their actions based on prior data hence the term learning [157]. The way the
data is used to learn and how the learnt data is used for future generalisation
based on the quantised error gives many techniques as outlined in Marsland’s
book [157]. A wide number of techniques are available, and a few like ANN, deep
learning, fuzzy logic and Support Vector Machines (SVM) are discussed briefly
here.

Despite the wide ranging applications of the WVD, it appears that no effective
and well established method exists for an automatic fault detection procedure
based on the WVD alone. However, the contour plot of the WVD can be regarded
as a two-dimensional image. Thus, the problem of automatic fault detection can
be dealt with using pattern classification procedures. There exist many different
pattern recognition methods, some of which have been outlined in Schalkoff’s
book [158]. Classical pattern recognition techniques have been applied to the
problem of fault detection for some time. Only relatively recently have neural
networks attracted attention as a possible technique for fault detection [154].

2.9.1 Artificial Neural Network

Conventional computing has been used in multiple fields, especially to solve equa-
tions and compute data and arrive at results from a set of inputs, but when these
inputs deviate or are of a complex nature, then the capability of the computer or
algorithm extends only to those it’s been defined or made for especially. So this
need to have computers perform complex pattern recognition problems, based
on physiology of the brain, leads to Artificial Neural Systems (ANS), generally
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referred to as neural networks, to solve problems that conventional computing is
unable to perform [159].

ANNs are algorithms inspired by biological neural systems, and are capable
of handling complex information of unknown and non-linear functional relation-
ships among the different inputs and outputs [160–163]. Since Warren McCulloch
and Walter Pitts introduced the first models on artificial neurons in 1943, there
has been steady improvements and proposals for various types of ANNs and ar-
chitectures [162, 164]. ANN development was motivated by the differences in
the way the human brain and digital computers compute, especially the par-
allel nature of the brain’s computing and the capability to solve complex and
non-linear problems [160]. This capability in biological brains is thought to be
achieved through cells called neurons which connect to each other that increase
their bonds based on learning, strengthening when needed to activate a par-
ticular action. Similarly such structures used in simple digital computer based
models store weights and align based on the inputs to the ANN neurons [160].
ANN are also referred to as Parallel Distributed Processing (PDP) and usually
consist of simple processing units, called neurons, which are connected to each
other sharing information over weighted connections [164]. These neurons simply
receive input from their neighbours or input sources and compute an output that
is shared through the weighted connections with neighbouring neurons [164].

ANNs are generally classed into two types based on the way the network
realises its learning process, namely supervised and unsupervised. Supervised
learning is where the weights of the synapses are modified based on the output
derived after the network processes an input and comparing this with the desired
output. Such networks are further classed based on their architecture as feed-
forward or recurrent networks according to Haykin et al. [160, 162]. Of this,
the simplest and most used network topology, feed-forward where the input only
moves in one direction, from the input to the output, through any hidden layers if
present is classed into two types, single layer feed-forward network or multilayer
feed-forward network [160].

The simplest single layer feed-forward network has an input layer which is
connected to the output layer of neurons, thereby only having one layer of com-
putation neurons which are directly connected to the input [160]. On the other
hand, multilayer feed-forward networks have one or more hidden layers between
the input and output layers and are able to extract higher order statistics and
contribute to the capability of the ANNs’ computational power, though with
increased complexity [160, 162]. The other type of supervised network is the re-
current neural network, the major difference compared to feed-forward networks
is that these networks have feedback loop(s) where the output of a neuron would
be fed back to the input of other neurons [160].

In the classification of ANNs based on the learning process, the other type is
unsupervised learning, where the neurons learn competitively. These were first
introduced by Von der Malsburg in 1973 as the Self-organising Map (SOM) [160].
This is further discussed in section 2.9.6.

Empirical modelling for diagnostics and operation control is advantageous as
it’s easier to interpret and apply to systems, and one of the very popular methods
is the ANN [165]. ANNs have been applied extensively for boiler operation and
control of emissions of pollutants; and also for power plant condenser performance
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[165]. Rusinowski et al. have noted the usage of ANN over other methods,
especially when other methods have failed or are computationally very intensive
[165]. Computational control needs mathematical modelling and takes longer to
compute compared to an ANN [165].

A US government project with commercial partners tested the effectiveness
of intelligent systems based on ANN for NOx reduction [79]. This was tested
on a large scale in open loop mode as an advisory system to reduce NOx, and
at the same time reduce UBC and maximise efficiency, but also was capable of
being operated in closed loop if the plant required it, trying to achieve economic
and operational constraints [79]. In this research, the pulverised coal combustion
process in itself is a complex process but the addition of biomass with different
particle size and calorific value for example, adds to the complexity. Hence,
the application of an ANN might be very appropriate to analyse data from this
combustion process, as the relationships between inputs and outputs are not very
well known and are very difficult to predict in such conditions involving biomass
burning [42–44, 83, 165–167].

2.9.2 Application of Supervised ANN

Multilayer feed-forward networks are also referred to as Multilayer perceptron
(MLP) where the input signal propagates through the network from input to
output. These networks have an input and output layer and at least one hidden
layer, so its multilayer network as the name suggests. MLPs have been utilised
to solve many problems in various fields in supervised training, often utilising
a popular algorithm known as error-back propagation. In this, the training of
the system happens over two passes through the network: forward and backward
passes. The synaptic weights of the network are fixed during a forward pass with
an input (training) data set applied to the ANN and an output is produced. This
output is compared to the desired output and the error or correction is passed
back through the network in the backward pass where the synaptic weights in
the network are modified using an error correction rule to reduce the difference
between the desired and actual output obtained. This back propagation is a re-
cursive gradient descent algorithm which reduces the mean squared error for each
training pass, called the epoch. Hence the network gets its name of back propa-
gation algorithm [160]. The synaptic weights are modified over many iterations
/ epochs until the error is reduced to a satisfactory value.

Examples of a number of combustion related applications of ANN are given
in papers by Tan et al. [34, 44] and energy related examples by Kalogirou [168].
According to Basheer and Rohwer et al., MLP with back propagation is the
most used network [162, 169], therefore this was chosen to be investigated in
this research. This ANN was chosen to be used for this research as this type of
supervised network is known to be able to extract higher order statistics [160,
162]; such networks have been previously used for combustion related applica-
tions [44]; capability to model wide range of complex relationships [160] and the
availability of off-the-shelf software for the implementation of such networks.

As highlighted earlier, combustion of coal (biomass blend) is a complex pro-
cess and not very well understood for effective real time modelling. A number
of signal processing methods have been utilised and haven’t been found suffi-
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ciently capable of identifying features present in the flame that could be related
to changes in the flame. Hence a detection algorithm is needed that is capable
of identifying the complex relationships present in the signals obtained from the
chosen sensors. ANNs are known to be able to pick these complex relationships
present in the input data, flame monitoring sensor signals in this case, which
are not easily achieved using conventional methods. One such method is the
back propagation based MLP which has been applied by others to combustion
monitoring and also one of the most used methods for such complex processing,
hence easy availability of ready to use software to implement such networks.

Due to these advantages and the complex nature of coal combustion, this
seems a very appropriate method to be utilised for this research. Training data
is important for such networks as the generalisation capability of the such net-
works depend on the capability of such networks to learn. Usually a number
of parameters such as learning rate, momentum factor, number of hidden layers
and number of hidden neurons affect the learning capability of a multilayer feed-
forward network with back propagation. Usage of too many hidden neurons or
too much training might lead to over fitting, which would lead the network to
produce too much error for an unseen data set. Hence the choice of hidden neu-
rons should be in such a way the network is able to learn sufficiently to generalise
and not too much it takes longer to process or over learn / fit the data. High
number of training epochs can also lead to over fitting and has to be arrived at
experimentally for the generalisation capability of the network to be maintained
with the least complexity and processing.

2.9.3 Deep Learning

In section 2.9.2, MLP was discussed where by a network with a hidden layer
is used to learn. If more learning is needed for a function even more nodes
are needed and hence more learning time [157]. As the features to learn and
nodes grow, such a back propagation MLPs search space the algorithm searches
for a minimum increases and would make the estimates noisier [157]. Deep
learning networks use combinations of derived inputs and many neurons over
multiple hidden layers to achieve the learning, which makes the training phase
difficult. These in addition to requirement to be able to retrain relatively easily
and running in real time makes this method not very suitable for this application.

2.9.4 Fuzzy Logic

Fuzzy logic in contrast to boolean logic, allows values between 0 and 1. Lofti
Zadeh proposed this as a measure of vagueness, where partial truth can be es-
tablished [170]. He proposed this as an alternative to boolean logic, which allows
a higher level abstraction and dealing with imprecise input data [171]. This is
useful to establish when the certain values could be partially true and belong to
two different sets based on partial or vague input reasoning [170, 172]. Fuzzy
based control employ mapping input and output values from real world to fuzzy
rules [172]. According to Russell et al. successful applications of fuzzy logic have
had small rule bases, no chaining of inferences and tunable parameters [172].
The application in the case of the flame monitoring sensor data might be quite

29



CHAPTER 2. LITERATURE REVIEW

difficult with the number of conditions and variations encountered, where by the
rule base might be quite considerable.

2.9.5 Support Vector Machines

SVM is a type of supervised competitive learning network with algorithms that
could be used for classification and regression [170, 172]. A SVM tries to find a
hyperplane that could separate the data into the two classes using training data
called support vectors by transforming the input data to a higher dimension non
linear mapping [171, 172]. SVM have the advantage of being extremely accurate
due to using higher order complex non linear modelling and are much less prone
to over fitting [171]. SVM is designed for binary classification and the training
of even the fastest SVM could be extremely slow [171]. SVM separation line or
hyper plane depends on all the data used for training but some data might be
more important than others needs attention to what data are used for training
[172]. So application of SVM for the flame monitoring sensor data might not
be ideal as coal flame tends be dynamic and also the slow learning phase and
attention needed to select training data might make the model more specific to
each burner or rig instead of being generic.

2.9.6 Self-organising Map

SOM is a type of unsupervised network, which is similar to the optical process-
ing neurobiological structure, where the inputs are clustered without any prior
knowledge of the system or process being modelled [173, 174]. SOM has been
used to recognise patterns in the data and then organise itself so that it can
remember them for future reference [34].

Haykin described self-organised learning as updating the synaptic weights
associated to neurons repetitively according to a set of predefined rules until a
value is reached below the set error allowance [160]. SOM is based on compet-
itive learning [160, 162], where the neurons in the output layer compete among
themselves to be activated. As only one neuron is activated at any one time, the
neuron is called ‘winner-takes-all’. The two types of SOMs are: Willshaw-von
der Malsburg model and Kohonen model [160, 173]. Willshaw-von der Malsburg
model was prosed to map retina to visual cortex as seen in higher vertebrates
and specifically needs to have the same number of dimensions in both the input
and output layers [160].

Kohonen’s SOM model was developed to visualise high-dimensional data to
a two dimensional grid of nodes [175–177]. Figure 2.4 shows an example of a
SOM consisting of 25 neurons on a 5 by 5 grid. This aids in two ways, one by
visualising high dimensional data sets as a single or two dimensional grid and two
by, abstraction of the data to grids without knowing pre-set conditions of the re-
lationship of the input data [175, 177]. This is illustrated in figure 2.5, where an
activated neuron, or in other words the ‘winner-takes-all’ neuron, is highlighted
after an input is processed. The input data is computed in a non-parametric,
recursive regression process where similar models are kept closer to each other
and dissimilar ones further apart, hence clustering the high dimensional input
data [160, 175]. Due to these characteristics, SOMs have been applied in many
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Figure 2.4: SOM - 5x5 grid of neurons

Figure 2.5: SOM - showing an activated / winning neuron

fields, such as medicine, biology, chemistry, image analysis, speech processing,
engineering and numerous others as highlighted by Wehrens et al. [178], and bib-
liography of a few thousand papers on SOM are available at Helsinki University
of Technologies website [179] where Kohonen initiated SOM research.

2.10 Summary

Due to climate change implications from greenhouse gases and health problems,
smog, NOx and other emissions from fossil fuel combusting plants, there are
concerted efforts from utilities and governments throughout the world for energy
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efficiency and emission reduction. One of the ways this is being pushed is through
legislation for green energy, in other words renewable sources of energy. A range
of legislation limiting pollution emission and promoting energy efficiency have
been highlighted earlier.

One short term approach to achieve this is the partial utilisation of biomass in
pulverised coal power plants with little modification to the existing plant at a low
cost compared to new 100 % biomass plants. This has the advantage of utilisation
of carbon neutral biomass, some of which is otherwise not utilised leading to
greenhouse gas emission reduction and it is also much easier to implement in
existing plants with minimal modifications to the pulverised coal plant.

Co-firing of biomass has many advantages as highlighted earlier but there are
a few technical issues associated with this that need some research, like fouling
and corrosion in the boiler and maintaining thermal output. Biomass has a lower
calorific value than coal and also lower density, thus requiring large quantities to
be mixed with coal to achieve similar overall thermal output from the boiler. This
requires a large amount of biomass to be transported to the burners, and hence
requires a lot more primary carrier air which in turn affects the flame, as opposed
to a coal only flame in burner designed for coal. Combustion chemistry of coal
is very complex and the addition of biomass exacerbates this with differences in
biomass particle size and volatility compared to coal. It would be very difficult &
costly to develop real time models of the process to aid monitoring and control.
So this research tries to identify features from measurement of the flame to
identify abnormal conditions as the flame deviates for a given input, as real time
models would be extremely difficult due to above mentioned reasons.

PC plants are usually controlled indirectly from measurements of the emis-
sions and O2 from the emission stack. The individual burners themselves usually
have flame safety devices that only indicate the presence or absence of flames
and not flame condition. Generally, power station boilers tend to have multiple
burners in a single boiler but are controlled from values in the emission stack
while individual burners themselves may not be combusting efficiently. So there
is a need for a system capable of identifying these changes in individual flames,
especially when biomass is co-fired and which is able to rectify that in real time,
instead of only being fine-tuned while commissioning or servicing boilers as is
currently done. One of the objectives of this research is to develop such a system,
that runs in real time and aids the plant operator to change input to the burner
to bring it back to ideal condition for co-firing.

Current flame safety and other devices in flame detection make use of UV,
VIS and IR based sensors with many different wavelengths and algorithms for
detection. In existing burners such flame safety devices are already utilised for
individual burners, so an algorithm capable of identifying changes from such
sensors would be beneficial. This would avoid the need to have multiple devices
mounted near burners for flame safety and monitoring flame conditions. The idea
of being able to piggy back on to such sensors if the raw data could be extracted
from such sensors for further processing, makes creating a software sensor attrac-
tive. So off-the-shelf broadband sensors in these three wavelengths were selected
for this research, whereby if a system using such sensors is capable of monitoring
successfully, such a system could be extended to existing instrumentation in use.

Combustion chemistry is complex for co-firing coal and biomass flames, and
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the changes in flame are not consistent with varying thermal load and biomass
percentage while co-firing. A systematic set of experiments while varying one
parameter are to be carried out in this research to find if any features that are
directly proportional and useful could be extracted from the sensors used. If
such features are found than a simple rule based algorithm could be utilised for
control. If not, an intelligent system capable of learning such changes, that is able
to identify such flame conditions that affect efficiency, is needed. So this research
utilised ANNs, which are of nonlinear nature and can learn complex relationships
in the data to identify flame conditions and be able to suggest changes to have
near ideal flame conditions in the burner.

The following chapters will detail the methodology utilised for this research
(Chapter 3), the experiments carried out (Chapter 4), the development of the
monitoring and controls system in pilot scale (Chapter 5), validation of the con-
trol system at pilot and full scale (Chapter 6) and finally discussion and conclu-
sion (Chapter 7).
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Chapter 3

EXPERIMENTAL
APPARATUS & PROCEDURES

This chapter describes the test facilities used, plant instrumentation and their
placement, photodiode sensor placement and the experimental methodology for
all the data presented in later chapters. The pilot scale experiments were carried
out at the 500 kWth Combustion Test Facility (CTF) located at the Institute
Energitky - Institute of Power Engineering (IEn), Warsaw, Poland and the full
scale experiments were carried out at the 220 MWe boiler 8 of the Dolna Odra
Power station, Poland.

3.1 Pilot Scale – Experimental Apparatus

The 500 kWth CTF for the investigation of the combustion of pulverised fuels
was located at the IEn, Warsaw. The overall schematic of the CTF is presented
in figure 3.1.

The CTF was equipped with a horizontal, cylindrical combustion chamber
that had a 500 kWth burner on a back plate with the necessary ports for observing
the flame. The left side of figure 3.1 illustrates the primary and secondary air
intake fans with the electrical pre-heaters on either duct, leading to the burner
and combustion chamber. The electrical pre-heaters allowed the simulation of
combustion air temperatures similar to those of large power plants. The primary
air also carries the fuel from a hopper fuel feed mechanism, which is described
in detail in section 3.1.1. The cooling air ducts surrounding the combustion
chamber in figure 3.1 could be used for cooling the chamber wall (these are the
blue coloured fixtures surrounding the combustion chamber in figure 3.2), but
these weren’t in use during the experiments for this research.

With reference to figure 3.1, the right hand side of the combustion chamber
shows the exit from the burner with the cyclone and suction fan, which was
utilised to maintain the pressure in the combustion chamber. Further to this,
the emissions were released through the stack. The flue gas at the exit of the
combustion chamber was monitored using gas analysers at two points, as ex-
plained in section 3.1.2. The control unit shown in the schematic in figure 3.1 is
the plant control system utilised to control as well as record the various sensors.
The data acquisition system highlights the portable computer, sensor electronics
and the analogue to digital converter used for logging the sensor data during the
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Figure 3.1: Overall schematic of pilot scale CTF

experiments at the CTF.
During start, up the combustion chamber was preheated by an auxiliary oil

burner located in the centre of the coal burner, as shown on the left side of the
schematic in figure 3.1. Pulverised coal / coal and biomass for combustion was
prepared in advance and placed in a coal feed hopper and delivered to the burner
via a two-worm dust conveyor that fed the coal / coal and biomass particles into
the primary air duct.
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Figure 3.2: CTF with sensor location highlighted with regards to the
combustion chamber layout

3.1.1 Fuel Feed and Pre-Combustion Setup

The various coals and biomass were milled separately and stored in large bags at
the facility by IEn personnel. Fuel characterisation analysis for all fuels used at
pilot scale are presented in section 3.3.1. Fuel was premixed for all co-firing ex-
periments carried out where different proportions of biomass (straw) were mixed
to coal at 10, 20 and 30 % on a mass basis before the experiments. This was
accomplished manually by using a cement mixer to mix and bag them for usage
in the future.
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Figure 3.3: Fuel feed system showing hopper, feed mechanism and carrier air
piping

These premixed bags were emptied into the fuel hopper as needed so as to
ensure the hopper never completely emptied. In order to minimise in-experiment
variations this was not done while experimental data was being recorded.

The pulverised fuel was fed from the hopper by T35 K-Tron volumetric twin
screw feed mechanism, which varied the rotation speed of the screws to keep
the fuel flow constant as the weight in the hopper changed, into the preheated
primary airflow which carried it to the burner. Due to confidentiality reasons
the calibration data is not available for the twin screw feed mechanism, similar
to a number of other calibration documents such as that of the gas analysers for
example, even though these were calibrated everyday.

Figure 3.3 shows the fuel feed system, where the hopper and the fuel feed
mechanism were supported by a stand and the piping for the primary air met at
the bottom of the hopper mechanism. The piping immediately to the left of the
bottom of the hopper that bend upwards is the primary air to the burner, as the
fuel feed mechanism was situated one level below the combustion chamber.

As shown in figure 3.1, both the primary and secondary air supply to the
burner was preheated using electrical heaters. These were individually metered
and controlled to ensure the correct stoichiometric ratios for the various experi-
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ments described in section 3.5.1.

3.1.2 Burner and Combustion Chamber

The CTF had a horizontal, cylindrical combustion chamber 0.7 m in diameter
and 2.5 m long, one end of which was fitted with a 500 kWth swirl burner that
had a throat diameter of 0.1 m and was mounted on the front wall as shown
in figures 3.2 and 3.4. The sighting panel along the side of the combustion
chamber (figure 3.2, flame is visible along the sighting panel) aided observation
of the flame and burner stability while conducting the experiments and avoided
conditions where flame blowout was a danger.

Figure 3.4: CTF image showing the connections to the burner

The combustion chamber of the CTF wasn’t equipped with a flame detector
and only had the sighting panel along the side for the burner operator to control.
This sighting panel was made of multiple transparent windows that needed cool-
ing and purging to keep it clear and cool. As these experiments were carried out
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as part of a larger European Union (EU) research project, other measurements
were carried out through the side sighting panel of the combustion chamber that
also allowed additional air ingress that couldn’t be metered.

(Image courtesy of IEn, Poland)

Figure 3.5: Side view of burner cross section with the sighting tube for the
sensors

Figure 3.5 shows the burner cross section when attached to the end plate
of the combustion chamber. The innermost horizontal dashed blue line shows
the axis of the burner, the tube immediately around it is the pilot oil burner
assembly. The next concentric tube / assembly with two inlets from the bottom
was for the primary air and fuel; only one of the two was used during these
experiments. The secondary air came from the right as shown in figure 3.4,
which is the third inlet from the right as highlighted in figure 3.5. Figure 3.5
also shows the distance (155 mm) at which the sensors were able to monitor the
flame through the sighting tube from the burner quarl at an angle of 46° from
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the axis of the burner.

(Image courtesy of IEn, Poland)

Figure 3.6: Production drawing of CTF front plate for the burner end
(Large middle opening for the burner and smaller oval openings for the sensor

mounts)

Figures 3.6 and 3.7 show the production drawing and image of the end plate
to which the burner assembly and the sensor mounts were attached. The large
circular opening in the middle was for the burner assembly and the oval openings
were for the sighting tubes for sensor mounts.
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(Image courtesy of IEn, Poland)

Figure 3.7: Picture of CTF front plate for the burner end
(Large middle opening for the burner and smaller oval openings for the sensor

mounts)

3.1.3 Existing Burner Control System

The pilot scale CTF was controlled using National Instruments Incorporated
(NI) CompactRIO controllers with a number of daughter cards for both analogue
and digital inputs and outputs. The data gathering and acquisition system was
based on NI PXI series, again with several cards for thermocouples, analogue
and digital inputs.

There was no flame detector attached to the burner during these experiments,
only visual confirmation of the presence of the flame was made when starting up
the burner with an oil flame. Once the CTF had warmed up, the coal (or coal
blends with biomass) flame was transitioned from the oil flame gradually which
was aided by the sighting panel running through the entirety of one side of the
combustion chamber, as can been seen in figure 3.2.

Figure 3.8 shows the location of the points of measurement relevant to this
set of experiments, namely the two points at which the gas sampling was done
with reference to the burner and thermocouples on the CTF.
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Figure 3.8: Location of the flue gas sampling probes and thermocouples on the
CTF

Table 3.1: Gas analysers used and the gases measured at the CTF

Gas analyser
Gases Measurement

Resolution
Range

measured unit(s) Low High

Ultramat 23

O2 % 0.01 0 100

CO ppm 0.5 0 2500

NOx ppm 1 0 2500

SO2 ppm 1 0 2500

Ultramat 22
CO ppm 1 0 1000

CO % 0.01 0 10

Maihak S710 CO2 % 0.1 0 25

Servomex 1400 O2 % 0.01 0 25

Gas sampling was carried out using four gas analysers (Table 3.1), namely
Ultramat 23, Ultramat 22, Maihak and Servomex to measure O2, CO, CO2, NOx

and SO2 which recorded the sample analysis once every second using the CTF NI
PXI system as discussed above. Figure 3.9 shows the gas analysers used during
the experiments. The gas sample from the sampling points were conveyed wet to
the analysers through a pump and filter. The analysers were calibrated at least
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once a day at the start of the experiments but often additional calibration was
done when there was other downtimes during the experiments throughout the
day. Unfortunately due to confidentiality and operational reasons, the detailed
calibration data were not made available.

Figure 3.9: Gas analyser(s) used during experiments

3.2 Full Scale – Experimental Apparatus

Full scale tests were carried out at the Dolna Odra power station in Poland.
The facility consists of eight units each capable of producing 200 to 230 MWe.
The experiments were carried out on the boiler of the eighth unit, which was a
tangentially fired unit that had 20 burners distributed over 5 levels. The overall
boiler layout is shown in figure 3.10. Much of the specifications of the boiler and
layout are confidential and weren’t made available by the boiler operator.

3.2.1 Fuel Feed and Pre-Combustion Setup

The boiler was designed to fire bituminous coal, but because of the need to reduce
carbon emissions, often blends of biomass and coal were burned, usually with
approximately 10 % of biomass on a mass basis. Biomass used for co-firing was
mainly agricultural biomass (briquetted straw). Fuel characterisation analysis
for all fuels used at full scale are presented in section 3.3.2.
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Figure 3.10: Overall layout of boiler eight at Dolna Odra power station

(On the left, the diagram shows the five levels of burners in the boiler; on the right, the location
of the lower level monitored burners is shown, with a photograph of the observation port used for

the three low cost sensors as well as the gas sampling probe.)
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Each level had four burners which were supplied with pulverised fuel from a
dedicated mill which supplied the blended coal and biomass fuel. This pulverised
fuel was stored in hoppers and fed to the primary airflow through volumetric
screw feed mechanisms. The primary air fuel mixture was between 95 to 105 ◦C
before entering the burner quarl. Much of the specifications are confidential and
weren’t made available by the boiler operator.

3.2.2 Burner and Combustion Chamber

The boiler was a tangentially fired Pulverised Coal (PC) boiler equipped with 20
low NOx swirl burners, arranged over 5 levels with over fire air. The dimension
of the boiler was 10.81 x 12.05 x 23 m. The burners were located in the four
corners of the combustion chamber. Each level, or bank, of burners was fed with
pulverised fuel from separate mills.

(Courtesy of IEn, Poland)

Figure 3.11: Temperature profile on the investigated level (lowest row of
burners) on the basis of CFD simulation of the boiler from Dolna Odra power

plant
Note: The black lines towards the bottom indicate the location of the viewing ports and

position of gas sampling probes.
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Due to accessibility and availability of the required monitoring ports for the
optical probes and gas sampling lance, the lowest level of burners were used.
Figure 3.10 shows the general layout of boiler eight at Dolna Odra. On the left
schematic, the red region highlights the area of interest, the boiler and its five
levels of burners. On the right bottom figure the boiler area is enlarged with
one of the lowest burners being highlighted by a blue rectangle. The green arrow
highlights the observation port located on the back wall, not visible in this layout.
A picture of the observation port is located at the top right of the figure.

Figure 3.11, shows a Computational Fluid Dynamics (CFD) simulation of the
temperature profile of the lowest level of burners, courtesy of IEn. This CFD
temperature profile figure is utilised solely to illustrative the placement of the
sensors and the point at which the gas was sampled in the boiler and is not
part of the research presented in this work. It also highlights the ports available
for monitoring the burners and the dimensions of the boiler and distance of the
ports from the burner. The ports were approximately 240 cm from the edge of
the boiler where the burner quarl is located. There was only one port available
for each of the burners. Again due to confidentiality reasons, the finer details
about the layout were unavailable.

3.2.3 Existing Burner Control System

The boiler utilised a custom made control system for control and data gathering
which was recorded continuously for archival and analysis. A large number of
boiler operational parameters such as fuel flow rate, primary and secondary air-
flows, mill configurations, flue gas emissions in the exhaust chute, were acquired
using the existing power plant supervisory and data acquisition unit. Again due
to confidentiality, no details could be obtained about the instrumentation, except
for the data from select sensors which were used for the process monitoring for
further evaluation. Each of the burners was monitored using the InSight 95IRS2
flame scanners, located along the axis of the burner and monitoring the root of
the flame. These were Infrared (IR) based sensors which detected the presence
or absence of a flame.

The plant control systems monitored the emissions only at the stack level. As
mentioned in section 3.2.2, only one port was available for each of the burners.
This necessitated the gas sampling probes to be swapped with the optical sensors
whenever samples were taken. Gas sampling was performed courtesy of IEn and
its personnel throughout the experimental campaigns.

The gas probes were constructed from three concentric tubes with the inner
most tube being used to transport the gas sample for analysis. The other two
tubes were connected to the water mains to cool the probe when in use due to
the high temperatures experienced inside the boiler. Figure 3.12 illustrates the
gas sampling probe in use and figure 3.11 shows two black lines on the lower
half of the image indicating the distance to which the gas sampling probes were
inserted into the boiler to make the measurements.

In a similar manner to the pilot scale testing at IEn; CO, NO, NO2 and
O2 were measured using the gas analysers. Figure 3.13 shows the analysers in
operation. The big grey boxes in the figure house the pump, filters and dryer to
extract the gas sample for processing by the gas analysers with the values being
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Figure 3.12: Gas sampling probe mounted to the observation port on the left
and a close up view of the gas sampling probe on the right

recorded every second in an identical manner to the pilot scale tests. Table 3.2
lists all the gas analysers utilised for full scale experiments, which are essentially
the same as the ones used in pilot scale experiments (Table 3.1) except for the
addition of Eco Physics CLD gas analyser. Similar to the pilot scale experiments,
the gas sample from the sampling points were conveyed wet to the analysers
through a pump and filter. The analysers were calibrated at least once a day at
the start of the experiments but often additional calibration was done when there
was other downtimes during the experiments throughout the day. Unfortunately
due to confidentiality and operational reasons, the detailed calibration data were
not made available.
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Figure 3.13: Gas analyser setup with laptop for recording the data

Table 3.2: Gas analysers used and the gases measured at full scale

Gas analyser
Gases Measurement

Resolution
Range

measured unit(s) Low High

Ultramat 23

O2 % 0.01 0 100

CO ppm 0.5 0 2500

NOx ppm 1 0 2500

SO2 ppm 1 0 2500

Ultramat 22
CO ppm 1 0 1000

CO % 0.01 0 10

Maihak S710 CO2 % 0.1 0 25

Servomex 1400 O2 % 0.01 0 25

Eco Physics NO ppm 0.01 0 500

CLD NO2 ppm 0.01 0 500

3.3 Fuel Characterisation

A number of bituminous coals and biomass in the form of straw were used during
the set of tests carried out at the CTF. The analysis carried out and the fuel char-
acteristics are presented in section 3.3.1. Similar to the pilot scale experiments,
samples were taken at least once a day at the full scale experiments at Dolna
Odra and the analysis of the coal/biomass blends are presented in section 3.3.2.
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3.3.1 Pilot Scale

The fuels used at the CTF and their characterisation (courtesy of IEn) are pre-
sented in this section. The coal selected was representative of that used in the
Dolna Odra power plant hosting full-scale tests together with straw as an agri-
cultural residue biomass as this biomass is used for co-firing in Dolna Odra. The
main properties of the fuels used are shown in Table 3.3.

Table 3.3: Composition of the fuel used during pilot scale testing at
the CTF

Fuel Type †
Moisture Ash Content

Lower Heating

(%) (%)
Value

(MJ/kg)

100 % R 3.10 14.90 26.054
90 % R + 10 % B 3.78 13.99 24.989
80 % R + 20 % B∗ 4.46 13.08 23.924
70 % R + 30 % B∗ 5.14 12.17 22.859

100 % J 7.05 13.10 23.412
90 % J + 10 % B 7.34 12.37 22.611
80 % J + 20 % B∗ 7.63 11.64 22.810

100 % E 1.00 19.60 25.456
90 % E + 10 % B 1.89 18.22 24.451
80 % E + 20 % B∗ 2.78 16.84 23.446

† R - Russian coal J - Janina (Polish) coal
E - Ekogroszek (Polish) coal

B - Biomass in the form of agricultural straw
∗ Calculated values

Table 3.4: Particle size distribution of the fuel used during pilot scale testing at
the CTF

Particle size Fuel type (%)

distribution Russian Janina (Polish) Ekogroszek Agricultural
(µm) coal coal (Polish) Coal straw (Polish)

355 16.980
200 5.500 0.715 8.810 35.280
125 11.600 5.087 22.481 23.720
90 12.090 8.210 14.303 11.070
63 7.720 11.342 10.137 6.650
32 27.480 31.511 25.962 3.670
<32 35.610 41.291 17.659 0.370

Table 3.4 shows the particle size distribution of the various fuels used during
the pilot scale tests at the CTF. A pre-treatment of the fuel was needed in order
to obtain a narrow band of particle sizes to work with, since the use of a broad
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band of sizes and the effect of size on combustion rates would severely mask the
actual fuel kinetics. In the case of the coals, the band chosen was 53-63 µm, and
300-400 µm for the biomass. The Polish coals were received as lumps of different
sizes, which were first dried in open air, and then milled and thoroughly (and
repetitively) sieved to select range. The bituminous Russian coal was received
as a dry powder, and so it was directly sieved. The Polish straw was received as
dry briquettes and they were cut down to ≈10 mm and then milled and sieved
to the 300-400 µm range.

3.3.2 Full Scale

The fuels used at the full scale trials and their characterisation (courtesy of IEn)
are presented in this section. The tests were carried out over two test campaigns,
that occurred with a couple of months separation, lasting eight days each. The
amount of coal utilised was quite large, it being a power station and there was
considerable variation within each campaign, changes even on a day to day basis,
as shown in Table 3.5.

Table 3.5: Composition of the fuel used during full scale testing at the Dolna Odra
power station

ID Tag Fuel Type†
Moisture

Ash Lower Heating

(%)
Content Value

(%) (MJ/kg)

A 100 % Coal 10.00 22.14 21.231
B 100 % Coal 10.00 22.14 21.231
C 90 % Coal + 10 % Biomass 10.67 18.81 20.961
D 90 % Coal + 10 % Biomass 10.67 18.81 20.961
E 100 % Coal 8.18 16.20 26.636
F 100 % Coal 6.27 13.70 27.908
G 90 % Coal + 10 % Biomass 12.98 17.10 26.078
H 90 % Coal + 10 % Biomass 9.93 16.90 25.868

† C - Coal B - Biomass in the form of agricultural straw

It wasn’t possible to obtain samples after milling the coal or coal & biomass
blends before it entered the burner. Hence the particle size distribution couldn’t
be measured for these experiments.

3.4 Sensor Specification and Setup

The combustion chamber was installed with a number of sensors; Ultra Violet
(UV) - EPD-440-0/1.4 [180], Visible (VIS) - S1226-18BK [181] and Infrared (IR)
- G8376-05 [182] photodiode sensors. The sensor specifications are shown in Ta-
ble 3.6. As discussed in section 2.7.4, existing usage of such spectral wavelengths
in commercial sensors used for flame safety detectors and applicability of such
sensors for similar usage by other researchers guided the selection of these sen-
sors [36, 47, 106, 109, 136]. These sensors were selected as they respond to three
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broad spectral bands with wavelengths that include the emissions of the OH∗,
CN∗ and CH∗ radicals that arise within the flame itself [38, 106, 113], detect
the visible emissions of the flame and provide information that is related to the
flame and furnace temperature [21, 39].

Table 3.6: Sensor specification

Sensor
Responsive Peak Light

Detail
Wavelength Sensitivity Transmission

(nm) (nm) Mode

UV - EPD-440-0/1.4 190 - 570 440 Trifurcated

VIS - S1226-18BK 320 - 1000 720 fibre optic

IR - G8376-05 900 - 1700 1550 cable

3.4.1 Instrumentation

The instrumentation comprised of the sensors connected to a current to voltage
converter / amplifier, which was then amplified by an inverting voltage amplifier.
This was filtered in the hardware using a 1 kHz low pass 5th order Bessel filter
to avoid anti-aliasing while converting from analogue to digital in the DAQ unit,
where data was recorded at 8192 samples/second. The schematic of the electronic
circuit used for the three sensors is shown in figure 3.14. Figure 3.15 shows an
image of the instrumentation box which contains the circuitry for all three sensors
which is connected to the trifurcated fibre optic cable which on the other end is
attached to the lens assembly which focuses the electromagnetic emissions from
the combustion chamber on to the fibre optic cable.

3.4.2 Sampling

The data from the CTF like air flow rates, load and monitoring of emissions
such as CO and NOx were recorded at a rate of 1 sample / second. The sensor
signals were recorded at 8192 samples / second, so when these were compared
with various CTF data, the sampling rate was matched usually by up sampling
the plant data or by down sampling the sensor signals from their original rate
for ease of plotting or analysis.

3.4.3 Pilot Scale

The set up used three photodiodes measuring the Ultra Violet (UV), Visible
(VIS) and IR at an angle of 46° between the centre line of the burner and the
viewing port positioned on the back of the furnace, monitoring the flame at a
distance of approximately 155 mm from the burner quarl as shown in figures 3.5,
3.6 and 3.7. The sensors in the sighting tube are air purged to avoid overheating
as well as dust accumulation, which would adversely affect the signal if left
unchecked.
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Figure 3.14: Schematic of the instrumenation - showing a sensor, amplifier and
filter

Figures 3.16 and 3.17 show the layout of the sighting tube to mount the
optical probes to the CTF front plate (figures 3.6 and 3.7). In figure 3.17, the
brass connector pointing to the left bottom of the figure was used to mount the
lens assembly and the silver coloured connected at 90° allowed for the purge air
connection.

3.4.4 Full Scale

The three optical sensors used previously in the pilot scale testing at IEn were
used again with the same hardware. However, due to the intensity of the flame
in the power station, it was necessary to introduce neutral density filters that
reduced the light transmitted to 10 % and 20 % (the limited availability of ports
meant the flames were monitored at different distances from the side wall) of the
actual intensity impinging on the lens. This avoided saturation of the signal in
the electronic amplifiers, as the flames were much brighter than experienced at
the pilot scale CTF. In the pilot scale tests, the sensors focussed on the root of
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Figure 3.15: Picture showing the instrumentation box connected to a
trifurcated fibre optic cable and lens assembly

(Image courtesy of IEn, Poland)

Figure 3.16: Production drawing of sighting tube to mount lens assembly and
purge / cooling air

the flame and were relatively close to the burner quarl. In the case of the full
scale experiments, as there was only one port available on the side of the boiler,
as shown in figure 3.10 (top right image) and figure 3.11, it was not possible to
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(Image courtesy of IEn, Poland)

Figure 3.17: Picture of the sighting tube to mount the lens assembly and purge
/ cooling air

select which part of the flame the sensors were focussed on.
The probe mount design and picture are shown in figure 3.18. This shows how

the lens assembly for the sensors were mounted on the burner wall with the probe
mount. This mount was especially made by IEn to hold the sensors and direct
the necessary cooling air. Cooling air was required for the optical sensing system
due to the high temperatures experienced by the lens assembly when placed near
the wall of the boiler, and was directed through the T-junction employed which
kept the optical assembly from overheating during the experiments.

Due to the lack of additional ports, the optical sensors were mounted on the
same ports. This necessitated the swapping of the gas sampling probes with the
optical sensors whenever gas samples were taken.
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Figure 3.18: Probe mount attached to the observation port next to the burner
The design drawing (Image courtesy of IEn, Poland) on the top shows the probe in blue and

the picture below shows the lens assembly and fibre optic cable in addition to the probe
mount.
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3.5 Experiments

Experiments at steady state were initially conducted at pilot scale and used to
select appropriate signal processing. Further to this, the control system was
demonstrated at pilot scale and then this developed system was demonstrated
at the full scale plant in Dolna Odra.

3.5.1 Pilot Scale

As mentioned in the objectives of this research (section 1.2.1), there is a growing
need for reduction of emissions, of which one short term approach has been to
co-fire biomass. So higher proportions of biomass have to be substituted for coal
to achieve bigger reductions, which lead to burner instability issues. Therefore,
recognisable parameter(s) have to be identified with respect to these changes so
that an algorithm can be developed.

Table 3.7: Summary of test conditions at the CTF

Test
Fuel†

Swirl Thermal
Excess

Number
Setting Load

air
(°) (kW)

1 – 9 100 % C
50

10 – 18
90 % C &

10 % S

19 – 27
90 % C &

40
≈320,

10 % S 250 &

28 – 36 100 % C 200

37 – 45 100 % C
60 Low,

46 – 54
90 % C &

Normal10 % S

55 - 63
70 % C &

60

& High
30 % S ≈400,

64 – 72
80 % C & 300 &

20 % S 200,

73 – 81
80 % C &

40
20 % S

82 – 90
80 % C &

≈320,

20 % S
50 250 &

200

† C - Coal S - Straw

A series of steady state tests were conducted at the CTF, which included
firing pulverised (Russian) coal and different proportions of biomass, namely 10,
20 and 30 % on a mass basis whilst varying thermal loads, excess air levels and

56



CHAPTER 3. EXPERIMENTAL APPARATUS & PROCEDURES

secondary air swirl settings to identify such systematic changes as these are var-
ied. As this research was carried out as part of an EU funded project, one of
the additional things looked into was the effect of swirl in the 40° to 60° with
respect to co-firing. Tests at 30 % biomass by weight had to be abandoned on
safety grounds as the flame was unstable and couldn’t be sustained for even
short periods without flameout. These experiments and their steady state set-
tings are presented in Table 3.7. During each set of nine experiments where a
fuel blend and swirl setting was chosen, three thermal loads and for each ther-
mal load three different excess air settings were performed for the steady state
experiments. Only exception being the 30 % biomass blend, for which only nine
experiments were carried out with many interruptions and finally abandoned on
safety grounds.

Table 3.8: Summary of test conditions at the CTF, while varying the
primary to secondary air ratio

Test
Fuel†

Excess
Primary to secondary air ratio

Number air
condition during experiment

Start End

91 80 % C &

normal normal

high

92 20 % S low

93
100 % C

high

94 low

95 90 % C & high

96 10 % S low

† C - Coal S - Straw
All experiments carried out with swirl of 50° and thermal load of

≈320 kW

In addition to the systematic steady state experiments where one parame-
ter was varied to identify the effect on the monitoring sensors, tests that varied
primary to secondary air ratios were also performed to stimulate burner insta-
bility whilst burning different levels of biomass fuel. A summary of two sets of
these test conditions are in Tables 3.8 and 3.9. During transition from one test
condition to another, the burner was allowed to stabilise before data acquisition
began to avoid spurious changes being taken into account during analysis.

Tests while varying the primary to secondary air ratio (Tests 91 – 96) were
conducted by increasing or decreasing the primary air by 10 Nm3/h from the
original setting of 40 Nm3/h. These tests are presented in Table 3.8, where the
primary air was varied while excess air was kept constant. Additional tests to
simulate burner instability (Tests 97 – 99) were also conducted where excess air
was originally set to a normal condition and gradually decreased or increased to a
level where blow-off was about to occur. These tests are presented in Table 3.9,
where the secondary air was varied while primary air was kept constant. A
number of these tests were carried out to observe the continuous changes in the
sensor signals as opposed to the steady state experiments.
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Table 3.9: Summary of test conditions at the CTF while varying
the secondary air from normal level

Test
Fuel†

Excess Secondary air during

Number
air experiment

Start End Start End

97a
100 % C

normal

low

normal

decreased

97b high increased

98a 90 % C & low decreased

98b 10 % S high increased

99a 80 % C & low decreased

99b 20 % S high increased

† C - Coal S - Straw
All experiments carried out with swirl of 50° and thermal load of

≈320 kW

3.5.2 Full Scale

Table 3.10: Summary of test conditions at the full scale power
plant

Test Thermal Load* Secondary Airflow*† (kg/h)

number (kg/h) low medium high

101 - 103 15 000 8000 11 000 14 000
104 - 106 20 000 7800 - 8400 12 200 16 000
107 - 109 25 000 9600 - 12 000 14 000 18 000

* of the lowest level/bank of (four) burners in the boiler
† Secondary airflow corresponding to Excess air of low, medium and

high

In a similar manner to the experiments at the CTF, it was decided to use three
different thermal loads and three different excess air settings for each thermal
load during the full scale experiments at the Dolna Odra power plant. In the case
of this boiler, this resulted in fuel flow rates of 15 000, 20 000 and 25 000 kg/h
to the monitored burners on the lowest level. This fuel flow was the total fuel
supplied to the four burners on this level with the corresponding airflows being;
low, medium (optimal) and high. The three excess air conditions, namely low,
medium and high correspond to the secondary air flows shown as low, medium
and high in table 3.10. Overall combustion was staged during normal operation
of the boiler, and this lowest level of burners were operated sub-stoichiometrically
to maintain NOx below Polish and EU regulatory limits. The implication of this
was that the burners did not have a condition where the CO levels were ever low.
The full scale plant was producing electricity as these experiments were carried
out. Varying numbers of burners were active during the tests due to varying
electricity production demands.
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3.6 Summary

This chapter has outlined the pilot scale CTF and the full scale plant experi-
mental apparatus and layout. The existing and additional plant instrumentation
and their positioning with respect to the burner were highlighted. Coal charac-
terisation and the experimental conditions were listed, which will be referred to
when discussing results in the next chapter.

The specifications of the relatively cheap broadband sensors used in this re-
search project are provided, that cover a broad range of spectral emissions from
flames, in addition to those generally covered by the standard flame detectors
employed on burners. This would enable the acquisition of data from the flame,
with the additional option of deriving features which could be utilised from ex-
isting flame detectors in the future. The data acquired from these sensors (with
additional signal processing) together with the gas analyser data were utilised in
the detection algorithms to monitor the flames and detect changes.
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Chapter 4

EXPERIMENTS AND
RESULTS

This chapter presents the results obtained from the initial experiments conducted
on the pilot scale 500 kWth Combustion Test Facility (CTF) at Institute Ener-
gitky - Institute of Power Engineering (IEn) to get baseline data to evaluate and
obtain various features to develop the control system to be discussed in the next
chapter. The idea behind these experiments was to vary one parameter at a
time to evaluate if features could be extracted from the flame monitoring signals
obtained, for these systematic set of experiments. These results are analysed
using a range of signal processing methods in an attempt to better understand
the relationships between the sensor signals and the test facility operating pa-
rameters.

As previously discussed a signal can be represented in many different ways,
at its most fundamental processing in the time domain by using for example
the Root Mean Square (RMS) or in the frequency domain using for example the
Fast Fourier Transform (FFT) or Power Spectral Density (PSD), are techniques
that have been demonstrated to enhance / make more visible the information
contained in the raw signal. These techniques do have limitations so other meth-
ods that use a Joint Time Frequency (JTF) approach, such as wavelets and the
Wigner-Ville Distribution (WVD) were utilised to analyse the data and are also
presented in this chapter.

4.1 Time Domain

The data recorded from the three photodiodes, namely the Ultra Violet (UV),
Visible (VIS) and Infrared (IR) were analysed in the time domain to see if the
energy of the signal over time could be related to changes in the input to the
flame, such as thermal load and excess air (O2) while combusting the various fuel
blends (Table 3.7). In the time domain, the RMS averaging method was applied
to the sensor data from the experiments highlighted in Table 3.7 to quantify the
energy of the flame radiation signal as both the intensity and turbulent fluctua-
tions of the flame greatly influence the characteristics of the signals acquired by
the sensors.

The results presented in this section consists of a set of nine experiments based
on a particular fuel blend and swirl setting (with reference to Table 3.7), where
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the thermal load and excess air were varied. The results consist of three plots
for each of the UV, VIS and IR sensors signals after processing. Each plotted
point is the mean of the RMS calculated every second over 300 s duration of an
experiment and the minimum and maximum values of the RMS being plotted as
the error bar.

Figure 4.1: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 1 to 9 - 100 % Coal - 50° Swirl

Figure 4.1 shows the RMS of the UV, VIS and IR sensors plotted against the
mean of the two oxygen concentrations (figure 3.8) when firing 100 % pulverised
coal and 50° swirl. Tests 1 to 3 at the high thermal load (320 kW), shown
in Table 3.7, while varying excess air from low to high respectively. Similarly,
Tests 4 to 6 and Tests 7 to 9 show the variation of the sensor signals as the excess
air is varied from low to high, for medium (250 kW) and low (200 kW) thermal
loads respectively.

A general trend in the sensor signals to decrease with increasing excess air
(total airflow to the burner) for Tests 1 to 3 for the high thermal load (320 kW)
could be observed. The same inverse relation between the sensor signals and the
excess O2 can be noticed for the other thermal loads, though it’s less pronounced
in the low thermal load (and is different for Test 7). The changes in thermal load
in turn changes the total airflow to the burner and this affects experiments with
a low thermal load especially. This could be due to the flame getting leaner and
hence emitting less as the excess air is increased. Another factor was that fairly
similar amounts of excess purge air (to cool the lens assembly for the sensors and
the transparent side sighting panel running one side of the combustion chamber)
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was supplied to the combustion chamber and the fraction of this air was high at
low thermal load.

The results from other experiments (as listed in Table 3.7) are presented in
Appendix B.1. A general trend could be noticed in the sensor signals to decrease
with increasing excess air for all thermal loads.

Figure B.9 shows the RMS of the UV, VIS and IR sensors plotted against the
mean of the two oxygen concentrations (figure 3.8) when firing 80 % pulverised
coal with 20 % biomass and 40° swirl. Again, a general trend could be noticed
in the sensor signals to decrease with increasing excess air for all thermal loads,
except for low thermal load experiments (Tests 79 to 81) and Test 76. This change
in trend for the low thermal load experiments is thought be due to the percentage
of purge air being a larger percentage of the leakage into the combustion chamber,
hence affecting the set up of experiments as the O2 readings at the exit were used
by the boiler operator to control airflow to the combustion chamber. Test 76
seems to have very high variation as shown by the error bar, this experiment is
an outlier as the steady state couldn’t be maintained during the experiment with
variation in the total airflow to the burner.

A general trend can be noticed in all experiments where by the sensor RMS
signal amplitude decreases with increases in excess air for these sets of experi-
ments for all thermal loads, but is less pronounced at lower thermal loads. This is
thought to be due to the higher percentage of purge air to the total airflow to the
burner. The responses of the UV, VIS and IR photodiodes exhibit fairly similar
trends with respect to these operating conditions and this might be explained
by the fact the there is some overlapping over the wavelength response of these
sensors. Later chapters will investigate using these general trends to control the
burner (Chapter 5).

4.2 Frequency Domain

In the frequency domain, the FFT was applied to the sensor data on the ex-
periments highlighted in Table 3.7 initially to find the range of the frequency
components present in signals acquired by the sensors. Also based on the lit-
erature (Section 2.7.3), the majority of the signal power was expected to be in
the flame flicker range. The following figures show a range of 0 Hz to 500 Hz to
demonstrate the range of frequencies of significance. The PSD was also calcu-
lated for the sensor data as another feature to be analysed to relate to changes
in burner conditions and subsequently for use with the Artificial Neural Network
(ANN).

The results presented for the FFT each consist of a set of nine plots of ex-
periments based on a particular fuel blend and swirl setting (with reference to
Table 3.7), where the thermal load and excess air were varied for each of the UV,
VIS and IR sensors. Each plotted FFT is the mean of the FFTs calculated every
second over each 300 s duration experiment.

Figure 4.2 shows the FFT output of the UV sensor data for Tests 1 to 9 when
firing 100 % pulverised coal and 50° swirl. The test numbers are with reference to
Table 3.7. The graphs from left to right show the variation of excess air from low,
medium (normal) and high respectively for the three thermal loads. Similarly,
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(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

(g) Test 7 (h) Test 8 (i) Test 9

Figure 4.2: FFT of UV photodiode signal for Tests 1 to 9 - 100 % Coal - 50°
Swirl

(Test numbers with reference to Table 3.7)

the graphs top to bottom vary from high to low thermal load, for the three excess
air settings.

As previously observed with the RMS results, the FFT results for UV sensor
show a decreasing trend with increasing excess air to the burner for all thermal
loads. It could also be observed that with the high thermal load, the increase in
the excess air shows a distinct change in amplitude for the dominant flame flicker
frequency (between 0 to 40 Hz) for Tests 1 to 3 in figures 4.2(a) to 4.2(c). The
general trend of decreasing signal intensity with increasing excess air is also noted
with the VIS and IR sensors and other experiments as shown in Appendix B.2.

The FFT results of the three photodiode sensors analysed to relate changes
to flame conditions, clearly shows a decrease in signal strength with increase
in airflow rates to the burner. In addition, a slight frequency shift can also be
observed with increasing airflow rates. Similar to the RMS variations these are
neither proportional nor linearly change with changes to load or excess air.

The PSD was estimated using the Welch’s averaged modified periodogram
method and was applied to the sensor data on the experiments highlighted in
Table 3.7. The results presented in this section each consist of a set of nine
experiments based on a particular fuel blend and swirl setting (with reference
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to Table 3.7), where the thermal load and excess air were varied. Also each
result, consists of three plots for each of the UV, VIS and IR sensors signals after
processing. Each plotted point is the mean area under the curve of the PSD
calculated every second over 300 s duration of an experiment and the minimum
and maximum values of the PSD being plotted as the error bar for each plotted
point.

Figure 4.3: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 1 to 9 - 100 % Coal - 50° Swirl

Figure 4.3 shows the relationship between the energy of the PSD of the UV,
VIS and IR photodiode signals with respect to the averaged oxygen concentration
(figure 3.8) when firing 100 % pulverised coal and 50° swirl for Tests 1 to 9; Tests 1
to 3 at the high thermal load (320 kW), shown in Table 3.7, while varying excess
air from low to high respectively. Similarly, Tests 4 to 6 and Tests 7 to 9 show
the variation of the sensor signals as the excess air is varied from low to high,
for medium (250 kW) and low (200 kW) thermal loads respectively. The energy
is the area under curve within the 0 - 1000 Hz band when the PSD is plotted
in linear scale. Each data point is the average of 60 five-second samples and the
standard deviation of each data point is plotted as an error bar. As observed
with other signal processing methods before, a general trend observed was the
decreasing variance of power of the sensor signals with increasing excess air.

As previously observed with Tests 1 to 9, the variance of power of the three
sensors were observed to decrease with increases in excess air for all thermal loads
for other experiments presented in Appendix B.3. The general trend would help
in a simple algorithm to detect changes within a thermal load for most of these
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experiments but one that is able to distinguish between thermal loads would
be difficult as the changes in the signal strength are neither linear nor directly
proportional to the change in excess air and thermal loads.

Fairly consistent trends can be observed when the burner was subject to dif-
ferent operating conditions whilst firing pulverised coal and different proportions
of coal/biomass blends and mostly exhibit downward trend with the increase in
oxygen concentration. In general the area under the PSD curve (a measure of
signal energy) reduces with increases in O2 for the IR sensor for all load con-
ditions, a result that was replicated for each of the optical photodiode sensors.
However, the consistency of the results, as measured by the error bars in each
graph, can be quite variable. This trend is similar for the other signal process-
ing methods previously discussed as well, therefore requiring a different signal
processing algorithm capable of distinctly identifying these changes.

4.3 Joint Time Frequency Analysis

Even though a general trend could be observed for the experiments with varia-
tion in excess air and thermal load for the various blends of coal and biomass
these trends depend on many of the combustion parameters with no easy to
define algorithm that could relate the features to control parameters or identify
abnormal combustion conditions. The final signal processing approach of JTF
methods allows the observer to see changes in the frequency domain over time.
Two such methods, namely wavelet decomposition and WVD were utilised to
analyse the three photodiode sensors data from the experiments in the following
sections.

4.3.1 Wavelets

A one-dimensional wavelet packet decomposition function, which belongs to one
of the wavelet packet analysis in MATLAB® Wavelet Toolbox™ was used to
decompose the sensor signals. The signals were decomposed to level-3 using a
Daubechies 4 or db4 wavelet and the RMS of each packet coefficient at level-3
was computed. This resulted in 8 wavelet coefficients per sensor and the wavelet
coefficient which best correlated to the operating parameter was chosen. Figure
4.4 below shows the wavelet decomposition tree to level-3 which resulted in 8
wavelet coefficients as represented by the packets of (3, 0), (3, 1), etc. As noted
in figure 4.4, lower frequencies are represented in (1, 0) while higher details
are correlated in (1, 1) at level-1, so at each level the lower frequencies are
represented in the first bin. At level-3 the approximation of the lowest frequency
signals would be in (3, 0) where most of the flame flicker frequency should be
present while (3, 7) represents the higher frequency components.

The results presented in this section each consist of a set of nine experiments
based on a particular fuel blend and swirl setting (with reference to Table 3.7),
where the thermal load and excess air were varied. Also each result, consists of
three plots for each of the UV, VIS and IR sensors signals after processing. Each
plotted point is the mean of the RMS of the best correlating wavelet coefficient
- (3, 0), calculated every second over 300 s duration of an experiment and the
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minimum and maximum values being plotted as the error bar for each plotted
point.

1,0 – Approximation (low frequency signal) 1,1 – Detail (high frequency signal)

Figure 4.4: Wavelet packet decomposition tree to level 3

Figure 4.5: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 1 to 9 - 100 % Coal - 50° Swirl

Figure 4.5 shows the best correlation - (3, 0) from the wavelet packet decom-
position observed of the UV, VIS and IR photodiode sensor signals with respect
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to the oxygen levels for Tests 1 to 9 for 100 % pulverised coal and 50° swirl.
A degree of correlation is evident with a general reduction in the amplitude of
the features with increasing O2, although the precise nature of the underlying
correlation in the data is unclear.

The best wavelet coefficient (3, 0) had a general trend of decreasing amplitude
with increasing excess air for the various fuel blends for the different thermal
loads. There were some anomalies, especially with lower thermal load due to the
purge air being a higher percentage compared to the other thermal loads but
the underlying trend was still present even though this was neither proportional
nor linear with changes to excess air and thermal load. Hence this technique
would be difficult to apply directly to detect changes to burner conditions for
use with the monitoring and control system as the multivariate analysis of this
signal together with others from the CTF would be complex, and especially so
with coal combustion being a complex process thus making application of ANN
an attractive option due to the complex not very well understood combustion
process and in the presence of incomplete information. Other results (packets
(3, 1), etc.) did not yield any consistent results and have therefore not been
presented.

4.3.2 Wigner-Ville Distribution

The WVD maps a time variant signal to the two dimensions of time and fre-
quency, with the same resolution in both domains. In this case, the WVD was
obtained using National Instruments Incorporated (NI) Advanced Signal Pro-
cessing Toolbox™ in the LabVIEW™ software. As the sampling rate for all optical
sensors were set at 8192 Hz, using the Nyquist-Shannon sampling theorem, the
highest frequency that could be measured was 4096 Hz. The frequency or time
resolution are normally of the order of N = 512 and in the current application
this was limited due to the available memory resources on the computer. The
raw signals fed to the WVD function were normalised using the largest standard
deviation among the whole set of experiments.

The WVD spectrum output contains spurious negative energies, but by using
the absolute values, only the magnitude of the output was taken into consider-
ation for further processing. In this case, the output consists of the absolute
energies of the sensor signal for each frequency bin (4096 Hz / 512 frequency
bins) of 8 Hz during each time interval, which is based on the total duration of
each test. Since the WVD has equal resolution, for a typical experiment duration
of 5 min (300 s), the time resolution is approximately 0.6 s. The time resolution
could be improved by performing multiple WVDs for the same test duration, but
in the case of a power station boiler such sudden dynamic changes are not com-
mon as changes in thermal load or combustion parameters are usually undertaken
gradually.

The results presented in this section each consist of a set of nine experiments
based on a particular fuel blend and swirl setting (with reference to Table 3.7),
where the thermal load and excess air were varied for each of the three photodiode
sensors. Also for comparison of the various experiments, each result consists of
the averaging of the 512 bins of ≈0.6 s of the WVD calculated over the entire
300 s duration of an experiment for each of the frequency bins of about 8 Hz. As
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observed before with the frequency domain results (section 4.2) and from the
literature (section 2.7.3), the flame flicker frequency is in the 0 Hz to 40 Hz range
and to avoid any loss of any other overlooked features a range of 0 Hz to 400 Hz
was chosen for the analysis. The range of the colour bars have been maintained
(for each sensor) through out all the results for each of the three sensors at a
set value to make comparison easier, so some experiments might seem to have
no signal information present but there are changes that are not very visible
with the overall range that has been adopted to visualise and compare all the
experiments. The range of colours represent the voltage of the signals acquired
but since the original voltage measurements weren’t calibrated with a source, the
units in the figures have been avoided as this can’t be established appropriately
without the need for measuring absolute values. Hence for this research outputs
means, the values are used only for comparison and could be used to compare
different signals within the set but cannot be related to real values, even though
these are voltage measurements. The x axis represents the set of nine experiments
and the y axis, the frequency.

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 .

Figure 4.6: WVD (averaged) of UV photodiode signal for Tests 1 to 9 - 100 %
Coal - 50° Swirl

Figures 4.6, 4.7 and 4.8 show the WVD of the UV, VIS and IR sensor respec-
tively for Tests 1 to 9 for 100 % coal and 50° swirl. The first three tests starting
from the left of these figures (Tests 1 to 3) clearly show that with decrease in ex-
cess air the signal intensity increases for high thermal load (320 kW). This same
trend can be noticed in Tests 4 to 6 and Tests 7 to 9 for medium (250 kW) and
low (200 kW) thermal loads while excess air was being decreased. Another in-
teresting aspect of this representation of the signal is that it shows the increased
frequency spread as the excess air decreases for the various thermal loads.
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Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 .

Figure 4.7: WVD (averaged) of VIS photodiode signal for Tests 1 to 9 - 100 %
Coal - 50° Swirl

Test 1 Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 .

Figure 4.8: WVD (averaged) of IR photodiode signal for Tests 1 to 9 - 100 %
Coal - 50° Swirl
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The results for the three sensors from the rest of the experiments listed in
Table 3.7 is presented in Appendix B.5. The magnitude of the frequencies
present in the WVD output had a general trend of decreasing amplitude with
increasing excess air for the various fuel blends for the different thermal loads.
Again this cannot be directly applied to detect changes to burner conditions
for use with the monitoring and control system as its not consistent or change
proportionally with changes to the burner conditions. The multivariate analysis
of this signal together with others from the CTF would be complex, and especially
so with coal combustion being a complex process.

4.4 Summary

This chapter outlined the various signal processing algorithms applied to the sen-
sor data obtained from the three sensors used to monitor the flames during the
systematic variations of the operating conditions carried at the CTF. Initially
starting with simpler methods in the time and frequency domains before moving
on to more complex JTF methods. The reason behind carrying out such anal-
ysis was to choose an appropriate signal processing method that could identify
changes in the sensor signal as each parameter was varied. Though trends in
the sensor signals could be observed with changes to the operating condition,
they weren’t systematic with the changes made to the operating conditions. The
trends were however much clearer with JTF methods for the same experiments
compared to the other signal processing methods used in this research.

A general trend was observed with all the signal processing algorithms, the
signal amplitude decreased with increases in excess air. Some anomalies were
observed, especially with lower thermal load with the time and frequency domain
results which is thought to be due to the purge air being a higher percentage
compared to the other thermal loads but the underlying trend was still present
even though this was neither proportional nor linear with changes to excess air
and thermal load. Hence, a simple system just utilising the signal processing
data of the sensors wouldn’t be appropriate to detect changes based on fixed
cut-off / band of values and coal combustion (in this case coal biomass blends)
being a complex process with many unknowns would be an ideal candidate for
the application of an ANN, as these have been applied to predict / estimate
values based on large number of inputs without prior knowledge of the process
or system. The following chapter (Chapter 5) describes the development of such
a system for the monitoring and control of co-firing flames to detect abnormal
combustion.
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Chapter 5

MONITORING AND
CONTROL SYSTEM
DEVELOPMENT

This chapter describes the monitoring and control system development and its
testing at the pilot scale 500 kWth Combustion Test Facility (CTF) located at the
Institute Energitky - Institute of Power Engineering (IEn), Poland. This involves
a discussion of the signal processing methods applied in the development of the
monitoring and control system and a performance evaluation of the system on
the CTF.

The control system was not intended as a replacement for existing plant au-
tomated control, but to produce a simple rule-based system able to advise on
the manual adjustments to the burner, required to provide near optimal burner
settings by adjusting the airflow to the burner for stable combustion and appro-
priate NOx and CO emissions. It is intended for monitoring individual flames
within multi-burner applications commonly found on power station boiler plant.

5.1 Simple Set Point Based System

A simple set point based control system would be beneficial in terms of time
taken for development and testing, due to the simplicity of such a system. As
it has been observed in Section 4.1 there are trends in terms of the variation of
Root Mean Square (RMS) of the sensor signals with changes to O2, but these
changes are not systematic enough to be used with certain set points to detect if
a condition is present as there are many varying factors. It also has to be noted
that, similar levels of RMS values can be seen for two completely different con-
ditions (e.g. different thermal loads - as detailed for figure B.8) which can result
in false identification of a condition and hence corrective actions not relevant for
such a condition being suggested.

Similarly a simple rule based system based on the Fast Fourier Transform
(FFT), Power Spectral Density (PSD) or wavelet coefficients of the sensor signals
would not be feasible for the same reasons. Similar to the RMS, this wouldn’t be
of much use as the change to O2 does not produce proportional or linear changes
to the sensor signals, which could be utilized to identify an undesirable condition.
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5.2 Artificial Neural Network

The combustion process is complex and its control is a challenging multi-variable
problem that is tackled in the presence of incomplete information. Such a pro-
cess with multiple variables and outcomes based on small changes would be an
appropriate candidate for use of Artificial Neural Networks (ANN) [42–44, 83,
161, 165–167] (Section 2.9).

In order to test the appropriateness of a range of techniques a subset of the
experiments presented and discussed in Chapters 3 and 4 were selected. These
were Tests 1 to 9 (Table 3.7) at 50° swirl and 100 % Russian coal.

Initially three case studies were investigated and different input features gen-
erated from the CTF tests were considered. The three case studies used the
features generated from the CTF where the input variables to the ANNs were
the sets of the RMS, PSD and wavelet features of the three photodiode signals
(i.e. Ultra Violet (UV), Visible (VIS) and Infrared (IR)) as shown in Table 5.1.

Table 5.1: Case studies initially selected to evaluate the various input features
to be applied to an ANN

Case Study
Number of

Input features
features

1 3 RMS of UV, VIS and IR sensors
2 3 PSD of UV, VIS and IR sensors

3 3
RMS of the best wavelet coefficient

of UV, VIS and IR sensors

The main advantages of using neural networks in the current work are the
ability to learn the complex relationships that exist in the real system, rather
than describing it analytically or physically. For complex systems, once trained,
the network has a relatively low computational cost when compared to simulation
models based on physics. ANN modelling has been applied in this project for
this very reason. Examples of combustion related applications of ANN are given
in [34, 44].

The ANN with the least resource intensive signal processing method needs to
be tested, as a developed system needs to be applied in an online, real-time basis
to make predictions of the O2 concentration, NOx and CO emissions. NOx and
CO emissions have been used for combustion control for Pulverised Coal (PC)
flames by others such as Lu et al. [117] in their work where NOx or CO has
been related to combustion quality and hence used for control, as discussed in
section 2.7.1. Similar to comparisons of the three photodiode signals with refer-
ence to O2 in chapter 4 and Appendix B, similar comparisons were carried out for
NOx but have not been presented for brevity. With reference to [34, 44], an ANN
was used due to its massively parallel approach which is able to learn complex
patterns between input and output data. This was due to observed trends in the
sensor signals with changes to O2 as seen in the results from the systematic set of
steady state experiments varying one parameter in Chapter 4. Initially the three
case studies in Table 5.1 were studied with the selected experiments to see the
viability of such an approach with varying numbers of hidden neurons. The aim
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of neural network modelling was to establish a methodology for relating mea-
surements from the flame monitoring system to burner operating parameters.
A standard feed-forward neural network with Bayesian Regularisation (BR) was
explored with the aim of improving the capture of any non-linearity that might
exist in the underlying correlation function and which weren’t observed from the
various signal processing methods employed in Chapter 4.

5.2.1 RMS Based ANN Modelling

According to Basheer and Rohwer et al., Multilayer perceptron (MLP) with back
propagation is the most used network [162, 169], therefore this was chosen to be
investigated in this research (Section 2.9.2). Multilayer feed-forward networks
have one or more hidden layers between the input and output layers and are
able to extract higher order statistics and contribute to the capability of the
ANNs’ computational power [160, 162] (Section 2.9.1). The data modelling was
carried out using MATLABTM software, where a standard feed-forward neural
network with error back-propagation was used to train and predict the O2 and
NOx. The network constituted an input layer, one hidden layer with a hyperbolic
tangent sigmoid transfer function and an output layer with a linear activation
function. The RMS features generated from the CTF at IEn (Tests 1 to 9)
whilst combusting 100 % coal (Table 3.7) were used to train the ANN. These
input variables were divided so that 75 % of the data was used for training
with the remaining 25 % being used to test the neural network model to unseen
conditions. Two separate networks were trained to estimate the excess air level
and NOx emissions and the performance of the ANN was evaluated by the mean
percentage prediction error (MPPE) on the “unseen” test data set (25 % not
used for training). Different numbers of hidden neurons were considered with
the optimum number being decided on the lowest MPPE obtained from the
testing data. The code used to carry out this is presented in Appendix A.1.

Figure 5.1: ANN sampling for training and testing

Figure 5.1 shows a sample of how the data was divided for training and testing
ANNs. 75 % was used for training and the remainder used only while evaluating
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the model. Hence the training data wasn’t continuous, but 3 out of every 4
points used for training, highlighted as blue circles in figure 5.1.

Figure 5.2: ANN prediction of NOx - Training & Testing - trained with RMS -
10 hidden neurons

Figure 5.2 shows the predicted NOx results of the tests used to the train
the ANN with 10 hidden neurons. The input features used to train the ANN
with 10 hidden neurons were the RMS values of the three - UV, VIS and IR
photodiode signals and the NOx emissions recorded during the tests. After the
ANN was trained with 75 % of the data (3 out of every 4 points) from Tests 1
to 5 and 7 to 9, the remainder (25 %) was applied to the trained ANN to get
a prediction. This training and testing was carried out at least 5 times and
the best performing network, based on the lowest MPPE was chosen. The best
performing ANN trained with 10 hidden neurons was acceptable with a MPPE
of 1.8 %. As noted in Section 4.1, the low thermal load experiments (Tests 7 to
9) exhibit higher variation, this is thought to be from the higher proportion of
purge air with respect to total airflow to the combustion chamber compared to
the rest of the experiments. The results from this case study, while predicting
NOx with varying numbers of hidden neurons used for the ANN are presented
in Table 5.2.

Figure 5.3 shows the results of validation - Test 6, which wasn’t presented
to the ANN during its training phase. This shows the performance of the ANN
trained with unseen data, essentially the capability of the trained ANN model
to learn from the previously presented data to predict. The ANN seems to be
under predicting the NOx emissions, with a MPPE of 17.1 %.

Figures 5.4 and 5.5 show the NOx prediction with an ANN with 12 hidden
neurons. MPPEs of 1.7 % and 5.17 % were observed.
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Figure 5.3: ANN prediction of NOx - Validation - trained with RMS - 10
hidden neurons

Table 5.2: Comparison of performance of NOx prediction results for ANN
trained with RMS

Hidden
Neurons

MPPE (%)

Training Validation

10 1.8 17.1
12 1.7 5.17
15 1.7 4.9
20 1.8 13.8
25 1.7 5.74
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Figure 5.4: ANN prediction of NOx - Training & Testing - trained with RMS -
12 hidden neurons

Figure 5.5: ANN prediction of NOx - Validation - trained with RMS - 12
hidden neurons
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Figure 5.6: ANN prediction of NOx - Training & Testing - trained with RMS -
15 hidden neurons

Figures 5.6 and 5.7 show the NOx prediction with an ANN with 15 hidden
neurons. MPPEs of 1.7 % and 4.9 % were observed.
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Figure 5.7: ANN prediction of NOx - Validation - trained with RMS - 15
hidden neurons

Figure 5.8: ANN prediction of NOx - Training & Testing - trained with RMS -
20 hidden neurons
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Figures 5.8 and 5.9 show the NOx prediction with an ANN with 20 hidden
neurons. MPPEs of 1.8 % and 13.8 % were observed.

Figure 5.9: ANN prediction of NOx - Validation - trained with RMS - 20
hidden neurons

Figures 5.10 and 5.11 show the NOx prediction with an ANN with 25 hidden
neurons. MPPEs of 1.7 % and 5.74 % were observed.

ANN with 15 hidden neurons showed the best performance in the prediction of
NOx for this set of tests, though even for this best case some of the predictions are
some way from the measured values. NOx prediction alone wouldn’t be sufficient
as, quite often boiler operators using low-NOx burners and tend to operate some
burners at low airflow (sub-stoichiometric) conditions to reduce thermal NOx

but have over fire air to enable complete combustion. Hence another parameter
like O2 would be beneficial to regulate burners as just regulating to achieve lower
NOx could still lead to poor combustion conditions.
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Figure 5.10: ANN prediction of NOx - Training & Testing - trained with RMS -
25 hidden neurons

Figure 5.11: ANN prediction of NOx - Validation - trained with RMS - 25
hidden neurons
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Figure 5.12: ANN prediction of O2 - Training & Testing - trained with RMS -
10 hidden neurons

Figure 5.12 shows the predicted O2 results of the tests used to the train
the ANN with 10 hidden neurons. The input features used to train the ANN
with 10 hidden neurons were the RMS values of the three - UV, VIS and IR
photodiode signals and the O2 emissions recorded during the tests. After the
ANN was trained with 75 % of the data (3 out of every 4 points) from Tests 1
to 5 and 7 to 9, the remainder (25 %) was applied to the trained ANN to get a
prediction. Again this training and testing was carried out at least 5 times and
the best performing network, based on the least MPPE was chosen, similar to
NOx predictions. The best performing ANN trained with 10 hidden neurons was
acceptable with a MPPE of 3.3 %. The MPPE result of 3.3 % is good (MPPE
values for all the graphs are presented just above the plot), as can be seen with
the predicted O2 values (y axis) in red shadowing the measured values in blue
for the various tests as indicated on the x axis, for the remaining 25 % of the
data used to validate the trained ANN model. As noted in Section 4.1, the low
thermal load experiments (Tests 7 to 9) exhibit higher variation, this is thought
to be from the higher proportion of purge air with respect to total airflow to the
combustion chamber compared to the rest of the experiments. The results from
this case study, while predicting O2 with varying numbers of hidden neurons
used for the ANN are presented in Table 5.3.

Figure 5.13 shows the results of validation - Test 6, which wasn’t presented
to the ANN during its training phase. The ANN predicted the O2 emissions,
with a MPPE of 20.1 %.
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Figure 5.13: ANN prediction of O2 - Validation - trained with RMS - 10 hidden
neurons

Table 5.3: Comparison of performance of O2 prediction results for ANN trained
with RMS

Hidden
Neurons

MPPE (%)

Training Validation

10 3.3 20.1
12 3.3 56.7
15 3.3 71.2
20 3.4 72.2
25 3.9 82.1

Figures 5.14 and 5.15 show the O2 prediction with an ANN with 12 hidden
neurons. MPPEs of 3.3 % and 56.7 % were observed.
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Figure 5.14: ANN prediction of O2 - Training & Testing - trained with RMS -
12 hidden neurons

Figure 5.15: ANN prediction of O2 - Validation - trained with RMS - 12 hidden
neurons
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Figure 5.16: ANN prediction of O2 - Training & Testing - trained with RMS -
15 hidden neurons

Figures 5.16 and 5.17 show the O2 prediction with an ANN with 15 hidden
neurons. MPPEs of 3.3 % and 71.2 % were observed.
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Figure 5.17: ANN prediction of O2 - Validation - trained with RMS - 15 hidden
neurons

Figure 5.18: ANN prediction of O2 - Training & Testing - trained with RMS -
20 hidden neurons
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Figures 5.18 and 5.19 show the O2 prediction with an ANN with 20 hidden
neurons. MPPEs of 3.4 % and 72.2 % were observed.

Figure 5.19: ANN prediction of O2 - Validation - trained with RMS - 20 hidden
neurons

Figures 5.20 and 5.21 show the O2 prediction with an ANN with 25 hidden
neurons. MPPEs of 3.9 % and 82.1 % were observed.
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Figure 5.20: ANN prediction of O2 - Training & Testing - trained with RMS -
25 hidden neurons

Figure 5.21: ANN prediction of O2 - Validation - trained with RMS - 25 hidden
neurons

87



CHAPTER 5. MONITORING AND CONTROL SYSTEM DEVELOPMENT

ANN with 10 hidden neurons showed the best performance in the prediction
of O2 for this set of tests. What is clear from these results is that there is not
enough information being presented to the neural network to be able to capture
the completeness of the data and hence the coming sections will investigate the
use of more complex signal processing.

5.2.2 PSD Based ANN Modelling

The PSD features generated from the CTF at IEn (Tests 1 to 9) while combusting
100 % coal (Table 3.7) were used for training ANNs in the second case study,
similar to the ANN based on RMS (Section 5.2.1). Again the input variables
were divided so that 75 % of the data was used for training with the remaining
(25 %) being used to test the model, similar to previous Section 5.2.1, on ANN
with RMS. Two separate networks were trained to estimate the excess O2 level
and NOx emissions and the performance of the ANN was evaluated by MPPE
on the “unseen” test - Test 6 not used for training.

Table 5.4: Comparison of performance of NOx prediction results for ANN
trained with PSD

Hidden
Neurons

MPPE (%)

Training Validation

10 1.9 33.9
12 2 37.4
15 1.7 24.4
20 1.8 37.3
25 2.2 70.7

Table 5.4 shows the NOx prediction results for the various ANNs trained
with different number of hidden neurons ranging between 10 to 25. The training
and testing phase of the ANNs were carried out at least 5 times for each of
the different number of hidden neurons being evaluated and the best performing
network, based on the least MPPE was chosen. The input features used to train
the ANNs were the PSD values of the three - UV, VIS and IR photodiode signals
and the NOx emissions recorded during the tests.

Figure 5.22 shows the NOx prediction results of the best performing ANN
with 15 hidden neurons, with a MPPE of 24.4 % for “unseen” data - Test 6.
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Figure 5.22: ANN prediction of NOx - Validation - trained with PSD - 15
hidden neurons

Table 5.5: Comparison of performance of O2 prediction results for ANN trained
with PSD

Hidden
Neurons

MPPE (%)

Training Validation

10 3.6 24.5
12 3.5 57.2
15 3.3 81.4
20 3.8 86.9
25 3.7 44.2

Table 5.5 shows the O2 prediction results for the various ANNs trained with
different number of hidden neurons ranging between 10 to 25. The input features
used to train the ANNs were the PSD values of the three - UV, VIS and IR
photodiode signals and the O2 recorded in the stack during the tests. Figure 5.23
shows the O2 prediction results of the best performing ANN with 10 hidden
neurons, with a MPPE of 24.5 % for “unseen” data - Test 6.
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Figure 5.23: ANN prediction of O2 - Validation - trained with PSD - 10 hidden
neurons

5.2.3 Wavelet Coefficients Based ANN Modelling

The wavelet coefficients generated from the CTF at IEn (Tests 1 to 9) while
combusting 100 % coal (Table 3.7) were used for training ANNs in the third
case study, similar to the ANN based on RMS (Section 5.2.1). Again the input
variables were divided so that 75 % of the data was used for training with the
remaining (25 %) being used to test the model, similar to previous Section 5.2.1,
on ANN with RMS. Two separate networks were trained to estimate the excess
O2 levels and NOx emissions and the performance of the ANN was evaluated by
MPPE on the “unseen” test - Test 6 not used for training.

Table 5.6: Comparison of performance of NOx prediction results for ANN
trained with Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 1.9 32.3
12 1.7 21.4
15 1.7 31.7
20 1.7 32.8
25 1.7 18.1

Table 5.6 shows the NOx prediction results for the various ANNs trained
with different number of hidden neurons ranging between 10 to 25. The training
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and testing phase of the ANNs were carried out at least 5 times for each of
the different number of hidden neurons being evaluated and the best performing
network, based on the least MPPE was chosen. The input features used to train
the ANNs were the RMS of the best wavelet coefficients of the three - UV, VIS
and IR photodiode signals and the NOx emissions recorded during the tests.

Figure 5.24: ANN prediction of NOx - Validation - trained with wavelet
coefficients - 25 hidden neurons

Figure 5.24 shows the NOx prediction results of the best performing ANN
with 25 hidden neurons, with a MPPE of 18.1 % for “unseen” data - Test 6.

Table 5.7: Comparison of performance of O2 prediction results for ANN trained
with Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 3.4 43.1
12 3.4 46.2
15 3.5 24.3
20 3.5 63
25 3.5 37.8

Table 5.7 shows the O2 prediction results for the various ANNs trained with
different number of hidden neurons ranging between 10 to 25. The input features
used to train the ANNs were the RMS of the best wavelet coefficients of the three
- UV, VIS and IR photodiode signals and the O2 recorded in the stack during the
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tests. Figure 5.25 shows the O2 prediction results of the best performing ANN
with 15 hidden neurons, with a MPPE of 24.3 % for “unseen” data - Test 6.

Figure 5.25: ANN prediction of O2 - Validation - trained with PSD - 15 hidden
neurons

5.2.4 Review of Back Propagation ANN Based Results

The neural network training results of the three case studies Sections 5.2.1 to
5.2.3 using three different signal processing algorithms for predicting the excess
O2 levels and NOx emissions are presented in Tables 5.2 to 5.7. It could be
observed that the NOx predictions were the least inaccurate, especially case
study 1 where only RMS of the three photodiode signals were used. The excess
O2 predictions were not very consistent and had huge MPPEs variations between
the various ANN models with varying hidden neurons and input features. Hence
a fourth case study was planned to consider the implications of using more input
features to the ANN models, to check if the model could better generalise with
additional information with the disadvantage of increasing the calculation times,
especially for training the networks.

The input features used previously (Sections 5.2.1 to 5.2.3), namely the RMS,
PSD and RMS of the best wavelet coefficients generated from the CTF at IEn
(Tests 1 to 9) while combusting 100 % coal (Table 3.7) were used for training
ANNs in the fourth case study. Again the input variables were divided so that
75 % of the data was used for training with the remaining (25 %) being used to
test the model, similar to previous case studies. Two separate networks were
trained to estimate the excess O2 levels and NOx emissions and the performance
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Table 5.8: Additional case studies to evaluate varying the input features to be
applied to train an ANN

Case Study
Number of

Input features
features

4 9
RMS, PSD and RMS of the

best wavelet coefficient
of UV, VIS and IR sensors

of the ANN was evaluated by MPPE on the “unseen” test - Test 6 not used for
training.

Table 5.9: Comparison of performance of NOx prediction results for ANN
trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 1.2 21.5
12 1.1 33
15 1.3 27.5
20 1.2 19.7
25 1.5 55.6

Table 5.9 shows the NOx prediction results for the various ANNs trained
with different number of hidden neurons ranging between 10 to 25. The training
and testing phase of the ANNs were carried out at least 5 times for each of
the different number of hidden neurons being evaluated and the best performing
network, based on the least MPPE was chosen. The input features used to train
the ANNs were the RMS, PSD and RMS of the best wavelet coefficients of the
three - UV, VIS and IR photodiode signals and the NOx emissions recorded
during the tests.
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Figure 5.26: ANN prediction of NOx - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients - 20 hidden neurons

Figure 5.26 shows the NOx prediction results of the best performing ANN
with 20 hidden neurons, with a MPPE of 19.7 % for “unseen” data - Test 6.

Table 5.10: Comparison of performance of O2 prediction results for ANN
trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 3.5 28.3
12 2.8 36
15 2.7 57.7
20 3 27.2
25 3 24.6

Table 5.10 shows the O2 prediction results for the various ANNs trained
with different number of hidden neurons ranging between 10 to 25. The input
features used to train the ANNs were the RMS, PSD and RMS of the best
wavelet coefficients of the three - UV, VIS and IR photodiode signals and the
O2 recorded in the stack during the tests. Figure 5.27 shows the O2 prediction
results of the best performing ANN with 25 hidden neurons, with a MPPE of
24.6 % for “unseen” data - Test 6.

The results from case study four showed that the application of RMS, PSD
and RMS of the best wavelet coefficient of the UV, VIS and IR sensors as in-
put features to the ANN models being trained generally improved prediction
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Figure 5.27: ANN prediction of O2 - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients - 25 hidden neurons

compared to individually using those signal processing features. The exception
being some of the RMS results, especially for NOx (with 3 input features) being
better than the case study four results. Since only a small subset of experiments
were tried so far, additional case studies were planned to evaluate the other
experiments as described in Section 5.

5.2.5 Further Evaluation of ANN Based Prediction

In case studies 1 to 4 the performance of a back propagation ANN with a varying
number of input features from various signal processing methods were applied to
a smaller subset of experiments. Since the performance of the ANN with 9 input
features (with the three signal processing methods from the three sensor data)
was acceptable, the case studies were extended to include all the experiments
except for the ones with 30 % biomass. The additional case studies carried out
are shown in Table 5.11.

Table 5.11: Additional case study to evaluate larger number of input tests to
train the ANN

Case Number of
Input features

Training Validation
study features tests tests

5 9
RMS, PSD and RMS of the 1 to 9,

10 to 18best wavelet coefficient 19 to 54 &
of UV, VIS and IR sensors 64 to 90
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Table 5.12: Comparison of performance of NOx prediction results for ANN
trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 4.6 10.6
12 4.3 9.19
15 3.9 10.3
20 3.3 9.36
25 3.1 10

Table 5.12 shows the NOx prediction results for case study 5 (Table 5.11)
for the various ANNs trained with different number of hidden neurons ranging
between 10 to 25. The training and testing phase of the ANNs were carried out at
least 5 times for each of the different number of hidden neurons being evaluated
and the best performing network, based on the least MPPE was chosen. As
before in case study 4, the input features were the same - RMS, PSD and RMS
of the best wavelet coefficients of the three photodiodes.

Figure 5.28: ANN prediction of NOx - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients - 12 hidden neurons

Figure 5.28 shows the NOx prediction results of the best performing ANN
with 12 hidden neurons, with a MPPE of 9.19 % for “unseen” data - Tests 10 to
18. The experiments used to train this network were Tests 1 to 9, 19 to 54 and
64 to 90. The prediction MPPE has improved compared to 19.7 % seen for case
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study 4 (figure 5.26), but the prediction for low excess air conditions, especially
Test 10 is over predicted by a margin of more than 10 %.

Table 5.13: Comparison of performance of O2 prediction results for ANN
trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 12 26.1
12 10 33.8
15 9.8 27.6
20 8 26.8
25 8.3 34.3

Table 5.13 shows the O2 prediction results for the various ANNs trained with
different numbers of hidden neurons ranging between 10 to 25. The input features
are similar to the NOx networks shown in Table 5.12, except for measured O2

being used instead of NOx.

Figure 5.29: ANN prediction of O2 - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients - 10 hidden neurons

Figure 5.29 shows the O2 prediction result of the best performing ANN with
10 hidden neurons, with a MPPE of 26.1 % for “unseen” data - Tests 10 to 18.
The experiments used to train this network were Tests 1 to 9, 19 to 54 and 64
to 90. The O2 prediction MPPE hasn’t improved, unlike NOx predictions seen
for case study 4 and especially some Tests 10, 12 and 14 are over predicted by a
margin of more than 10 %.
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Some improvements, especially in NOx prediction can be seen in case study 5
compared to case study 4, by increasing the number of tests being used to train
the system but with the draw back of increased training and testing time. Yu
et al. have demonstrated the features with the greatest relevance from the data
could be obtained by applying Principal Component Analysis (PCA) for mon-
itoring the flame [65, 122] (Section 2.7.2). PCA is an orthogonal transform of
the input data data, which reduces the dimension of the input vector. So case
study 6 and 7 were carried out to see if the application of PCA would eliminate
some redundant / highly correlated inputs and hence reduce the training and
testing time with the increased number of input tests. PCA was applied in these
case studies to eliminate those principal components that contribute to less than
2 % to the total variation in the input dataset.

Table 5.14: Additional case studies to evaluate application of PCA

Case Number of
Input features

Training Validation
study features tests tests

6

2(PCA)

RMS, PSD and RMS of the
1 to 5 &

6
7 to 9

7
best wavelet coefficient 1 to 9,

10 to 18
of UV, VIS and IR sensors

19 to 54 &
64 to 90

Table 5.15: Comparison of performance of NOx prediction results for ANN
trained with RMS, PSD & Wavelet coefficients together with PCA

Hidden
Neurons

MPPE (%)

Training Validation

10 2.3 6.46
12 2.1 15.7
15 2 18.2
20 2 27.4
25 2 36.3

Table 5.15 shows the NOx prediction results for case study 6 (Table 5.14)
for the various ANNs trained with different number of hidden neurons ranging
between 10 to 25, with the application of PCA to reduce the dimensionality of
the input to train the ANN. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 4, the input features were the same - RMS, PSD
and RMS of the best wavelet coefficients of the three photodiodes, except for the
application of PCA. The input to the ANNs for training were Test 1 to 5 and 7
to 9 and Test 6 was utilised to test the performance of the trained model (test
not present for training the network).
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Figure 5.30: ANN prediction of NOx - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients with PCA - 10 hidden neurons

Figure 5.30 shows the NOx prediction results of the best performing ANN
with 10 hidden neurons, with a MPPE of 6.46 % for “unseen” data - Test 6. The
experiments used to train this network were Tests 1 to 5 and 7 to 9. The predic-
tion MPPE has improved compared to 19.7 % seen for case study 4 (figure 5.26)
for the same number of input tests.

Table 5.16: Comparison of performance of O2 prediction results for ANN
trained with RMS, PSD & Wavelet coefficients together with PCA

Hidden
Neurons

MPPE (%)

Training Validation

10 4.3 33.4
12 4.5 23.4
15 4.1 41.5
20 4.4 48
25 4.2 21.1

Table 5.16 shows the O2 prediction results for case study 6 (Table 5.14)
for the various ANNs trained with different number of hidden neurons ranging
between 10 to 25, with the application of PCA to reduce the dimensionality of
the input to train the ANN. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 4, the input features were the same - RMS, PSD
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and RMS of the best wavelet coefficients of the three photodiodes, except for the
application of PCA. The input to the ANNs for training were Test 1 to 5 and 7
to 9 and Test 6 was utilised to test the performance of the trained model (test
not present for training the network).

Figure 5.31: ANN prediction of O2 - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients with PCA - 25 hidden neurons

Figure 5.31 shows the O2 prediction results of the best performing ANN with
25 hidden neurons, with a MPPE of 21.1 % for “unseen” data - Test 6. The ex-
periments used to train this network were Tests 1 to 5 and 7 to 9. The prediction
MPPE has improved compared to 24.6 % seen for case study 4 (figure 5.27) for
the same number of input tests.

Table 5.17: Comparison of performance of NOx prediction results for ANN
trained with RMS, PSD & Wavelet coefficients together with PCA

Hidden
Neurons

MPPE (%)

Training Validation

10 8.3 20.4
12 8.1 21
15 8.2 21.4
20 7.7 21.3
25 6.9 20.9

Table 5.17 shows the NOx prediction results for case study 7 (Table 5.14)
for the various ANNs trained with different number of hidden neurons ranging
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between 10 to 25, with the application of PCA to reduce the dimensionality of
the input to train the ANN. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 5, the input features were the same - RMS, PSD
and RMS of the best wavelet coefficients of the three photodiodes, except for the
application of PCA. The input to the ANNs for training were Test 1 to 9, 19 to
54 and 64 to 90 and Tests 10 to 18 were utilised to test the performance of the
trained model (these tests not presented for training the network).

Figure 5.32: ANN prediction of NOx - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients with PCA - 10 hidden neurons

Figure 5.32 shows the NOx prediction results of the best performing ANN
with 10 hidden neurons, with a MPPE of 20.4 % for “unseen” data - Tests 10 to
18. The prediction MPPE has improved compared to case study 6 with increased
number of training inputs to the ANN (from 8 to 72 tests) but has increased
compared to 9.19 % seen for case study 5 (figure 5.28) for the same number of
input tests. This means a poorer prediction result with the application of PCA,
which points to some useful information in some of the inputs being stripped by
the application of PCA.

Table 5.18 shows the O2 prediction results for case study 7 (Table 5.14)
for the various ANNs trained with different number of hidden neurons ranging
between 10 to 25, with the application of PCA to reduce the dimensionality of
the input to train the ANN. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 4, the input features were the same - RMS, PSD
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Table 5.18: Comparison of performance of O2 prediction results for ANN
trained with RMS, PSD & Wavelet coefficients together with PCA

Hidden
Neurons

MPPE (%)

Training Validation

10 23 23.2
12 22 20.5
15 21 24.3
20 18 27.4
25 17 24.2

and RMS of the best wavelet coefficients of the three photodiodes, except for the
application of PCA. The input to the ANNs for training were Test 1 to 9, 19 to
54 and 64 to 90 and Tests 10 to 18 were utilised to test the performance of the
trained model (these tests not presented for training the network).

Figure 5.33: ANN prediction of O2 - Validation - trained with RMS, PSD and
RMS of the best wavelet coefficients with PCA - 12 hidden neurons

Figure 5.33 shows the O2 prediction results of the best performing ANN with
12 hidden neurons, with a MPPE of 20.5 % for “unseen” data - Tests 10 to 18.
The prediction MPPE has improved compared to 26.1 % seen for case study 5
(figure 5.29) for the same number of input tests but deteriorated compared to
21.1 % observed for case study 6 when the number of tests used for the training
phase was increased. This points to the generalisation capability of the model
decreasing with many inputs being used to train the network. Overall, with the
application of PCA the prediction accuracy has dropped for NOx and marginally
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increased for O2. The slight improvement in O2 prediction has to be taken
with caution for the application as there has been significant unmetered leakage
through observation ports and increased purge air percentage at low thermal
loads, and hence the O2 recorded may not be very reliable to train ANNs for
flame stability. So total airflow to the burner was considered, as the the primary
and secondary air to the burner were continuously recorded at the CTF as part of
the plant control system. Two additional case studies - 8 and 9 (Table 5.19) were
carried out to check the viability of total airflow prediction instead of prediction
O2.

Table 5.19: Additional case studies to evaluate total airflow predictions

Case Number of
Input features

Training Validation
study features tests tests

8

9

RMS, PSD and RMS of the
1 to 5 &

6
7 to 9

9
best wavelet coefficient 1 to 9,

10 to 18
of UV, VIS and IR sensors

19 to 54 &
64 to 90

Table 5.20: Comparison of performance of total airflow prediction results for
ANN trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 0.48 1.69
12 0.54 1.6
15 0.58 8.39
20 0.72 8.94
25 0.72 9.3

Table 5.20 shows the total airflow prediction results for case study 8 (Ta-
ble 5.19) for the various ANNs trained with different number of hidden neurons
ranging between 10 to 25. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 4, the input features were the same - RMS, PSD
and RMS of the best wavelet coefficients of the three photodiodes. The input
to the ANNs for training were Tests 1 to 5 and 7 to 9 and Test 6 was utilised
to test the performance of the trained model (test not presented for training the
network).

Figure 5.34 shows the total airflow prediction result of the best performing
ANN with 12 hidden neurons, with a MPPE of 1.6 % for “unseen” data - Test 6.
The prediction MPPE has vastly improved compared to 24.6 % seen for case
study 4 (figure 5.27) for the same number of input tests and 21.1 % for case
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Figure 5.34: ANN prediction of total airflow - Validation - trained with RMS,
PSD and RMS of the best wavelet coefficients with PCA - 12 hidden neurons

study 6 with the application of PCA to eliminate redundant inputs that don’t
contribute very much to the entire input variation.
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Table 5.21: Comparison of performance of total airflow prediction results for
ANN trained with RMS, PSD & Wavelet coefficients

Hidden
Neurons

MPPE (%)

Training Validation

10 2.3 5.81
12 2.2 6.14
15 2.1 6.03
20 1.8 5.68
25 1.7 5.31

Table 5.21 shows the total airflow prediction results for case study 9 (Ta-
ble 5.19) for the various ANNs trained with different number of hidden neurons
ranging between 10 to 25. The training and testing phase of the ANNs were
carried out at least 5 times for each of the different number of hidden neurons
being evaluated and the best performing network, based on the least MPPE was
chosen. As before in case study 5, the input features were the same - RMS, PSD
and RMS of the best wavelet coefficients of the three photodiodes. The input
to the ANNs for training were Tests 1 to 9, 19 to 54 and 64 to 90 and Tests 10
to 18 were utilised to test the performance of the trained model (these tests not
presented for training the network).

Figure 5.35: ANN prediction of total airflow - Validation - trained with RMS,
PSD and RMS of the best wavelet coefficients with PCA - 25 hidden neurons

Figure 5.35 shows the total airflow prediction result of the best performing
ANN with 25 hidden neurons, with a MPPE of 5.31 % for “unseen” data - Tests 10
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to 18. The prediction MPPE has deteriorated with increased number of input
tests used for training the network compared to case study 8.

The neural network modelling has so far been carried out to predict O2 in
the stack, NOx emissions in the stack and total airflow to the burner. The
neural network modelling until now seems to be producing better predictions for
NOx and total airflow to the burner than oxygen. This can be explained by the
significant amount of excess purge air in the system, which was used for cooling
of the lens assembly and to avoid accumulation of dust on the lens (the same
purge air amounts were used for all thermal loads, leading to higher dilution with
lower thermal load as well). The oxygen concentration measured by the flue gas
analyser at two different locations did not represent the actual level of excess
air participating in the combustion process. Furthermore, fluctuations of oxygen
were more evident than the measured airflow as can be seen in figures 5.29 and
5.35.

5.2.6 Evaluation of Other Methods for Flame
Stability Detection

Until now prediction of NOx and O2 with the use of processed data from the three
sensors applied to a trained ANN formed the basis for prediction of the stability
of the flame. This so far has yielded some results, but then the percentage
error seems to increase with increases in the number of test conditions used
and especially unseen data. This can potentially impact the prediction accuracy
while being used online for flame stability as the coal, even from the same mine
can have slight variations over the day in huge power plants as they tend to
combust tonnes of coal. Also the prediction is relative and not the absolute
values of NOx or O2 and also depends on the accuracy of the measurement devices
used while training the neural network. In this case the O2 measurements may
not accurately identify the combustion conditions at the end of the combustion
chamber as there was a lot of air ingress around the monitoring ports and side
viewing panel; and also the cooling & purge air contributing a much higher
percentage to this while having low thermal loads compared to higher thermals
loads due to the amount of carrier / primary and secondary air being fed to the
burner.

It was felt that a different type of signal processing and / or ANN needed
to be evaluated to identify changes to flame stability instead of the focus on
prediction of NOx, O2 or air flow rates. This was also considered due to the time
taken for training feed-forward ANNs with BR with multiple signal processing
inputs from the three sensors, which might affect the usability of such a system
for running online for control actions to be suggested.

5.3 Self-organising Map

Self-organising Map (SOM) have been applied widely for identification or mon-
itoring of complex processes, where the data has been difficult to interpret or
visualise relationships. SOM’s can smoothly map data with high-dimensional in-
put to lower dimensional outputs, this clusters the input information and makes
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it easy to map the input relationships [176]. SOM could be utilized to classify
the condition of the flame based on the sensor data and to do corrective actions
to achieve a good combustion state of the burner.

5.3.1 WVD Preliminary Analysis

Wigner-Ville Distribution (WVD) maps a time variant signal to the two di-
mensions of time and frequency, with the same resolution in both domains Sec-
tion 4.3.2. As initially ascertained using FFT (Section 4.2), there weren’t much
recognisable trends with changes in combustion conditions like change in sec-
ondary air.

WVD was applied for the various conditions as explained in Section 4.3.2.
WVD has the best resolution in both time and frequency domain compared to
other Cohen’s class time frequency methods [143], even though it could produce
cross correlation features between the various frequencies present (results are
very similar to Gabor – 0 order, as the order increases, resolution drops away
and starts moving away from WVD results in terms of resolution). The results,
especially when they are averaged over a short period of time, such as between
3 to 30 s, visualises the results which aided in detecting trends.

Once the continuously varying air flow experiments – Tests 91 to 99 (Ta-
bles 3.8 and 3.9) were processed, a very clear trend of varying intensity and
frequency spread could be noticed in these experiments. Again, these changes
are not proportional to the changes in air flow and also have similar output for
different air flow and thermal load conditions. This time instead of applying a
supervised ANN, an unsupervised one was tried to see if it classified the condition
instead of trying to predict absolute NOx, CO or air flow.

5.3.2 WVD Result Analysis for Experiments with
Varying Secondary Air

This sort of processing was felt would be of particular benefit in detecting flame
instability problems and by inference the same technique would be of benefit in
classifying normal burner operation. Therefore this Section will focus on only
the flame stability tests. As the 500 kW CTF had quartz viewing windows
on the entire length of the combustion chamber, it was possible to image the
flame under various conditions although as is normal with the combustion of
coal and biomass these windows became quickly covered by fly ash, significantly
worsening the visibility. As an example, selected frames from Test 98 (flame
instability test) are presented in figures 5.36 – 5.38. Figure 5.36 shows a flame
for “normal” conditions (secondary air flow – 160 Nm3/h). The flame is stable
and attached to the burner. When the secondary air flow was decreased down
to 50 Nm3/h, the flame lengthened, and became unstable and distanced from
the burner, as shown in figure 5.37. After increasing the secondary air flow up
to 280 Nm3/h, the flame was much shorter and became very unstable, close to
being blown-off, as shown in figure 5.38.
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[——–Flame length————————————————————–Burner

Figure 5.36: Test 98 – “normal conditions”, secondary air flow: 160 Nm3/h

————Flame length————————————————————] Burner

Figure 5.37: Test 98 – “decreased excess air”, secondary air flow: 50 Nm3/h

[——Flame length–Burner

Figure 5.38: Test 98 – “increased excess air”, secondary air flow: 280 Nm3/h

Figures 5.39, 5.42, 5.43, 5.46, 5.47 and 5.49 show the WVD output of the IR
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sensor signal from six experiments (Table 3.9). Similarly, figures 5.40, 5.42, 5.44,
5.46, 5.48 and 5.50 show the recorded NOx and CO emissions in parts per million
(ppm) as well as the total air flow (in Nm3/h) to the CTF, for the respective
WVD output results (Figures 5.39, 5.42, 5.43, 5.46, 5.47 and 5.49). It can be
noted that in figures 5.40, 5.42 and 5.44, the CO emissions towards the end of
the test increases to 999, the saturation point of the sensor.

It could be observed that the energy of the IR signal in the range of 30
to 120 Hz increases as secondary air is decreased for the experiment shown in
figure 5.39 using 100 % coal. The trend is exactly the same for the UV and
VIS sensors for the same experiment, the results simply differing in the absolute
intensity of the signals and these are presented in Appendix C.

The same trend of the IR sensor signal could be noted in the other two
experiments, in figures 5.42 and 5.43, where the fuel composition was altered by
adding 10 % and 20 % biomass to the coal by weight respectively while decreasing
secondary air to the combustion chamber. Even though the outputs are quite
similar, the variation is not linear nor does it increase or decrease proportionally
to the secondary air flow or fuel composition.

Figures 5.39 to 5.44 illustrate the WVD results and the respective NOx, CO
emissions and the total air flow to the combustion chamber when secondary air is
being decreased for differing biomass content. The following figures 5.46 to 5.50
illustrate the results and recorded data when secondary air flow is being increased
from stable combustion. As previously encountered in decreasing excess air, the
flame remains stable for a longer time with 100 % coal compared to 10 % and
20 % biomass substituted coal.

Figure 5.47 though quite devoid of very distinguishable features compared to
other WVD results, it does contain information which is not easily viewable at
the current colour map settings. The reason to use the same colour map settings
across all WVD results (for each sensor) is to easily distinguish intensity changes
in the flames from one test relative to another, which wouldn’t be possible to
compare if different scales are employed.

Similar WVD analysis was carried out on the VIS and UV spectral data.
These WVD results were then applied to train a SOM. A set of two or three
tests from stable burner conditions at various thermal loads and excess air levels
was used to train the SOM, such as Tests 1 to 3 or 10 to 12. The SOM was then
tested by generating predictions on unseen data.
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Figure 5.39: WVD of the IR sensor signal for the test (Test 97a) with
decreasing secondary air with 100 % coal

Figure 5.40: NOx / CO Emissions and Total Airflow recorded for the test
(Test 97a) with decreasing secondary air with 100 % coal
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Figure 5.41: WVD of the IR sensor signal for the test (Test 98a) with
decreasing secondary air with 90 % coal & 10 % biomass

Figure 5.42: NOx / CO Emissions and Total Airflow recorded for the test
(Test 98a) with decreasing secondary air with 90 % coal & 10 % biomass
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Figure 5.43: WVD of the IR sensor signal for the test (Test 99a) with
decreasing secondary air with 80 % coal & 20 % biomass

Figure 5.44: NOx / CO Emissions and Total Airflow recorded for the test
(Test 99a) with decreasing secondary air with 80 % coal & 20 % biomass
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Figure 5.45: WVD of the IR sensor signal for the test (Test 97b) with
increasing secondary air with 100 % coal

Figure 5.46: NOx / CO Emissions and Total Airflow recorded for the test
(Test 97b) with increasing secondary air with 100 % coal
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Figure 5.47: WVD of the IR sensor signal for the test (Test 98b) with
increasing secondary air with 90 % coal & 10 % biomass

Figure 5.48: NOx / CO Emissions and Total Airflow recorded for the test
(Test 98b) with increasing secondary air with 90 % coal & 10 % biomass
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Figure 5.49: WVD of the IR sensor signal for the test (Test 99b) with
increasing secondary air with 80 % coal & 20 % biomass

Figure 5.50: NOx / CO Emissions and Total Airflow recorded for the test
(Test 99b) with increasing secondary air with 80 % coal & 20 % biomass
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In summary, changing from stationary signal features to a more complex
Joint Time Frequency (JTF) approach would appear to yield a more consistent
approach to visualising and understanding the complexities in the data.

5.3.3 SOM Based Control System Using WVD

As attempts to predict absolute values of NOx and airflow had quite high errors
this section will investigate the use of SOMs to classify the data. The experiments
involved a wide range of operating conditions (Table 3.7) such as variations
in thermal loads and excess air levels. Hence, a model capable of identifying
the patterns in the various sets of data from multiple sensor sources and WVD
output is necessary. A set of three or more tests based on relatively stable burner
conditions at various thermal loads and excess air levels were used to train the
SOM. The SOM model was subsequently tested with totally unseen data from a
test in which the secondary air was continually increased or decreased until the
combustion appeared to become unstable.

As mentioned before, during low thermal load and low excess air conditions,
the percentage of purged air used to cool the sensors was significantly higher as a
proportion than at optimal conditions, hence a measure of excess air calculated
from the flue gases was not appropriate to be used for the SOM training. As a
result, the total airflow was used in the prediction instead of excess air.

In this case, features from 0 Hz to 200 Hz extracted from the WVD data for
the UV, VIS and IR photodiodes were used to train the SOM. PSD and WVD
outputs showed no significant frequency changes beyond 100 Hz, but a higher
margin of 200 Hz was used to avoid losing any features which weren’t observed
earlier. Hence 25 features of the frequency bins, each 8 Hz, which yields the range
of 0 Hz to 200 Hz, were used to train the SOM, together with the respective total
airflow to the CTF.

A SOM model with 20 by 20 neurons, selected as the best performing from
the 10 * 10, 12 * 12, 15 * 15, and 25 * 25 networks tested, was trained using a set
of experimental data with a consistently stable flame and optimal combustion
parameters for 100 % coal (and similar SOM models for other thermal load con-
ditions), one with a low secondary air condition but without the flame blowout
and another with very high secondary air when the flame pulsated further and
became detached from the burner quarl. This was used to predict the potential
unstable flame condition normally encountered during low secondary air condi-
tions, which also gets aggravated in conditions where biomass is mixed with coal.
Similarly, two other models were also trained using experimental data collected
from 10 % and 20 % biomass substitutions.

Figures 5.51 to 5.56 illustrate the SOM predictions of likely instabilities in the
experiments with varying total airflows. The predicted values were smoothed out
by averaging every 60 s (running mean). Separate SOMs were trained for different
fuel compositions and the predictions are based on the experiments that were
used to train the SOM model. Three photodiodes, namely UV, VIS and IR were
used to train the SOM as preliminary SOM trials using just one sensor did not
yield very good predictions, especially fluctuating between stable and unstable
flame conditions during the transition. This might stem from the fact that the
sensor intensity variation with different thermal conditions for the various sensors
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Figure 5.51: Total airflow vs instability prediction - 100 % Coal - decreasing
secondary air from stable condition

Figure 5.52: Total airflow vs instability prediction - 100 % Coal - increasing
secondary air from stable condition
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is neither linear nor proportional.
The experimental data used for training the model for the predictions shown

in Figures 5.51 & 5.52 for 100 % coal were three tests with total airflows of 265
(Test 3), 200 (Test 1) and 125 (Test 7) Nm3/h. As can be seen in figure 5.51 for
100 % coal, the classified value (among the three experiments used to train the
SOM) stays well within the normal burner conditions until ≈450 s, beyond which
the prediction drops to a lower airflow region, indicating that the SOM detects
sensor signals very near burner instability. If this were to be represented as a
cluster, the first 480 s of the test would be very near the centre of the cluster and
would gradually deviate as the potential flame instability sets in. This prediction
coincides with the observations made during the experiment using the sighting
panel on the side of the combustion chamber.

The same trend can be observed in the classified values of other SOM models
trained with experiments having total airflows of 270 (Test 11), 200 (Test 15) and
120 (Test 16) Nm3/h, and 235 (Test 84), 170 (Test 90) and 120 (Test 88) Nm3/h
for fuels that consisted of 10 % and 20 % biomass substitution as shown respec-
tively in figures 5.53 & 5.54 and figures 5.55 & 5.56. As can be seen in figure 5.53,
the burner instabilities set in around 45 s into the tests as predicted by the SOMs
and the flames become unstable quite quickly when having 10 % and 20 % biomass
substitution as compared to firing without biomass substitution. Although the
decrease in secondary air amongst these tests is not linear, the results show that
the flame starts to get unstable around 160 to 180 Nm3/h range when co-firing
with biomass substitutions as compared to 140 Nm3/h or lower without biomass.

Figure 5.53: Total airflow vs instability prediction - 90 % Coal & 10 % Biomass
- decreasing secondary air from stable condition
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Figure 5.54: Total airflow vs instability prediction - 90 % Coal & 10 % Biomass
- increasing secondary air from stable condition

On the other hand, figures 5.53 & 5.54 show that the predictions of the
burner stability are quite similar to the actual secondary airflow to thereabouts
of 250 Nm3/h, the average of high secondary air conditions used to train the three
SOM models. This trend would have continued until the end of the test with
higher secondary airflow if the tests used for training had such high secondary
airflows. The predictions for 10 % and 20 % biomass substitution shows the flame
characteristics deviate further from optimal condition much earlier than without
biomass substitution on careful observation. This is consistent with decreasing
secondary air conditions discussed earlier (figures 5.51 & 5.53) where biomass
inclusion affects the flame stability much earlier than just firing with 100 % coal.
This reinforces the reason for the need of a capable monitoring system that is
able to identify flame instability and potential flame blowout conditions with
increases in biomass substitution.

In addition to predicting instability conditions, high excess conditions could
be predicted as well, provided that sufficient training data is available to rep-
resent the highest secondary airflow conditions. This prediction could possibly
be enhanced by using more controlled tests at various thermal loads and total
airflow conditions representative of the entire optimal range of the burner in
question for training as opposed to just three test conditions as discussed above.
This would enable the SOM to predict higher secondary airflow or excess air
quite accurately as well as aid in reducing NOx emissions.

It is clear that the SOM can detect total airflow conditions which are rep-
resentative of burner instability conditions. The processing of the experiments
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conducted using the WVD algorithm show the potential of SOM to be able to
detect the onset of burner instabilities resulting from changes to the total airflow
to a burner. A system based on this would be of value in operating large coal
burners where air flow to individual burners cannot be metered.

Figure 5.55: Total airflow vs instability prediction - 80 % Coal & 20 % Biomass
- decreasing secondary air from stable condition
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Figure 5.56: Total airflow vs instability prediction - 80 % Coal & 20 % Biomass
- increasing secondary air from stable condition

5.3.4 SOM for NOx Classification

In the previous Section 5.3.3, results were presented where an unsupervised SOM
was tested for detecting burner instability. This procedure has been extended to
test the ability of a SOM to predict NOx and CO emissions.

The experimental data used for training the models for NOx classification
shown in the figures 5.57 & 5.58 for 100 % coal were three tests with total air-
flows of 265 (Test 3), 200 (Test 1) and 125 (Test 7) Nm3/h having average NOx

emissions of 1066, 659 and 619 ppm respectively. It is to be noted that the
prediction in the decreasing excess air test (figure 5.57) follows the trend (with
reference to the values used to train) and shows the lowest value used to train
as the prediction for unseen values which were much lower than the tests used
to train the SOM model. The prediction is based on the values used to train
the system, in this case the normal and low values used to train were 659 and
619 ppm, where by the system has correctly predicted the trend of lower NOx

but the predicted value is based on the values the system was used to train (in
this case 619 ppm). Similarly the increasing excess air test (figure 5.58) shows
the trend and predicts the higher values with the highest value used to train the
model.

Models for 90 % coal & 10 % biomass and 80 % coal & 20 % biomass were each
trained with three tests with total airflows of 270 (Test 11), 200 (Test 15) and 120
(Test 16) Nm3/h, and 235 (Test 84), 170 (Test 90) and 120 (Test 88) Nm3/h hav-
ing average NOx emissions of 900, 572 and 453 ppm and 812, 703 and 491 ppm re-
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Figure 5.57: NOx measured vs prediction - 100 % Coal - decreasing secondary
air from stable condition

Figure 5.58: NOx measured vs prediction - 100 % Coal - increasing secondary
air from stable condition
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Figure 5.59: NOx measured vs prediction - 90 % Coal & 10 % Biomass -
decreasing secondary air from stable condition

Figure 5.60: NOx measured vs prediction - 90 % Coal & 10 % Biomass -
increasing secondary air from stable condition
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spectively. The test with increasing excess air for coal biomass blend of 90 %/10 %
(figure 5.60) had high NOx emissions at the start of the test and the SOM classi-
fied it correctly. These were done at the CTF where very precise controls of the
inputs couldn’t be maintained or attained for a long period and hence some tests
may not have the expected range to test out the predictions as just mentioned.
The predictions for the coal biomass blend of 80 %/20 % are fairly good. All the
classifications that were discussed were averaged over a period of 60 s to avoid
spontaneous changes in flame which might affect these values, and hence you
can notice that the system takes a short while before it notices or changes the
predicted values (this duration over which is averaged can be modified for faster
response with increased spontaneous fluctuation but then power station boiler
inputs are usually changed gradually).

5.3.5 SOM for CO Classification

As with the NOx predictions in the previous Section 5.3.4, CO prediction models
were trained with three tests each for 100 % coal, 90 % coal & 10 % biomass sub-
stitution and 80 % coal & 20 % biomass substitution with total air flow rates
of 265 (Test 3), 200 (Test 1) and 125 (Test 7) Nm3/h, 270 (Test 11), 200
(Test 15) and 120 (Test 16) Nm3/h, and 235 (Test 84), 170 (Test 90) and 120
(Test 88) Nm3/h having average CO emissions of 9, 90 and 57 ppm, 11, 11 and
102 ppm and 31, 39 and 164 ppm respectively. Compared to NOx predictions,
the predictions for CO are not very consistent for two reasons:

1. The training data used from the CO sensor contained a number of saturated
values when the concentration exceeded the upper limit of the analyser.

2. The nature of CO concentrations to fluctuate compared to relatively stable
NOx emissions for the same flame condition. This is expected due to the
fluctuation of the flame front across the line of sight of the sensors.

Some of the training tests contain higher values, but only the average value of CO
was taken to avoid huge fluctuations in classifications and the saturated values
were substituted with the highest value previously measured by the sensor for
the test.
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Figure 5.61: NOx measured vs prediction - 80 % Coal & 20 % Biomass -
decreasing secondary air from stable condition

Figure 5.62: NOx measured vs prediction - 80 % Coal & 20 % Biomass -
increasing secondary air from stable condition
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Figure 5.63: CO measured vs prediction - 100 % Coal - decreasing secondary air
from stable condition

Figure 5.64: CO measured vs prediction - 100 % Coal - increasing secondary air
from stable condition
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The test for 100 % coal with decreasing excess air (figure 5.63) shows a lower
value than the highest value used to train at the very end of the test as the
actual value itself saturated and the sensor couldn’t accurately give a value and
it was near flame blow out condition. Even at the earlier part of the test, the
values classified are beyond the normal range of the burner for normal total air
flow levels and hence the SOM correctly predicts it as a high CO condition. The
coal biomass blends of 90 %/10 % and 80 %/20 % exhibit similar conditions at
the start of the decreasing excess air test as in 100 % coal test and this is due to
the reason that the test rig wasn’t able to sustain or regain a similar condition to
normal optimal conditions in quick successions when doing multiple tests. The
CO classifications would have been better if the tests were much more controllable
and the recorded data used for training didn’t have fluctuating values and more
representative values higher in the range than now used. This can be avoided in
the full control system by having good representative values and training with a
number of optimal and slightly unstable to highly unstable conditions than just
the 3 (high, normal & low excess air conditions) used in these evaluations.

In figure 5.65, the CO values used to train the SOM, experiments 270 (Test 11),
200 (Test 15) and 120 (Test 16) Nm3/h were 11, 11 and 102 ppm respectively.
Since the highest value used to train the SOM for the results shown in figures 5.65
& 5.66 is just 102 ppm, the system correctly classifies higher CO concentrations
from the flame.

Similar scenarios exist for classifications shown for 80 % coal & 20 % biomass
in figures 5.67 & 5.68, where by the highest CO value used during training the
SOM was 164 ppm, that’s the maximum value displayed during classification,
even though the CO concentrations were higher. So the trends of classifications
are very promising to be used in a control system using such a method of signal
processing and application of SOM for CO prediction.
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Figure 5.65: CO measured vs prediction - 90 % Coal & 10 % Biomass -
decreasing secondary air from stable condition

Figure 5.66: CO measured vs prediction - 90 % Coal & 10 % Biomass -
increasing secondary air from stable condition
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Figure 5.67: CO measured vs prediction - 80 % Coal & 20 % Biomass -
decreasing secondary air from stable condition

Figure 5.68: CO measured vs prediction - 80 % Coal & 20 % Biomass -
increasing secondary air from stable condition
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5.4 Control System – Training and

Application of SOM Model

The methodologies for training and applying the control system are illustrated
in the flow charts shown in figures 5.69 & 5.70 below. In figure 5.69, initially the
various test conditions are set in the burner and the resulting data recorded using
the three sensors. This data is processed using WVD before it is used to train
the SOM model for each thermal load, with at least three excess air conditions.
This process is repeated for each thermal load. The training process also needs
data from flue gas measurements made during the various test conditions for
training NOx and CO prediction models and total airflow data when training air
flow prediction models.

This process involves some manual handling of data and running scripts /
programs in MATLAB© / LabVIEW© as the systems used to record the 3 (UV,
VIS and IR) sensors are different to the one used to record other plant data and
flue gas measurements. Once the data from the 3 sensors namely UV, VIS and
IR are recorded, it is processed using a custom developed LabVIEW© program
to derive WVD data. Then the WVD data for frequencies 0 Hz to 200 Hz for each
of the test conditions used for training is extracted together with the respective
NOx, CO or total air flow data. It is then used to train the SOM model in
MATLAB©. The trained SOM model is then used by the control program as
described in figure 5.70.

The control system as described in figure 5.70 above uses LabVIEW© similar
to the training program to acquire the 3 sensor data using DAQs but encapsulates
everything needed to operate without any manual handling except for starting
and stopping the program. After acquisition is completed, WVD is calculated
for all the sensors and the control is passed on automatically to SOM scripts
in MATLAB© and the result obtained is passed back to LabVIEW©. This
prediction of CO and NOx is then used in the rule based algorithm to give
predictions to decrease, increase or maintain constant, the secondary air flow to
the burner. Table 5.22 below shows the simple rule based algorithm used for
control of the air flow.

Table 5.22: Simple rule based algorithm for control of airflow (AF = Air Flow)

CO
High Medium Low

NOx

High
Check settings

AF↓ AF↓↓
/sensor

Medium AF↑ AF↓↑ AF↓

Low AF↑↑ AF↑ No change

The control program is designed to run continuously averaging the last 5
predictions (3 minutes worth of data) until stopped. This could be varied very
easily to adapt to different burners depending on the dynamics and speed of
change possible for each burner.
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Figure 5.69: Algorithm for training the SOM model

The algorithm can be adapted with more control steps provided the initial
training data is obtained with more combustion conditions than just the 3 dif-
ferent airflows employed here. Only three were applied during the training tests
at IEn Poland due to limited capability of the test rig. The arrows represent
the trend to increase or decrease secondary air flow in our case being a single
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Figure 5.70: Algorithm for application of the SOM model

arrow representing 2 units, two arrows being 4 units and the up & down arrow
being either increase or decrease. The unit here represents the air flow rate in
Nm3/h that can reliably be changed every time on the burner controls. ‘Check
settings / sensor’ is used when NOx and CO are both high as all the training
tests used until now to train the system do not have this condition and when the
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low conditions for both NOx and CO, no change is need to the secondary air to
the burner.

5.5 Summary

This chapter outlined the process in the selection of the detection algorithm that
is used to process the sensor data to make predictions of the current state of
combustion and suggest changes to rectify that if required. Initially, one of the
most commonly used networks, BR back propagation ANN was utilised with
varying number of hidden neurons to check the suitability of such a network
for making NOx and O2 predictions. This first 3 case studies, showed that
the number of features chosen wasn’t enough for getting good predictions from
the networks trained. This prompted the application of all the three signal
processing methods - namely the RMS, PSD and RMS of the wavelet coefficients
to be applied as inputs to train the back propagation ANN which showed some
promise in terms of NOx but had high MPPE for O2 predictions.

Case study 4 showed some promise for NOx predictions but had high MPPE
for O2. This case study still only utilised a small subset for testing out the
detection algorithm. Hence case study 5 was carried out to include the entire set
of experiments to train the ANN, the prediction of NOx improved almost twofold
compared to case study 4 with a subset of input experiments. O2 prediction
performance dipped even further, in addition to the network taking considerable
time o be trained.

Case studies 6 and 7 were carried out to evaluate the application of the
PCA to the ANN inputs to reduce the dimensionality by stripping principal
components that contributed less than 2 %. This in turn reduced the training
time, but it affected the prediction errors; adversely affecting NOx and slightly
improving the O2, but despite this improvement the MPPE for O2 was still above
20 %. So case studies 8 and 9 were evaluated to check if the prediction of some
other parameter, total airflow to the burner could be better as it was better
controlled than O2. Total airflow prediction had much better performance than
O2 prediction but the overall MPPEs were still high and a different approach was
tried out. Instead of trying to predict NOx, O2 or total airflow, the input data
was applied to an unsupervised ANN to be classified to the nearest matching
condition, changing it to a classification problem instead of a prediction.

Results obtained from the SOM seems to classify the combustion condition
much better than the back propagation network previously employed. Training
the map was simple, the features from the signal processing method was applied
from a few (3 in this case) conditions from the steady state experiments and
the classification was very good. This prompted the validation of the map with
tests that had continuously varying airflow conditions and the performance of
the SOM was promising and was presented in this chapter together with the
workings of such a demonstration system that would be capable of doing this in
real time to give suggestion to correct unfavourable combustion conditions. The
next chapter (Chapter 6) would discuss the results from the application of this
monitoring and control system in the pilot and full scale burners in an online
basis.
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Chapter 6

MONITORING AND
CONTROL SYSTEM -
TESTING AND RESULTS

This chapter discusses the performance of the Monitoring, Control and Optimi-
sation (MCO) during testing at the pilot scale 500kWth Combustion Test Facility
(CTF) located at the Institute Energitky - Institute of Power Engineering (IEn),
Poland and the full scale tests at the Dolna Odra power plant, Poland.

6.1 Pilot Scale Testing

This section will present the testing of the MCO system at the pilot scale CTF
at IEn. The layout of the burner, the sensor selection and placement, and signal
analysis algorithms employed to process the acquired data have been presented
in Chapters 3 and 4. Signals recorded from the three low cost photodiode sensors
were processed using the Wigner-Ville Distribution (WVD) joint time-frequency
signal processing algorithm and the 0 to 200 Hz (25 features) generated were
then used to train an unsupervised Self-organising Map (SOM) as described in
Section 5.4.

6.1.1 Experiments

Table 6.1 summarises all the experiments carried out to test the MCO system at
the CTF. Each row covers one experiment and shows the initial start condition of
the total airflow to the burner, followed by the fuel used for the test, and finally
the fuel used to train the MCO system prior to its testing. It is important to
note that the code & algorithms used in the burner MCO system was the same
for the various thermal loads regardless of the variation in conditions used during
the training phase and the results obtained vary in response to the knowledge
the intelligent system has learnt from the training data. This testing was in
fact spread over two testing periods, separated by a few months. There were
some operational issues, as would be expected, that mainly resulted from slag
build up. In order to facilitate the explanation Figure 6.1 shows a schematic of
the MCO system, following the flowcharts shown in figures 5.69 & 5.70, in the
previous chapter.
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Table 6.1: MCO system testing at pilot scale CTF

Test Initial Fuel for testing the Fuel used to train
Number condition MCO system the MCO system

(Airflow) ∗ ∗
P1 High 90 % J + 10 % B 100 % J
P2 Low 90 % J + 10 % B 100 % J
P3 High 100 % R 100 % R
P4 Low 100 % J 100 % J
P5 High 100 % J 100 % J
P6 Low 90 % J + 10 % B 90 % J + 10 % B
P7 Low 100 % E 100 % J
P8 High 90 % E + 10 % B 100 % J

∗R - Russian coal J - Janina (Polish) coal
E - Ekogroszek (Polish) coal

B - Biomass in the form of agricultural straw

The MCO system collects the time series data from the optical sensors in
the Ultra Violet (UV), Visible (VIS) and Infrared (IR) bands and processes this
information with the WVD algorithm to yield the 25 features - the frequency
bins between 0 to 200 Hz. These features are then passed to the SOM to classify
whether the data collected belongs to a ‘good’ burner condition, where the flame
is stable and the airflow to and the emissions from the burner are acceptable.
This classification of the burner state was averaged over four minutes to ensure
stochastic variations are minimised and then if the burner condition was not
in this ‘good’ state corrective action was taken that was determined through a
series of rules that provided a control action for nine different possible states
(Table 5.22). Once these corrective actions were implemented manually to effect
the desired change to the burner, the MCO system then repeated the above steps
until the burner condition was returned to a ‘good’ state.
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Figure 6.1: Schematic of the MCO system

6.1.2 Results & Discussion

The results from the pilot scale testing will be discussed by comparing the actual
NOx and CO measurements in the exhaust together with the predictions made by
the intelligent MCO system during the range of experiments listed in Table 6.1.

Figure 6.2 shows the predicted NOx and the actual measurements made by
the gas analysers during Test P1 (Table 6.1) at the CTF in IEn, Poland. At
the start of the experiment (left hand side of the graph) the total airflow of the
burner was set much higher than the optimal condition and the objective of the
experiment was to observe whether the MCO system could reduce the airflow to
bring the emissions back to acceptable levels. As would be expected with a high
airflow rate to the burner (hence high excess air) the NOx emissions are higher
than desired with the NOx as measured in ppm in the exhaust being shown in
blue in Figure 6.4. Each sample interval represents four minutes, over which
the measurements and predictions were averaged, with the error bars presenting
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Figure 6.2: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 90 % Janina Coal + 10 % Biomass (Test P1 of Table 6.1)

the range of the variation during that time period. Similarly, the red squares
represent the predicted NOx during the same duration and the error bars showing
the range of the predictions.

One criterion of the MCO system was to maintain the NOx emissions below
the acceptable upper limit for the combustion system, which is indicated by the
dotted line. Therefore, for the MCO system, if the red square at any control
step falls outside of the dotted threshold line, then a control action would need
to take place and vice versa. Following the graph from left to right it can be
seen that the predicted NOx falls outside of the optimal range and so the MCO
system reduces the airflow thereby reducing the NOx. This process is repeated
over six control steps before the NOx is brought within the desired range through
the reductions in airflow.

The MCO system used predictions of the CO (figure 6.3) together with the
NOx predictions to control the burner. Figure 6.3 shows the same experiment
as Figure 6.2, but this time the data relating to CO is plotted together with the
airflow. Again the start of the experiment is on the left hand side of the graph
and as would be expected with a high airflow rate to the burner the CO measure-
ments were very low. In fact CO readings were in general low suggesting good
combustion but an arbitrary limit of just over 20 ppm was set to demonstrate
the operation of the MCO system. As can be seen moving from left to right
on the graph as the airflow was reduced the CO emissions increase (as would
be expected) with the emissions reaching the target band after the eight control
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steps.

Figure 6.3: Comparison of Actual Vs Predicted CO in relation to Total airflow
for 90 % Janina Coal + 10 % Biomass (Test P1 of Table 6.1)

This combination of reducing the airflow to enable the NOx emissions to be
reduced whilst also ensuring the competing objective of ensuring good combus-
tion, as measured by the CO emissions, was achieved. It allowed the MCO system
to optimise the flame and hence the combustion at the burner. The measured
CO in ppm is represented by the blue circles whilst the red squares represent
the predicted CO together with the respective error bars (Figure 6.3). The CO
readings fluctuated towards samples 8 and 9 as the CO increased with decreasing
airflow to the burner, the error bar shows the lowest and highest measured value
in that time period. In the same way the dotted threshold line in the figure
shows the optimal range for the predicted CO. The optimal region for both NOx

and CO varies for different fuels as well as thermal loads and has been arbitrarily
set for this experiment to demonstrate the capability of the MCO system based
on plant operator input. The important point to note for this experiment is that
the experimental data used to train the MCO system were from the tests with
100 % Janina coal. However, the predictions shown in Figures 6.2 & 6.3 for the
MCO system testing were for a mixture of 90 % Janina coal with 10 % biomass,
so the predictions are unseen data from a new fuel blend for the SOM. This
demonstrates that the MCO system was able to generalise enough information
pertaining to the flame condition to be able to correctly classify the flame con-
ditions to enable control, even though the system has not been presented with
this fuel combination previously.
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Figure 6.4: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 90 % Janina Coal + 10 % Biomass (Test P2 of Table 6.1)

Figures 6.4 & 6.5 present the results of the next experiment (Test P2 of Ta-
ble 6.1) and are similar to the data presented in figures 6.2 & 6.3. The measured
NOx and CO are compared to the values predicted by the MCO system, but in
this case, the airflow was increased from the initial low starting value until op-
timal conditions were reached. The above results demonstrate the performance
of the MCO system when controlling the combustion of 90 % Janina coal with
10 % biomass, when the system has been trained with 100 % Janina coal. Taking
figures 6.4 & 6.5 together, on the left hand side of the graphs the airflow is low
with a corresponding low NOx level but high CO. Then as the airflow is increased
the NOx increases and the CO reduces until after four control steps (sample 5
onwards in figures 6.4 & 6.5) the MCO system brings both the NOx and CO to
within the desired bands and maintains them there.
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Figure 6.5: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 90 % Janina Coal + 10 % Biomass (Test P2 of Table 6.1)
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Figure 6.6: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 100 % Russian Coal (Test P3 of Table 6.1)

Figures 6.6 & 6.7 present the results with 100 % Russian coal (Test P3 of
Table 6.1). In a similar manner to Test P1 the airflow was initially set to an
overall high flow rate. The above results reflect the performance of the MCO
system when controlling the combustion of 100 % Russian coal, when the system
was trained with 100 % Russian coal. Taking figures 6.6 & 6.7 together, on the
left hand side of the graphs the airflow is high with a corresponding high NOx

and low CO concentration. Then as the airflow is decreased the NOx decreases
and the CO increases until after sample 6. Sample 7 onwards in figures 6.6 &
6.7 the MCO system brings both the NOx and CO within the desired bands and
maintains them there. The error bars represent the smallest and largest values
encountered during the measurement period for a sample, in this case samples
5, 7 and 10 generally had small deviations except for a few moments when it
registered a small value and though to be of spurious nature and hence shows
a very large error bar. It has to be noted that the NOx values didn’t usually
fluctuate too much compared to CO measurements.
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Figure 6.7: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 100 % Russian Coal (Test P3 of Table 6.1)
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Figure 6.8: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 100 % Russian Coal (Test P4 of Table 6.1)

Figures 6.8 & 6.9 present the results with 100 % Janina coal (Test P4 of
Table 6.1). In a similar manner to Test P2 the airflow was initially set to an
overall low flow rate. The above results reflect the performance of the MCO
system when controlling the combustion of 100 % Janina coal, when the system
was trained with 100 % Janina coal. Taking figures 6.8 & 6.9 together, on the
left hand side of the graphs the airflow is low with a corresponding low NOx and
high CO concentration. Then as the airflow is increased the NOx increases and
the CO decreases until after sample 4 onwards in figures 6.8 & 6.9 the MCO
system brings both the NOx and CO within the desired bands and maintains
them there.
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Figure 6.9: Comparison of Actual Vs Predicted NOx in relation to Total airflow
for 100 % Russian Coal (Test P4 of Table 6.1)
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Figure 6.10: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Russian Coal (Test P5 of Table 6.1)

Figures 6.10 & 6.11 present the results with 100 % Janina coal (Test P5 of
Table 6.1). In a similar manner to Test P1 the airflow was initially set to an
overall high flow rate. The above results reflect the performance of the MCO
system when controlling the combustion of 100 % Janina coal, when the system
was trained with 100 % Janina coal. Taking figures 6.10 & 6.11 together, on the
left hand side of the graphs the airflow is high with a corresponding high NOx and
low CO concentration. Then as the airflow is decreased the NOx decreases and
the CO increases until after sample 4 onwards in figures 6.10 & 6.11 the MCO
system brings both the NOx and CO within the desired bands and maintains
them there. The CO readings saturated and the analyser didn’t recover fast
enough for further measurements so only the last known large value and the
system saturation level have been noted in figure 6.11.
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Figure 6.11: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Russian Coal (Test P5 of Table 6.1)
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Figure 6.12: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Russian Coal (Test P6 of Table 6.1)

Figures 6.12 & 6.13 present the results with 90 % Janina coal and 10 %
biomass (Test P6 of Table 6.1). In a similar manner to Test P2 the airflow
was initially set to an overall low flow rate. The above results reflect the perfor-
mance of the MCO system when controlling the combustion of 90 % Janina coal
and 10 % biomass, when the system was trained with 90 % Janina coal and 10 %
biomass. Taking figures 6.12 & 6.13 together, on the left hand side of the graphs
the airflow is low with a corresponding low NOx and high CO concentration.
Then as the airflow is increased the NOx increases and the CO decreases until
after sample 7 onwards in figures 6.12 & 6.13 the MCO system brings both the
NOx and CO within the desired bands and maintains them there.
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Figure 6.13: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Russian Coal (Test P6 of Table 6.1)

The tests when burning 100 % Russian coal, 100 % Janina coal and 90 %
Janina coal /10 % biomass clearly demonstrated the capability and performance
of the MCO system (figures 6.2 to 6.13). Other results on 100 % Ekogroszek
coal (Test P7) or 90 % Ekogroszek coal / 10 % biomass (Test P8) when trained
with 100 % Janina coal are not presented, as the MCO system was only able to
predict the correct NOx and CO trends but the absolute predictions didn’t allow
the MCO system to consistently take corrective actions to bring the combustion
to normal range with emissions in the trained band. It is likely that the coal
properties differed too widely (Table 3.1). In fact a visual observation detected
that the coal burnt with a flame colour which had a bright orange tinge. The
MCO system relies on the ability of the SOM to be able to categorise the flame
information. In this case, the wide variation in coal properties between those
used to train the system and those used during the MCO system tests resulted
in incorrect predictions. The solution to this, in a practical application, would
be to conduct a short commissioning run of the MCO system whenever the
coal properties have varied beyond a certain range from those of the training
conditions.
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6.2 Full Scale Testing

This section will present the testing of the MCO system at the Dolna Odra power
station in Poland. The layout of the burner, the sensor placement, and signal
analysis algorithms employed to process the acquired data have been presented
in previous chapters. Signals recorded from the three low cost sensors were
processed using the WVD joint time-frequency signal processing algorithm and
the features generated were used to train SOM as described in Section 5.4.

6.2.1 Experiments

In a similar manner to the experiments at the CTF, as demonstrated in the
previous section (Section 6.1), it was decided to use three different thermal loads
during the full scale experiments at the Dolna Odra power plant. In the case
of this boiler, this resulted in fuel flow rates of 15 000, 20 000 and 25 000 kg/h
to the monitored burners on the lowest level. This fuel flow was the total fuel
supplied to the four burners on this level with the corresponding airflows being;
low, optimal and high. The data from these experiments were used to train the
MCO system, as can be seen in Table 3.10. Overall combustion was staged during
normal operation of the boiler, and this lowest level of burners were operated
sub-stoichiometrically to maintain NOx below Polish and European Union (EU)
regulatory limits. The implication of this was that the burners did not have a
condition where the CO levels were ever low and this necessitated the training
of the MCO system with just normal and high total airflow rates instead of the
low, normal and high as carried out for the testing at the pilot scale in IEn.

A number of other factors that may affect the results are as follows:

1. Oil was combusted at higher levels in the boiler during the data gathering
for training as well as testing of the MCO system (not continuously or all
higher levels, but as and when needed) to allow the boiler to load balance,
and cope with flame out conditions or when having problem with other fuel
feeders.

2. Different numbers of the various burner levels were active during the tests
due to varying electricity production demands.

3. Unavailability of the same type of coal to be used for MCO system testing
experiments as the training experiments were carried out in different month
to the MCO system testing.

4. Different coals being used throughout the experiments on a day to day basis
as per normal operating procedures during the tests due to the amount of
coal being burnt in a large power plant.

5. Over fire air to reduce NOx emissions was also used at Dolna Odra com-
pared to none used at the pilot scale burner at IEn.

6. Varying overall thermal load due to differing demand for electricity throu-
ghout the day.
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Table 6.2: MCO system testing at full scale at Dolna Odra, Poland

Test Total Airflow Thermal Fuel used to Fuel used to
Number Initial Load** test the MCO train the MCO

condition** system* system*

F1 High Low F B
F2 High Medium E A
F3 High Low H D

* with reference to Table 3.5
** with reference to Table 3.10

Table 6.2 summarises all the experiments carried out to test the MCO system
at Dolna Odra. Each row summarises the initial start condition of the total
airflow to the boiler, followed by the fuel used for testing and the fuel used to
train the MCO system prior to testing. The MCO system performance and
training tests at Dolna Odra were carried out a few months apart, hence the
predictions varying only based on the training data obtained a few months before
(and wasnt retrained with new training data). From Table 3.10 it is important
to note that the coal used in the boiler had considerable variation in its calorific
value with some changes occurring during the same day due to the quantity of
coal being used within an hour. Table 6.2 relates the coal being used by the
identification tag as assigned to each coal as listed out in the Table 3.5, under
coal properties.

6.2.2 Results & Discussion - Single Burner

Very encouragingly the results obtained from the work conducted at Dolna Odra
are quite similar to the results obtained from applying the MCO system in the
CTF in IEn. The prediction of NOx is accurate enough for the MCO system
to be able to make decisions as to the correct course of action. Due to the
bank of burners being operated sub-stoichiometrically the CO predictions were
not as accurate and at times were inconsistent due to the inability of the gas
analysers to measure values above 2500 ppm or values below 0.1 %. Also there
were large difference in values between the low total airflow compared to the
optimal or high total airflows. CO was measured using two gas analysers, one
capable of measuring in multiples of 1 ppm up to 2500 ppm and the other capable
of measuring in multiples of 0.1 % with approximate accuracy of 0.1 to 1 %,
which leads to inaccuracies when the value measured is between 2500 ppm or
0.25 % to 1 %. This necessitated changing the rule based algorithm for control
at Dolna Odra, where only the NOx was taken into consideration for making a
prediction. A sample of the CO prediction for 15 000 kg/h thermal load is shown
in figure 6.15.

In a similar manner to the pilot scale tests, figures 6.14 & 6.16 compare the
NOx predictions to the actual values measured with reference to the total airflow
to the burner at fuel flow rates of 15 000 and 20 000 kg/h (low and medium)
when burning 100 % coal (Tests F1 and F2 respectively of Table 6.2). At the
start of the experiment (left hand side of the graph) the total airflow of the
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Figure 6.14: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Coal F at thermal load of 15 000 kg/h (to the lowest level of

burners)(Test F1 of Table 6.2)

burner was set much higher than the optimal condition and the objective of the
experiment was to observe whether the MCO system could reduce the airflow to
bring the emissions back to acceptable levels. Blue dots in figures 6.14 & 6.16
represent the averaged actual measured NOx in ppm from the gas sampler, the
error bars represent the variation during the measurement period of 4 minutes.
Similarly, red squares represent the predicted NOx while maintaining the same
burner conditions as actual measured values. If the predictions (red squares) fall
within the normal band, above the dotted threshold line (representing the stable
/ optimal value of NOx for the particular condition), no control action is required
and vice versa. The actual measured NOx (blue dots) are plotted against the
measured total airflow to the burner which is represented by the black line and
is expressed in units of 1000 m3/h.

Figures 6.14 & 6.16 clearly show the decreasing NOx trend, both for the
measurements and the predictions as the total airflow to the burner is decreased,
as would be expected. Similar success at predicting the NOx and controlling the
airflow to the burner is shown in figure 6.17 for a test with 90 % coal & 10 %
biomass for a medium firing rate. In figures 6.14, 6.16 & 6.17 it is also possible
to observe the manner with which the MCO system reduced the airflow with
the steps being clearly visible in the solid black line. Reduced performance was
observed for the tests at the maximum coal feed rate (25 000 kg/h). This might
have resulted from changes in the flame length that would be expected to occur
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Figure 6.15: Comparison of Actual Vs Predicted CO in relation to Total airflow
for 100 % Coal F at thermal load of 15 000 kg/h (to the lowest level of

burners)(Test F1 of Table 6.2)

with different coal feed rates. The longer flame meant that due to the fixed
viewing angle of the observation port, the MCO system imaged a different part
of the flame.

The MCO system was able to predict reasonably well even though the coal
biomass blend was different to the one used to train the MCO system. This
result demonstrates that the MCO system can be trained with one coal / coal
biomass blend but as long as the properties of the coal biomass blend is not too
different, it is still possible to control the burner. If the coal properties vary
more widely, then retraining of the MCO system is necessary as observed from
the pilot scale testing results as discussed earlier in Section 6.1.2.
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Figure 6.16: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 100 % Coal E at thermal load of 20 000 kg/h (to the lowest level of

burners)(Test F2 of Table 6.2)
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Figure 6.17: Comparison of Actual Vs Predicted NOx in relation to Total
airflow for 90 % Coal H + 10 % Biomass at thermal load of 15 000 kg/h (to the

lowest level of burners)(Test F3 of Table 6.2)
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6.2.3 Results & Discussion - Multi-Burner Balancing

All the experiments for training the MCO system at Dolna Odra were performed
on two burners and the MCO system was able to quite accurately predict the
NOx values as discussed above in Section 6.2.2. The MCO system was then able
to suggest appropriate changes to be effected to return the burner to optimal
conditions (in the case of Dolna Odra, reducing total airflow to run the lowest
level of burners at sub-stiochiometric conditions).

Figure 6.18: Comparison of predicted NOx in burners 1 and 2 in relation to
Total airflow for 100 % Coal at thermal load of 20 000 kg/h (to the lowest level

of burners)(Test F2 of Table 6.2)

Figure 6.18 shows a comparison between the predicted NOx for burners 1 and
2 for a coal feed rate of 20 000 kg/h together with the measured total airflow to
the burners when burning 100 % coal. During the tests at Dolna Odra it was not
possible to separately control the airflow to the burners in a bank. This means
during the application of the MCO system, the system had to attempt to deter-
mine the best compromise in airflow to optimise both burners. Figure 6.18 shows
the predictions that were generated by the MCO system by using the algorithm
as discussed in previous chapter (Section 5.4), except that the prediction was
performed once for each of the burners being monitored. Once the predictions
for both the burners were obtained, the corrective action was based on the me-
dian of the two predictions of NOx. At the start of the experiment (Sample 1) the
predicted NOx values are very similar, then as the experiment progresses (Sam-
ples 3 & 4) although the prediction trend is correct the predictions for burner 1
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are much higher than those for burner 2. This would appear to indicate that
there were differences between the combustion of the two burners that the MCO
system has identified. The objective of the experiment was to reduce a high total
airflow, which caused suboptimal NOx emissions, to a more optimal condition
and balance the NOx emissions from the two burners. The interesting part of
the figure occurs at sample 4, where the NOx predictions for burner 2 are within
the optimal emission band whereas those for burner 1 are higher than optimal
at the same time. Following the subsequent corrective control action suggested
by the MCO system (sample 5 of figure 6.18) burner 2 is still within the opti-
mal emission band and burner 1 is very near optimal target band. Any further
reductions in airflow to the bank of burners would have probably resulted in the
NOx emissions for burner 2 falling outside of the optimal band. Therefore the
experiment was stopped at this point. It has therefore been demonstrated that
the MCO system can balance burners, although separate control of the airflow
to individual burners would result in the ability to individually tune burners to
ensure that the emissions are optimal.

6.3 Summary

This chapter outlined the results from the performance testing of the MCO
system being applied at pilot and full scale plants. At pilot scale, a number of
tests to check the capability of the developed MCO system was carried out with
various fuels, especially when the system was trained with data from different fuel
composition providing the system with unseen data. The prediction capability of
the system was very good with identification of abnormal combustion conditions
and correctly suggesting changes to secondary air to get the emissions to the
target region. This capability of the system to make predictions and suggest
changes was tried out on many fuel blends, but the capability degraded when the
changes in coal (fuel) properties was quite large between the conditions used to
train the system and the currently used fuel. In practical usage, this would mean
a retraining (or continuous training) of the system whenever the fuel properties
vary by a large margin.

The MCO system was tested at the Dolna Odra power plant for the full scale
tests, while they were operating and producing electricity. The tests used for
training and the performance testing of the MCO system were carried out a few
months apart and the coal properties varied on day to day basis. Two low NOx

burners of the lowest level of a tangentially fired boiler were monitored for these
full scale tests. These burners were chosen because of availability and accessibility
of ports on the lowest level. Also the high CO concentrations affected the CO
measurement as this level of burners were run at sub-stoichiometrically to keep
lower NOx with over fire air. Hence the performance testing only looked at NOx

emissions due this issue.
The results from the performance testing at full scale again shows the ca-

pability of the MCO system to make predictions and suggestions based on a
rule based system to correct these abnormal combustion conditions. This has
been demonstrated with different fuel blends over multiple days and with various
thermal loads as well on an online real-time basis.
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Chapter 7

CONCLUSIONS AND
FURTHER WORK

7.1 Conclusions

One short term approach to utilise biomass is to co-fire in Pulverised Coal (PC)
boilers built for coal combustion, with minimal cost and modifications to existing
facilities. So the system developed as part of this research is capable of identifying
abnormal conditions leading to unstable flames that might affect utilisation of
biomass whilst co-firing in existing boilers.

As part of the research, a novel three broadband sensors in Ultra Violet
(UV), Visible (VIS) and Infrared (IR) range were utilised for monitoring co-firing
flames. The sensors were capable of monitoring co-firing flames with suitable
signal processing algorithms, this was initially developed and tested at pilot
scale and was eventually demonstrated at full scale in Dolna Odra plant. In this
research this was demonstrated with a computer running the signal processing
algorithms, but this could be miniaturised to a single board / instrumentation
as discussed in section 7.2.

A number of experiments were initially carried out to select an appropriate
signal processing algorithm for this research where only one parameter was var-
ied. From these experiments, it wasn’t possible to extract any consistent features
from the three sensors that correlated with the input to the burners or to NOx,
CO or total airflow to the burner from simpler signal processing methods in
either the time or frequency domains.

Further to this, advanced signal processing methods from the Joint Time Fre-
quency (JTF) domain were considered and these fared slightly better in showing
some trends in the sensor readings. Again, similar to earlier signal processing
methods lacked sufficient information to be utilised on its own in a set points
based system to identify a specific combustion condition, they weren’t system-
atic with the changes made to the operating conditions, especially with varying
thermal loads. The trends were however much clearer with JTF methods for the
same experiments compared to the other signal processing methods used in this
research.

Coal combustion is a complex process and other researchers have handled
monitoring such a complex process using Artificial Neural Network (ANN) as
illustrated in the literature review. In this research, ANN with back propagation
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was utilised to predict emissions based on the three sensor data as these could
be related and measured. ANN with back propagation based processing of the
three sensor data using the simpler time and frequency domain signal processing
methods weren’t capable of gleaning enough information for the system to learn
to predict NOx, CO or total airflow to the burner correctly. Varying number of
hidden neurons were tried before selection of the best performing network based
on the least mean percentage prediction error (MPPE) when applied with the
processed data from the three sensors.

Since ANN with back propagation based on simpler signal processing didn’t
yield good results, more computationally intensive JTF methods were tried. The
results were promising for some of the experiments, but validation with com-
pletely unseen data resulted in poor prediction accuracy meaning generalisation
capability of the trained network was poor for the given sensor data. Prediction
of O2 using ANN with back propagation was not effective in this research as the
O2 measurements weren’t very near the burner and hence weren’t representative
of the combustion condition in the burner.

With reference to the prediction results obtained using ANN with back prop-
agation, it was not possible to have a system capable of monitoring and control
of co-firing flames that could adapt to varying thermal loads and slight changes
to fuel properties as is expected in a power station boiler. So the problem was
approached in a slightly different angle, instead of trying to predict values of
emission or total airflow, classification of the combustion condition using Self-
organising Map (SOM), which is a type of ANN with unsupervised learning.
Again, similar to the previous ANN predictions with simpler time or frequency
methods, the SOM ones weren’t performing very well as these signal process-
ing methods didn’t produce many features that the neural network could learn
from. SOM with Wigner-Ville Distribution (WVD) processed data from the
three sensors was able to classify the conditions correctly and during validation,
the system was even able to identify conditions which were similar or in-between
conditions used to train correctly. Then a simple rule based algorithm was used
to suggest changes to the burner inputs, which the burner operator could follow
to get the desirable condition.

The SOM based system was initially trialled in real-time at the pilot scale
plant trained with three conditions, namely the ideal condition that the operator
wants to operate and two conditions with higher and lower total airflow to the
burner that are most likely to be encountered. The system identified the pre-
sented conditions correctly and suggested the changes as required for the burner
operator, where the fuel used for training and testing were the same. To test
the generalisation of the system, conditions with varying total airflow and ther-
mal load to the burner were presented and the system performed very well in
identifying these changes and classified correctly.

To further evaluate the generalisation capability of the developed monitor-
ing and control system, different coals were carried out. The results showed
the system was capable of identifying the conditions correctly as long as the
coal/biomass blend used is similar to the one used for training the system. If
it varied too widely, then the system needed to be retrained with the new fuel
type. This training needs to be done only once per fuel, and could be reused
whenever the fuel is reused.
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CHAPTER 7. CONCLUSIONS AND FURTHER WORK

Once the system was successfully demonstrated at pilot scale, the Monitoring,
Control and Optimisation (MCO) was trialled at full scale plant at Dolna Odra.
The system was again trained with at least three conditions and successfully
predicted the conditions presented to it when the fuel used was same or similar
between the training and testing phases. As noted before, the system needed
retraining if the fuel properties used for testing varied too much from the fuel
used for training.

The generalisation capability of the SOM reduces the need for retraining
whenever fuel properties vary only slightly. This project has showed that such a
system would be a promising means to aid boiler operators to optimise co-firing
coal and biomass flames when higher biomass content in such fuels push the
stable operating envelope. Finally, for such a system to be of practical use, long
term testing and demonstration using multiple fuels would be required, which is
beyond the scope of the current research.

7.2 Recommendations for Further Work

The results from the current research was encouraging and could be extended as
follows in a number of areas:

1. Additional tests of longer term nature should be carried out to validate the
systems’ capability to ‘learn’ and generalise.

2. For long terms tests or regular usage, a miniaturised system which fits into
a smaller box or tube with an embedded processor and all sensor associated
electronics would be desirable, similar to off-the-shelf flame detectors.

3. The learning phase of the SOM in this research was carried out on a com-
puter, this would either need a embedded processor (such as Micorchip
Inc.’s 32MX family) to have all the necessary custom code to directly learn
on demand from some of the data monitored by the system or a recording
function within the embedded system that could be easily downloaded to
be carried out on a computer.

4. Another related area of interest might be the specific wavelength moni-
toring of OH∗, CH∗ and their ratios for condition monitoring, though the
cost of such sensors (Photo-Multiplier Tubes) are much higher than the
broadband sensors used here.

5. The system could be developed with some standard interfaces so that it
could be easily integrated with the existing plant control system to ex-
tend its usability, this might help utility operators to fire higher ratios of
biomass.

6. Hybrid or multiple types of ANNs could be investigated to see if the predic-
tion capability could be improved with additional parameters being pre-
dicted to enhance combustion efficiency and optimise other operational
parameters such as temperature and un-burnt carbon (UBC).

159



Bibliography

[1] International Energy Agency. Power Generation from Coal - Measuring
and Reporting Efficiency Performance and CO2 Emissions. Tech. rep.
Paris, France, 2010.

[2] R. Heinberg. Blackout: Coal, Climate and the Last Energy Crisis. United
Kingdom: Clairview Books, 2009.

[3] Anthony F Armor. “Advanced Fossil Fuel Power Systems”. In: Energy
Conservation. CRC Press, 2007. Chap. 13, pp. 13-1 –13-29. url: http:
//www.crcnetbase.com/isbn/9781420044324 (visited on 21st July
2015).

[4] Department of Energy & Climate Change. Energy Trends. Dec. 2015.
url: https://www.gov.uk/government/uploads/system/uploads/
attachment_data/file/487870/ET_Dec_15.pdf (visited on 14th Mar.
2016).

[5] BP. Statistical Review of World Energy. June 2015. url: http://www.
bp . com / content / dam / bp / pdf / energy - economics / statistical -

review- 2015/bp- statistical- review- of- world- energy- 2015-

full-report.pdf (visited on 14th Mar. 2016).

[6] International Energy Agency. India Energy Outlook. Tech. rep. Paris,
France, 2015. url: http : / / www . worldenergyoutlook . org / media /

weowebsite / 2015 / IndiaEnergyOutlook _ WEO2015 . pdf (visited on
14th Mar. 2016).

[7] BP. What drives energy demand? June 2016. url: http://www.bp.

com/en/global/corporate/energy- economics/energy- outlook-

2035/drivers-of-energy-demand.html (visited on 14th Mar. 2016).

[8] Sunggyu Lee, James G Speight and Sudarshan K Loyalka. Handbook of
Alternative Fuel Technologies. Boca Raton, CRC Press, 2007, pp. 1–23.

[9] M Sami, K Annamalai and M Wooldridge. “Co-firing of coal and biomass
fuel blends”. In: Progress in Energy and Combustion Science 27.2 (2001),
pp. 171–214.

[10] M J Cooke. Coal R&D Successes in the UK. Tech. rep. Cheltenham,
UK: The Coal Research Forum, June 1996. url: http : / / www .

coalresearchforum.org/crfsuccesses.pdf (visited on Jan. 2014).

[11] European Environment Agency. Atmospheric greenhouse gas concen-
trations (CSI 013). Jan. 2012. url: http : / / www . eea . europa .

eu / data - and - maps / indicators / atmospheric - greenhouse - gas -

concentrations-2/assessment (visited on Jan. 2015).

160



BIBLIOGRAPHY

[12] Boyan Kavalov and S. D. Peteves. The Future of Coal. Tech. rep. Lux-
embourg, 2007. url: http : / / publications . jrc . ec . europa . eu /

repository/handle/JRC36671.

[13] Kyoto Protocol to the United Nations Framework Convention on Climate
Change. Tech. rep. Kyoto, Japan, United Nations, 1998. url: http://
unfccc.int/resource/docs/convkp/kpeng.pdf (visited on 15th July
2015).

[14] European Commission. Paris Agreement. Dec. 2015. url: http://ec.
europa.eu/clima/policies/international/negotiations/paris/

index_en.htm (visited on 14th Mar. 2016).

[15] Massoud Kayhanian, George Tchobanoglous and Robert C Brown.
“Biomass Conversion Process for Energy Recovery”. In: Energy Conver-
sion. CRC Press, 2007, pp. 22-37–22-50. url: http://www.crcnetbase.
com/isbn/9781420044324.

[16] Ralph P Overend and Lynn L Wright. “Biomass Energy”. In: Energy Con-
version. CRC Press, 2007, pp. 3-1 –3-18. url: http://www.crcnetbase.
com/isbn/9781420044324.

[17] Directive 2009/28/EC of the European Parliament and of the Council
of 23 April 2009 on the promotion of the use of energy from renewable
sources and amending and subsequently repealing Directives 2001/77EC
and 2003/30/EC. Tech. rep. Strasbourg, France, EU, 2009. url: http:
//eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:

32009L0028&from=EN (visited on 20th July 2015).

[18] Biomass Co-firing : Technology Brief. Tech. rep. International Energy
Agency - Energy Technology Systems Analysis Programme (IEA-ETSAP)
and International Renewable Energy Agency (IRENA), Jan. 2013.

[19] J Domac, K Richards and S Risovic. “Socio-economic drivers in imple-
menting bioenergy projects”. In: Biomass and Bioenergy 28.2 (Feb. 2005),
pp. 97–106. url: http://www.sciencedirect.com/science/article/
pii/S0961953404001485.

[20] Amy O’Mahoney, Fiona Thorne and Eleanor Denny. “A cost-benefit anal-
ysis of generating electricity from biomass”. In: Energy Policy 57 (June
2013), pp. 347–354. url: http://www.sciencedirect.com/science/
article/pii/S0301421513000906 (visited on 14th July 2015).

[21] Gang Lu, Yong Yan, Steve Cornwell, Michael Whitehouse and Gerry Ri-
ley. “Impact of fo-firing coal and biomass on flame characteristics and
stability”. In: Fuel 87.7 (2008), pp. 1133–1140.

[22] KRG Hein and JM Bemtgen. “EU clean coal technology – Co-combustion
of coal and biomass”. In: Fuel Processing Technology 54 (1998), pp. 159–
169.

[23] Anna Maciejewska, H. Veringa, J. Sanders and S.D. Peteves. Co-Firing
Of Biomass With Coal: Constraints And Role Of Biomass Pre-Treatment.
Tech. rep. Luxembourg, 2006.

161



BIBLIOGRAPHY

[24] A Demirbas. “Sustainable cofiring of biomass with coal, Energy Conver-
sion and Management”. In: Energy Conversion and Management (Jun
2003), Vol. 44, Iss. 9, Iss. 9.

[25] Renewable Energy Focus. Alstom plans two new biomass facilities in the
UK. Mar. 2015. url: http : / / www . sciencedirect . com / science /

article/pii/S1755008415300387 (visited on 14th Apr. 2016).

[26] Colin Henderson. Cofiring of biomass in coal-fired power plants - European
experience. Jan. 2015. url: http://www.iea-coal.org.uk/documents/
83524/9188/Henderson---Cofiring-of-biomass-in-coal-fired-

power-plants-%E2%80%93-European-experience (visited on 22nd July
2015).

[27] International Energy Agency. Profiles: Cofiring high ratios of biomass
with coal. Feb. 2012. url: http://www.iea-coal.org.uk/documents/
82864/8366/Cofiring-high-ratios-of-biomass-with-coal,-CCC/

194 (visited on 14th Apr. 2016).

[28] R Isermann. “Supervision, fault-detection and fault-diagnosis methods —
An introduction”. In: Control Engineering Practice 5.5 (May 1997).
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Appendix A

DEVELOPED CODE

A.1 Supervised ANN

The following MATLAB code was used for training a neural network (dependency
MATLAB Neural Network Toolbox):

1 clear all; clc; close all;

2
3 %LOAD DATA FILES

4 data= <'Read data from excel or csv files: where data

is arranged by sensor in each coloumn '>;
5 a=1:285;

6 b=343:513;

7 t=[a b]; %the rows (experiments) being used for

training the network

8 TPinput =[data(t ,14:16)]';
9 TO2_target=data(t,1) '; %get the O2 / NOx or airflow

data for training

10
11 %NORMALISE DATA

12 % to normalise the inputs and targets to have zero mean

and unity standard

13 % deviation

14 [tpn ,meanp ,stdp ,ttn ,meant ,stdt] = prestd(TPinput ,

TO2_target);

15
16 %TRAINING DATA SET

17 %1,2,4,5,6,8,9,10,12... getting 75% data for training

and 25% for testing

18 Ptrain1=tpn (: ,1:4: end);

19 Ttrain1=ttn (: ,1:4: end);

20 Ptrain2=tpn (: ,2:4: end);

21 Ttrain2=ttn (: ,2:4: end);

22 Ptrain4=tpn (: ,4:4: end);

23 Ttrain4=ttn (: ,4:4: end);

24 Ptrain = [Ptrain1 Ptrain2 Ptrain4 ];

25 Ttrain = [Ttrain1 Ttrain2 Ttrain4 ];
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26
27 %TESTING DATA SET

28 %3,7 ,11... getting 25% for testing

29 Ptest=tpn (: ,3:4: end);

30 Ttest=ttn (: ,3:4: end);

31
32 Test.P = Ptest; Test.T = Ttest;

33
34 %NEURAL NETWORK TRAINING

35 H= 25; %test for hidden neurons of 10 12 15 20 25 and

30

36 net = newff (( minmax(Ptrain)),[H 1],{'tansig ' 'purelin '
},'trainbr ');

37 net.trainParam.epochs = 3000;

38 net.trainParam.show = 50;

39 net = init(net);

40 [net ,tr] = train(net ,Ptrain ,Ttrain ,[],[],[], Test);

41
42 %NEURAL NETWORK TESTING

43 Y=sim(net ,Ptest);

44 Ytest=poststd(Y,meant ,stdt);

45 target=poststd(Ttest ,meant ,stdt);

46
47 mppe_t =100* sum(abs(Ytest -target)./ target)/length(Ytest)

;

48
49 %SAVE TRAINED NETWORK

50 savefilename = strcat('IEn_3_1_O2_psd_ ',num2str(hn),'
_model.mat');

51 save(savefilename ,'net', 'tr', 'meanp ', 'stdp', 'meant '
, 'stdt');

52
53 %PLOTTING

54 figure;

55 set(gca ,'FontSize ' ,16);
56 plot (1: length(target),target ,'b' ,1:length(Ytest),Ytest ,

'r--','LineWidth ' ,3);
57 txt=strcat('Testing;','MPPE=',num2str(mppe_t ,2),'%;','

Hidden Neuron=',num2str(H)); title(txt);

58 grid on; xlabel('Data Point (5s/Data Point)'); ylabel('
O2 (%)');

59 legend('Measured O2','Predicted O2','Location ','
SouthOutside ','Orientation ','horizontal ');

60
61 saveas(gca ,strcat('ann_o2_psd_ ',num2str(hn),'

neurons_t1tot5_t7tot9_training.fig'));
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The following MATLAB code was used for testing the neural network model with
new data:

62
63 %LOAD DATA FILES:

64 data= <'Read data from excel or csv files: where data

is arranged by sensor in each coloumn '>;
65 x=286:342;

66 %y=2566:3078;

67 s=x;

68 SPinput =[data(s ,14:16)]'; %UV, VIS & IR Photodiodes

69 SO2_target=data(s,1) ';
70
71 %LOAD TRAINED NETWORK

72 load(savefilename) %variables: net ,tr ,meanp ,stdp ,meant ,

stdt

73
74 %NORMALISE DATA

75 %Preprocesses the network training set using the mean &

standard deviation

76 %that were previously computed by 'prestd '
77 spn=trastd(SPinput ,meanp ,stdp);

78 stn=trastd(SO2_target ,meant ,stdt);

79
80 %NETWORK SIMULATION

81 Y=sim(net ,spn);

82 Ytest=poststd(Y,meant ,stdt);

83 target=poststd(stn ,meant ,stdt);

84
85 mppe_s =100* sum(abs(Ytest -target)./ target)/length(Ytest)

;

86
87 %PLOTTING

88 figure (2);

89 set(gca ,'FontSize ' ,16);
90 plot (1: length(target),target ,'b' ,1:length(Ytest),Ytest ,

'r--','LineWidth ' ,3);
91 txt=strcat('Simulation;','MPPE=',num2str(mppe_s ,3),'%;'

,'Hidden Neuron=',num2str(H)); title(txt);

92 grid on; xlabel('Data Point (5s/Data Point)'); ylabel('
O2 (%)');

93 legend('Measured O2','Predicted O2','Location ','
SouthOutside ','Orientation ','horizontal ');

94 saveas(gca ,strcat('ann_o2_psd_ ',num2str(hn),'
neurons_t6_simulation.fig'));
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A.2 Supervised ANN with PCA

The following MATLAB code was used for training a neural network with Prin-
cipal Component Analysis (PCA):

1 clear all; clc; close all;

2
3 %LOAD DATA FILES

4 data= <'Read data from excel or csv files: where data

is arranged by sensor in each coloumn '>;
5 a=1:285;

6 b=343:513;

7 t=[a b]; %the rows (experiments) being used for

training the network

8 TPinput =[data(t,3:5) , data(t ,14:16) , data(t ,25:27)]'; %

UV , VIS & IR Photodiodes

9 TO2_target=data(t,1) '; %get the O2 / NOx or airflow

data for training

10
11 %NORMALISE DATA

12 % to normalise the inputs and targets to have zero mean

and unity standard

13 % deviation

14 [tpn ,meanp ,stdp ,ttn ,meant ,stdt] = prestd(TPinput ,

TO2_target);

15 [ptrans ,transMat] = prepca(tpn ,0.02); %PCA

16
17 %TRAINING DATA SET

18 %1,2,4,5,6,8,9,10,12... getting 75% data for training

and 25% for testing

19 Ptrain1=ptrans (: ,1:4: end);

20 Ttrain1=ttn (: ,1:4: end);

21 Ptrain2=ptrans (: ,2:4: end);

22 Ttrain2=ttn (: ,2:4: end);

23 Ptrain4=ptrans (: ,4:4: end);

24 Ttrain4=ttn (: ,4:4: end);

25 Ptrain = [Ptrain1 Ptrain2 Ptrain4 ];

26 Ttrain = [Ttrain1 Ttrain2 Ttrain4 ];

27
28 %TESTING DATA SET

29 %3,7 ,11... getting 25% for testing

30 Ptest=ptrans (: ,3:4: end);

31 Ttest=ttn (: ,3:4: end);

32
33 Test.P = Ptest; Test.T = Ttest;

34
35 %NEURAL NETWORK TRAINING

36 H= 25; %test for hidden neurons of 10 12 15 20 25 and

30
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37 net = newff (( minmax(Ptrain)),[H 1],{'tansig ' 'purelin '
},'trainbr ');

38 net.trainParam.epochs = 3000;

39 net.trainParam.show = 50;

40 net = init(net);

41 [net ,tr] = train(net ,Ptrain ,Ttrain ,[],[],[], Test);

42
43 %NEURAL NETWORK TESTING

44 Y=sim(net ,Ptest);

45 Ytest=poststd(Y,meant ,stdt);

46 target=poststd(Ttest ,meant ,stdt);

47
48 mppe_t =100* sum(abs(Ytest -target)./ target)/length(Ytest)

;

49
50 %SAVE TRAINED NETWORK

51 savefilename = strcat('IEn_3_1_O2_pca_ ',num2str(hn),'
_model.mat');

52 save(savefilename ,'net', 'tr', 'meanp ', 'stdp', 'meant '
, 'stdt');

53
54 %PLOTTING

55 figure;

56 set(gca ,'FontSize ' ,16);
57 plot (1: length(target),target ,'b' ,1:length(Ytest),Ytest ,

'r--','LineWidth ' ,3);
58 txt=strcat('Testing;','MPPE=',num2str(mppe_t ,2),'%;','

Hidden Neuron=',num2str(H)); title(txt);

59 grid on; xlabel('Data Point (5s/Data Point)'); ylabel('
O2 (%)');

60 legend('Measured O2','Predicted O2','Location ','
SouthOutside ','Orientation ','horizontal ');

61
62 saveas(gca ,strcat('ann_o2_pca_ ',num2str(hn),'

neurons_t1tot5_t7tot9_training.fig'));
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The following MATLAB code was used for testing the neural network with PCA
model with new data:

64 %LOAD DATA FILES:

65 data= <'Read data from excel or csv files: where data

is arranged by sensor in each coloumn '>;
66 x=286:342;

67 %y=2566:3078;

68 s=x;

69 SPinput =[data(s,3:5) , data(s ,14:16) , data(s ,25:27)]'; %

UV , VIS & IR Photodiodes

70 SO2_target=data(s,1) ';
71
72 %LOAD TRAINED NETWORK

73 load(savefilename) %variables: net ,tr ,meanp ,stdp ,meant ,

stdt

74
75 %NORMALISE DATA

76 %Preprocesses the network training set using the mean &

standard deviation

77 %that were previously computed by 'prestd '
78 spn=trastd(SPinput ,meanp ,stdp);

79 stn=trastd(SO2_target ,meant ,stdt);

80 sptrans = trapca(spn ,transMat); %PCA Transformation

81
82 %NETWORK SIMULATION

83 Y=sim(net ,sptrans);

84 Ytest=poststd(Y,meant ,stdt);

85 target=poststd(stn ,meant ,stdt);

86
87 mppe_s =100* sum(abs(Ytest -target)./ target)/length(Ytest)

;

88
89 %PLOTTING

90 figure (2);

91 set(gca ,'FontSize ' ,16);
92 plot (1: length(target),target ,'b' ,1:length(Ytest),Ytest ,

'r--','LineWidth ' ,3);
93 txt=strcat('Simulation;','MPPE=',num2str(mppe_s ,3),'%;'

,'Hidden Neuron=',num2str(H)); title(txt);

94 grid on; xlabel('Data Point (5s/Data Point)'); ylabel('
O2 (%)');

95 legend('Measured O2','Predicted O2','Location ','
SouthOutside ','Orientation ','horizontal ');

96 saveas(gca ,strcat('ann_o2_pca_ ',num2str(hn),'
neurons_t6_simulation.fig'));
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A.3 Developed Algorithm

The following figures show the LabVIEW code used for the prediction algorithm:

Figure A.1: MCO system front panel in LabVIEW

Figure A.2: MCO system DAQ initialisation
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Figure A.3: MCO system DAQ recording for 30 s

Figure A.4: Calculating the WVD for three sensor data and calling the SOM
matlab function to do the prediction
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Dependency - SOM toolbox [183] to be added to MATLAB path(s).
The following is the MATLAB function being called by the LabVIEW code do
the SOM prediction - ‘predict noxco.m’:

1 function[predictnox , predictco] = predict_noxco(x,

sensordatafilepath , airflowdatafilepath , sensorset)

2
3 if sensorset == 2

4 sensor = {'Ultra Violet2 ', 'Visible Light2 ', '
Infrared2 '};

5 else

6 sensor = {'Ultra Violet ', 'Visible Light', '
Infrared '};

7 end

8 noxorco = 'nox';
9 somwig3s_b(sensordatafilepath ,airflowdatafilepath ,

sensor ,25,noxorco ,sensorset); %

10 predictnox = mean(simsom_noxco_a(noxorco , sensorset));

11
12 noxorco = 'co';
13 somwig3s_b(sensordatafilepath ,airflowdatafilepath ,

sensor ,25,noxorco ,sensorset); %

14 predictco = mean(simsom_noxco_a(noxorco , sensorset));

The following are the MATLAB functions being called by ‘predict noxco.m’:
‘somwig3s b.m’:

1 function [] = somwig3s_b(sensordatafilepath ,

airflowdatafilepath , sensorList , noFeaturesPerSensor

, noxorco , sensorset , datafilefolderpath)

2
3 %SOM

4
5 %Load data

6 testpoints = 511;

7 TestData = somWigExtractData_c(sensordatafilepath ,

airflowdatafilepath , sensorList , noFeaturesPerSensor

);

8 feat = length(sensorList)*noFeaturesPerSensor;

9
10 p = TestData (:,1: feat);

11 Tc = TestData(:,feat +1);

12
13 %data norm

14 [pn ,minmaxp] = mapminmax(p');
15
16 sD_ts = som_data_struct(pn ');
17
18 len = size(sD_ts.data);

19 for i=1: len (2)
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20 sD_ts.labels{i} = num2str(Tc(i));

21 end

22
23 %Save som net

24 if sensorset == 2

25 if strcmp(noxorco ,'nox')
26 save somnox2_2.mat sD_ts minmaxp

27 elseif strcmp(noxorco ,'co')
28 save somco2_2.mat sD_ts minmaxp

29 end

30 else

31 if strcmp(noxorco ,'nox')
32 save somnox_2.mat sD_ts minmaxp

33 elseif strcmp(noxorco ,'co')
34 save somco_2.mat sD_ts minmaxp

35 end

36 end

‘somWigExtractData c.m’:

1 % this is for matlab - labview interface based program

to access last data

2 % file to be used for predicting

3 function[x] = somWigExtractData_c(sensordatafilepath ,

airflowdatafilepath , sensorlist , nofeaturesPerSensor

)

4
5 % Number of Points Per Test

6 noppt = 500;

7
8 % Number of Features per Sensor

9 %assumption is nofps >= 1 [currently could be upto

a maximum of 512]

10 nofps = nofeaturesPerSensor;

11
12 % Time between samples as recorded

13 tori = 1;

14 % Total samples for airflow

15 sori = 30;

16
17 lenS = length(sensorlist);

18 startRow = 0;

19
20 %needs to be removed and code to read the airflow

directly from the plant

21 %has to be added if the comparison of actual vs

predicted is to be shown in

22 %realtime

23 D = dlmread('airflow.csv');
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24 testno = 102;

25
26 clear E;

27 clear F;

28
29 srlocal = startRow;

30 startRow = startRow + noppt;

31 for j = 1: lenS

32 y = dlmread(strcat(sensordatafilepath ,'_',
sensorlist{j},'_data.csv'));

33 x(srlocal +1: startRow ,((j-1)*nofps)+1:j*nofps) = y

(1:nofps ,1: noppt)';
34 end

35 E = D(1:sori ,testno);

36 E = interp1local (1: tori:sori , E, noppt);

37 x(srlocal +1: startRow ,(lenS*nofps)+1) = E;

38 end

‘simsom noxco a.m’:

1 function[predict ]= simsom_noxco_a(noxorco , sensorset)

2
3 save simsom_noxco_var.mat noxorco sensorset

4 %SOM predict

5 clear

6
7 load simsom_noxco_var.mat noxorco sensorset

8
9 %Load som network and the data to be used for

prediction

10 if sensorset == 2

11 if strcmp(noxorco ,'co')
12 load somco2.mat sM sD_tr

13 load somco2_2.mat sD_ts

14 elseif strcmp(noxorco ,'nox')
15 load somnox2.mat sM sD_tr

16 load somnox2_2.mat sD_ts

17 end

18 else

19 if strcmp(noxorco ,'co')
20 load somco.mat sM sD_tr

21 load somco_2.mat sD_ts

22 elseif strcmp(noxorco ,'nox')
23 load somnox.mat sM sD_tr

24 load somnox_2.mat sD_ts

25 end

26 end

27
28 data = sD_ts.data;
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29
30 %Convert map labels to numbers

31 labels = sM.labels;

32 i = strmatch('',labels ,'exact ');
33 labels = str2double(labels);

34 labels(i)=-1; %put -1 for empty labels

35
36 %neighbours

37 len = size(data);

38 for k=1: len (1)

39 bmus = som_bmus(sM ,data(k,:) ,[1:20]);

40 sub_labels = labels(bmus);

41 predict2(k,:) = sub_labels;

42 end

43
44 predict = mode(predict2 ,2);

45 resamplesize = 100;

46 for i = 1:( length(predict)/resamplesize)

47 predict (((i-1)*resamplesize)+1:i*resamplesize) =

mean(predict (((i-1)*resamplesize)+1:i*

resamplesize));

48 end

The following code in file ‘somwig3s noxco a.m’ was used to train the SOM before
the LabVIEW code above was used for continuous prediction:
‘somwig3s noxco a.m’:

1 function [] = somwig3s_noxco_a(noNodesx , noNodesy ,

trainFileList , testFileList , sensorList ,

noFeaturesPerSensor , datafilefolderpath ,

trainLabelList , noxorco , sensorset)

2 %this function based on somwig3s_noxco.m

3
4 testpoints = 511;

5
6 TrainData = somWigExtractData_c(trainFileList ,

sensorList , noFeaturesPerSensor , datafilefolderpath ,

noxorco);

7 TestData = somWigExtractData_c(testFileList , sensorList

, noFeaturesPerSensor , datafilefolderpath , noxorco);

8
9 Ltr = size(TrainData ,1);

10
11 %check trainfilelist and label list , if mismatched use

actual airflow

12 if length(trainFileList) == length(trainLabelList)

13 %assumption , each test is 300s long

14 for i = 1: length(trainFileList)

15 TrainData (((i-1)*testpoints)+1:i*testpoints ,(
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length(sensorList)*noFeaturesPerSensor)+1) =

trainLabelList(i);

16 end

17 end

18
19 feat = length(sensorList)*noFeaturesPerSensor;

20
21 p = [TrainData (:,1: feat); TestData (:,1: feat)];

22 Tc = [TrainData(:,feat +1); TestData(:,feat +1)];

23
24 %data norm

25 [pn ,minmaxp] = mapminmax(p'); %p must be transposed

before normalisation

26
27 %divide data for training and testing

28 ptr = pn(:,1:Ltr) ';
29 pts = pn(:,Ltr+1: end)'; %ptr and pts are column vectors

30 ttr = Tc(1:Ltr);

31 tts = Tc(Ltr+1: end);

32
33 %som data struct

34 sD_tr = som_data_struct(ptr);

35 sD_ts = som_data_struct(pts);

36 len = size(sD_tr.data);

37 for i=1: len (1)

38 sD_tr.labels{i} = num2str(ttr(i));

39 end

40
41 len = size(sD_ts.data);

42 for i=1: len (1)

43 sD_ts.labels{i} = num2str(tts(i));

44 end

45
46 %som - train

47 sM = som_make(sD_tr ,'msize ',[noNodesx noNodesy ]);

48 sM = som_autolabel(sM,sD_tr ,'vote');
49
50 %save som net

51 if sensorset == 2

52 if strcmp(noxorco ,'nox')
53 save somnox2.mat sM sD_tr sD_ts minmaxp

54 elseif strcmp(noxorco ,'co')
55 save somco2.mat sM sD_tr sD_ts minmaxp

56 end

57 else

58 if strcmp(noxorco ,'nox')
59 save somnox.mat sM sD_tr sD_ts minmaxp

60 elseif strcmp(noxorco ,'co')
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61 save somco.mat sM sD_tr sD_ts minmaxp

62 end

63 end
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Appendix B

SIGNAL PROCESSING
RESULTS

B.1 RMS results

Figure B.1: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 10 to 18 - 90 % Coal & 10 % Straw - 50° Swirl
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Figure B.2: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 82 to 90 - 80 % Coal & 20 % Straw - 50° Swirl

Figure B.3: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 55 to 63 - 70 % Coal & 30 % Straw - 60° Swirl
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Figure B.4: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 37 to 45 - 100 % Coal - 60° Swirl

Figure B.5: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 46 to 54 - 90 % Coal & 10 % Straw - 60° Swirl
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Figure B.6: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 64 to 72 - 80 % Coal & 20 % Straw - 60° Swirl

Figure B.7: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 28 to 36 - 100 % Coal - 40° Swirl
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Figure B.8: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 19 to 27 - 90 % Coal & 10 % Straw - 40° Swirl

Figure B.9: RMS of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 73 to 81 - 80 % Coal & 20 % Straw - 40° Swirl

194



APPENDIX B. SIGNAL PROCESSING RESULTS

B.2 FFT results

All test numbers with reference to Table 3.7.

(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

(g) Test 7 (h) Test 8 (i) Test 9

Figure B.10: FFT of VIS photodiode signal for Tests 1 to 9 - 100 % Coal - 50°
Swirl
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(a) Test 1 (b) Test 2 (c) Test 3

(d) Test 4 (e) Test 5 (f) Test 6

(g) Test 7 (h) Test 8 (i) Test 9

Figure B.11: FFT of IR photodiode signal for Tests 1 to 9 - 100 % Coal - 50°
Swirl
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(a) Test 10 (b) Test 11 (c) Test 12

(d) Test 13 (e) Test 14 (f) Test 15

(g) Test 16 (h) Test 17 (i) Test 18

Figure B.12: FFT of UV photodiode signal for Tests 10 to 18 - 90 % Coal &
10 % Straw - 50° Swirl
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(a) Test 10 (b) Test 11 (c) Test 12

(d) Test 13 (e) Test 14 (f) Test 15

(g) Test 16 (h) Test 17 (i) Test 18

Figure B.13: FFT of VIS photodiode signal for Tests 10 to 18 - 90 % Coal &
10 % Straw - 50° Swirl
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(a) Test 10 (b) Test 11 (c) Test 12

(d) Test 13 (e) Test 14 (f) Test 15

(g) Test 16 (h) Test 17 (i) Test 18

Figure B.14: FFT of IR photodiode signal for Tests 10 to 18 - 90 % Coal &
10 % Straw - 50° Swirl
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(a) Test 82 (b) Test 83 (c) Test 84

(d) Test 85 (e) Test 86 (f) Test 87

(g) Test 88 (h) Test 89 (i) Test 90

Figure B.15: FFT of UV photodiode signal for Tests 82 to 90 - 80 % Coal &
20 % Straw - 50° Swirl
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(a) Test 82 (b) Test 83 (c) Test 84

(d) Test 85 (e) Test 86 (f) Test 87

(g) Test 88 (h) Test 89 (i) Test 90

Figure B.16: FFT of VIS photodiode signal for Tests 82 to 90 - 80 % Coal &
20 % Straw - 50° Swirl
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(a) Test 82 (b) Test 83 (c) Test 84

(d) Test 85 (e) Test 86 (f) Test 87

(g) Test 88 (h) Test 89 (i) Test 90

Figure B.17: FFT of IR photodiode signal for Tests 82 to 90 - 80 % Coal &
20 % Straw - 50° Swirl

202



APPENDIX B. SIGNAL PROCESSING RESULTS

(a) Test 55 (b) Test 56 (c) Test 57

(d) Test 58 (e) Test 59 (f) Test 60

(g) Test 61 (h) Test 62 (i) Test 63

Figure B.18: FFT of UV photodiode signal for Tests 55 to 63 - 70 % Coal &
30 % Straw - 60° Swirl
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(a) Test 55 (b) Test 56 (c) Test 57

(d) Test 58 (e) Test 59 (f) Test 60

(g) Test 61 (h) Test 62 (i) Test 63

Figure B.19: FFT of VIS photodiode signal for Tests 55 to 63 - 70 % Coal &
30 % Straw - 60° Swirl
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(a) Test 55 (b) Test 56 (c) Test 57

(d) Test 58 (e) Test 59 (f) Test 60

(g) Test 61 (h) Test 62 (i) Test 63

Figure B.20: FFT of IR photodiode signal for Tests 55 to 63 - 70 % Coal &
30 % Straw - 60° Swirl
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(a) Test 37 (b) Test 38 (c) Test 39

(d) Test 40 (e) Test 41 (f) Test 42

(g) Test 43 (h) Test 44 (i) Test 45

Figure B.21: FFT of UV photodiode signal for Tests 37 to 45 - 100 % Coal - 60°
Swirl
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(a) Test 37 (b) Test 38 (c) Test 39

(d) Test 40 (e) Test 41 (f) Test 42

(g) Test 43 (h) Test 44 (i) Test 45

Figure B.22: FFT of VIS photodiode signal for Tests 37 to 45 - 100 % Coal -
60° Swirl
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(a) Test 37 (b) Test 38 (c) Test 39

(d) Test 40 (e) Test 41 (f) Test 42

(g) Test 43 (h) Test 44 (i) Test 45

Figure B.23: FFT of IR photodiode signal for Tests 37 to 45 - 100 % Coal - 60°
Swirl
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(a) Test 46 (b) Test 47 (c) Test 48

(d) Test 49 (e) Test 50 (f) Test 51

(g) Test 52 (h) Test 53 (i) Test 54

Figure B.24: FFT of UV photodiode signal for Tests 46 to 54 - 90 % Coal &
10 % Straw - 60° Swirl
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(a) Test 46 (b) Test 47 (c) Test 48

(d) Test 49 (e) Test 50 (f) Test 51

(g) Test 52 (h) Test 53 (i) Test 54

Figure B.25: FFT of VIS photodiode signal for Tests 46 to 54 - 90 % Coal &
10 % Straw - 60° Swirl
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(a) Test 46 (b) Test 47 (c) Test 48

(d) Test 49 (e) Test 50 (f) Test 51

(g) Test 52 (h) Test 53 (i) Test 54

Figure B.26: FFT of IR photodiode signal for Tests 46 to 54 - 90 % Coal &
10 % Straw - 60° Swirl
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(a) Test 64 (b) Test 65 (c) Test 66

(d) Test 67 (e) Test 68 (f) Test 69

(g) Test 70 (h) Test 71 (i) Test 72

Figure B.27: FFT of UV photodiode signal for Tests 64 to 72 - 80 % Coal &
20 % Straw - 60° Swirl
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(a) Test 64 (b) Test 65 (c) Test 66

(d) Test 67 (e) Test 68 (f) Test 69

(g) Test 70 (h) Test 71 (i) Test 72

Figure B.28: FFT of VIS photodiode signal for Tests 64 to 72 - 80 % Coal &
20 % Straw - 60° Swirl
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(a) Test 64 (b) Test 65 (c) Test 66

(d) Test 67 (e) Test 68 (f) Test 69

(g) Test 70 (h) Test 71 (i) Test 72

Figure B.29: FFT of IR photodiode signal for Tests 64 to 72 - 80 % Coal &
20 % Straw - 60° Swirl
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(a) Test 28 (b) Test 29 (c) Test 30

(d) Test 31 (e) Test 32 (f) Test 33

(g) Test 34 (h) Test 34 (i) Test 36

Figure B.30: FFT of UV photodiode signal for Tests 28 to 36 - 100 % Coal - 40°
Swirl
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(a) Test 28 (b) Test 29 (c) Test 30

(d) Test 31 (e) Test 32 (f) Test 33

(g) Test 34 (h) Test 34 (i) Test 36

Figure B.31: FFT of VIS photodiode signal for Tests 28 to 36 - 100 % Coal -
40° Swirl
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(a) Test 28 (b) Test 29 (c) Test 30

(d) Test 31 (e) Test 32 (f) Test 33

(g) Test 34 (h) Test 34 (i) Test 36

Figure B.32: FFT of IR photodiode signal for Tests 28 to 36 - 100 % Coal - 40°
Swirl
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(a) Test 19 (b) Test 20 (c) Test 21

(d) Test 22 (e) Test 23 (f) Test 24

(g) Test 25 (h) Test 26 (i) Test 27

Figure B.33: FFT of UV photodiode signal for Tests 19 to 27 - 90 % Coal &
10 % Straw - 40° Swirl
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(a) Test 19 (b) Test 20 (c) Test 21

(d) Test 22 (e) Test 23 (f) Test 24

(g) Test 25 (h) Test 26 (i) Test 27

Figure B.34: FFT of VIS photodiode signal for Tests 19 to 27 - 90 % Coal &
10 % Straw - 40° Swirl
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(a) Test 19 (b) Test 20 (c) Test 21

(d) Test 22 (e) Test 23 (f) Test 24

(g) Test 25 (h) Test 26 (i) Test 27

Figure B.35: FFT of IR photodiode signal for Tests 19 to 27 - 90 % Coal &
10 % Straw - 40° Swirl
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(a) Test 73 (b) Test 74 (c) Test 75

(d) Test 76 (e) Test 77 (f) Test 78

(g) Test 79 (h) Test 80 (i) Test 81

Figure B.36: FFT of UV photodiode signal for Tests 73 to 81 - 80 % Coal &
20 % Straw - 40° Swirl
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(a) Test 73 (b) Test 74 (c) Test 75

(d) Test 76 (e) Test 77 (f) Test 78

(g) Test 79 (h) Test 80 (i) Test 81

Figure B.37: FFT of VIS photodiode signal for Tests 73 to 81 - 80 % Coal &
20 % Straw - 40° Swirl
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(a) Test 73 (b) Test 74 (c) Test 75

(d) Test 76 (e) Test 77 (f) Test 78

(g) Test 79 (h) Test 80 (i) Test 81

Figure B.38: FFT of IR photodiode signal for Tests 73 to 81 - 80 % Coal &
20 % Straw - 40° Swirl
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B.3 PSD results

Figure B.39: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 10 to 18 - 90 % Coal & 10 % Straw - 50° Swirl
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Figure B.40: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 82 to 90 - 80 % Coal & 20 % Straw - 50° Swirl

Figure B.41: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 55 to 63 - 70 % Coal & 30 % Straw - 60° Swirl
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Figure B.42: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 37 to 45 - 100 % Coal - 60° Swirl

Figure B.43: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 46 to 54 - 90 % Coal & 10 % Straw - 60° Swirl
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Figure B.44: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 64 to 72 - 80 % Coal & 20 % Straw - 60° Swirl

Figure B.45: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 28 to 36 - 100 % Coal - 40° Swirl
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Figure B.46: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 19 to 27 - 90 % Coal & 10 % Straw - 40° Swirl

Figure B.47: PSD of UV, VIS & IR photodiode signals Vs averaged O2 for
Tests 73 to 81 - 80 % Coal & 20 % Straw - 40° Swirl
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B.4 Wavelet results

Figure B.48: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 10 to 18 - 90 % Coal & 10 % Straw - 50° Swirl
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Figure B.49: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 82 to 90 - 80 % Coal & 20 % Straw - 50° Swirl

Figure B.50: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 55 to 63 - 70 % Coal & 30 % Straw - 60° Swirl
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Figure B.51: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 37 to 45 - 100 % Coal - 60° Swirl

Figure B.52: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 46 to 54 - 90 % Coal & 10 % Straw - 60° Swirl
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Figure B.53: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 64 to 72 - 80 % Coal & 20 % Straw - 60° Swirl

Figure B.54: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 28 to 36 - 100 % Coal - 40° Swirl
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Figure B.55: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 19 to 27 - 90 % Coal & 10 % Straw - 40° Swirl

Figure B.56: RMS of largest wavelet coefficient of UV, VIS & IR photodiode
signals Vs averaged O2 for Tests 73 to 81 - 80 % Coal & 20 % Straw - 40° Swirl
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B.5 WVD results

Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16 Test 17 Test 18 .

Figure B.57: WVD (averaged) of UV photodiode signal for Tests 10 to 18 -
90 % Coal & 10 % Biomass - 50° Swirl
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Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16 Test 17 Test 18 .

Figure B.58: WVD (averaged) of VIS photodiode signal for Tests 10 to 18 -
90 % Coal & 10 % Biomass - 50° Swirl

Test 10 Test 11 Test 12 Test 13 Test 14 Test 15 Test 16 Test 17 Test 18 .

Figure B.59: WVD (averaged) of IR photodiode signal for Tests 10 to 18 - 90 %
Coal & 10 % Biomass - 50° Swirl
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Test 82 Test 83 Test 84 Test 85 Test 86 Test 87 Test 88 Test 89 Test 90 .

Figure B.60: WVD (averaged) of UV photodiode signal for Tests 82 to 90 -
80 % Coal & 20 % Biomass - 50° Swirl

Test 82 Test 83 Test 84 Test 85 Test 86 Test 87 Test 88 Test 89 Test 90 .

Figure B.61: WVD (averaged) of VIS photodiode signal for Tests 82 to 90 -
80 % Coal & 20 % Biomass - 50° Swirl
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Test 82 Test 83 Test 84 Test 85 Test 86 Test 87 Test 88 Test 89 Test 90 .

Figure B.62: WVD (averaged) of IR photodiode signal for Tests 82 to 90 - 80 %
Coal & 20 % Biomass - 50° Swirl

Test 37 Test 38 Test 39 Test 40 Test 41 Test 42 Test 43 Test 44 Test 45 .

Figure B.63: WVD (averaged) of UV photodiode signal for Tests 37 to 45 -
100 % Coal - 60° Swirl
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Test 37 Test 38 Test 39 Test 40 Test 41 Test 42 Test 43 Test 44 Test 45 .

Figure B.64: WVD (averaged) of VIS photodiode signal for Tests 37 to 45 -
100 % Coal - 60° Swirl

Test 37 Test 38 Test 39 Test 40 Test 41 Test 42 Test 43 Test 44 Test 45 .

Figure B.65: WVD (averaged) of IR photodiode signal for Tests 37 to 45 -
100 % Coal - 60° Swirl

238



APPENDIX B. SIGNAL PROCESSING RESULTS

Test 46 Test 47 Test 48 Test 49 Test 50 Test 51 Test 52 Test 53 Test 54 .

Figure B.66: WVD (averaged) of UV photodiode signal for Tests 46 to 54 -
90 % Coal & 10 % Biomass - 60° Swirl

Test 46 Test 47 Test 48 Test 49 Test 50 Test 51 Test 52 Test 53 Test 54 .

Figure B.67: WVD (averaged) of VIS photodiode signal for Tests 46 to 54 -
90 % Coal & 10 % Biomass - 60° Swirl
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Test 46 Test 47 Test 48 Test 49 Test 50 Test 51 Test 52 Test 53 Test 54 .

Figure B.68: WVD (averaged) of IR photodiode signal for Tests 46 to 54 - 90 %
Coal & 10 % Biomass - 60° Swirl

Test 64 Test 65 Test 66 Test 67 Test 68 Test 69 Test 70 Test 71 Test 72 .

Figure B.69: WVD (averaged) of UV photodiode signal for Tests 64 to 72 -
80 % Coal & 20 % Biomass - 60° Swirl
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Test 64 Test 65 Test 66 Test 67 Test 68 Test 69 Test 70 Test 71 Test 72 .

Figure B.70: WVD (averaged) of VIS photodiode signal for Tests 64 to 72 -
80 % Coal & 20 % Biomass - 60° Swirl

Test 64 Test 65 Test 66 Test 67 Test 68 Test 69 Test 70 Test 71 Test 72 .

Figure B.71: WVD (averaged) of IR photodiode signal for Tests 64 to 72 - 80 %
Coal & 20 % Biomass - 60° Swirl
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Test 28 Test 29 Test 30 Test 31 Test 32 Test 33 Test 34 Test 35 Test 36 .

Figure B.72: WVD (averaged) of UV photodiode signal for Tests 28 to 36 -
100 % Coal - 40° Swirl

Test 28 Test 29 Test 30 Test 31 Test 32 Test 33 Test 34 Test 35 Test 36 .

Figure B.73: WVD (averaged) of VIS photodiode signal for Tests 28 to 36 -
100 % Coal - 40° Swirl
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Test 28 Test 29 Test 30 Test 31 Test 32 Test 33 Test 34 Test 35 Test 36 .

Figure B.74: WVD (averaged) of IR photodiode signal for Tests 28 to 36 -
100 % Coal - 40° Swirl
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Test 19 Test 20 Test 21 Test 22 Test 23 Test 24 Test 25 Test 26 Test 27 .

Figure B.75: WVD (averaged) of UV photodiode signal for Tests 19 to 27 -
90 % Coal & 10 % Biomass - 40° Swirl

Test 19 Test 20 Test 21 Test 22 Test 23 Test 24 Test 25 Test 26 Test 27 .

Figure B.76: WVD (averaged) of VIS photodiode signal for Tests 19 to 27 -
90 % Coal & 10 % Biomass - 40° Swirl
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Test 19 Test 20 Test 21 Test 22 Test 23 Test 24 Test 25 Test 26 Test 27 .

Figure B.77: WVD (averaged) of IR photodiode signal for Tests 19 to 27 - 90 %
Coal & 10 % Biomass - 40° Swirl

Test 73 Test 74 Test 75 Test 76 Test 77 Test 78 Test 79 Test 80 Test 81 .

Figure B.78: WVD (averaged) of UV photodiode signal for Tests 73 to 81 -
80 % Coal & 20 % Biomass - 40° Swirl
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Test 73 Test 74 Test 75 Test 76 Test 77 Test 78 Test 79 Test 80 Test 81 .

Figure B.79: WVD (averaged) of VIS photodiode signal for Tests 73 to 81 -
80 % Coal & 20 % Biomass - 40° Swirl

Test 73 Test 74 Test 75 Test 76 Test 77 Test 78 Test 79 Test 80 Test 81 .

Figure B.80: WVD (averaged) of IR photodiode signal for Tests 73 to 81 - 80 %
Coal & 20 % Biomass - 40° Swirl
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Appendix C

WVD Results

C.1 Results for experiments with varying sec-

ondary airflow

C.1.1 UV Sensor

Figure C.1: WVD of the UV sensor signal for the test (Test 97a) with
decreasing secondary air with 100% coal
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Figure C.2: WVD of the UV sensor signal for the test (Test 97b) with
increasing secondary air with 100% coal

Figure C.3: WVD of the UV sensor signal for the test (Test 98a) with
decreasing secondary air with 100% coal
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Figure C.4: WVD of the UV sensor signal for the test (Test 98b) with
increasing secondary air with 100% coal

Figure C.5: WVD of the UV sensor signal for the test (Test 99a) with
decreasing secondary air with 100% coal
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Figure C.6: WVD of the UV sensor signal for the test (Test 99b) with
increasing secondary air with 100% coal
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C.1.2 VIS Sensor

Figure C.7: WVD of the VIS sensor signal for the test (Test 97a) with
decreasing secondary air with 100% coal

Figure C.8: WVD of the VIS sensor signal for the test (Test 97b) with
increasing secondary air with 100% coal
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Figure C.9: WVD of the VIS sensor signal for the test (Test 98a) with
decreasing secondary air with 100% coal

Figure C.10: WVD of the VIS sensor signal for the test (Test 98b) with
increasing secondary air with 100% coal
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Figure C.11: WVD of the VIS sensor signal for the test (Test 99a) with
decreasing secondary air with 100% coal

Figure C.12: WVD of the VIS sensor signal for the test (Test 99b) with
increasing secondary air with 100% coal
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