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Abstract

This thesis describes the design, implementation and experimental evaluation of a 

prototype instrumentation system for flame stability and burner condition monitoring on 

fossil-fuel-fired furnaces.

A review of methodologies and technologies for the monitoring of flame stability and 

burner condition is given, together with the discussions of existing problems and 

technical requirements in their applications. A technical strategy, incorporating optical 

sensing, digital imaging, digital signal/image processing and soft computing techniques, 

is proposed. Based on this strategy, a prototype flame imaging system is developed. The 

system consists of a rigid optical probe, an optical-beam-splitting unit, an embedded 

photodetector and signal-processing board, a digital camera, and a mini-motherboard 

with associated application software. Detailed system design, implementation, 

calibration and evaluation are reported.

A number of flame characteristic parameters are extracted from flame images and 

radiation signals. Power spectral density, oscillation frequency, and a proposed 

universal flame stability index are used for the assessment of flame stability. Kernel- 

based soft computing techniques are employed for burner condition monitoring. 

Specifically, kernel principal components analysis is used for the detection of abnormal 

conditions in a combustion process, whilst support vector machines are used for the 

prediction of NOx emission and the identification of flame state.

Extensive experimental work was conducted on a 9MWth heavy-oil-fired combustion 

test facility to evaluate the performance of the prototype system and developed 

algorithms. Further tests were carried out on a 660MWth heavy-oil-fired boiler to 

investigate the cause of the boiler vibration from a flame stability point of view. Results 

obtained from the tests are presented and discussed.
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Chapter 1 Requirements for Flame Stability and Burner Condition Monitoring

Chapter 1

Requirements for Flame Stability and Burner Condition

Monitoring

1.1 Introduction

Fossil-fuel-fired furnaces are widely used in many industries to generate electric power 

by combusting various fuels such as gas, oil and coal. In such combustion processes, 

optimal operating conditions are required to achieve increased combustion efficiency 

and reduced pollution emissions. A flame is the central reaction zone of a combustion 

process. The characteristics of a flame, such as size, shape, brightness, colour, 

oscillation frequency and temperature, contain valuable information on the quality and 

performance of the combustion process. However, conventional instruments available in 

combustion industries are capable of measuring only global variables such as air/fuel 

flow rate and flue gas composition (e.g., CO, NOx, SO2 and O2), providing very limited 

description of the process taking place inside the combustion chamber. A more precise 

diagnosis and control requires richer sensorial information directly captured from flame. 

Therefore, the development of techniques suitable for the online characterisation and 

monitoring of industrial flames is receiving a growing attention and significant research 

efforts.

At the University of Kent, the Instrumentation, Control and Embedded Systems 

Research Group, supported by the external funding bodies including EPSRC, TSB, EU, 

BCURA and BF2RA, has been conducting pioneering work in the use of digital 

imaging technique for two-dimensional (2-D) and three-dimensional (3-D) flame 

monitoring and characterisation over the past fifteen years. Several prototype systems 

have been developed [1-6], and substantial trials of the systems have been undertaken 

on laboratory test rigs [7-9] and industrial-scale combustion test facilities operated by 

RWE npower, E.ON and Doosan Babcock [10-14].
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Chapter 1 Requirements for Flame Stability and Burner Condition Monitoring

The author joined the Group in December 2008 for undertaking an EPSRC funded 

project (EP/F061307/1) with the aim of developing a methodology for flame stability 

and burner condition monitoring. This thesis reports the work which has been done 

during the course of the project.

1.2 Importance of Flame Stability Monitoring and its Technical 

Requirements

Unstable flames are a recognised problem in fossil-fuel-fired combustion processes, 

particularly where low quality fuel, fuel blends and co-firing of biomass with fossil 

fuels are applied. An unstable flame can result in many combustion problems such as 

low combustion efficiency, high NOx emissions, and unbumt carbon in ash [15, 16]. It 

may also cause a non-uniform thermal distribution in the flue gas, and increase the wall 

thermal stress and vibration of the furnace [16]. The stability of a flame should therefore 

be monitored and maintained continuously for the improved overall performance of the 

furnace. However, flame monitoring techniques currently available to the power 

generation industry can provide only basic information such as flame presence or 

absence for a furnace safety purpose. They cannot give qualitative or quantitative 

information on the stability of the flame. This situation motivated the present work.

The requirements for a flame stability monitoring system have been identified as 

follows. General requirements, which have been suggested for a basic flame failure 

detector (flame eye) by previous research work [17], include a fast response, sensitivity 

to the supervised flame alone, tolerance to the heat and dirt conditions, and minimal 

maintenance. In addition to these general requirements, an advanced flame stability 

monitoring system should be capable of providing direct, temporal and spatial 

measurement, which is essential to observe the dynamic nature of a flame. Moreover, 

the system should be capable of giving the assessment of flame stability in general cases 

without ad-hoc adaptation. It is envisaged that optical sensing and digital imaging 

techniques would meet the requirements.
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1.3 Importance of Burner Condition Monitoring and its Technical 

Requirements

The ultimate aim of developing flame monitoring techniques suitable for industrial 

applications is to achieve the reliable control of a combustion process for improved 

combustion efficiency and reduced pollutant emissions. The primary obstacle in the 

development of advanced combustion control is thought to lie in the lack of effective 

and reliable means for the monitoring of the combustion process, including flame and 

burner conditions.

The recent advances in the flame monitoring techniques make it possible to measure 

quantitatively flame parameters (such as flame temperature and length) which can be 

directly used for the control of a combustion process. One of the aspects that present 

work focuses on is the measurement of flame temperature. The flame temperature, 

generally referring to the temperature of solid particles such as soot and fly-ash in the 

flame field, plays a key role in every part of the combustion process such as ignition, 

burnout and the formation of pollutant emissions [18]. However, the flame temperature 

measurements in plants generally use physical probes such as thermocouple and gas

sampling probe, which are intrusive and give only a single-point gas temperature 

measurement. Therefore, more advanced approaches, which are non-intrusive and 

capable of providing 2-D flame temperature distribution on an online basis, are 

desirable.

On the other hand, although significant research efforts have been devoted to determine 

the flame characteristics through a variety of sensing and signal/image processing 

techniques, how to interpret and convert these characteristics into physically meaningful 

information like temperature for practical control use is still a challenging objective for 

combustion engineers and researchers. Therefore, in addition to measuring a range of 

flame characteristic parameters such as 2-D temperature distribution, oscillation 

frequency, etc., the present research programme attempts to develop a methodology 

which uses the flame characteristic parameters as the “signature” of a particular 

combustion state, so as to monitor burner conditions with the aim to (1) detect abnormal
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conditions in a combustion process, (2) predict NOx emissions, and (3) identify flame 

state.

• Detection of abnormal combustion conditions: The detection of abnormal 

conditions in a process is also known as fault detection. In a power generation plant, 

boilers are required to operate under optimum conditions to maintain satisfactory 

combustion performance. Abnormal conditions caused by drifts or faults in the 

boiler would result in not only a low combustion efficiency and high pollutant 

emissions but also an enormous impact on the health of the system [19]. The recent 

trend of using a variety of fuels, including low quality coals, coal blends, and co

firing biomass and coal, has further deteriorated this issue. Therefore, a reliable fault 

detection technique is highly desirable for the optimised operation and control of a 

combustion process. However, as mentioned, the supervisions of a combustion 

process in power plant are currently realized based on the information obtained 

using conventional instruments, which measure mainly global variables such as 

air/fuel flow rate and flue gas composition, providing very limited description of the 

flame, which is regarded as the central reaction zone of a combustion process. On 

the other hand, individual flames in a multi-burner system (such as a boiler) may 

behave very differently from that estimated from global variables. Consequently, the 

drift or malfunction of an individual burner can go unnoticed until they become 

serious. •

• Prediction of NOx emissions: NOx is a known precursor to the formation of

pollutant ozone and acid rain, which has a significant impact on air quality, human

health, and climate change [20]. NOx emanated from fossil fuel combustion

processes contributes as much as 80% to the total NOx emissions in the air. With the

increasingly strict environmental rules on the NOx pollution, the control of NOx

emissions has become a world-wide concern as the utilization of fossil fuels

continues a major means of power generation. The reliable, on-line monitoring of

NOx emissions is essential to meet those rules. However, traditional NOx

measurement techniques (e.g., continuous emission monitoring systems) have a

number of disadvantages such as slow system response, requirements for frequent

system calibration, and high system and maintenance cost [21]. The predication of
4
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NOx emissions from flame would provide a complementary technique to traditional 

measurement techniques for NOx monitoring. It should be noted that although there 

are other pollution emissions such as SC^from power plants, NOx is emphasized in 

the present work. This is because compared with other pollution emissions, NOx is 

much more expensive and difficult to remove.

• Identification of flame state: The reliable identification of flame state plays an 

important role in achieving the robust control of a combustion process. The 

behaviour of a flame is dependent on burner conditions such as air-to-fuel ratio and 

furnace load, and can be reflected via its representative characteristics such as 

geometrical size, temperature, and oscillation frequency. By treating these 

representative characteristics as the “signature” of a specific flame state, the burner 

condition can be directly or indirectly identified by classifying the state of flame 

into one of states which are previously characterized under known burner conditions.

The information provided by the solutions to the above-mentioned issues can be used 

either by an operator to manually regulate the combustion process, or by a control 

system to automatically adjust the combustion process. For example, the indication of 

the occurrence of abnormal combustion events can be used to inform operators the 

change of combustion condition and hence immediate actions can be taken. The 

predicted NOx emissions can be used directly for a control system to drive a control. 

The identified flame state can be used indirectly to drive a control if it is linked with a 

meaningful combustion parameter of practical relevance such as equivalence ratio.

Soft computing techniques, such as statistical methods and heuristics, have been gaining 

momentum as a viable complementary technique to conventional hardware sensors, and 

they are widely accepted as a technology offering an effective way to tackle complex 

and ill-defined problems. In the present work, it was hoped that suitable soft computing 

techniques can be developed to handle noisy, non-linear optical sensorial information 

captured from a flame and achieve the reliable monitoring of burner conditions. The 

technical requirements for soft computing techniques include less demanding for the 

size of training set, good generalization ability, less prone to overtraining, and fast 

system response.
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1.4 Objectives of the Research Programme

The research programme aims to develop a methodology for the monitoring of flame 

stability and burner condition on fossil-fuel-fired furnaces. The objectives of the 

research programme are as follows:

• To define the state of the art in the field. The existing flame monitoring techniques, 

especially visualization methods, will be reviewed to identify suitable flame sensing 

methods for flame stability and burner condition monitoring on industrial furnaces.

• To design and implement a prototype instrumentation system for flame stability and 

burner condition monitoring. Optical sensing and digital imaging techniques will be 

adopted to acquire flame radiation signals and images. Embedded system techniques 

will be employed for on-line data processing to ensure the robustness, compactness 

and fast response of the system.

• To develop novel algorithms for quantifying flame stability and indicating burner

condition. Advanced computing algorithms will be developed to process the 

obtained flame data for assessing flame stability and burner condition. A range of 

flame characteristics will be quantified, such as flame stability,

geometrical/luminous parameters, temperature distribution, and oscillation 

frequency. Dedicated software will be developed using object-orientated techniques 

and visual C++.

• To evaluate the system through extensive experiments on industrial-scale 

combustion test facilities. The performance of the system, including its sensitivity to 

the variations in combustion conditions, the effectiveness of the computing 

algorithms, will be evaluated.

In addition to the monitoring of flame stability and burner condition, it was hoped that 

the system would be multifunctional and capable of measuring other important 

parameters of the flame, such as temperature, emissivity and concentration of soot 

particles in soot-laden flames. It was also hoped that the system would demonstrate if 

the methodology developed is effective on a full-scale furnace in a power plant.
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1.5 Major Technical Challenges

The development of the methodology for flame stability and burner condition

monitoring faces many technological challenges. The main challenges have been

identified as follows:

• Multiple parameters: Due to the high complexity of a flame, the reliable 

monitoring of the flame stability and burner condition demands the concurrent 

measurement and analysis of multiple parameters that characterize the flame from 

different aspects (e.g., dynamic, temporal, and spatial). The sensing techniques 

required for the measurement of these parameters may differ significantly from each 

other, which poses challenges in the design of the system. For example, the 

measurement of flame oscillation frequency over different wavelength bands 

requires multiple photodiodes, while the measurement of flame temperature 

distribution needs an imaging sensor such a CCD/CMOS camera.

• Fast system response: The system should be capable of processing a large amount 

of data (1-D radiation signals, 2-D images) on an online basis and giving a fast 

response to rapid variations in the characteristics of the flame.

• Variable operational conditions: A furnace may operate under a wide range of 

conditions such as different fuel supplies, furnace loads, air/fuel flow rates and 

burner configurations. The system should thus have a self-adjusting ability and be 

capable of providing valid measurements in a wide range of operation conditions.

• Quantitative assessment of flame stability: There is a lack of means for 

quantitative assessment of flame stability. Effective approaches should be developed 

to process flame sensorial data and evaluate the stability of the flame.

• Hostile environment: The electronic and optical components of the system should 

be protected from excessive heat radiation from the furnace. The optical lens should 

be kept clean under dusty and smoky conditions.

• Acceptable cost: An industrial boiler in a power plant is generally a multi-burner 

system, which would require multiple flame monitoring systems for each of the 

burners. Therefore, the cost of a single system to be developed should be acceptable, 

which to some extent limits the selection of system components and the design of 

the system.
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1.6 Thesis Outline

The contributions of this thesis to the state of the art include (1) the development of a 

multifunctional flame monitoring system, which incorporates optical sensing and digital 

imaging techniques and is capable of measuring a number of flame characteristics 

simultaneously (such as oscillation frequency, temperature distribution, geometrical and 

luminous parameters), (2) the proposal of a universal flame stability index for 

quantitative assessment of flame stability, (3) the use of KPCA method (kernel principal 

component analysis) with flame characteristics for detecting abnormal events in a 

combustion process, and (4) the use of SVM method (support vector machine) with 

flame characteristics for predicting NOx emissions and identifying flame state.

The thesis is organized in seven chapters as follows:

• Chapter 1 introduces the importance of flame stability and burner condition 

monitoring, covers the technical requirements, and outlines the proposed research 

programme and objectives.

• Chapter 2 reviews the existing techniques that could be potentially used for flame 

stability and burner condition monitoring.

• Chapter 3 presents the theory of image processing and spectral analysis techniques 

for flame stability assessment, and the theory of soft computing techniques for 

burner condition monitoring.

• Chapter 4 gives the detailed descriptions of the design, implementation and 

evaluation of the multifunctional flame monitoring instrumentation system.

• Chapter 5 presents and discusses the experimental results obtained from a 9MW* 

heavy-oil-fired combustion test facility.

• Chapter 6 presents and discusses the experimental results obtained from a 660MWth 

heavy-oil-fired boiler.

• Chapter 7 draws conclusions from the work that has been presented and provides 

suggestions for future work.
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Chapter 2

Review of Techniques for Flame Stability and Burner 

Condition Monitoring

2.1 Introduction

A complete literature review was conducted to examine all existing techniques that 

might be used for flame stability and burner condition monitoring at a combustion 

system. The state-of-the-art in the field of study is defined following the analysis and 

digestion of all relevant references and materials in the field. The literature survey not 

only was useful to acquire necessary background knowledge that might contribute to 

this work but also assisted in demonstrating a clear contribution of this work to the state 

of the art.

The study of flame has a long history and involves different areas from fundamental 

laboratory studies to industrial applications. Significant efforts have been being devoted 

to study the chemical mechanisms and structure properties of flames, experimentally or 

theoretically. In addition, with the improved understanding of combustion and progress 

of computing science, mathematical modelling of flames, also known as CFD 

(Computational Fluid Dynamics), forms another important branch of flame studies. The 

researches in these areas are useful in understanding the fundamentals of flames and in 

simulating combustion processes. They are, however, beyond the scope of the research 

programme and therefore excluded from this review. In addition, 3-D flame imaging 

techniques are also excluded in this review, due to the complexity of their system set up, 

which would be considered to be impractical for uses in industrial boilers.

This chapter is organized as follows. Firstly, the chapter reviews the existing flame 

monitoring techniques, especially visualization methods, which could potentially be 

used for the flame stability and burner condition monitoring, including laser-based
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imaging techniques, chemiluminescence imaging, imaging-based pyrometry, and 

broadband imaging. Photo detectors are also included due to their wide availability in 

power plants as essential flame failure detectors. The basic principle, advantages and 

disadvantages of each technique are described in each case. A comprehensive survey 

about the flame monitoring and characterisation techniques was previously conducted 

by Lu [22]. A recent survey about the diagnostic strategies for the monitoring and 

control of practical flames was given by Ballester et al. [19]. These two surveys 

constitute the key references of some of techniques described in this part of the review.

Secondly, the chapter reviews the work that has been reported about the flame stability 

and burner condition monitoring. Being different from the review of flame monitoring 

techniques, this part of review mainly focuses on the methods/algorithms of data 

processing and analysing.

2.2 Flame Monitoring

2.2.1 Laser-Based Imaging

A variety of laser-based imaging techniques have been developed for the study of 

flames, such as PLIF (Planar Laser Induced Fluorescence) [23-26], LII (Laser Induced 

Incandescence) [27, 28], Rayleigh Scattering [28], Mie Scattering [29], Raman 

Scattering, Schlieren Photography [30], Shadowgraphy [27], Interferometry [31], and 

Particle Imaging Velocimetry [32]. Among these techniques, PLIF is the most common 

one due to its superior ability to study the fundamentals of flame, such as its 

propagation, temperature, heat release pattern and rate [33], The basic principle of PLIF 

involves using a laser sheet of a particular wavelength to excite an atomic or molecular 

species of interest within the flame from a lower energy state, most often the ground 

state, to an upper excited state. When the excited atoms or molecules decay back to a 

lower energy level, they emit spontaneously photons. The spontaneous emission is 

known as fluorescence, and its intensity can be related to the density of the species of 

interest. For certain molecules, such as OH and CH, they have been found that with an
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appropriate selection of excitation and detection scheme, the fluorescence signal is 

directly proportional to the concentration of the species [34], Figure 2.1 shows a typical 

sensing arrangement of OH PLIF.

beam dump

Figure 2.1 Schematic diagram of a PLIF system (Cessou et al. [26])

Laser-based techniques have been proven extremely useful in understanding the 

fundamentals and mechanisms of combustion processes including flames [33, 35, 36]. 

However, practical reasons (e.g., the complexity and high cost of the system set up, the 

requirement of highly-skilled personnel for the operation, and particularly the need for 

optical accesses for laser excitation and imaging) still pose significant challenges in 

applying these techniques for routine operations in industrial furnaces such as boilers 

[19].

2.2.2 Passive Im aging

Unlike laser-based imaging techniques, passive imaging techniques avoid the need for 

external illumination or seeding. They record the radiation naturally emitted by the 

flame and thus appear to be the feasible methods for industrial applications. According 

to the radiation band recorded, passive imaging techniques can be further classified into
11
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following categories: chemiluminescence imaging, imaging-based pyrometry, and 

broadband imaging.

2.2.2.1 Chemiluminescence Imaging

Chemiluminescence imaging captures radiative emission from electronically excited

308.9nm), CH* (387.lnm, 431.4nm), C2* (513nm, 516.5nm), and C02* (continuous 

spectrum 350nm-600nm). The hardware system generally includes narrow bandpass 

filters at the selected wavelength bands that correspond to the radicals of interest, an 

ICCD (Intensified CCD) or EMCCD (Electro-Multiplying CCD) camera, and a frame 

grabber [37-39], Efforts were also made to achieve the simultaneous measurements of 

multiple flame radicals. Krabicka et al. [6] developed a chemiluminescence imaging 

system which is capable of simultaneously acquiring four chemiluminescent images 

(OH*, CN*, CH*, C2*). Figure 2.2 shows the sensing arrangement of the system. The 

system uses a dedicated optical splitting unit which divides the light of the flame into 

four identical beams. Each beam is passed through a narrow bandpass optical filter in 

order to block all light other than that corresponding to the spectral range of a particular 

flame radical, before being captured by an EMCCD camera.

species formed by thermal excitation and chemical reactions, such as OH* (282.9nm,

Mirro

i Focal plane 
(CCD)

Flame Beamsplitters
Objective lens

(Krabicka et al. [6])

Figure 2.2 Sensing arrangement of a chemiluminescence imaging system
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The magnitude of a chemiluminescence signal is related to the concentration of the 

corresponding excited species. Due to this property, chemiluminescence imaging has 

been widely used to determine the location of flame reaction zone and to infer the heat 

release pattern and rate. Chemiluminescence, however, is mainly originated in thin 

reaction zones, and thus the technique is commonly used in the study of gaseous flames. 

The problem with a flame fired with liquid or solid fuels (e.g., heavy oil, coal, and 

biomass) is that the very intense blackbody emission of soot particles would exceed by 

far and blur the actual chemiluminescence signal [40]. Therefore, chemiluminescence 

imaging technique is not selected as the sensing method for flame stability and burner 

condition monitoring in the present work.

2.2.22 Imaging-Based Pyrometry

The techniques for the measurement of flame temperature can be intrusive or non- 

intrusive. The intrusive techniques, which mainly include thermocouples and gas

sampling probes, are widely used in plants. They are simple and low cost, but give only 

a single-point gas temperature measurement. Non-intrusive techniques operate on 

optical principles, including active laser-based methods (such as laser-induced 

fluorescence and laser scattering), and passive imaging-based pyrometric technique. 

While laser-based optical methods are commonly used in laboratories but unsuitable for 

routine operation in industry due to the complexity and high cost of the system, 

imaging-based pyrometry has been successfully used for the measurement of flame 

temperature in both fossil-fuel-fired furnaces and internal combustion engines [41,42].

The imaging-based pyrometric technique is based on two-colour method, which derives 

temperature from the ratio between radiative powers detected simultaneously at two 

different wavelengths. The two-colour method is mainly used for measuring the 

temperature of a flame whose radiation bands are dominated by black-body emission. 

The main advantage of the two-colour method is that it does not require the pre

knowledge of the flame emissivity (to be more accurate, the emissivity of soot particles 

contained in the flame) [41].
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Berry et al. [43] used a monochrome CCD camera with two near infrared filters in 

combination with neutral density filters to measure the temperature of laminar jet 

diffusion flames under atmospheric and elevated pressures. Huang et al. [1] adopted a 

single CCD camera with optical filters mounted on a rotatable holder to acquire 

alternatively the radiation images at two different wavelengths to measure the 

temperature of a coal flame in a 500kW model furnace. Lu et al. [44] constructed an 

imaging system for the on-line measurement of temperature distribution and soot 

concentration of pulverized coal flames. The system incorporates a monochrome CCD 

camera with a beam-splitting unit and two bandpass filters centred at 650nm and 700nm 

with bandwidth of lOnm to capture the flame images at two wavelengths. In addition, 

attempts were also made to develop multi-colour pyrometric techniques [11, 45, 46]. Lu 

et al. [11] designed a three-colour imaging-based pyrometric system for measuring the 

temperature profiling of a pulverized coal flame. Figure 2.3 shows the sensing 

arrangement of the system. A dedicated beam-splitting unit is used to split the light into 

three identical beams. These beams are filtered by three different bandpass filters 

centred at 550nm, 632nm and 700nm, respectively, and then projected onto a CCD 

panel.

Beam splitting unit Filters Camera lens

(Lu et al. [11])

Figure 2.3 Sensing arrangement of a multi-colour imaging-based pyrometric system
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2.2.2.3 Broadband Imaging

Broadband imaging systems have been widely used as a compulsory flame supervision 

tool in many industrial furnaces for an observation purpose. In comparison with 

chemiluminescence and pyrometric imaging systems, the hardware of broadband 

imaging system is relatively simple and cost-effective. The system can be just a 

monochromatic or colour CCD/CMOS camera with a suitable optical lens, no need for 

any beam-splitting unit or narrow bandpass filter. The system response of a broadband 

imaging system corresponds to a certain band width rather than a specific wavelength, 

which poses difficulties in explaining the data. The interpretation of the obtained non- 

filtered images is generally from the subjective analysis of boiler operators based on 

their experience. Significant efforts have been devoted to convert the raw non-filtered 

images into meaningful, usable information through image processing techniques (e.g., 

multivariate image analysis [47, 48] and colour characterization [49]), and pattern 

recognition techniques (e.g., median threshold clustering [50] and neural network [51, 

52]). Figure 2.4 shows a typical schematic diagram of a broadband imaging system [53]. 

The system consists of a lens, an image guide, and a colour CCD Camera. The image 

guide is fixed in the centre of a stainless steel pipe that is inserted into the water-wall of 

the furnace. The optics of the system is kept cool and clean by purging compressed air.

Figure 2.4 Schematic diagram of a broadband imaging system (Jiang et al. [53])
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2.2.3 Photodetectors

Photodetectors are widely used in industrial furnaces for flame extinction detection [17]. 

Undetected flame extinction in a furnace can be followed by explosive re-ignition of the 

unbumt fuel that has continued to be admitted into the furnace. The explosive re

ignition could damage equipment and pose a safety hazard to anyone in vicinity. For a 

safety purpose, industrial boilers equip every individual burner with a flame detector, 

which is mainly based on photodetector and installed at the sight-tube of the burner. 

Such a device can, however, only detect flame “on” or “off”. Figure 2.5 shows a 

schematic of a flame detector, which mainly consists of an optical lens, a photocell and 

an associated electrical circuit [22].

The photodetector technique can also be used for advanced flame monitoring, such as 

for studying the power spectral density and characteristic frequency of flames [54], and 

for fuel tracking [55, 56]. In the sense of system installation and maintenance, 

photodetectors can be a good choice for the flame stability and burner condition 

monitoring in industrial environments. However, photodetector has its intrinsic 

disadvantages. First, the received raw radiation signal is an one-dimensional signal, and 

thus the information provided is limited. Second, the field of view of a photodetector is 

generally narrow, about 5°~10°, so only a small region of flame can be viewed.

Signal output Metal tube Electrical c ircu it Photocell Optical lens

Incident 
light 
< -------

< -------

^ -------
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2.3 Flame Stability Monitoring

Before reviewing the reported work about flame stability monitoring, one concept that 

should be clarified is flame stability limits [57]. A spatially stable flame requires a 

balance between the velocity of flame (i.e., the rate of burning) and the velocity of the 

air-fuel mixture fed. If it is not possible to match these two velocities, the flame will 

either blow off or flash back. The flame blow-off and flashback limits are known as 

flame stability limits. The flame stability limits are usually indicated in a flame stability 

diagram, which is generally represented using axis coordinates of two key controllable 

parameters [58], such as heat input rate and equivalence ratio [59], air stream velocity 

and fuel stream velocity [60], and Wobbe fuel flow rate and air flow rate [61]. Many 

research efforts were made to investigate the flame stability limits and diagram. 

However, the flame stability limits and diagram generally correspond to a specific fuel 

and burner and give only the range of the controllable parameters within which the 

flame blow-off and flashback can be avoided for a safety purpose, rather than 

quantitative information on the stability of the flame. Therefore, the studies of flame 

stability limits are not covered in the present study.

Unlike the well-defined flame stability limits, there is no widely accepted concept for 

flame stability monitoring. Although a variety of flame monitoring techniques (as 

described in Section 2.2) have been developed to study flames, only very limited work 

have been reported to use these techniques for studying flame stability.

Paubel et al. [58] used a CCD camera to record chemiluminescence images of excited 

CH radicals in a non-premixed flame of low calorific residual gases, and employed 

topology analysis techniques to study the stability diagram of the flame. Kiran and 

Mshira [62] studied the stability characteristics of a jet diffusion LPG (liquefied 

petroleum gas) flame in terms of its lift-off height, length, and emission levels, which 

were derived from images obtained by a CCD camera. Ng et al. [63] used a high-speed 

camera at 500 frames per second to study the flame dynamics in a gas turbine 

combustor. It was found that the frequency spectrum of the mean pixel image intensity 

of the flame is in good agreement with the acoustic spectrum of the combustor.
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Wojcik et al. [15] adopted an optical fibre probe with a photodetector to capture flame 

radiation for detecting flame instability in a pulverized coal-fired furnace. The optical 

fibre probe observed the pulverized coal flame in different zones, and transmitted the 

light of flame to the photodetector, where the optical signal is transformed into an 

electrical signal. Continuous and discrete wavelet transforms were employed to analyse 

the frequency structure of radiation signal. It was found that the high frequency 

components of both stable and unstable combustion signals are of comparable levels. 

The differences exist at scales corresponding to low-frequency components, which are 

contained mostly in signal corresponding to unstable combustion flame.

2.4 Burner Condition Monitoring

This section reviews the soft computing techniques that have been used for the detection 

of abnormal conditions in a combustion process, the prediction of NOx emissions and 

the identification of flame state.

2.4.1 Abnormal Condition Detection in a Combustion Process

Traditional statistical process control techniques, which are used to detect the 

occurrence of abnormal conditions in a process, adopt univariate control charts such as 

Shewhart, CUSUM (Cumulative Sum control chart) and EWMA (Exponentially 

Weighted Moving Average chart) to monitor separately key process variables [64]. A 

problem with these techniques is that they chart only a small number of process 

variables and examine them one at a time. These techniques are inadequate for most 

modem process industries. A more reliable diagnosis of an abnormal occurrence 

requires the simultaneous analysis of various process variables, which could be 

hundreds or thousands and would demand an enormous amount of data processing and 

system response time. One promising approach is through MSPC (Multivariate 

Statistical Process Control).
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The MSPC techniques are based on the premise that virtually all dynamic processes 

have a unique noise or variation signature. Changes in these signatures may indicate 

that a significant change in the process, process equipment, or sensor will occur or has 

occurred. The MSPC techniques uses statistical modelling [65] to reduce the 

information collected from process variables, which can be hundreds or more. The 

widely used MSPC techniques include PCA (Principal Component Analysis), ICA 

(Independent Component Analysis) and PLS (Partial Least Square) [66-70]. Among 

these methods, the PCA is the most popular one due to its capability of effectively 

dealing with high-dimensional, noisy and highly-correlated data by projecting the data 

onto a lower dimensional subspace which contains the most variance of the original data

[71].

The most extensive applications of the PCA-based process monitoring have been found 

in the manufacturing industry for product quality control [72]. Efforts have also been 

devoted to combustion process monitoring. Zhao et al. [73] proposed a fault detection 

and diagnosis framework for early fault detection and diagnosis of an MSW (Municipal 

Solid Waste) incinerator to improve the safety and continuity of production by using 

PCA. Tavares et al. [74] also reported the application of the PCA and PLS for the 

continuous process control of an MSW moving grate-type incinerator. The monitoring, 

fault detection and diagnosis of the process were achieved based on the information 

extracted from historical data. However, in the above-mentioned cases, the supervisions 

of the combustion process are realized through the measurements of global variables 

such as air/fuel flow rates, steam pressure and flue gas compositions, which provide the 

limited representation of the process inside the furnace. Previous research has suggested 

that the reliable identification of anomalous or off-design operation in a combustion 

system can be achieved by analysing the sensorial information of the flame [19]. On the 

other hand, the characteristics of individual flames in a multi-burner system may behave 

very differently from that estimated from global variables, and consequently, the drift or 

malfunction of an individual burner can go unnoticed until the problem becomes serious

[19]. Furthermore, the PCA-based process monitoring techniques as mentioned above 

rely on the assumption that the process data are linear. They may not perform well in a 

nonlinear case.
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2.4.2 NO* Prediction

With the increasingly stringent standards regarding the NOx emissions, the control of 

NOx emissions for reduced environmental impact has become a world-wide concern. 

Great efforts have been made to develop methodologies to understand the mechanism of 

the production of NOx and minimize its emissions from electrical power generation. The 

measurement of NOx emissions is traditionally achieved by using conventional 

hardware emission sensors or analysers, known as CEMS (Continuous Emission 

Monitoring Systems). However, the CEMS have many disadvantages such as high 

capital cost, drifts in measurements due to humidity and ambient temperature, long 

measurement time, and frequent calibration requirements [21].

Artificial neural networks (ANNs), as a viable complementary technique to 

conventional hardware sensors, have been used to predict pollutant emissions from 

fossil-fuel-fired combustion processes [21, 75-79]. Ikonen et al. [21] reported a 

distributed neuro-fuzzy processor for the prediction of flue gas emissions in a power 

plant, where the flue gas oxygen, estimates of residence time and primary air 

stoichiometry were used as the inputs to the model. Li et al. [75] adopted neural 

networks and genetic algorithms to predict NOx emission in a 500 MWe coal-fired 

power plant, where the speed of the coal conveyor belt, O2 at the sides of the furnace 

and tilting position of burners were used as the model inputs. Shakil et al. [76] used a 

dynamic neural network to predict NOx and O2 emissions from a water tube boiler fired 

by natural gas. The inputs of the neural network included the temperatures of 

superheater tubes and riser tubes, air-to-fuel ratio, mass air flow rate, and mass mixed 

gas flow rate.

Efforts were also made to correlate the flame optical sensorial information with the NOx 

emissions by using ANNs. Wang et al. [51] applied a back-propagation neural network 

to estimate NOx emissions from a pulverized coal boiler. A set of parameters derived 

from flame images (average and deviation of temperature, ignition distance) were used 

as the inputs of the network. Hernández et al. [80] related flame image with NOx 

emissions by using a SOFM (Self Organising Feature Maps) neural network. Instead of
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extracting features, the whole flame image was treated as a data set and taken as the 

inputs of the network.

2.4.3 Flame State Identification

The ANNs have also been used as a classifier for identifying flame state. Allen et al. [81] 

demonstrated successfully an imaging and neural network based combustion control 

system on a laboratory liquid-fuelled spray flame facility. The full image of the 

chemiluminescence radiation from excited intermediate radical OH within the flame 

zone was used as the input of the neural network for classifying different combustion 

states. Tao et al. [25] adapted the ANN and fuzzy logic into a vision-guided system for 

the closed loop control of air and fuel flow rates of stationary luminous flames. Flame 

brightness and length were used as inputs of the ANN to identify the combustion 

process states. Lu et al. [52] also reported notably good results from a four layers feed

forward ANN to predict the flame states. The inputs of the neural network include five 

parameters (i.e., length, luminous region and its centroid, brightness and luminous 

uniformity) extracted from flame images, which were captured by a Vi inch 

monochromatic CCD camera fitted with a short bandpass filter. Bae et al. [82] used a 

neural network to distinguish flame on/off conditions from the analysis of luminosity 

distributions.
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2.5 Summary

This chapter has reviewed firstly the existing flame monitoring techniques, including 

laser-based techniques, chemiluminescence imaging, imaging-based pyrometry, 

broadband imaging and photo-detector, and secondly the work that have been reported 

on flame stability and burner condition monitoring.

As can be seen from the cited work (Section 2.3), although a variety of flame 

monitoring techniques have been developed, very limited work has focused on flame 

stability monitoring. The main challenges of developing flame stability monitoring 

technique suitable for practical uses reside in two aspects. First, there is no widely 

accepted method for assessing the flame stability. No matter what kind of flame 

sensorial data are available, PLIF images, chemiluminescent radiation maps, pyrometry- 

derived temperature maps, non-filtered images, or flame radiation signals, how to 

produce a procedure to process the data and evaluate the stability of the flame is not 

clear. Second, challenges are also associated with practical issues, such as system 

installation in the combustion chamber and the protection of system from high 

temperature and fouling.

In the field of burner condition monitoring, as can be seen from the cited work (Section 

2.4), soft computing techniques have been widely used to deal with the issues of fault 

detection, NOx predication, and flame states identification. However, most of the work 

used global variables as the combustion process data (e.g., flow rates, pressure and flue 

gas composition, which provide very limited description of the process taking place 

inside the combustion chamber); very limited work has taken the flame characteristics 

into account due to the lack of suitable sensing and characterisation techniques. 

Moreover, the soft computing techniques used in these cases suffer from shortcomings 

as follows. For the fault detection, the widely used PCA-based technique has the 

assumption that the process data are linear. However, when a process is nonlinear, the 

monitoring of a process using a linear PCA model cannot perform properly. For the 

NOx predication and flame state identification, ANNs are commonly used to correlate 

the combustion process data with the NOx emissions or the flame states. However,
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research work has suggested that the ANNs are prone to overtraining and can suffer 

from multiple local minima. With the progress of soft computing technologies, more 

advanced algorithms could be utilized to provide a better solution to these issues.

The literature review has clearly demonstrated that there is a certain gap between the 

existing technology for flame stability and burner condition monitoring and the 

requirements of industry. Based on the literature review, an instrumentation system 

incorporating broadband imaging and photodetector techniques is thought to be a 

promising and feasible solution. Unlike active laser-based techniques, it does not need 

any external illuminations/seeding; it is practical for industrial use; and the cost is much 

lower. Compared with the chemiluminescence and pyrometric imaging techniques, the 

hardware requirements of the system are relatively less demanding (no requirements for 

narrow band filters or expensive intensified cameras), and the applications are not 

restricted by flame properties (chemiluminescence imaging commonly applies to 

gaseous flames, and imaging-based pyrometry only applies to soot-laden flames).
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Chapter 3

Theory of Flame Stability and Burner Condition Monitoring

3.1 Introduction

This chapter presents the data-processing methods for flame stability and burner 

condition monitoring. The methods presented are based on the flame optical sensorial 

information captured by broadband imaging and photodetector, which have been 

identified (Chapter 2) as the most suitable flame sensing techniques for practical use in 

industrial furnaces.

Firstly, the chapter presents the image processing and spectral analysis techniques for 

flame stability monitoring, covering the following three different approaches:

• Evaluating the standard deviations of flame parameters that characterise a flame

• Analysing the power spectral density estimates and oscillation frequency of flame 

radiation signal

• Computing a universal flame stability index, which is proposed in this chapter and 

designed by combining the dynamic characteristics of seven parameters extracted 

from flame images in HSI (Hue, Saturation, Intensity) colour space

Then, the chapter gives the theory of soft computing techniques for burner condition 

monitoring, covering the following aspects:

• KPCA (Kernel Principal Components Analysis) technique for detecting abnormal 

conditions in a combustion process

• SVM (Support Vector Machines) technique for identifying flame state with respect 

to states previously characterised and predicting NOx emissions

Lastly, the chapter depicts the measurement principle of soot temperature, emissivity 

and concentration in soot-laden flames.
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3.2 Image Processing and Spectral Analysis Techniques for Flame 

Stability Monitoring

3.2.1 Standard Deviation of Flame Parameters

Since a noticeable phenomenon of an unstable flame is the large variation of its 

characteristic parameters, it is natural to consider using the variation of flame 

parameters as an indication of flame stability. A number of flame characteristic 

parameters can be extracted through digital imaging and image processing techniques, 

such as flame size, shape, brightness, oscillation frequency, and temperature distribution 

[3, 7, 11, 44]. These parameters characterise a flame in terms of its nature of geometry, 

luminance, and thermodynamics. The standard deviations of these parameters therefore 

can be used to reflect the variation and hence the stability of the flame.

The standard deviation of a parameter x  is defined as follows,

Statistically, a low standard deviation of the parameter x indicates that the data points 

tend to be very close to the mean, indicating a stable state of the flame in terms of the 

parameter x, whereas a high standard deviation indicates that the data points are spread 

out over a large range of values, indicating the flame is unstable in terms of x.

3.2.2 Power Spectral Analysis and Oscillation Frequency

The second approach for the flame stability monitoring is through analysing the PSD 

(Power Spectral Density) estimates and oscillation frequency of the flame radiation 

signal captured by photodetector.

1
(3-1)

where f^x= Jj EiU  x i>an<* ^ 1S the number of readings of x.
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It has been observed that a turbulent flame in an industrial combustion system pulsates 

irregularly. The pulsation of the flame is referred to as “flickering”, whose characteristic 

can be reflected in the PSD estimates of the flame radiation signal. The PSD of a signal 

is defined as

p ,= j |2 i '= o 1Sie-iM' ‘|2. (3-2)

where st is the zth sample point of the signal, N  is the signal length,./] is the zth frequency, 

and p\ is the power density of the ith frequency component.

A quantitative frequency, known as oscillation frequency of the flame, can be computed 

from the PSD estimates. It is defined as the power-density-weighted average frequency 

of flame signal over the entire frequency range, and the weighting factors are the power 

densities of individual frequency components [7], i.e.,

p _  Z",i Prfi
F ~ s u n '

(3-3)

where F  is the oscillation frequency, f  is the zth frequency,/); is the power density of the 

jth frequency component, and n is the number of frequency components.

The PSD estimates of a flame radiation signal include various frequency components 

for a number of reasons [17]. The DC component is believed to depend on the volatility 

of the fuel, the size of the flame, and the brightness of the hot surrounding environment. 

The low frequency components in the flame signal are mainly attributed to its 

geometrical fluctuations due to aerodynamic or convective effects. The high frequency 

components reflect kinetic variations in the heat release rate of the reacting species or 

vibrational rotational energy transitions in intermediate radicals. These facts suggest 

that the PSD estimates and the oscillation frequency of the flame radiation signal can be 

used to assess the flame stability. Previous research has revealed that an unstable flame 

might result in high amplitude of low frequency components in its PSD estimates and a 

low oscillation frequency [7].
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3.2.3 Universal Flame Stability Index

Visualization methods have been historically an invaluable diagnostic tool in 

combustion science. The 2-D images of a flame give visual and spatial information on 

the flame. An attempt has been made in the present work to assess the tlame stability 

through the statistical analysis of flame colour images. A simple universal stability 

index is proposed here. By “universal”, we mean that the measurement approach can be 

applicable to various combustion cases without ad-hoc adaption.

The proposed simple universal stability index combines the dynamic characteristics of 

seven parameters derived from flame images in HSI (Hue, Saturation, and Intensity) 

space. It assesses the flame stability in the aspects of colour, geometry, and luminance. 

Figure 3.1 shows the measurement procedure of the proposed index, which can be 

divided into three steps: conversion of colour space, extraction of image features, and 

data fusion.

IISI colour space Extraction of parameters Data fusion

Stability index measure

Figure 3.1 Measurement procedure of the universal flame stability index

3.2.3.1 Conversion of Colour Space from RGB to HSI

The first step is to convert the format of the colour flame image from a RGB format to 

HSI.
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The colour characteristics of a flame are closely linked with the flame emission spectra 

and depend on fuel properties and fuel-to-air ratio. The stability of the flame colour 

characteristics therefore should be taken into a consideration when assessing the overall 

flame stability. However, the original image captured by a colour camera is generally in 

RGB format, which is useful for colour display but not good for colour analysis due to 

the high correlation among R (Red), G (Green), and B (Blue) components [83], In the 

RGB colour space, the colour and intensity are inseparably stored in the three primary 

colour components. When the intensity changes, all the three components will change 

accordingly.

The HSI model is another commonly used colour space in image processing, which 

separates the colour information of an image from its intensity information. Similar to 

the RGB model, the HSI model has three separate channels, corresponding to Hue (H), 

Saturation (S), and Intensity (I). The H component represents the dominant wavelength 

in the spectral distribution of light wavelengths, indicating basic colours. The S 

component is the measure of the purity of the colour, denoting the amount of white light 

mixed with the hue. The I component is determined by the amount of light, describing 

the brightness of an image [83].

The HSI colour model can be described geometrically as in Figure 3.2 [84]. The H 

component describes the colour in the form of an angle between the reference line and 

the colour point. The range of the H value is generally from 0° to 360°, for example, red 

is 0°, yellow is 60°, green is 120°, and magenta is 300°. For the convenience of analysis, 

the H value is normalized by 360° in the present study. The S component represents the 

perpendicular distance from the colour point to the axis. The range of S is [0, 1]. The 

nearer the point is to the centre axis, the lighter is the colour. The I component is the 

height of the colour point in the axis direction, ranging from 0 to 1. 0 represents black, 

while 1 means white. Each slice perpendicular to the axis is a plane with the same 

intensity.
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While

Figure 3.2 HSI colour space

The HSI coordinates can be transformed from the RGB space as follows [85J:

f[(R-C)+(R-B)]

H = <
cos -1

5 = 1

1 — cos

R+G+B

1(R-C)2+ (R -B )(C -B )]  2j 

_ !  f  j [ (R -C )+ (R -B )]

-1 /360°, if Z? < G

l[ (R -C )2+(R -B )(C -B )]2

x [min(Æ, G, B )] ,

T /360°, ifB > G

1 = R+G+B

(3-4)

(3-5)

(3-6)

3.2.3.2 Extraction of Image Features

From an HSI image, seven parameters, assigned as M „ , M s , M h C H, C s , C,, a n d  A ,, are 

extracted. M h, M s, and M i denote the mean values of H, S and I components, 

respectively, while C//, C s , and C/ are the contrast values of the three components. A / 

represents the flame area that is derived from the I image.
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The mean A4 and contrast Ck of an image are defined as

(3-7)

(3-8)

where k = H,S, I, and Vk is the ilh- fh element of the 2-D image of size P by Q.

The flame area A/ is determined by applying an appropriate threshold to the I image, i.e.,

• _ i y p -i yiQ-i ( f> ifF/(i,y) >  Threshold ^
1 ~  p x q ^1- 0 A/=o ( o, other ' ^

3.2.3.3 Data Fusion

where /*, e {Mm, Ms, Mi, Cm, Cs, Ci, A/}, op, is the standard deviation of parameter /*„

I a Pl I is the theoretical maximum standard deviation of P„ n is the number of flame1 r i 'm a x

parameters considered, which is seven in the present study, and w, is the weight for the 

corresponding parameter Pj. A larger weight can be given to a parameter that is more 

significant. In the present work, w, equals to 2 for all parameters.

The theoretical maximum standard deviation of a parameter depends on the dynamic 

range and probability distribution of the parameter. Suppose x  = 0q |i =  1,2, ...N, 

x te[0, L]}, with an unknown probability distribution, the mean and standard deviation of 

x  can be expressed as

Following the above, the universal stability index is defined as the combination of the 

standard deviations of the extracted parameters in the form as

(3-10)

(3-11)
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ov = (jSSLxC** -

The range of ax can be determined by expanding (3-12), i.e.,

= ( £ a ,  ( *  -  f ) 2 -  sZT-» (*. -  i )  • (« . -  ; )  + ( *  - 1)2)3

=  ( ^ ! '= 1( ^ - i ) 2 - 2 ' ( * ' - ; ) +  ( « . - 9 7

^ e M M L ) 2) 1

(3-12)

< - . (3-13)“  2
Thus, the theoretical maximum standard deviation ax of the parameter x  is the half of 

the dynamic range of x, i.e., and it can be achieved if and only if H x ~ \  and x t =

0 or L ,i  = 1,2, ...N. The dynamic ranges of H, S, and I, i.e., [0, 1], determine that Mh,

Ms, Mi, and Ai e [0, 1], and CH, Cs, Ch e [0, 0.5]. Therefore, |oMJ  , |^McL „ v» 

\(Jm \ andlou.l are 0.5, while Icrc„I , ItTcJ and |<rc,| are 0.25.1 Mi ' max  I A‘ 'max  1 ‘'« 'm ax’ 1 1 C ilmax

The features of the proposed index are as follows:

• The index evaluates the flame stability through analysing dynamic characteristics of 

colour, luminance and geometry of the flame. The colour is described by hue and 

saturation components, and the intensity component contains information on 

geometry and luminance.

• The measurement procedure does not require any adaption for new applications, 

regardless of fuel types, boiler structure and combustion conditions.

• The index has a fixed boundary, ranging from 0 to 1, which is desirable in 

metrology. The best value 1 is achieved if and only if all parameters are constant 

with time, indicating completely a stable state. The lowest value 0 occurs when the 

standard deviation of any parameter reaches its theoretical maximum value, 

indicating an extremely unstable state.

• The index is eomputationally simple, suitable for on-line measurement.
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3.3 Soft Computing Techniques for Burner Condition Monitoring

This section firstly gives the definitions of the flame characteristics that are used as the 

process variables of a combustion process and the inputs of the KPCA and SVM for the 

burner condition monitoring. Then, it describes the theory of the KPCA and its work 

flow in the detection of abnormal conditions. Finally, it presents the theory of the SVM 

and its work flow in flame state identification and NOx prediction.

3.3.1 Flame Characteristics Used for KPCA and SVM Models

Generally, the number of flame characteristics that are measured can vary, depending 

upon the nature of the flame and the purpose of the measurement. In the present study, 

the selection of flame characteristic for the burner condition monitoring are based on the 

premise that the measurement approach of the characteristic does not depend on the fuel 

property, burner type, and combustion condition, and therefore can be applicable to 

various cases without ad-hoc adaption. The flame characteristics that may exist only 

under some particular conditions are of less interest and so are not considered. For 

example, flame ignition points are very important characteristics of a flame, indicating 

the stability position of the flame. However, it can be observed only from the flame that 

is detached from the nozzle; for an undetached flame, the flame ignition points are not 

applicable.

3.3.1.1 Characteristics of Flame Radiation Signals

From flame radiation signals, characteristic parameters are extracted in time, frequency, 

and joint time-frequency domains.

Time domain parameters include DC, AC, skewness, and kurtosis. DC and AC indicate 

the intensity and turbulent fluctuations of the flame, respectively. Skewness and kurtosis 

are measures of the asymmetry and peakedness of the probability distribution of the 

signal in the time domain, respectively. They are denoted as
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- J i S l i C s i - W .

(3-14)

(3-15)

(3-16)
c — — Y N i s i ~ s \ 3Sske -  NL i = ,

_ l y N /Sf-SX4
Skur -  NU = l\  s ) , (3-17)

where st is the ith sample point of a flame radiation signal, and N  is the signal length.

Frequency domain adopts the flame oscillation frequency as its characteristic, which is 

given in (3-3) as the power-density-weighted average frequency over the entire 
frequency range.

In the joint time-frequency domain, flame parameters are extracted using wavelet 

analysis. Wavelet algorithms process a signal at different resolutions and thus have 

advantages in analysing situations where the signal contains discontinuities and sharp 

spikes [86]. In the present study, one-dimensional Daubechies wavelet dbl [87] is 

performed to decompose the flame signals to 6 levels, corresponding to seven different 

frequency bands as illustrated in Table 3.1. The energy contained in each band is taken 
as the characteristic parameter of that band, i.e.,

Eb =X"bt 1CWb& \  (3-18)

where b = A 6,D6,DS, ...Du  CWb(i) is the ( h coefficient at band b, and is the number

of coefficients at band b. The seven bands correspond to detail coefficients at levels 1~6 
and approximation coefficients at level 6.

Table 3.1 Frequency ranges of wavelet subspace

Wavelet subspace a 6 d 6 d 5 d 4 d 3 d 2 Di

Frequency range/Hz 0~7 8-15 16-31 32-63 64 128 256
-127 -255 -511
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3.3.1.2 Characteristics of Flame Images

From flame images, a number of geometric and luminous parameters are extracted [22]. 
The definitions of these parameters are given as follows.

Luminous region (Rf ): calculated by counting the number of pixels within a flame 

image (FI) with an appropriate threshold, 8, i.e.,

Rf — EieF/EyeF/Iq1
1, if G(i,j) > 8 

other 5 (3-19)

where G{i,j) is the grey-level intensity of the /th- /h element of the two-dimensional 

flame image, and 8 is the threshold that is used to define the luminous region.

Brightness (JBf )\ defined as the mean grey-level of the luminous region of the flame 

normalized to the full-scale grey-level of the imaging system, i.e.,

Bt  = X 100%' (3-20)

Non-uniformity ( Uf ): represented by the average deviation of the grey-levels of 

individual pixels over the luminous region from the brightness, i.e.,

u r  =  l ^ 2 -  e / |  X  ioo%. (3-21)

3.3.2 KPCA for Abnormal Condition Detection in a Combustion 

Process

Efficiency, reliability and safety are important issues in industrial process monitoring. 

Unlike traditional linear PCA based multivariate statistical process control, the KPCA 

model adopts the kernel method and thus is capable of handling nonlinear relationships 

between the variables that are used to characterise an industrial process. To detect
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abnormal conditions in a combustion process, flame characteristics that are taken under 

known normal operating combustion condition should be used to train the KPCA model. 

The fitness of the new data to the constructed the KPCA model, measured by 

Hotelling’s T2 statistic and Q statistic, can then be used for the indication of unusual 

variability within the normal space, and hence the detection of anomalous or off-design 

condition in a combustion system.

In this section, the principle of the KPCA and Hotelling’s T2 and Q statistics is 

presented, following by the detailed work flow of the KPCA for the detection of 

abnormal conditions in a combustion process.

3.3.2.1 Kernel Principal Component Analysis

A detailed description of KPCA can be found in [88, 89]. Given a set of nonlinear data 

with zero mean, xk E Rm , m is the dimension of the data space, k = l,...,N ,  

£k=1xfc =  0, the key idea of the KPCA is to project x k in the input space into a high

dimensional space, known as the feature space, through nonlinear mapping 0 (0 , so that 

the mapped data 0 (x fe) in the feature space can be linearly distributed. Kernel-based 

methods allow that the dot product of two vectors 0(x j) and 0(xy) in the feature space 

can be calculated as the function of corresponding vectors X; and Xy, i.e.,

<0(x/),0(xy )> = k(xi,Xj), (3-22)

thus, there is no need to explicitly define or carry out the nonlinear mapping 0(0- The 

function fc(y) is called the kernel function. There exist a number of representative 

kernel functions as follows [90]:

• Polynomial kernel:

k (x i,xj ) = (x itxj )d, (3-23)

• Sigmoid kernel:

k(xi,Xj) = tanh(/?0 (xi#xy> + f t ) ,  (3-24)

35



Chapter 3 Theory o f Flame Stability and Burner Condition Monitoring

• Radial basis kernel:

k(xi,Xj) = exp ( - ||x (  -  x; ||2/c ) , (3-25)

where d, f t ,  Pi and c are specified by the user.

The computation of the eigenvectors in the feature space is similar to that of the PCA. 

The covariance matrix C in the feature space can be expressed as

C = ^ =1<P(Xi) H x i ) T, (3-26)

where it is assumed that the mapped data in the feature space are centred, 

he., £ic=i ^(x/c) = 0. The diagonalization of the covariance matrix C requires solving 

eigenvalue equation

Av = Cv, (3-27)

where A>0 and v represent eigenvalue and eigenvector, respectively. Equation (3-27) is 

equivalent to

A(i>(xfc),v) = <0(xk),Cv), (3-28)

for all k = l , . . . ,N  . Because all solutions v with A ^  0 lie in the span 

of 0 (X i),... 0 (x w), there exist coefficients ft, (i =  1,2,... N) such that

v  =■£%,! ft<f(x,). (3-29)

Substituting (3-26) and (3-29) into (3-28) yields

A E iU /W  (xk),0(xi)> = ¿E^iA ^C xfcX EjLi^C xyiX ^C x^^C xt)), (3-30)

for all k =  1,..., N. It is clear that, in (3-30), only the computations of the dot products 

of mapped vectors in feature space are required, and they can be done easily through the 

kernel function, as illustrated in (3-22).

To obtain coefficients f t  (i = 1,2, ...N), define anJVxJV kernel matrix Kby its iih- fh 

element Ky,
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Kij = <*(*),*(*;)>• 0-31)

Then, (3-30) can be rewritten as

A E k f c K « “  (3-32)

for all k = l,. . . ,N .  This leads

AKp = ^ K 2p, (3-33)

where (3 = [plt ...,/?N]r • The solution of (3-33) can be found through solving the 

eigenvalue problem [88], i.e.,

Ap = ^Kp . (3-34)

Let Ai > A2 > ••• >  Awand p1, p2, ... pN represent the eigenvalues and corresponding 

complete set of eigenvectors of problem (3-34), respectively, then the normalization of 

vk in the feature space, i.e., realization of

<Vfc,vfc) = 1, (3-35)

for all k = 1, ...,p, can be done through scaling corresponding a fe by factor 1A /I^. 

This can be justified by substituting vfc = a f tp fc )  into (3-35),

A l l ' L l .  j f P f K l !

=  (Pk,Kp‘ )

= 4 ( P S.P I‘>- (3-36)

After solving the problem (3-34), the kernel principal components vector t of a test 

vector xt can be calculated by projecting 0 (x t) onto the eigenvectors vk in feature 

space, i.e.,
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t* = <Vfc,«i>(x t)> = (3-37)

where /?f is the /th element of the eigenvector pk in (3-34), k =  1, ...,p, and p is the 

number of kernel principal components retained.

It should be noted that the assumption Sfc=i^(Xfc) = 0 in (3-26) can be realized by 

substituting the kernel matrix K with

3.3.2.2 Hotelling’s T2 Statistic and Q Statistic

Once the KPCA model of a combustion process is trained, the occurrence of abnormal 

conditions can be judged by computing the variation of new data within the model as 

well as the fitness of the new data to the model.

Suppose the kernel principal components vector of new data xnew is denoted as 

t '  =  [t[, where t ' is derived from (3-37). The variation of xnew within the

KPCA model can be assessed by Hotelling’s T2 statistic, known as Mahalanobis 

distance, i.e.,

where A-1 is the diagonal matrix of the inverse of eigenvalues ( Ax, ...Ap ). The 

goodness-of-fit of xnew to the KPCA model can be assessed by Q statistic, known as 

SPE (Squared Prediction Error) [89], i.e.,

K = K — lj\fK — K1jv + lj/Kljv, (3-38)

where 1N eRNxN, and all elements of 1N have same value o f—.

T
T2 = , (3-39)

(3-40)
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An abnormal condition is identified if both T and Q statistics exceed their confidence 

limits. The confidence limit of T2 statistic can be obtained by the means of F- 
distribution, i.e.,

2 p (ai- i ) r
l V.N,a N _ p  “pN-pa, (3-41)

where Fp N_p a is the F-distribution with p  and N  degrees of freedom with the 

significance level of 100(1 -  a)%. In this study, p  is the number of PCs and N  is the 

number of samples in the KPCA model. The confidence limit of Q statistic can be 

computed from its approximate distribution, Qa~gx]l, i.e.,

, O2h0(,h0—1) , z<*-\ 2 e2hl

+ e l  + Ox

ll/ho

(3-42)

where 0* =  Y!j=p+i^j (i — T2), h0 =  1 — (20102/3 0 |) ,  and za is the standard normal 

deviate corresponding to the upper 100(1 -  a)%.

3.3.2.3 Work Flow of KPCA

Like MSPC techniques, the KPCA based process monitoring is also based on the 

promise that virtually all dynamic process has a unique noise or variation signature. 

Changes in these signatures may indicate that a significant change in the process, 

process equipment, or sensor has occurred or will occur. The utilization of the KPCA 

for combustion process monitoring involves two procedures, i.e., KPCA training, and 
on-line monitoring.

A. KPCA Training Procedure

The training of the KPCA model of a combustion process is achieved by using the 

above-described KPCA algorithm to process the flame characteristics obtained under 

the normal combustion condition to derive the kernel matrix K in (3-31), and its 

eigenvalues A1#... AN and eigenvectors p1, p2, ... p" in (3-34). The derived information
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defines the KPCA model of the combustion process under the normal condition. The

detailed procedure of KPCA training can be summarized as follows:

(1) Acquire flame sensorial information (flame images and radiation signals) under the 

normal combustion condition.

(2) Extract flame characteristics from raw data, as described in Section 3.3.1.

(3) Scale the data using the mean and standard deviation of each characteristic.

(4) Suppose N  samples of m flame characteristics are used as the inputs of KPCA 

training procedure, compute the kernel matrix K of the input data, as in (3-31).

(5) Centre the kernel matrix K, K = K -  1WK -  K lw 4- l^Kl/v, as in (3-38).

(6) Calculate eigenvectors p \  P2, ... PN by solving the eigenvalue problem, Ap = ~Kp,

as in (3-34), and normalize Pfc by 1/JT^, as in (3-36).

(7) Determine the control limits of T2 and Q statistics, as in (3-41) and (3-42).

B. Online Monitoring Procedure

Figure 3.3 shows the flow chart of the KPCA based online monitoring procedure, which

can be summarized as follows:

(1) Acquire new flame raw sensorial information under test condition.

(2) Extract flame characteristics from new data.

(3) Scale the data using the mean and standard deviation of each characteristic obtained 

from training procedure.

(4) Compute kernel vector Kt, [Kt]i = fc(xt,Xt), where xt G Rm is the scaled test data, 

and Xj is the normal operating data used in training procedure, i = 1,..., N

(5) Centre the test kernel vector Kt, T(t = Kt -  l tK -  Kt 1N +  1CK1W, where K is the 

kernel matrix derived in training procedure.

(6) Extract principal components via tk = (vfc,<£(xt)) = £ f=1 a f (0 (x t), 0(X()).

(7) Calculate the T2 and Q statistics of the test data x t .

(8) To identify an abnormal condition if both T2 and Q statistics exceed the confidence 

limits.
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Figure 3.3 Flow chart of KPCA-based combustion process monitoring
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3.3.3 SVM for Flame State Identification and NOx Prediction

SVM is a supervised learning technique, which can be used for classification (known as 

Support Vector Classification) and regression (known as Support Vector Regression). 

The main advantages of the SVM include the use of kernels (no need to know the non

linear mapping function), the absence of local minima (quadratic problem), the 

sparseness of solution, and the generalization capability obtained by optimizing the 

margin. More detailed information about the SVM can be found in [24,32,91].

This section gives the general principle of the SVM, followed by its work flow in flame 

state identification and NOx prediction. It should be noted that the flame state 

identification is a classification problem, and NOx prediction is a regression problem.

3.3.3.1 Support Vector Classification

The key idea of the SVM can be illustrated using a typical two-class problem. Given a 

set of training data { x ^ } ,  i = 1, ...l, where x£ e Rm represents condition attributes 

and y£ =  {—1, +1} is the corresponding class label, the SVM firstly maps linearly 

inseparable data from the input space onto a higher dimensional space, known as the 

feature space, where a linear separating hyperplane may exist, as shown in Figure 3.4. A 

decision hyperplane of the SVM within the feature space can be expressed as [91]

w r 0(x) +  b =  0, (3-43)

where w is a weight vector and b is a bias. The resulted perpendicular distance from the 

hyperplane to the origin is— . Let the shortest distance from the separating hyperplane

to the closest positive and negative training points are D+ and £>_, respectively, the 

SVM tries to find the optimal separating hyperplane that has the maximum margin (i.e., 
the maximum sum of D+ and D_).
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Input space Feature space

Figure 3.4 Key idea of SVM in a two-class problem (Gil et al. [24])

The separating hyperplane with maximum margin satisfies the following conditions,

w r 0 (x i) + b > -l-l.foryi = +1, (3-44)

w T<P(Xi) + b <  -1 , for y t = -1 , (3-45)

which can be expressed equivalently as

yifw ^C xi) + b] > 1. (3-46)

Suppose there exist training points which give equality in (3-44) lying on the 

hyperplanes H1: w T<P(xi') + b = +1 and training points which give the equality in 

(3-45) lying on the hyperplanes H2\ w T<*>(xi) + b = - 1 ,  and these two hyperplanes Hi 

and H2 are in parallel and no training data fall between them, then the perpendicular

distances from the origin to the hyperplanes H1 and H2 are and —1~~, resnectivelv
llwll IM1 r  J'

Therefore, D+ = Z)_ =  ^  and the margin is Hence, to calculate the optimal

separating hyperplane with the maximum margin is equivalent to minimizing ||w|| 
under the conditions of (3-46). The training points that give the equality in (3-46) and 

lie on one of the hyperplanes Hi and H2 are called support vectors.

In practical, the optimal separating hyperplane can be obtained by solving the following 
quadratic optimization problem [32], i.e.,
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™  i w 'w + C S . Æmin 
w

subject to yi(wT0 (x i) + b) > 1 — f £, .
fi > 0,

1, ...n, (3-47)

where f£ is the slack variable, and C >  0 is the user-specified penalty parameter of the 

error term. The slack variable f £ and the error penalty C are introduced for handling the 

possibility of training points violating the edges of the margin.

The problem of (3-47) is usually solved through its dual problem in the input space, i.e.,

m in- a r Qa 4- eTa, a  2

subject to ( „ < „ “ < £ '  , = (3‘48)

where e is the vector of all ones, Q is an / by / positive semi-definite matrix, Qy = 

yiyjkixi, Xj) = yiyj ((P(xi),cP(xj)).

The decision function, which can be used to classify new data x, is

sgn(E?=i Ti a M x i ,  x) + b). (3-49)

3.3.3.2 Support Vector Regression

Given a set of data points, {(x1,z1),...,(x i,zi)}, x ^ R 171, zeR1 , the optimisation 

problem of support vector regression can be expressed as

W, « , i . îW r w + c 2 3 L .f i+

subject to
' w T<P(xi) + b -  Zi < e + Çi 
zi -  wr <Z>(x£) - b  < e  + ti* 
K fi,fi* > 0 , i = l,. . . l

(3-50)
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The dual problem of (3-50) is

a, a* 2 “  a*)rQ(a -  a *) + ^ Zf=i(«i + a*) + 'Zf=xZi{ai -  a^),subject to

l U ( a i  “  a i*) = 0, 0 < ait a f  < C, i = 1, ...l, (3 -5 1 )

where Qi;- = k ^ X j )  = (<*>(xi),0(xy)).

The approximate function is

I .U x ia i* -a i)k (x itx) + b. (3-52)

3.3.3.3 Work Flow of SVM

The work flows of the SVM for flame state identification and NOx prediction are 

similar, including scaling data, selecting kernel function, searching proper kernel 

parameters, training the SVM model, and testing the trained SVM model.

The first step of building the SVM model is to scale the attributes of training data to fall 

in the range [-1, 1]. Previous experiences have suggested that the SVM can be made 

more efficient if proper scaling is performed. The main purposes of scaling include 

firstly avoiding attributes in greater numeric ranges dominating those in smaller 

numeric range, and secondly avoiding numerical difficulties during the calculation [32], 

It should also be noted that the same scaling factors should be used for the testing data.

The radial basis function (RBF) is selected as the kernel function of the SVM in the 

present study. There are four commonly used basic kernels, i.e., linear, polynomial, 

sigmoid, and RBF. Compared with other three kernels, the RBF is a reasonable choice 

due to its intrinsic advantages. Unlike the linear kernel, the RBF is capable of handling 

the case when the relation between model inputs and outputs is nonlinear. Compared 

with the polynomial kernel, the RBF kernel has less hyper-parameters, which can 

reduce the complexity of the model. Moreover, a sigmoid kernel may be not valid under 

some parameters, while the RBF kernel has no such problem.
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The RBF kernel has two unknown parameters, C and y. To determine the most suitable 

values of C and y for flame state identification and NOx prediction, a cross-validation 

approach can be used. Specifically, the training set is divided into a number of subsets 

(in the present study, five subsets) with an equal size. Sequentially one subset is tested 

using the model trained on the remaining subsets. Thus, each instance of the whole 

training set is predicted once. The cross-validation accuracy is defined as the percentage 

of data which are correctly classified (for flame state identification), or MSE (mean 

squared error) (for NOx prediction). The C and y with which the best validation 

accuracy is obtained are taken as the kernel parameters to train the whole training set. 

The cross-validation procedure can ameliorate or prevent the over-fitting problem.

After the determination of C and y, the SVM model is trained by solving the 

optimization problems, as shown in (3-48) and (3-51). Then the trained model can be 

used to classify the flame state (3-49) or predict the NOx emissions (3-52).

For the classification problem (identification of flame state), the performance of the 

trained model is evaluated by the percentage of data which are correctly classified, i.e.,

Success rate  =
Num ber o f  c o rre c tly  c lass ifie d  data  

Num ber o f  to ta l testing  data
x 100%. (3-53)

For the regression problem (prediction of NOx), the MSE and correlation coefficient are 

used, i.e.,

MSE = i l f =1(/(x i) -  y d 2, (3-54)

...............r  = i 2ir — (3-55)
J [ w - z { H w Z { L 1y12-C£{l1yi)2]

where {Xj/yJ, i = 1,... N, are the training data, and / ( x £) is the predicted value of y£.
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3.4 Measurement of Soot Temperature, Emissivity and Concentration 

in Soot-Laden Flames

In soot-laden flames, such as heavy-oil-fired flame studied in the present work (Chapter 

5 and Chapter 6), combustion is dominated by the intense radiation from the soot 

particles. For such a flame, the temperature of the combustion gases can be estimated by 

measuring the temperature of soot particles, because the difference between the two 

temperatures is negligible (<1K) when thermal equilibrium is attained. The two-colour 

method has been widely used to measure temperature of soot-laden flames where the 

emissivity of the medium is unknown. The fundamental aspects of the two-colour 

method can be found elsewhere [1,41].

In the present study, instead of using the complex beam splitting and narrow-bandpass 

filtering approach, the system (described in Chapter 4) derives flame temperature from 

the relationship between the primary colours of the images captured by a RGB colour 

camera. The camera has three separate channels corresponding to primary colours Red 

(R), Green (G) and Blue (B). Each image frame produced can be disintegrated into three 

principal images R, G, and B. A combination of the colour-banded images can thus be 

used for the determination of the flame temperature distribution based on the two-colour 

principle. In this study, the R and G images were chosen, i.e.,

(3-56)

where T  is the temperature of soot particles, C2 is the second Planck's constant 

1 .4 3 8 7 7 7 0 x l0 '2mK, and G(Xr, T) and G(Xg, T) are the grey-level intensities of images 

from the R and G channels, respectively. Xr and Xq are the peak wavelengths of the 

spectral ranges corresponding to the R and G channels, and are 540 nm and 615 nm, 

respectively. S¿R and S¿G are the spectral sensitivities of the system for Xr and Xq, 

respectively. Ratio SxR/S¿G is the instrument factor, which can be determined through a 

calibration procedure using a standard temperature source (Section 4.4.2).
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The choice of R and G images for the temperature calculation instead of other 

combinations is because the sensor of the camera gives higher spectral sensitivities for 

the R and G channels than that for the B channel and thus a better signal-to-noise ratio 

can be achieved. It must also be stressed that the use of primary colour images for the 

temperature measurement offers advantages in simplicities in the system design, 

calibration and operation. It would, however, result in some errors in the temperature 

calculation due to the fact that each primary colour covers not only one single 

wavelength but a certain range of wavelengths. But it would not affect the general trend 

of the calculated temperature distribution. In fact, experimental results show that the 

system has very good measurement accuracy with reference to a standard temperature 

source (Section 4.4.2).

Once the flame temperature is determined from (3-56), the emissivity of soot particles 

in the flame at wavelength AR for temperature T, £ar(T) , can be estimated by its 

definition, i.e.,

Mb{xR,Ty (3-57)

where M(AR,T) and Mb(AR,T) are the monochromatic emissive power of a non- 

blackbody (e.g., soot particles) and that of a blackbody, respectively. For the given 

imaging system, the relationship between the grey-level intensity of images and the 

monochromatic emissive power of the non-blackbody can be expressed by

G{Xr,T)  = ASXrM{Xr, T \  (3-58)

and for blackbody, the relationship can be expressed by

Gb(AR,T) = AS^RMb(AR,T), (3-59)

where G(AR,T) and Gb(AR,T) are the grey-level intensities of the R images of the non- 

blackbody and the blackbody captured by the imaging system for temperature T, 

respectively. The relationship between Gb and T can be determined through the 

calibration by using a blackbody source (Section 4.4.2). A is an instrument constant 

which is independent of wavelength and reflects the effect of various factors including
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the radiation attenuation due to the optical system and atmosphere, observation distance, 

lens properties, and signal conversion. Substitute (3-58) and (3-59) into (3-57), we get

W  J GbUR,Ty (3-60)

In practice, the emissivity of soot particles can also be estimated from the widely used 

empirical equation proposed by Hottel and Broughton [92], i.e.,

sx(T) = 1 -  e^~KL̂ v\  (3-61)

where K  is the absorption coefficient, L is the geometrical thickness of the flame along 

the optical axis of the imaging system, and y  is an empirical parameter depending upon 

X. For the visible spectral range, y  is considered to be a fixed value of 1.39 for a steady 

luminous flame [92]. Rearranging (3-61) yields

KL= -  XYln ( l  -  sx). (3-62)

Thus,

K L = - X / l n (  1 - l ^ g j ) .  (3-63)

Previous studies have revealed that KL is proportional to the concentration of soot 

particles in the flame [41]. Although an estimate of the volumetric and gravimetric 

density of soot can be obtained if some assumptions are made, the KL factor is used in 

the present study to investigate the soot concentration of a flame.
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3.5 Summary

This chapter has firstly described the principles of the image processing and spectral 

analysis techniques for flame stability monitoring. Three different approaches have been 

presented, including evaluating the standard deviation of flame parameters, analysing 

power spectral density and oscillation frequency, and computing a simple universal 

flame stability index. The simple universal flame stability index is proposed by 

combining the dynamic characteristics of seven parameters extracted from flame images 

in the HSI colour space. The index assesses the flame stability in terms of its colour, 

geometry, and luminance. The advantages of the index are that it has a fixed boundary, 

and it is simple in computation and applicable to various flames without ad-hoc 

adaption. The presented approaches have been used to assess the stability of flames on a 

9MWth industrial-scale combustion test facility (Chapter 5) and a 660MWt|, full-scale 

boiler (Chapter 6).

In addition, the chapter has also presented the principles of soft computing techniques 

for burner condition monitoring. Specifically, the KPCA model is for the early detection 

of abnormal conditions in a combustion process, and the SVM model for the 

identification of flame state and the prediction of NOx emissions. A number of flame 

characteristics are selected as the inputs of the KPCA and SVM models. Compared with 

the traditional linear PCA based process monitoring technique, the KPCA based 

technique adopts kernel method, capable of handling nonlinear process data. Kernel 

method is also adopted in SVM. The advantages of the SVM over the widely used 

ANNs (Artificial Neural Networks) are that it has a simple geometric interpretation and 

a sparse solution. The performance of the KPCA and SVM are demonstrated and 

compared with that of the PCA and ANNs by using the real flame data obtained from a 

9MWth industrial-scale combustion test facility (Chapter 5).
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Chapter 4

System Description

4.1 Introduction

This chapter describes the design, implementation and evaluation of the instrumentation 

system for flame stability and burner condition monitoring under the research 

programme.

An embedded photodetector and signal-processing board, which incorporates three 

different photodiodes covering ultraviolet, visible and infrared spectral bands 

respectively, is developed for analysing the power spectral density and oscillation 

frequency of a flame. A standard frequency-varying light source is used as an idealised 

flame to evaluate the performance of the embedded board.

A digital RGB camera is used to capture the flame images, from where a number of 

parameters can be derived, including geometric and luminous characteristics, two- 

dimensional temperature distribution, etc. The effects of various factors on the imaging 

system, including sensor dark current, exposure time, master gain, gain boost, and 

R/G/B gains, are analysed. The temperature measurement of the system is calibrated by 

using a blackbody furnace as a standard temperature source. The accuracy of 

temperature measurement is verified by applying the system to measuring the true 

temperature of a standard tungsten lamp.
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4.2 System Design and Implementation

Figure 4.1 shows the block diagram of the flame monitoring system developed. The 

system consists of a rigid optical probe, an optical-beam-splitting unit, an embedded 

photodetector and signal-processing board (EPSB), a digital camera, and a mini

motherboard with associated application software. The optical probe, which is protected 

by a water-cooled jacket, is used to penetrate the furnace wall and transmit the light of 

flame to the EPSB and the camera. The objective lens of the optical probe has a 90° 

viewing angle and its surface is kept dust-free by purging airflow. The beam splitter 

divides the light of flame into two beams. The first beam is received by the photodiodes 

on the embedded board for the analysis of power spectral density and the measurement 

of flame oscillation frequency. The second beam is captured by the digital camera for 

the measurement of flame geometric and luminous parameters, temperature distribution, 

etc. This arrangement ensures that the system takes the concurrent measurements of 

flame images and radiation signals.

Figure 4.2 shows the physical implementation of the system. The optical probe and all 

optical and electronic parts are integrated as a single unit, offering the system excellent 

portability and robustness. Dedicated application software is also developed as an 

integral part of the system.

The system can be divided into three subsystems:

• Photodetector subsystem: the embedded photodetector and signal-processing board 

(EPSB)

• Imaging subsystem: the optical probe, optical lens, and digital camera

• Computing subsystem: the mini-motherboard

The detailed technical and operational considerations about each subsystem are 

presented successively in the following sections.
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Flame

Embedded photo-detector & signal-processing board

0

Mini-motherboard

Figure 4.1 Block diagram of the flame monitoring system

Figure 4.2 Physical implementation of the flame monitoring system

4.2.1 Photodetector Subsystem

Figure 4.3 shows the block diagram of the photodetector subsystem, i.e., the embedded 

photodetector and signal-processing board, which is developed for the analysis of the 

power spectral density and measurement of flame oscillation frequency.

The embedded board has three separate photodiodes, covering ultraviolet (UV), visible 

(VIS), and infrared (IR) spectral bands, respectively. These three photodiodes are 

placed as close as possible and in the optical path of flame light. The photodiodes 

convert the incoming flame light intensity into current signals corresponding to three 

spectral bands. Each photodiode has its own signal processing channel, which is divided 

into three parts based on its functions. The first part is a photodiode amplifier unit, 

which is used to convert a weak current induced on the photodiode into a voltage signal
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and pre-amplifying it. The second part is a signal conditioning unit, which is used to 

ensure that the signal is adequately amplified and filtered prior to the processing of the 

digital signal. The third part is a digital signal microcontroller (dsPIC), which is used to 

digitize and process the three conditioned signals.

The embedded technique is employed for on-board signal processing for the robustness, 

compactness and fast response of the system. Figure 4.4 shows the physical 

implementation of the embedded board. Detailed schematic and PCB layout of the 

circuit are given in Appendix 1.

Results

Figure 4.3 Block diagram of the embedded photodetector and signal-processing board

Digital Signal 
Microcontroller

RS232 port

Optical sensors

Top view

M M V a t V M a a M K  .'M K V T  r r »  'JS

Bottom view
Figure 4.4 Physical implementation of the embedded photodetector

and signal-processing board 
54



Chapter 4 System Description

4.2.1.1 Photodiodes

Three photodiodes covering UV, VIS and IR spectral bands are used to capture the 

optical radiation of the flame at different spectral bands. The type and specifications of 

the photodiodes selected are summarized in Table 4.1.

Table 4.1 Specifications of the photodiodes [93-95]

Photodiode Name Ultraviolet Visible Infrared

Type SG01M OSD1-5T NT62-271

Wavelength range (nm) 220-360 430-900 900-1700

Peak wavelength (nm) 280 800 1550

Active area (mm ) 0.22 1 0.20

Rise time (ns) — 7 10

Capacitance (pf) 80 7-35 18.5

Dark current (nA) 0.002 0.2-1 0.2

Responsivity (A/W) 0.13 0.18-0.21 0.95

4.2.1.2 Amplifier Unit

Figure 4.5 shows the schematic diagram of the photodiode amplifier unit. In order to 

achieve a high sensitivity, a low bias current op-amp TLV2774 is selected to act as a 

transimpedance op-amp, converting a weak photodiode current into a voltage signal and 

pre-amplifying it. The gain of the amplifier unit depends on the value of feedback 

resistor RF. A larger value results in a higher transimpedance gain but also a greater 

thermal noise. The determination of the feedback resistor depends on the sensitivity of 

the photodiode and the radiation spectrum of the flame to be monitored. From on-site 

experiments (Chapter 5), three different feedback resistors, i.e., 10Mi2, 330kQ and 

680kQ, are selected for UV, VIS and IR photodiodes, respectively. Furthermore, since 

the transimpedance amplifier operating at very high gains has a high tendency to give 

rise to an oscillation at some high frequency above the gain bandwidth cut-off, the
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feedback capacitor CF of 2pf parallel to RF is used to suppress the oscillation to ensure 

the loop stability of the unit [96].

4.2.1.3 Signal Conditioning Unit

The signal conditioning unit is used to further amplify and filter the flame signal from 

the photodiode amplifier unit before Analogue-to-Digital Converters (ADC). Instead of 

a conventional mechanical potentiometer, a digitally-controlled 64-position 

potentiometer RF (DS1844-100) is used for gain adjustment, so that the system can be 

automatically adapted to a wide range of combustion conditions through software 

adjustment. Previous research has suggested that the energy of a flame signal mainly 

distributes between 0~200Hz [97]. Therefore, the sampling rate of ADC should be 

greater than 400Hz in order to obtain the complete power spectrum of the signal. In the 

present study, a sampling rate of 1024 Hz is selected and a second-order Sallen-Key 

low-pass filter with a cut-off frequency of 500Hz is used to avoid spectrum aliasing 

problem caused by digitalization. The signal conditioning unit is shown schematically 

in Figure 4.6. As three signal channels share an identical circuit structure, only one 

channel is depicted in the figure. Figure 4.7 shows the simulated frequency response of 

the second-order Sallen-Key low pass filter using TINA [98],

Figure 4.5 Schematic diagram of the photodiode amplifier unit
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Figure 4.6 Schematic diagram of the signal conditioning unit

Frequency (Hz)

Figure 4.7 Simulated frequency response of the second-order Sallen-Key low pass filter

using TINA
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4.2.1.4 Digital Signal Microcontroller Unit

After conditioned, the three flame signals are simultaneously digitised and processed by 

a dsPIC (digital signal microcontroller, dsPIC33FJ256GP710, Microchip Technology 

Inc.). The specifications of the dsPIC are summarized in Table 4.2. Figure 4.8 shows the 

flow chart of the power spectral density and oscillation frequency measurement, which 

can be divided into two parts: data acquisition and signal processing.

The data acquisition is executed by two ADCs, which are integrated in the dsPIC and 

capable of simultaneously sampling up to 10-bit four input channels. In the present 

work, only three of the four channels are used. The Direct Memory Access (DMA) 

technique is adopted to allow the ADCs to digitize the analogue signals and access the 

system memory, independently of the central processing unit, so the data acquisition 

can be performed continuously without interruption. The sampling rate is 1024 Hz.

The signal processing procedure can be described as the following main steps:

• Remove DC component from signals, since only AC components are of interests.

• Perform FFT (Fast Fourier Transform) using the optimised DSP (Digital Signal 

Processing) library provided by the dsPIC manufacturer. The 40MIPS (million 

instructions per second) CPU speed of the dsPIC ensures that the most time- 

consuming part of the oscillation frequency measurement, i.e., the complex FFT 

computation of 1024 data points, can be performed in 2.5ms.

• Estimate the power spectral density based on the FFT results by using periodogram 

method [99].

• Derive oscillation frequency from equation (3-3).

• Transmit the measurement results to the mini-motherboard via a RS232 

communication port.

The embedded technique enables all three flame signals to be digitized and processed 

on an online continuous basis. It should also be noted that a self-gain-adjustment 

mechanism is also integrated into the software system to ensure that the amplitude of

the signals are within a proper range, not too weak or saturated.
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Figure 4.8 Flow chart of oscillation frequency measurement
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Table 4.2 Specifications of the digital signal microcontroller (dsPIC33FJ256GP710)

[ 100]

Parameter Name Value

Architecture 16-bit

CPU Speed 40 MIPS

Program Memory 256 Kbytes

RAM 32 Kbytes

Operation Voltage Range 3V to 3.6V

Temperature Range -40 to 85

Pin Count 100

Direct Memory Access (DMA Channel) 8

Digital Communication 2-UART, 2-SPI, 2-I2C

Analog Peripherals 32 x 12-bit @ 500 (ksps) 2-A/D

4.2.2 Imaging Subsystem

4.2.2.1 Optical Probe

The optical probe is the objective tube of a commercial endoscope (TEW 18, HSW 

Ltd.). The endoscope was originally designed for inspection in large diesel engines, 

pressure vessels, etc. A complete endoscope consists of an objective tube and an ocular 

tube with a monocular attachment. In order to reduce the size of the system, only the 

objective tube of the endoscope is used in the system. The objective tube has a 90° 

viewing angle with a diameter of 18mm and a length of 900mm.
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4.2.2.2 Digital Camera

The digital camera used in the system is an industrial RGB colour type (UI-1640SE-C, 

IDS Ltd.) with a 1/3 inch CMOS sensor and a resolution of 1280Hxl024V at 25 frames 

per second. The camera features a compact size of 34^32x27 mm. It also features a 

partial scan mode, which allows the camera to capture images up to 265 frames per 

second with a resolution of 320Hx256V, making it ideal for imaging a fast-changing 

object such as a flame. The detailed specifications of the camera are given in Table 4.3.

Table 4.3 Specifications of the camera (UI-1640SE-C) [101]

Parameter Name Value

Interface & Power Supply USB

Lens Mount C-Mount

Sensor Technology CMOS (Aptina)

Resolution 1280Hx 1024V

Resolution Depth 8bit (lObit ADC)

Sensor Size 1/3 inch

Optical Size 4.6x3.6 mm

Pixelpitch 3.60 um

Shutter Rolling

Max. fps in Freerun Mode 25 fps

Exposure Time in Freerun/Trigger Mode 37us- 10s

AOI/ Modes horizontal + vertical

Subsampling Modes horizontal + vertical

Dimensions H/W/L 34 mm, 32 mm, 27 mm

Weight 62 g
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4.2.2.3 Optical Lens

A compact non-zooming imaging lens (MVL50L, Thorlabs Ltd.), with a focal length of 

50mm and viewing-angles of 5.5°(H)x4.1°(V), is used to focus the light from the optical 

probe onto the CMOS sensor of the digital camera. The lens features a manually 

adjustable focus and iris. The adjustable focus enables the system to image objects at 

different distances. The adjustable iris (f/2.8 to f/22) can be used to control the depth of 

field as well as the amount of light that reaches the imaging sensor. The diameter of the 

aperture is measured in f-stops. A lower f-stop number opens the aperture, admitting 

more light onto the imaging sensor but narrowing the depth of field, whilst a higher f- 

stop number reduces the aperture and admits less light onto the sensor but deepens the 

depth of field. In the present work, a deep depth of field is desirable so that the system 

can obtain a clear image of the flame along the optical path.

4.2.3 Computing Subsystem

4.2.3.1 Mini-Motherboard

A high-performance mini-motherboard (PICO820, Axiomtek Ltd.) is integrated in the 

system to acquire and process images captured by the digital camera. The low power 

consumption mini-motherboard features with a 1.6 GHz processor and an ultra-compact 

size of 100mmx72mm. A 16 GB high speed industrial CompactFlash card is used as the 

storage device, wherein the Window XP operation system is installed. The mini

motherboard also performs as the master board for controlling and receiving data from 

the photodetector subsystem so as to achieve parallel and real time signal processing. 

All the measurement results are transmitted to a remote computer system via Ethernet. 

A brief description about the PICO820 mini-motherboard is given in Table 4.4.
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Table 4.4 Specifications of the mini-motherboard (PICO820) [102]

Parameter Name Value

CPU Intel Atom processor Z530 1.6 GHz

Size 100x72mm

Board thickness 1.6mm

I/O 2 COM, 4 USB 2.0,1 10/100Mbps Ethernet

System memory DDR2-400/533 max. up to 2GB

SSD 1 x CompactFlash™ type-II

Power requirements +5V DC @ 1.625A

4.2.3.2 Software

Dedicated computing software was developed using standard C++ in the Microsoft 

Visual Studio environment.

The GUI (Graphical User Interface) of the software is designed based on MFC 

(Microsoft Foundation Class) library. A typical screenshot of the GUI is shown in 

Figure 4.9. The GUI provides an on-line display of flame image and radiation signals as 

well as the measured flame characteristic parameters, including 2-D temperature 

distribution, power spectral densities, geometrical and luminous parameters, etc. The 

GUI also gives the full management of the software system, including the start, stop, 

pause and continuation of the operating process, the control of the digital camera 

(exposure time and gains), the EPSB, and the data log.
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Figure 4.9 Screenshot of the graphical user interface

The work flow of the software is illustrated in Figure 4.10. On the one hand, the mini- 

mother board severs as the master board, receiving raw flame radiation signals and their 

processed results from EPSB and displaying them on an online basis. On the other hand, 

it acquires and processes the flame images, which can be described as the following 

main steps:

• Setup camera (exposure time, gain, etc.) and allocate memory buffers for image 

acquisition.

• Acquire image from allocated memory, and check the brightness of the image. If the 

image is over-exposed or too dark, adjust the exposure time and/or gain settings 

accordingly.

• Extract flame characteristics, including geometrical and luminous parameters, flame 

stability index, 2-D temperature distribution, etc.

• Display and record the results, and transmit the results to remote computer if 

required.
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Figure 4.10 Flow chart of measurement procedure of computing subsystem
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4.3 Evaluation of Photodetector Subsystem

4.3.1 System Characteristics

The flame irradiance received by the photodiodes can vary dramatically from one case 

to another, depending on a number of factors such as fumace/bumer structure, fuel type, 

fuel-to-air ratio, and measurement point. To prevent saturated or too weak signals, the 

amplitude of the raw analogue signals induced on the photodiodes should be adjusted 

accordingly by controlling the digital potentiometer Rp in the signal conditioning unit of 

the photodetector subsystem, as shown in Figure 4.6. To achieve the automatic 

adjustment of the subsystem to cater a wide range of flame irradiance, the relationship 

between the setting of digital potentiometer RP and the resulted actual gain should be 

determined.

The digital potentiometer (DS1844-100) is comprised of 63 equi-resistive sections and 

has three terminals, i.e., the high-side terminal, the wiper terminal, and the low-side 

terminal. The gain of the signal conditioning unit, PGcoef, which is determined by the 

setting of the wiper position of the digital potentiometer, can be calculated theoretically 

as

PGcoef =
Ri+Rp (4-1)

where Ri is the lOOkQ resistor in Figure 4.6, Rp is the lOOkQ digitally-controlled 64- 

position potentiometer, and s e [0,1,2 ... 63] is the controllable wiper position of Rp.

An infrared LED powered by a 20MHz Function/Arbitrary Waveform Generator 

(33220A, Agilent Technologies Ltd.) was employed as a standard frequency-varying 

light source to measure the variation of actual gain with the wiper position of the 

potentiometer RP. During the measurements, the amplitude and frequency of the LED 

light were kept constant (waveform of the function generator: sine). The gain was 

measured based on the peak-to-peak value of the captured sine signal. Figure 4.11 

shows the variation of the theoretical and actual gains with the wiper position of the
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digital potentiometer Rp (as three signal channels share an identical circuit structure, 

only the result of infrared channel is presented here). It has been found that the 

theoretical values are well-matched with measured results, and the maximum relative 

error is about 0.33%.

4.3.2 Evaluation of Oscillation Frequency Measurement

The standard frequency-varying light source was also used to evaluate the accuracy of 

the oscillation frequency measurement. Figure 4.12 (a) shows a typical example of the 

signal captured by the system when the standard frequency-varying light source was set 

to 20Hz, whilst Figure 4.12 (b) shows the corresponding result of power spectral density 

estimate. Figure 4.13 shows the comparison between the measured and reference 

frequencies. Each data point is the average of ten instantaneous values. It was found that 

the relative error of the frequency measurement is no greater than 2% over the 

frequency range from 0 to 500 Hz. (The relative error is defined as the absolute error 

divided by the true value).

Figure 4.11 Variation of gain with the wiper position of the digital potentiometer

67



Chapter 4 System Description

(a) Time domain

(b) Power spectral density

Figure 4.12 A typical example of the signal captured and its corresponding power

spectral density
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Figure 4.13 Comparison between the measured and reference frequencies

4.4 Evaluation of Imaging Subsystem

4.4.1 System Characteristics

To achieve the automatic adjustment of the digital camera to avoid under- or over

exposure of flame images, the effects of camera settings, including exposure time, 

master gain, gain boost and R/G/B gain, on the intensity responses of R/G/B channels 

should be determined. Moreover, the dark current of the camera sensor has a significant 

impact on the measurement accuracy, especially for pixels whose grey-level intensities 

are very low, and thus the dark current of camera sensor should also be taken into 

consideration.

All above-mentioned factors were evaluated using a standard blackbody furnace 

(Landcal R1500T, as show in Figure 4.21), which has a very stable irradiance under a 

given temperature. The blackbody furnace has a blackbody cavity of 45mm inner
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diameter and 100mm length with an emissivity of approximately 0.99. The furnace was 

calibrated by the manufacturer for a temperature range from 500°C to 1500°C. Table

4.5 shows the specifications of the blackbody furnace.

Table 4.5 Specifications of the blackbody furnace (Landcal R1500T) [103]

Parameter Name Value

Temperature range 500°C/950°F to 1500°C/2750°F

Heating rate 30 minutes to 1450°C/2650°F

Stability
Radiance temperature variation <±1K 
(±0°F)over 20 minute period

Uniformity

The temperature gradients across the 
middle 40mm of the 45mm cavity are 
within ±2°C at 500°C, and within ±1°C at 
1500°C

Radiation cavity

Material Silicon carbide

Design Cylinder with 120° conical end

Inner diameter 45mm/1.8in

Inner length
100mm/4.0in. When the radiation cavity is 
installed in the source, the distance from 
front face to cone point is 145mm/5.7in

External aperture Approx. 38mm/1.5in.

Emissivity Approximately 0.99 at short wavelengths

4.4.1.1 Sensor Dark Current

The dark current o f camera sensor was assessed by covering the cap of the camera to 

produce a complete dark environment. Table 4.6 shows the measured average grey-level 

intensity of dark frames under different camera settings. As can be seen, among the 

tested settings, the offset caused by sensor dark current is affected only by the setting of 

the gain boost, irrespective of exposure time, master gain, and R/G/B gains.
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The offset caused by sensor dark current increases when gain boost is enabled. Figure 

4.14 (a) and (b) show the offset distribution of the red channel of the camera, which was 

generated from a single dark frame at the settings of gain boost off (disabled) and on 

(enabled), respectively. The corresponding distributions of the green and blue channels 

are very similar, therefore only the result of the red channel is given. When the gain 

boost is off, 99.94% pixels of the image have same grey-level intensity of 2. When the 

gain boost is on, the offset are mainly distributed at grey-level intensities of 4 and 5.

The result is important for the temperature measurement that is based on the two-colour 

method. The corresponding dark frame should be subtracted from the image before the 

calculation of temperature.

Column

(a) Gain boost off

Figure 4.14 Distribution of a single red dark frame image (a)
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(b) Gain boost on

Figure 4.14 Distribution of a single red dark frame image (b)

Table 4.6 Averaged grey-level intensity of offset caused by dark current

of camera sensor

Exposure time 
(min ~ 10ms) Off

Gain boost 

On
Master gain 

(0-100)
R/G/B gains 

(0-100)

R 2 2 4.66* 2 2

G 2 2 4.89* 2 2

B 2 2 4.77* 2 2
♦The grey-level intensities of individual pixels are distributed at 4 and 5.

4.4.1.2 Exposure Time

The exposure time of an image is determined by the electrical shutter of the digital 

camera, which can be controlled through software. The adjustment of the exposure time 

can be used to avoid the under- and over-exposure of the image. The effects of the
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exposure time on R/G/B intensities were assessed by taking the image of the blackbody 

furnace for different camera exposure durations at a fixed temperature setting. Figure 

4.15 illustrates the relationship between the averaged grey-level intensities of the 

blackbody images and the camera exposure time for the R, G and B channels at the 

temperature of 1250°C. The exposure time is normalized to the maximum exposure 

time at which the image approaches saturation. As can be seen, the intensities of the 

R/G/B channels vary linearly with the exposure time. The non-linearity of the system is 

in the range of 0.23%, which is derived by

N o n l i n e a r i t y  = —  x 100%, (4-2)Umax umin

where O max and O mm are the maximum and minimum output of the system, respectively, 

and N max is the maximum deviation of the system output from the corresponding output 

of an idealized linear system.

Figure 4.15 Relationship between the averaged grey-levels of blackbody images and 

camera exposure time for camera R, G and B channels
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4.4.1.3 Master Gain

Three types of gain settings, i.e., master gain, gain boost, and R/G/B gains, can be used 

to control the intensity sensitivities of the R/G/B channels. The master gain and R/G/B 

gains can be varied from 0 to 100, while the gain boost can be set “on” or “off’. All 

three types of gain settings control the analogue image signal gain. The analogue 

adjustments can be made directly in the sensor, which achieves better results than 

adjustments via software. However, the relationships between these camera gain 

settings and the actual gain coefficients are unknown, and therefore should be analysed.

Frame images of the blackbody source were captured at various master gain settings. 

The relationships between the grey-level intensities of the R/G/B channels and the 

setting of master gain are shown in Figure 4.16. Figure 4.17 illustrates the variation of 

the corresponding actual gain coefficient with the setting of the master gain, which is 

obtained through normalizing the grey-levels by that at master gain setting of 0. As can 

be seen, master gain produces the same gain coefficients for all the three R/G/B 

channels.

A polynomial function is used to fit the relationship between the master gain setting and 

actual gain coefficient, i.e.,

MGcoef =  Pi *MGainA3 + p2 *MGainA2 + p3 *MGain + p4, (4-3)

where MGain is the setting of the master gain, MGcoef is the actual gain coefficient, 

and p1( p2, P3 and p4 are the coefficients of the polynomial function, pt = 1.581e -  6, 

p2 =  3.589e -  5, p3 = 0.01595, p4 = 0.9749.
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Figure 4.16 Variations of pixel value with master gain setting

Figure 4.17 Variations of actual gain coefficient with master gain setting
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4.4.1.4 Gain Boost

Another controllable gain setting that affects simultaneously all the three R/G/B 

channels is the gain boost. The gain boost can be set “on” or “off’. The frame images of 

the blackbody source for the gain boost “on” and “off’ were captured, respectively. It 

has been found that the intensities of the R/G/B channels are all doubled when the gain 

boost is “on”. It should be noted that although the enabling of the gain boost increases 

simultaneously the intensity sensitivities of the R/G/B channels, it also increases the 

sensor dark current, as shown in Table 4.6.

4.4.1.5 R/G/B Gains

The R/G/B gains can vary from 0 to 100. The frame images of the blackbody source for 

various R/G/B gains were captured. The corresponding relationships between the grey- 

level intensities and the R/G/B gains are shown in Figure 4.18, 4.19 and 4.20, 

respectively. As can be seen, unlike the exposure time, master gain and gain boost, the 

R gain (some for G and B gains) controls only its own channel, not affecting other two 

channels. Therefore, the R/G/B gains can be adjusted separately to broaden the effective 

dynamic range of the measurement channels. For example, when the signal in the B 

channel is too weak to be analysed and increasing exposure time, master gain, or gain 

boost would cause the saturation of the R/G channels, the data quality can be improved 

by increasing only B gain.

A polynomial function is used to fit the relationship, i.e.,

„ ^ ( 1 + 0.02312 * Gainit 0 <  Gain < 9 0  .
G c o e f i - y  2.0808, 90 < Gain <  100 l ~ R' G>B ’ (4-4)

where Gaini is the setting of the R/G/B gain, and Gcoefi is the actual zooming 

coefficient.
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Figure 4.18 Pixel values for various R gain settings

Figure 4.19 Pixel values for various G gain settings
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Figure 4.20 Pixel values for various B gain settings

4.4.2 Calibration of Temperature Measurement

The imaging system developed can be used to monitor and characterize the emissive 

properties of soot particles in flames, including soot temperature, emissivity and 

concentration, based on pyrometric techniques. For the temperature measurement, the 

instrument factor SXr/SXg, as depicted in (3-56), must be known. For the emissivity 

measurement, the blackbody grey-level intensity Gb (AR, T ) ,  as depicted in (3-60), must 

be known.

The calibration of the instrument factor SXr/SXg and the blackbody grey-level intensity 

Gfe(AR,T) was carried out by using the blackbody furnace to reproduce the geometrical 

relationship between the imaging system and the flame to be measured in the 

temperature range from 900°C to 1500°C with an interval of 50°C. Figure 4.21 shows 

the experimental setup of the system for temperature calibration. It should be noted that 

because the radiation intensity of the blackbody furnace varies in a very wide range 

from temperature 900° to 1500°, it is inevitable to obtain under or over-exposed images
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of the blackbody if using a fixed exposure time, as illustrated in Figure 4.22. Therefore, 

the images of the blackbody source at different temperatures were taken under different 

exposure times. However, because the temperature is derived from the grey-level ratio 

of two primary colours, the high linearity of the system for different camera exposure 

times, as shown in Figure 4.15, has suggested that the exposure time does not affect the 
grey-level ratio hence the temperature measurement.

The obtained relationship between the instrument factor and the grey-level ratio is given 

in Figure 4.23. A polynomial function, as depicted in (4-5), is used to fit the relationship.

Figure 4.24 shows the variation of the grey-level intensity of the R channel of the 

blackbody image with the temperature at the normalized exposure time of 1.7 ms. It has 

been found that the variation is satisfied by a Gaussian function, i.e.,

It should be noted that the sensor offset (dark response) was subtracted before the 

calibration. In addition, the calibration of the system was conducted under the room 

temperature (20°C~25°C). There was unfortunately no opportunity and condition for 

calibrating the system under industrial environments during the period of this study. 

However, industrial on-site experiments (Chapter 5) showed that the water-cooling 

jacket can effectively prevent the imaging unit of the system from the excessive heat 

from combustion chamber, and thus the temperature within the imaging unit mainly 

depends on the surrounding environment (30°C~40°C) of combustion chamber and the 

heat released by the electronic components within the imaging unit. It was also found 

that after eight hours on-line operation under the industrial environment, the system still 

worked normally without over-heating problem and the temperature of camera case 

remained cool, which suggests that the industrial environment might not significantly 
affect temperature measurement of the system.

(4-5)

fT -2 2 1 * \

Gb(XR,T) = 3340 *e V 443 ) . (4-6)
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Figure 4.21 Experimental setup of the temperature calibration using blackbody furnace

Figure 4.22 Blackbody images captured for different temperatures settings under the

same camera exposure time
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Figure 4.23 Variation of instrument factor with grey-level ratio

1100 1200 1300
Blackbody temperature (°C)

1500

Figure 4.24 Relationship between the grey-level intensities of R component and

blackbody temperature
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4.4.3 Evaluation of Temperature Measurement

The accuracy of the temperature measurement was evaluated by applying the imaging 

system to measuring the true temperature of a standard tungsten lamp. The tungsten 

lamp (Engel and Gibbs Ltd.) was pre-calibrated by National Physical Laboratory at the 

wavelength of 662.4nm with regard to the apparent temperature ranging between 700°C 

and 1500°C. The apparent temperature of a surface at a given wavelength is defined as 

the temperature at which a blackbody source has the same spectral radiance. The 

detailed technical specification of the pre-calibration of the tungsten lamp can be found 

in [104].

During the evaluation, the apparent temperature of the tungsten lamp was set from 

900°C to 1500°C with an interval of 50°C by controlling the current of the power 

supply. The corresponding true temperatures of the tungsten lamp, which can be derived 

from its apparent temperature by using the method given in [11], varied from 958°C to 

1650°C. Figure 4.25 shows the comparison between measured and reference 

temperatures. It was found that the maximum absolute error of 14.8°C occurs at the true 

temperature of 1650°C and is equivalent to the relative error of 0.9% (The relative error 

is defined as the absolute error divided by the true value).

In Section 4.4.1, it has been found that the system exhibits a linear characteristic for 

different camera exposure times for all three channels (R, G, and B). Furthermore, both 

master gain and gain boost produces the same gain coefficients for all three channels. 

These facts suggest that variations in the exposure time, master gain, and gain boost do 

not affect the grey-level ratio, hence the accuracy of the temperature measurement. This 

is particularly important when applying the system to industrial furnaces where the 

flame irradiance can vary significantly and thus the camera has to be adjusted to avoid 

under- or over-exposure of images. It should also be noted that the R/G/B gains control 

only their corresponding individual channels, and the adjustment of R/G/B gains would 

affect the grey-level ratio and hence the temperature measurement. Therefore, the effect 

of R/G/B gains on the grey-level ratio, as shown in Figure 4.18, 4.19 and 4.20, must be 

considered in the temperature calculation if the adjustment of R/G/B gains is required.
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Figure 4.25 Comparison between the measured and reference temperatures

4.5 Summary

An instrumentation system for monitoring flame stability and burner condition in 

industrial boilers has been designed and implemented. The system operates on optical 

sensing and digital imaging techniques.

The performance of the oscillation frequency measurement of the system has been 

evaluated by using a standard frequency-varying light source. The relative error is no 

greater than 2% (frequency range: 0 to 500Hz). In order to achieve automatic 

adjustment of the camera to avoid under- and over-exposure of flame images, the 

effects of various factors, including sensor dark current, exposure time, master gain, 

gain boost and R/G/B gains, on the intensity responses of the R/G/B channels of the 

camera, have been analysed. The temperature measurement of the system has been 

calibrated by using a blackbody furnace as a standard temperature source. The accuracy 

of the temperature measurement has been verified by applying the system to measuring 

the true temperature of a standard tungsten lamp. The maximum error of 14.8°C occurs 

at the true temperature of 1650°C (equivalent to the relative error of 0.9%).
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Chapter 5

Tests on a 9MWlh Heavy-Oil-Fired Combustion Test Facility

5.1 Introduction

Tests were conducted on a 9MWth industrial-scale heavy-oil-fired Combustion Test 

Facility (CTF) at Zhejiang University, P. R. China. The objectives of the tests were 
defined as follows:

• To assess the performance of the flame imaging system

• To evaluate the effectiveness of the methods presented in Chapter 3, including flame 

stability assessment, KPCA based abnormal condition detection, and SVM based 
NOx prediction and flame state identification

• To investigate the characteristics of heavy oil flames under different combustion 
conditions

A wide range of combustion conditions were created during the tests, including 

variations in the swirl vane angle of Tertiary Air (TA), the swirl vane position of 

Secondary Air (SA), the ratio of Primary Air (PA) to total air, the ratio of Overfire Air 

(OF A) to total air and the nozzle position of OF A. Previous studies suggested that these 

burner parameters affect significantly the aerodynamics of the entering air flow and its 

mixture level with fuel thus the structure and stability of the flame. The impacts of these 

burner parameters on the stability and characteristics of heavy oil flame are reported in 
this chapter.

To evaluate the effectiveness of the KPCA for combustion process monitoring, 

abnormal conditions were created deliberately by setting the CTF deviated from its 

baseline configuration. The performance of the KPCA model will be evaluated and 

compared with that of the PCA model. Furthermore, the results of the SVM in the 

prediction of NOx emission and identification of flame state will be presented and 
compared with that of the ANNs.
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5.2 Experimental Conditions

5.2.1 Combustion Test Facility and System Installation

The 9MWth heavy-oil-fired CTF at Zhejiang University was constructed to assess the 

performance of the scaled model of a burner designed for a heavy-oil-fired boiler

Figure 5.1 shows the overview of the CTF. The CTF has an 11 meters long horizontal 

cylindrical combustion chamber with an internal cross-section of 1.3 metres in diameter. 

Heavy oil fuel was atomised by steam, and injected into the combustion chamber 

through an oil gun, and then mixed with surrounding PA, SA, and TA successively. 

OFA technique is adopted in the CTF to reduce NOx emissions. Four OFA nozzle ports 

are fitted along the combustion chamber of the CTF.

Figure 5.2 shows the schematic diagram of the CTF and the installation location of the 

flame imaging system. The CTF is fitted with a number of viewing ports around the 

chamber. The imaging system was installed through one of the viewing ports that is at 

the side of furnace close to the front wall. The resulting field of view of the imaging 

system was about 1.3 metres in diameter along the burner axis. The root region of the 

flame, which is regarded as the primary reaction zone of the combustion process in 

terms of energy conversion and emission formation, was fully observed.
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Overfire a ir ports Tertiary a ir Secondary a ir P rim ary air

Figure 5.1 The 9MWti, heavy-oil-fired combustion test facility

Figure 5.2 Schematic diagram of the combustion test facility and the installation 

location of the flame imaging system
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5.2.2 Properties of Heavy Oil

The heavy oil used in the tests stemmed from Saudi Arabia. The properties of the heavy 
oil are listed in Table 5.1.

Table 5.1 Specifications of the heavy oil tested

Parameter Name Value

Flash point (°C) 65

Pour point (°C) 24

Kinematic Viscosity @50°C (cSt) 380-400

Water content % (Vol) 0.2-1.0

Carbon (wt%) 85-87

Hydrogen (wt%) 10-12

Nitrogen (wt%) 0.1-0.4

Oxygen (wt%) 0.5-3.0

Sulfur (wt%) 4.0

Ash content (wt%) 0.2 Max

Asphaltenes (wt%) 5.0-15.0

Thermal value gross (gross) 
High heating value (BTU/Lb) 18300- 18700

Thermal value (Net)
Low heating value (BTU/Lb) 17300- 17700
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5.2.3 Test Programme and Measured Flame Parameters

The distribution of the air supplies (PA, SA, TA and OF A) and the configuration of the 

swirl vanes (angle and position) affects significantly the aerodynamics of the entering 

air flow and its mixture level with oil fuel thus the structure and stability of the flame. 

To investigate the impacts of these factors on the characteristics of oil flames, a wide 

range of combustion conditions were created on the CTF, including

• Variations in the swirl vane angle of tertiary air

• Variations in the swirl vane position of secondary air

• Variations in the ratio of primary air to total air

• Variations in the ration of overfire air to total air and its nozzle position

The entire test programme lasted two days. During the tests, an oil-free air compressor 

was used to supply the purging air (flow rate: 20 litres per minutes; pressure: 2 bars) to 

clean the tip lens of the optical probe. Water supply was provided to cool system jacket. 

The on-site experiments showed that the air purging and water cooling approach is 

capable of keeping the optical system dust-free and preventing its over-heating problem 

effectively, provided that the period of continual operation is within eight hours (the 

maximum period of the continual test during the test programme).

Detailed test programme is summarized in Table 5.2. When a specific factor was tested, 

other factors were kept constant. For each test, the measured parameters include the 

flame stability index, power spectral density, oscillation frequency, and temperature. To 

present the obtained results statistically, each data point is an average of 50 

instantaneous values. The standard deviation of each data point was also computed and 

is shown as an error bar in corresponding figures. The NOx emissions of flue gas, which 

were measured concurrently by a gas analyser during the tests, are also given.

To evaluate the performance of the computing algorithms presented in Section 3.3 for 

the burner condition monitoring, a total of 27 flame characteristics were extracted from 

flame sensorial data and used as the inputs of the KPCA and SVM models. The detailed 

description about these flame characteristics have been given in Section 3.3.1.
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Table 5.2 Summary of the test programme on the 9MW* combustion test facility

Distribution of air supply Configuration of swirl vanes

No Test Primary air 
(%)

Secondary air 
(%)

Tertiary air 
(%)

Overfire air 
(%)

Swirl vane 
position of 
secondary air 
(mm)

Swirl vane 
angle of 
tertiary air

1 Swirl vane angle of 
tertiary air 17% 43% 40% 0

25°
— 35°

45°

Swirl vane position of 
secondary air

-17
2 17% 43% 40% 0 30 —

65
11 46

Ratio of primary air to 
total air

14 43

3 17 43 40 0 — —

20 37

23 34

17.0 43.0 40.0 0

4 Ratio and nozzle 14.5 36.5 34.0 15.0*
position of overfire air 14.0 35.5 33.0 17.5*

13.6 34.4 32.0 20.0*
*Two different OFA nozzles were tested (OFA2 and OF A3).
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5.3 Results of Flame Stability Monitoring

5.3.1 Different Swirl Vane Angles of Tertiary Air

The swirling intensity of air flow affects significantly the intermixing of atomised oil 

fuel and air flow hence subsequent combustion performance. The adjustable settings of 

the CTF that are capable of controlling the swirling intensity of air flow include the 

swirl vane angle of the TA and the swirl vane position of the SA. This section presents 

the test results for the different swirl vane angles of the TA.

The TA swirl vane angle determines the direction of the tertiary air flow. It is defined as 

the angle between the swirl vane and the plane perpendicular to the burner axis. The TA 

swirl vane angle of the burner can be varied from 0° to 90°. When the angle is 0° the 

TA inlet is fully closed, whilst when 90° the TA inlet is fully open without any swirling. 

Under the same flow rate, a smaller swirl angles gives a stronger swirling intensity.

During the test, three different swirl vane angles of the TA, i.e., 25°, 35°, and 45°, were 

created. Figure 5.3 shows the typical examples of instantaneous heavy oil flame images 

obtained under these three conditions. It should be noted that the images were over

exposed deliberately for an observation and presentation purpose. A direct comparison 

among the images has suggested that a greater TA swirl vane angle resulted in a 

stretched flame. This can be understood by the fact that the stronger the swirling 

intensity of the tertiary air, the stronger centrifugal force the air flow has, resulting in a 

wide spread angle of the flame.
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25° 35°

Figure 5.3 Flame images taken for different swirl vane angles of tertiary air

Figure 5.4 shows the variation of the stability index (Section 3.2.3) with the TA swirl 

vane angle. As mentioned, each data point is an average of 50 instantaneous values, and 

the standard deviation is shown as error bars in the figure. The stability index increased 

with the vane angle, which suggests that an increased TA swirl vane angle would result 

in improved flame stability. The lowest stability index is observed at 25°, suggesting the 

flame is relatively unstable under such a swirl vane angle settinu.

This result is in line with the results of the PSD and oscillation frequency of the flame. 

Figure 5.5 and 5.6 illustrate typical examples of the PSD estimates (Section 3.2.2) of the 

flame radiation signals taken in the visible and infrared bands for the test conditions, 

respectively. As can be seen, for both the visible and infrared bands, the amplitude of 

the low-frequency components for 25° (0~10Hz) is much higher than that for 35° and 

45°, whilst the high-frequency components are very similar in all three cases. Previous
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studies have revealed that the low-frequency components in the flame signal are mainly 

attributed to its geometrical fluctuations due to aerodynamic or convective effects, 

whilst the high-frequency components reflect kinetic variations in the heat release rate 

or energy transitions in intermediate radicals. The PSD estimates of the flame signals 

have thus suggested that the TA swirl vane angle has a significant impact on the 

geometrical characteristics of the flame. This has been demonstrated more clearly in 

Figure 5.7 where the weighted oscillation frequency (Section 3.2.2) has shown an 

increased trend with the TA swirl vane angle, indicating increased flame stability in 

terms of the flame geometric characteristics.

Figure 5.8 suggests a slight increase in the averaged flame temperature with the TA 

swirl vane angle. An increased standard deviation of the average temperature (shown as 

error bars in the figure) is also observed at 25°, indicating a greater fluctuation of the 

flame temperature under such a swirl vane angle setting. It can therefore be concluded 

that, under the TA swirl vane angles 35° and 45°, the flame is more stable in terms of its 

geometric, luminous and fluid-dynamic characteristics. This finding is also consistent 

with the emission analysis of the flue gas. As shown in Figure 5.9, the volume of NOx 

in the flue gas decreases with the swirl vane angle, suggesting that it is crucial to 

maintain a stable flame for reduced NOx emissions.
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Swirl vane angle o f tertiary air

Figure 5.4 Variations of stability index with the swirl vane angle of tertiary air

Figure 5.5 Variations of power spectral density estimates of flame radiation signal in

visible band with the swirl vane angle of tertiary air
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Frequency (Hz)

Figure 5.6 Variations of power spectral density estimates of flame radiation signal in 

infrared band with the swirl vane angle of tertiary air

Figure 5.7 Variations of oscillation frequency with the swirl vane angle of tertiary air
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Figure 5.8 Variations of average temperature with the swirl vane angle of tertiary air

Figure 5.9 Variations of NOx emission with the swirl vane angle of tertiary air
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5.3.2 Different Swirl Vane Positions of Secondary Air

Following the test of the TA swirl vane angle, a test was conducted to investigate 

another adjustable CTF setting affecting the swirling intensity of air llow, i.e., the swirl 

vane position of the SA. For the SA of the CTF, part of the air flow goes through the SA 

swirl vane, and the rest bypasses the swirl vane and goes straightforward into the 

combustion chamber. The SA swirl vane position controls the amount of air going 

through the swirl vane hence the swirling intensity of the overall SA. The lower the 

swirl vane position, the more air goes through the swirl vane, and the stronger swirling 

intensity. During this test, three different SA swirl vane positions, i.e., -17mm, 30mm 

and 65mm, were created.

-17mm 30mm

65mm

Figure 5.10 Flame images taken for different swirl vane positions of secondary air
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Figure 5.10 shows the typical examples of instantaneous heavy oil flame images for 

different SA swirl vane positions. Similar to the influence of the TA swirl vane angle, a 

direct comparison among the images has suggested that a greater SA swirl vane position 

resulted in a slightly stretched flame. This can be understood by the fact that the 

stronger the swirling intensity of the secondary air, the more air goes swirly towards 

away from the burner axis due to the effect of centrifugal force, resulting in a wide 

spread angle of the flame.

Figure 5.11 shows the variations of measured stability index with the SA swirl vane 

position. The stability indices at -17mm and 30mm are similarly low, about 0.67, while 

an increased stability index is observed at 65mm, indicating a more stable flame under 

such a vane position setting.

Figure 5.12 and 5.13 illustrate the typical examples of the PSD estimates of the flame 

radiation signals taken in the visible and infrared bands for the test conditions, 

respectively. It can be seen clearly that a strong swirling intensity, which is generated 

by a low swirl vane position, gave rise to high amplitudes in both the low-frequency 

components and high frequency components, resulting in a similar oscillation frequency 

for all three vane positions (Figure 5.14). The PSD estimates of the flame signals have 

suggested that the SA swirl vane position has a significant impact on both geometrical 

and kinetic characteristics of the flame.

Figure 5.15 shows the averaged flame temperature under the test conditions. A 

decreased standard deviation of the average temperature is observed at 65mm, 

indicating improved flame stability in terms of fluid-dynamic characteristics at this 

condition. It can therefore be concluded that, under the SA swirl vane position 65mm, 

the flame is more stable in terms of its geometric, luminous and fluid-dynamic 

characteristics. This is also in line with the NOx emission analysis of the flue gas. As 

shown in Figure 5.16, the volume of NOx emissions in the flue gas reached its lowest 

value at SA 65mm among the three tested conditions, suggesting the importance of 

flame stability for reduced NOx emissions.
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Swirl vane position of secondary air (mm)

igure 5.11 Variations of flame stability index with the ratio of primary air to total air

Figure 5.12 Variations of power spectral density estimates of flame radiation signals in

visible band with the ratio of primary air to total air
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Frequency (Hz)

Figure 5.13 Variations of power spectral density estimates of flame radiation signals in 

infrared band with the ratio of primary air to total air
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Figure 5.14 Variations of oscillation frequency with the ratio of primary air to total air

■17 30 65
Swirl vane position of secondary air (mm)
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Figure 5.15 Variations of average temperature with the swirl vane position of secondary

air

Figure 5.16 Variations ot NOx emission with the swirl vane position of secondary air
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5.3.3 D ifferen t R atios o f P rim ary  A ir to T otal A ir

The purpose of this test was to investigate the impacts of the spatial distribution of air 

flow on the stability and characteristics of the heavy oil flame. During this test, the total 

air flow rate (9100Nm3/h) and the ratio of SA to total air (43%) provided for the burner 

were kept constant. When the ratio of PA to total air increased, the ratio of TA to total 

air decreased by the same degree correspondingly. Five different PA ratios, i.e., 11%, 

14%, 17%, 20% and 23% were tested. Figure 5.17 shows the typical images of the 
instantaneous heavy oil flame under different PA ratios.

Chapter 5 Tests on a 9MWth Heavy-Oil-Fired Combustion Test Facility

PA 1!% PA 14%

PA 17% PA 20%
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PA 23%

Fiuure 5.17 Flame images taken for different ratios of primary air to total air

Fiuure 5.18 suggests that with the increase of the PA ratio, the stability index increases 

gradually, indicating improved flame stability. The lowest stability index value of 0.71 

is obtained at PA 11%, suggesting the flame is relatively unstable under such a PA ratio.

The result of the flame stability index is supported by the power spectral density 

analysis, as illustrated in Figure 5.19 and5.20. It has been observed that the amplitudes 

of the low-frequency components (<10Hz) at PA 11% in both visible and infrared bands 

are much hiaher than that at other conditions, resulting the lowest oscillation frequency

amona the five test conditions (Figure 5.21), which indicates an increased geometrical 
fluctuation at such a condition.

The result of the flame stability index is also consistent with the emission analysis of the 

flue gas. As shown in Figure 5.23, the volume of NO* emissions in the flue gas 

decreases with the PA ratio, suggesting that it is crucial to maintain a stable flame for 

reduced NOx emissions. The decreased NOx emissions may also be relevant with the 

slightly decreased temperature, as shown in Figure 5.22. It has been found that the 

average flame temperature decreased slightly with the increase of the PA ratio. The 

slightly decreased temperature may be due to the distribution of the fuel spray of the 

burner. The fuel is lean inside and rich outside within the cross-section of the burner 

axis. With the increase of the PA ratio, the TA decreased accordingly, resulting in a 

decreased oxygen concentration in the fuel rich zone hence a decreased temperature.
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Figure 5.18 Variations of flame stability index with the ratio of primary air to total air

Frequency (Hz)

Figure 5.19 Variations of power spectral density estimates of flame radiation signals in

visible band with the ratio of primary air to total air
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Frequency (Hz)

Figure 5.20 Variations of power spectral density estimates of flame radiation signals in 

infrared band with the ratio of primary air to total air

Figure 5.21 Variations of oscillation frequency with the ratio of primary air to total air
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Figure 5.22 Variation of average temperature with the ratio of primary air to total air

Ratio o f primary air to total air (%)

Figure 5.23 Variations of NOx emission with the ratio of primary air to total air
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5.3.4 D ifferen t R atios an d  Nozzle Positions o f  O verfire  A ir

The OFA is an effective technology for reducing NOx emissions from a combustion 

process. Combustion air is reduced from the burner to create a fuel rich condition in the 

primary combustion zone. Fuel-bound nitrogen conversion to NO is inhibited in the 

furnace. More importantly, the peak flame temperature is reduced to limit thermal NOx 

formation. A large amount of air is then fed and intersected the combustion gases in the 

downstream of the furnace to complete the combustion [105].

A test was conducted on the CTF to reveal the impacts of the ratio of OFA to total air, 

and the location of OFA nozzle port on the stability and characteristics of the heavy oil 

flame. The second and third OFA nozzles, assigned OFA2 and OFA3 (Figure 5.1), were 

tested. The distances from the burner outlet to the two OFA nozzle ports are 4.5m and 

6.6m, respectively. For each OFA port, four different OFA ratios were created, i.e., 0%, 

15.0%, 17.5% and 20.0%, whilst the total air was kept constant during the test.

Figure 5.24 shows typical examples of instantaneous flame images under tested 

conditions. A direct comparison between the OFA flame and non-OFA flame (OFA 0%) 

has suggested that the OFA flame has a stretched shape (the spread angle of the flame is 

narrowed) due to the reduced amount of SA and TA.

OFA-0% OFA2-15.0%
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OFA2-17.5% OFA2-20.0%

OFA3-20.0%

Figure 5.24 Flame images taken for different ratios of overfire air for different nozzle

positions
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5.3.4.1 Flame Stability

Figure 5.25 illustrates the variations of the stability index with the ratio and nozzle 

position of the OFA. It has been found that the flame stability does not deteriorate with 

the OFA used in all the cases studied, provided that the OFA is less than 20%. On the 

contrary, as shown in power spectral density results (Figure 5.26 and 5.27), the 

amplitude of the low-frequency components (<10Hz) under the OFA condition is much 

lower than that under non-OFA (OFA 0%) condition, indicating the decreased 

geometric fluctuations of the flame under the OFA conditions. This may be explained 

by the fact that, within a certain range, less oxygen in the primary combustion zone 

would decrease the combustion intensity and hence improved flame stability. The result 

of the oscillation frequency also shows a very similar trend as that of the stability index. 

The lowest oscillation frequency is observed at OFA 0%, indicating decreased flame 

stability. In addition, the results of both stability index and oscillation frequency suggest 

that under the same OFA ratio, nozzle OFA3 gives better flame stability than nozzle 

OFA2, which may be relevant to the nozzle position of OFA3, which is further from the 

burner than that of OFA2.

Figure 5.25 Variations of stability index with ratio and position of overfire air
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Frequency (Hz)

Figure 5.26 Variations of power spectral density estimates of flame radiation signal in 

visible band with the ratio of overfire air (OFA2)

Frequency (Hz)

Figure 5.27 Variations of power spectral density estimates of flame radiation signal in 

infrared band with the ratio of overfire air (OFA2)

109



Chapter 5 Tests on a 9MWth Heavy-Oil-Fired Combustion Test Facility

Figure 5.28 Variations of oscillation frequency with ratio and position of overfire air

5.3.4.2 Soot Temperature, Emissivity and Concentration

Figure 5.29 (a) illustrates a typical averaged image of the heavy oil flame, which is 

derived from 20 instantaneous images taken at the non-OFA condition (OFA 0%). The 

corresponding distributions of temperature, emissivity and KL factor are shown in 

pseudo-colour in Figure 5.29 (b), (c) and (d), respectively.

Figure 5.30 shows the variation of the measured average temperature of the flame with 

the ratio of the OFA to total air and its nozzle position. The decreased temperature can 

be explained by the fact that the higher the OFA, the less the air (PA, SA and TA) in the 

primary combustion zone, resulting in a reduced combustion intensity and hence the 

temperature. The decline in the temperature suppresses the thermal-NOx formation. On 

the other hand, the reduction of the oxygen concentration in the primary zone of the 

flame leads to less fuel-N conversion to NOx [105]. This is evidenced by the emission 

analysis data where NOx in flue gas has shown an almost linearly decreasing trend with 

the flame temperature, as shown in Figure 5.31. Furthermore, under the same OFA ratio,
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the OFA3 results in a lower flame temperature and NOx emission than the OFA2. This 

is due to a longer delay, associated to the location of the OFA3 port, in the mixing 

between the combustion gases from the primary zone and the OFA. The longer delay 

increases the residence time of the combustion gases in the zones with low oxygen 

concentrations, resulting in the reduced concentration of nitrogen radicals reaching the 

secondary zone (OFA zone) and, thus, the reduced conversion of these radicals to NOx 

[105].

Figure 5.32 and 5.33 depict the average emissivity and concentration of soot particles 

within the flame, respectively, under the test conditions. Increased soot emissivity and 

concentration (KL factor) are observed for an increased OFA. This may be due to the 

fact that the reduction of oxygen concentration in the primary combustion zone could 

promote the formation process of soot [106], It is also noted that the bottom part of the 

flame exhibits a higher emissivity and soot concentration, as shown in Figure 5.29 (c) 

and (d). This phenomenon may be caused by a non-even distribution of fuel.

Temperature
> 2000 °C
> 1940°C 

>1880°C 

>1820°C 
>1760°C 

>1700°C 

>1640°C 
>1580°C 

>1520°C 
>1460°C

> 1400°C

(a) Flame image (b) Temperature
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Emissivity & KL

>0.80 

>0.72 
>0.64 
>0.56 

>0.48 
>0.40 

>0.32 

>0.24 

>0.16 
>0.08 
>0

(c) Emissivity (d) KL factor

Figure 5.29 Averaged image of the heavy oil flame and the corresponding distributions 

of soot temperature, emissivity and concentration

Figure 5.30 Variations of average temperature with the ratios and nozzle positions of

overfire air
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Figure 5.31 Variations of NOx emission with the ratios and nozzle positions of

overfire air

Figure 5.32 Variations of average emissivity with the ratios and nozzle positions of

overfire air
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Figure 5.33 Variations of K L  factor with the ratios and nozzle positions of overfire air

5.3.5 Correlation between Flame Stability and NOx Emission

From the above presented experimental results obtained under a wide range of 

combustion conditions, it can be seen that for a specific test, low NOx emissions is 

generally obtained under the stable condition. In order to illustrate more clearly the 

correlations between the flame stability and NOx emission, the measured flame stability 

index and corresponding NOx emission during all tests are shown in Figure 5.34. It is 

evident that the volume of NOx emission in the flue gas decreases with improved flame 

stability, suggesting that it is crucial to maintain a stable flame for reduced NOx 

emissions. This finding is supported by the analysis of correlations between the 

oscillation frequency, especially visible band, and the NOx emission (as show in Figure 

5.35 and 5.36), which shows low NOx emission were achieved generally with a high 

oscillation frequency (indicating better flame stability).
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Figure 5.34 Variations of NOx emission with measured flame stability index

Figure 5.35 Variations of NOx emission with the measured oscillation frequency in

visible band
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Figure 5.36 Variations of NOx emission with the measured oscillation frequency in

infrared band

5.4 Results of Burner Condition Monitoring

5.4.1 Detection of Abnormal Conditions in a Combustion Process 

Using KPCA

To evaluate the effectiveness of the KPCA based method for detecting abnormal 

conditions in a combustion process (Section 3.3.2), two different normal conditions 

were considered, i.e., one without overfire air (non-OFA) and one with overfire air 

(OFA).

For the non-OFA normal condition, the total air flow rate was set for 9100Nm3h'' (PA: 

17%, SA: 43%, and TA: 40%). An abnormal condition was deliberately created by 

setting the swirl vane position of the SA deviated from its baseline configuration of 

65mm.
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For the OFA normal condition, the total air flow rate was kept the same as that of the 

non-OFA normal condition (9100Nm3h_1), but with a different air distribution (PA: 

14.5%, SA: 36.5%, TA: 34%, and OFA: 15%). An abnormal condition was also 

deliberately created by setting the OFA deviated from its baseline configuration of 15%.

It should be noted that it is not possible to make a real combustion fault because of the 

safety and cost considerations, and therefore the above-mentioned artificial abnormal 

conditions were created. However, it does not necessarily mean that these artificial 

abnormal conditions might happen in combustion systems. The key point of the 

experiments here is to test the performance of the KPCA based method for detecting the 

changes in flame pattern caused by unanticipated changes in burner conditions.

For a comparison purpose, both the KPCA and the PCA models were built based on the 

same set of training data under each normal condition. Each sample, also known as an 

observation, contains 27 variables as listed in Section 3.3.1. Both visible and infrared 

signals were considered (the ultraviolet signal was too weak to be detected in the case 

studied). The KPCA was carried out based on the approach as described in Section 3.3.2. 

The PCA was performed through the single value decomposition of input matrix X as

follows:

X  =  USVT, (5-1)

where S  is a diagonal matrix containing the square roots of the variances of columns of 

A'in descending order, and U and V are orthonormal matrices [107]. Small values of 

variance in S  are regarded as noises and neglected in the PCA in order to reduce the 

number of variables in X. In the present case, the first 10 principal components, which 

represent more than 85% of the variation in the original 27 variables, were used to 

derive the T2 and Q statistics.

Figure 5.37 and 5.38 show the results of the T2 and Q statistics of both models when

they were applied to monitor the non-OFA and OFA combustion processes. The

corresponding 95% confidence limit is plotted as the dash line in each figure. For both

conditions, the first 30 test samples were obtained from normal conditions, while the

remainder from corresponding abnormal conditions. It can be seen that both the KPCA
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and the PCA can correctly detect the artificial faults. However, compared with the PCA, 

the KPCA exhibits clearly a better performance in several aspects. The relative 

difference of the statistics of the KPCA between the normal and abnormal conditions is 

much higher than that of the PCA in both T2 and Q statistics, which may imply that the 

nonlinear KPCA model is more capable of illustrating the discrepancy between the 

normal and abnormal conditions. Furthermore, the PCA produced noticeable false 

warnings, especially the Q statistic, whilst the KPCA shows no false warning at all. This 

problem may be also caused by the assumption of the PCA that the data in the input 

space are linear which may not reflect the truth. Another important factor which may be 

relevant to this problem is the size of the training samples. The number of samples used 

to establish the PCA model may not be sufficient to represent the characteristics of the 

normal condition.

In order to investigate the impact of the size of the training samples on the accuracy of 

the fault detection of both models, the data set of the non-OFA normal condition (a total 

of 150 samples) was divided randomly into two parts, i.e., one training set t%, one test 

set l-t%. Different percentages of the training set were created, varying from 30% to 

90%. For each percentage, the same procedure was repeated 100 times in order to 

eliminate the possible error caused by individual samples.

Figure 5.39 shows the variation of the average false warning rate with the size of 

training data. The false warning rate is defined as the ratio of the number of false 

warnings to the number of test samples. It can be seen that the false warning rates of the 

T2 statistic for both models are less affected by the training data size, about 4% in the 

PCA model and 0% in the KPCA model. The false warning rate of the Q statistic of the 

PCA model decreases gradually with the percentage of the training data, from 

maximum of 38% at the training data of 30% to the minimum of 15% at the training 

data of 90%, while the KPCA model gives a very consistent performance, 0% false 

warning, irrespective of the data set size. The results suggest that the KPCA model can 

provide not only a better representation of data in the normal condition but also a good 

performance even when the number of the training samples is limited.
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(a) PCA -  T2 statistic

(b) PCA -  Q statistic

Figure 5.37 Monitoring charts of non-OFA combustion process ((a)~(b))
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(c) KPCA -  T2 statistic

(d) KPCA -  Q statistic

Figure 5.37 Monitoring charts of non-OFA combustion process ((c)~(d))
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(a) PCA -  T2 statistic

Observations

(b) PCA -  Q statistic

Figure 5.38 Monitoring charts of OFA combustion process ((a)~(b))
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Observations

(c) KPCA -  T2 statistic

-6

(d) KPCA -  Q statistic

Figure 5.38 Monitoring charts of OF A combustion process ((c)~(d))
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Figure 5.39 Variation of false warning rate with training data size

5.4.2 Flame State Identification and NOx Prediction Using SVM

To evaluate the performance of SVM in flame state identification and NOx prediction 

(Section 3.3.3), a total of 2223 data samples were collected from 18 different 

combustion conditions (Table 5.2). Each sample consists of 27 flame characteristics 

extracted from flame images and signals, as described in Section 3.3.1. These flame 

characteristics are taken as the inputs of the SVM. For the flame state identification, 

which is regarded as a classification problem, the desired output of the SVM is one of 

the 18 different combustion conditions. For the NOx prediction, which belongs to a 

regression problem, the desired output of the SVM is the NOx emissions in flue gas.

In addition, ANNs (Artificial Neural Networks), which are widely used (as mentioned 

in Chapter 2) in flame state identification and NOx prediction, are also built to compare 

with SVM. ANNs are inspired by the way biological nervous systems process 

information. A neural network is comprised of a large number of non-linear processing 

elements (neurones), which are highly interconnected via weighted connections. The
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weights of the connections are determined through a learning procedure, which aims to 

minimize the mean square error between the actual output of the ANN and the desired 

output. ANNs have been widely applied for both pattern recognition and function fitting 

problems. Detailed description about ANN can be found in [108, 109].

5.4.2.1 Flame State Identification

In the field of pattern recognition, the database collected for the investigated case is 

generally divided randomly into two sets, i.e., training set and test set, typically 80% for 

training and 20% for testing. The training set is used to train the model, whilst the test 

set is used to evaluate the trained model. In the present study, in order to investigate the 

influence of the size of training set on the performance of SVM, different training sets 

were created. The size of training sets with respect to the database varied from 10% to 

90% with an interval 5% and the corresponding test sets varied from 90% to 10%.

For each training set size, the same training set was used to train both of the SVM and 

ANN models. The SVM model was trained based on the procedure described in Section 

3-3.3.3 with the parameters of C 32 and y  0.3. The ANN adopted a three-layer neural 

network, which has 27, 30 and 18 neurons in the input, hidden and output layers, 

respectively. The architecture of the neural network is shown in Figure 5.40. Tangent 

sigmoid transfer function was used for both the hidden and output layers. Resilient 

Backpropagation learning algorithm was used to train the network. It should be noted 

that other ANN Backpropagation learning algorithms [110] were also tested such as 

Levenberg-Marquardt, Bayesian Regularization, Conjugate Gradient, One Step Secant, 

and BFGS Quasi-Newton. In the present case (flame state identification), Resilient 

Backpropagation obtained the best performance among these learning algorithms.

After the training procedure, the trained SVM and NN models were tested by using the 

training and test sets. The performance is expressed by the percentage of data which are 

correctly classified, namely the success rate. To eliminate the possible error caused by 

individual instances, the procedure of database division, model training and testing was 

repeated for 20 times.
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Flame
states

Figure 5.40 Architecture of the neural network for flame state identification

Figure 5.41 shows the success rates of the trained SVM and ANN models when they are 

applied to classify the training data. It has been found that the ANN gives a higher 

success rate (98.2%~99.4%) than the SVM (96.2%~96.9%) in classifying training data 

over the whole tested conditions.

However, when applied to the test data, as show in Figure 5.42, the SVM achieved a 

better performance than the ANN, especially when the training data size is small. Figure 

5 43 and 5.44 show the detailed success rates of both models for classifying test data in 

twenty trials under the training set size 80% and 15%, respectively. As can be seen, 

when 80% data were used for training, the performance of the SVM and the ANN are 

similar, 95.08% and 94.22%, respectively. However, when 10% data were used for 

training, the difference between the success rates of the SVM (85.2%) and the ANN 

(73.9%) increased to 11.3%. The better performance is ascribed to the good 

generalization ability of the SVM. On the other hand, the success rates of the SVM and 

the ANN increase gradually with the size of training set. This can be understood that 

more training data, more patterns the models can learn, resulting in a better performance, 

which also suggests that adequate data should be collected to represent all the possible 

patterns of a dynamic process so as to achieve a reliable flame state identification.
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Figure 5.41 Variations of the success rate of classification of training data

with training set size

Figure 5.42 Variations of the success rate of classification of testing data

with training set size
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Figure 5.43 Success rate of classification of testing data in one hundred trials

(training set size 80%)

Figure 5.44 Success rate of classification of testing data in one hundred trials

(training set size 10%)
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5.4.2.2 NOx Prediction

To evaluate the performance of the SVM model in predicting NOx emissions, the data 

set collected is divided randomly into two parts: 80% training set and 20% test set.

The SVM model was trained based on procedure described in Section 3.33.3 with the 

parameters of C 108 and y 3. A three-layer ANN was also built to predict NOx 

emissions. The network has 27, 10 and 1 neurons in the input, hidden and output layers, 

respectively. The hidden layer uses a tangent sigmoid transfer function, and the output 

layer uses a linear transfer function. Levenberg-Marquardt learning algorithm was used 

to train the network. It should be noted that other ANN Backpropagation learning 

algorithms [110] were also tested such as Resilient Backpropagation, Bayesian 

Regularization, Conjugate Gradient, One Step Secant, and BFGS Quasi-Newton. In the 

present case (NOx prediction), Levenberg-Marquardt obtained the best performance 

among these learning algorithms and hence it is used for comparison with SVM.

After the training procedure, the trained SVM and the ANN models were tested by 

using the training set and test set. The performance is expressed by mean squared error 

and correlation coefficients, as defined in (3-54) and (3-55). To eliminate the possible 

error caused by individual instances, the procedure of database division, model training 

and testing was repeated for 20 times.

Figure 5.45 and 5.46 show the performance of the trained SVM and ANN models when 

they are applied to predict the training set and test set, respectively. It has been found 

that the SVM model exhibits not only better but also stable performance than the ANN 

model for both sets. In predicting training set, the performance of the SVM is slightly 

better than the ANN; the average MSEs (mean squared errors) of the SVM and ANN 

models are 17.07 and 18.49, and the average correlation coefficients of these two 

models are 99.46% and 99.41%, respectively.
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(a) Mean squared error

(b) Correlation coefficients

Figure 5.45 Performance of SVM and NN for NOx prediction (training data)
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(a) Mean squared error

(b) Corrélation coefficients

Figure 5.46 Performance of SVM and NN for NOx prédiction (test data)
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(a) NN

(b) SVM

Figure 5.47 Comparison between predicted and measured NOx emissions

131



Chapter 5 Tests on a 9MWth Heavy-Oil-Fired Combustion Test Facility

The superiority of the SVM over the ANN is more evident in predicting test set; the 

average MSEs of the SVM and NN models are 52.87 and 72.34, and the average 

correlation coefficients of these two models are 98.32% and 97.48%, respectively. More 

importantly, a large variation of the ANN is observed in trial 17, while the results of the 

SVM are stable. Figure 5.47 shows the comparison between measured NOx and the 

value predicted by the trained the SVM and the ANN models in trial 17. The 3% 

relative error lines are plotted as the dash lines in the figures. As can be seen clearly, for 

several instances, the NOx values predicted by the ANN are deviated far from the 

targets, which gave rise to the large MSE of trial 17. The maximum relative error of the 

ANN is about 23.15%, much greater than that of the SVM 10.22%. The unstable results 

of ANN may be explained by the fact that ANN is prone to be overtrained if the initial 
conditions of ANN training procedure are not set properly.

5.5 Summary

A wide range of combustion conditions have been created on a 9M\Vl|1 heavy-oil-fired 

CTF. The tests have demonstrated the effectiveness of the developed system and the 

computational algorithms in a variety of combustion conditions. It has been 

demonstrated that the power spectral density, oscillation frequency and flame stability 

index can give a reasonable assessment of the flame stability. The relationship between 

the stability and NOx emissions have been investigated, which suggests the importance 
of maintaining a stable flame for reduced NOx emissions.

In addition, the test results obtained have also shown the effectiveness and potential of 

the KPCA method in combustion process monitoring, which exhibits a better 

performance than the linear PCA. The performance of the SVM for flame state 

identification and NOx prediction has also been evaluated and compared with the ANNs. 

It has been found that the SVM seems to give a better and more stable result compared 

to the ANN algorithms tested in the present study (Backpropagation neural networks), 

which may be explained by the good generalization ability of SVM.
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Chapter 6

Tests on a 660MWth Heavy-Oil-Fired Boiler

6.1 Introduction

Industrial tests were carried out on a 660MWth heavy-oil-fired boiler in a power station 

in Saudi Arabia. The boiler was newly constructed but encountered a severe vibration 

problem when the boiler load increased to a certain level. The occurrence of the 

vibration endangers seriously the safe and normal operation of the boiler. The problem 

was recognized as thermo-acoustic combustion instability after initial test, which was 

carried out to analyse the spectrum of the combustion acoustic signal captured from the 

boiler. However, the trigger/cause of the onset of thermo-acoustic vibration was 

unknown, which motivated this investigation. The objectives of the flame imaging tests 

on the boiler were as follows:

• To assess the performance of the flame imaging system in a full-scale industrial 

combustion environment

• To investigate the characteristics, particularly stability, of oil flames by using the 

flame imaging system, so as to reveal the cause of the boiler vibration

This chapter firstly gives a brief description about the theory of thermo-acoustic 

combustion instability, followed by the spectral analysis results of the combustion 

acoustic signals taken under the normal operation condition as well as the vibration 

condition. Then, it introduces the experimental conditions of the flame imaging tests, 

including the structure of the boiler, the installation of the flame imaging system, and 

the test programme, following by the results of the tests and discussed.
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6.2 Thermo-Acoustic Combustion Instability

6.2.1 Theory of Thermo-Acoustic Instability

Thermo-acoustic combustion instabilities refer to self-sustained combustion oscillation 

at or near the acoustic frequency of the combustion chamber, which is the result of 

closed-loop coupling between unsteady heat release and pressure fluctuations [34]. 

Figure 6.1 illustrates the feedback loop responsible for the self-excited oscillations in 

the combustion chamber [111]. It is believed that disturbance in fuel flow (e.g., 

fluctuations in equivalent ratio, flow velocity and pressure) excites oscillations in heat 

release rate. The heat release oscillations generate acoustic oscillations. The acoustic 

oscillations would introduce the disturbance into the fuel flow, closing the feedback 

loop. If two conditions are satisfied, the amplitude of acoustic oscillation will grow in 

time until it saturates. First, the heat release oscillation is properly phased with the 

fluctuating acoustic pressure, as stated in Rayleigh’s criterion [112], i.e.,

I  Üp'q'dt > 0, (6-1)

where p ' and qrare the pressure and heat release oscillation, respectively, t  is time and L 

is the time period. Second, the rate of energy added to the acoustic field by the 

combustion process exceeds the rate of energy dissipation [112]. When the energy of 

acoustic oscillation is high enough, the self-sustained acoustic oscillation will give rise 

to the vibration of the combustion chamber.

Figure 6.1 Feedback loop responsible for thermo-acoustic instability [111]
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Thermo-acoustic combustion instability generally occurs at frequencies associated with 

the natural acoustic modes of the combustion chamber, e.g., bulk, axial and transverse 

modes. The nature acoustic frequency Fa of a combustion chamber can be estimated by

Ct
2 D ’

(6-2)

Ct  ~  C° j 2 7 3 ’  ( 6 ' 3 )

where cT is the speed of sound at absolute temperature T in degrees Kelvin, c0 is the 

speed of sound at temperature 273°K, and D is the geometric dimension of the 

combustion chamber (e.g., width, height, and depth).

6.2.2 Acoustic Characteristics of the Tested Boiler

Initial test was carried out to investigate the combustion acoustic characteristics of the 

tested boiler by using a microphone sensor. Figure 6.2 shows the spectrum of the 

acoustic signal obtained at the boiler load 300MW,h at which the boiler operated 

normally without vibration, whilst Figure 6.3 shows that obtained at 340MWlh at which 

the boiler vibration occurred. It has been found that the peak frequency located at about 

29.5Hz for both test conditions, and when the vibration occurred at 340MWth, the 

amplitude of the peak frequency increased dramatically, up to 8 times of that at 

300MWth.

The peak frequency 29.5Hz is consistent with the theoretical thermo-acoustic oscillation 

frequency of the boiler, which can be derived from (6-2) and (6-3), given the width of 

the boiler (from front wall to rear wall) £>=14m and the average temperature within the 

boiler 7M500°C. Furthermore, the acoustic oscillation frequency 29.5Hz is also in line 

with the vibration frequency of the boiler, which was measured by vibration sensors. 

These results have thus suggested that the vibration of the boiler is actually a 

phenomenon of thermo-acoustic combustion instability. However, what is the 

trigger/cause of the thermo-acoustic vibration is not clear, which motivated the 

following flame imaging study.
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Figure 6.2 Spectrum of the combustion acoustic signal obtained at boiler load 300M Wt|,

(non-vibration)

Figure 6.3 Spectrum of the combustion acoustic signal obtained at boiler load 340MW,h

(vibration)
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6.3 Experimental Conditions

6.3.1 Boiler Structure and System Installation

Figure 6.4 shows the schematic diagram of longitudinal-section of the boiler. The boiler 

has a total of 48 identical low NOx burners, distributed evenly at four levels on the front 

wall and rear wall of the boiler. In other words, each level has six burners on either the 

front wall or rear wall. Flame measurements were carried out using the flame imaging 

system through the side view ports near to burner FBI (front wall, level B, burner 1) 

and burner RBI (rear wall, level B, burner 1), as indicated in Figure 6.4. The distance 

between the side wall and the centre of the nearest burner is about 3 meters. The 

resulting effective field of view is about 3.5 to 4 meters (part of view is blocked by the 

wall). Figure 6.5 shows the on-site installation of the flame imaging system during the

test.

Front wall Rear wall

4  | l

M

/ 4“Ttj
u X\

B /
, *
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Figure 6.4 Schematic diagram of longitudinal-section of the 660MWlh boiler
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Figure 6.5 Flame imaging system and its installation

A purging air with a flow rate of about 20 litres per minutes was used to keep the lens of 

the optical probe clean. Unfortunately, water supply was not available on the platform 

where the flame imaging test was carried out. In order to prevent system from over

heating problem, another air supply with a large flow rate (estimated above 150 litres 

per minutes) was used to cool the system as much as possible, and for each condition, 

the system was installed at the position for only a short period (about five minutes, 
which is enough for collecting sufficient data for analysis).

6.3.2 Test Programme

Because the distribution of air supplies (i.e., the ratios of primary air and secondary air 

to total air) and the swirl vane of the burner are not configurable, the possible test 

conditions were highly constrained. In the present study, the impacts of nozzle rotation 

and boiler load on the oil flames were investigated. Detailed test programme is listed in 

Table 6.1.
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Table 6.1 Summary of the test programme on the 660MWth boiler

No Test Burner Condition

1 Nozzle rotation FBI & RBI
285MWth, before nozzle rotated

285MWth,after nozzle rotated

2 Boiler load RBI
285MWth,after nozzle rotated
430MWth,after nozzle rotated

45 OMW*,after nozzle rotated

6.4 Results and Discussions

6.4.1 Impact of Nozzle Rotation

The nozzle shape and position of the burner oil gun affect significantly the intermixing 

of oil spray and air flow and hence the combustion performance. This test was carried 

out to investigate the impact of the nozzle rotation on the stability of the flames. Figure 

6.6 shows the front view of the burner used in the boiler and its nozzle. Heavy oil was 

atomised into very small droplets by steam and injected into the furnace through the 

holes of the nozzle, and then mixed with surrounding primary air and secondary air, 

successively. The nozzle has six pairs of holes distributed evenly, as shown in Figure 

6.6. The six pairs of holes are designed to be aligned with six baffles. The baffles, as the 

name suggests, are used to obstruct the intermixing of the air flow and the atomised oil 

gas that injected behind the baffles, and thus delay the combustion, so as to achieve a 

low NOx emission.

Flame data were captured at both FBI and RBI under the condition when the nozzle 

and the baffles were aligned as originally designed, and under the condition when they 

were misaligned after deliberately rotating the nozzle by a certain degree to achieve 

better intermixing of air flow and oil spray. Figure 6.7 and 6.8 show the typical 

examples of instantaneous heavy oil flame images obtained at FBI and RBI, 

respectively.
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Figure 6.6 Front view of the burner and the nozzle

(a) Before nozzle rotation (b) After nozzle rotation

Figure 6.7 Flame images taken at burner FBI

(a) Before nozzle rotation (b) After nozzle rotation

Figure 6.8 Flame images taken at burner RBI

140



Chapter 6 Tests on a 660MWth Heavy-Oil-Fired Boiler

6.4.1.1 Flame Stability Index and Oscillation Frequency

Figure 6.9 shows the results of the flame stability indices, which were measured through 

the statistical analysis of the flame images under the test conditions. It can be seen that, 

for both FBI and RBI, the stability index increased significantly after the nozzle 
rotation, suggesting the improved flame stability.

The results of the stability index are supported by the data of flame oscillation 

frequency that were captured simultaneously with the flame images. As depicted in 

Figure 6.10, after nozzle rotation, increased oscillation frequencies are observed in both 

the infrared and visible bands for the tested burners, indicating improved flame stability. 

The improved flame stability can be attributed to the better intermixing of the oil spray 

and air flow.

0.9 i
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¿ 0 .8  -I
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□ Before nozzle rotation 

0 After nozzle rotation

Burner FBI Burner RB1

Figure 6.9 Comparison of flame stability indices before and after nozzle rotation
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(a) Infrared band
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Figure 6.10 Comparison of oscillation frequencies of whole flame before and after

nozzle rotation

□ Before nozzle rotation 

0 After nozzle rotation
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Before the nozzle rotation, a large amount of unburnt contents was observed from the 

flame images as shown in Figure 6.7 (a), particularly in the middle section of the flame, 

which indicates clearly the delay of the combustion, and consequently, the stability 

problem of the flame. In order to further investigate the stability in different flame areas, 

flame radiation signals were obtained from different regions of the flame, including 

flame root and flame middle, as indicated in Figure 6.11.

Figure 6.12 illustrates the variations of the oscillation frequencies of the flame root and 

flame middle under the two test conditions at burner FB1. It has been found that, either 

before or after the nozzle rotation, the flame has shown a good stability at the root 

region, indicating a satisfactory ignition of the fuel. However, the middle region of the 

flame exhibits a very low oscillation frequency (<10Hz) before the rotation, indicating a 

poor flame stability at the middle regions. The situation is improved significantly after 

the nozzle rotation. This finding is further confirmed by the results obtained from 

burner RBI, as shown in Figure 6.13.

After nozzle rotation, the vibration problem has been ameliorated significantly. The 

maximum non-vibration boiler load, at which the boiler is approaching vibration, 

increased from 340MWth to 480MWth. This may be due to that improved flame 

stability reduced significantly the disturbance in the combustion and thus thermo

acoustic instability.

Figure 6.11 Location of measurement points of flame oscillation frequency
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Figure 6.12 Comparison of oscillation frequencies in different flame areas before and

after nozzle rotation at burner FBI

□ Before nozzle rotation 

a  After nozzle rotation
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Figure 6.13 Comparison of oscillation frequencies in different flame areas before and

after nozzle rotation at burner RBI
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6.4.1.2 Flame Temperature

Figure 6.14 (a) and (c) show the typical averaged flame images taken at burner FBI 

before and after nozzle rotation, respectively. Each averaged image is derived from 20 

instantaneous images. The corresponding temperature distributions are shown in 

pseudo-colour in Figure 6.14 (b) and (d), respectively, from which high temperature 

recirculation zones can be clearly observed. Figure 6.15 (a) and (b) depict the detailed 

temperature histograms under these two test conditions at FBI. It has been found that 

the centre of temperature histogram shifted from 1540°C to 1620°C after the nozzle 

rotation. (The normalized flame area is defined with respect to the whole flame region.)

Figure 6.16 depicts the variation of the measured average temperature of the flame 

under the test conditions. It can be seen that the average temperatures of the flame at 

both FBI and RBI increased by 70 - 90°C. The increased temperature can be explained 

by the better mixture of the oil spray and air flow and hence intensified combustion.
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Figure 6.14 Averaged flame images and the corresponding temperature distributions at

burner FBI

(a) Flame image before nozzle rotation (b) Temperature before nozzle rotation

(c) Flame image after nozzle rotation (d) Temperature after nozzle rotation
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Temperature (°C)

(a) Before nozzle rotation

(b) After nozzle rotation

Figure 6.15 Temperature histogram of the flame at burner FBI
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Figure 6.16 Comparison of average flame temperature before and after nozzle rotation

6.4.2 Impact of Boiler Load

As mentioned, the vibration of the boiler occurred when the boiler load increased to a 

certain degree. Therefore, the impact of the boiler load on the characteristics of the 

flames was also investigated. This test was conducted on RBI, and three different boiler 

loads were tested after the nozzle rotation, i.e., 280MW, 430MW and 450MW. Figure 

6.17 shows the typical examples of instantaneous flame images obtained under the test 

conditions.

6.4.2.1 Flame Stability Index and Oscillation Frequency

Figure 6.18 shows the variation of the flame stability index with the boiler load. It has 

been found that the flame stability index decreased gradually with the load, suggesting 

that the flame became more unstable when the boiler load increased. The result is 

consistent with the analysis of the oscillation frequency of whole flame, as shown in

148



Chapter 6 Tests on a 660MWth Heavy-Oil-Fired Boiler

Figure 6.19. Decreased oscillation frequencies are observed in both infrared and visible 
bands at a high load, indicating decreased flame stability.

The stability of different flame areas was also tested. Figure 6.20 illustrates the 

variations of the oscillation frequencies of the flame root and middle areas with the 

boiler load. The plots suggest that the root region of the flame has a good stability under 

different loads, indicating a satisfactory stable ignition of the fuel. However, the 

stability at the middle region of the flame decreased with the furnace load.

The results further support the conclusion drawn from the tests of the nozzle rotation 

that the vibration is prone to occur when the flame is unstable. Therefore, actions should 

be taken to improve the flame stability, especially the middle region of the flame, so as 

to ameliorate vibration problem.

(a) 280MWlh (b) 430MWth

(c) 450MWth

Figure 6.17 Flame images taken under different boiler loads at burner RBI
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Figure 6.18 Variation of flame stability index with boiler load

Load (MWth)

Figure 6.19 Variation of oscillation frequency of whole flame with boiler load
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(a) Infrared band

(b) Visible band

Figure 6.20 Variations of oscillation frequencies of different flame regions with boiler

load
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6.4.2.2 Flame Temperature

It has been found that the average temperature of the flame increased by 40°C when the 

boiler load increased from 280MW to 470MW, as shown in Figure 6.21. This can be 

explained by the increased radiation intensity due to the increased load.

Chapter 6 Tests on a 660MWth Heavy-Oil-Fired Boiler

Load (MWth)

Figure 6.21 Variation of average temperature with boiler load

6.5 Summary

Tests have been conducted on a 660MWlh heavy-oil-fired boiler to investigate the 

stability of oil flames by using the flame imaging system developed, so as to help reveal 

the cause/trigger of the onset of boiler vibration. The experimental results obtained have 

demonstrated the effectiveness of the flame imaging system for flame stability 

monitoring.
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During the tests, the impacts of the nozzle rotation and the boiler load on the flame 

stability were investigated. In the test of nozzle rotation, it has been found that, either 

before or after nozzle rotation, the flame has shown a good stability at the root region, 

indicating a satisfactory ignition of the fuel. However, the middle region of the flame 

has shown a poor stability in this region at both test burners before the nozzle rotation. 

After the nozzle rotation, the stability of the flame, particularly in its middle region, 

increased significantly. The maximum non-vibration boiler load increased significantly 

from 340MWth to 480MWth after the nozzle rotation, demonstrating that it is crucial to 

maintain a stable flame to avoid or ameliorate the boiler vibration problem. This finding 

is supported with the tests of boiler load, which has shown that the root region of the 

flame has a good stability under different loads in all test conditions, while the stability 

at the middle region of the flame decreased with the load.

Therefore, it can be concluded that the unstable flame may be the cause/trigger of the 

onset of the thermo-acoustic vibration of the boiler. In order to eliminate the vibration 

problem to achieve full load of 660MWth, efforts should be directed to the 

improvement of the flame stability.
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Chapter 7

Conclusions and Recommendations for Future Work

7.1 Introduction

The research work presented in this thesis is concerned with the development of a 

methodology for flame stability and burner condition monitoring in fossil-fuel-fired 

furnaces. A prototype instrumentation system, operating on optical sensing, digital 

imaging, signal/imaging processing, and soft computing techniques, has been designed 

and implemented. The system has been evaluated on a 9MWth heavy-oil-fired 

combustion test facility and on a 660MWth heavy-oil-fired boiler. Test results have 

demonstrated that the system is capable of providing a quantitative assessment of flame 

stability under a wide range of combustion conditions, and give an effective detection of 

abnormal conditions, indication of flame state, and prediction of NOx emissions in the 

furnace.

This chapter presents the conclusions that have been drawn from the research 

programme conducted and makes recommendations for future work in the field.

7.2 Conclusions

7.2.1 Instrumentation System

The instrumentation system developed is comprised of a rigid optical probe, a beam

splitting unit, an EPSB (embedded photodetector and signal-processing board), a digital 

camera, and a mini-motherboard with associated application software. The system is 

capable of measuring simultaneously a number of flame parameters, including 

oscillation frequency, power spectral density, geometric and luminous characteristics,
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two-dimensional temperature distribution, flame stability index, etc. The integration of 

the optical probe and all optical and electronic components as a single unit has offered 

the system excellent portability and robustness. The digital camera and the 

photodetectors have been proven to be capable of accommodating themselves to a wide 

range of flame radiation intensities with the aid of dedicated software. The EPSB has 

been proven robust and offered fast response for the measurement of the power spectral 

density and oscillation frequency of a flame. The mini-motherboard, as the computing 

core o f the system, has shown a high performance in processing data and executing 

algorithms.

The performance of the oscillation frequency measurement of the system has been 

evaluated by using a standard frequency-varying light source. The results have 

demonstrated that the system is capable of measuring the oscillation frequency of an 

unknown light source with a relative error no greater than 2% (frequency range: 0 to 

500Hz).

The temperature measurement of the system has been calibrated by using a blackbody 

furnace as a standard temperature source. The accuracy of temperature measurement has 

been verified by applying the system to measuring the true temperature of a pre

calibrated standard tungsten lamp. The maximum error of 14.8°C has been found at a 

true temperature of 1650°C and is equivalent to a relative error of 0.9%. (The relative 

error is defined as the absolute error divided by the true value).

In addition, the camera sensor dark current, and the impacts of various camera settings 

(including exposure time, master gain, gain boost and R/G/B gains) on the intensity 

responses of camera R/G/B channels, have been analysed using the standard blackbody 

furnace as a stable radiation source. The non-linearity of the system has been found in 

the range of 0.23%. The obtained results have been taken into account in software to 

achieve automatic adjustment of the camera to avoid under- and over-exposure of flame 

images, which has been proven effective in on-site tests.

Results obtained on both an industrial-scale combustion test facility and a full-scale

boiler have demonstrated that the developed system, including all optical, mechanical,
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electronic and computing elements, as well as the application software, is operational 
and reliable in hostile industrial environments.

7.2.2 Tests on the 9MW«, Combustion Test Facility

Extensive tests were conducted on a 9MWtb heavy-oil-fired combustion test facility. A 

wide range of combustion conditions were created, including variations in the swirl 

vane angle of tertiary air (TA), the swirl vane position of secondary air (SA), the ratio 

of primary air (PA) to total air, the ratio of overfire air (OF A) to total air and the nozzle 

position of OFA. For each test, flame parameters were quantified, including power 

spectral density, oscillation frequency, flame stability index, and temperature. As a 

result of the tests, a better understanding of the characteristics of the oil flame and its 

stability has been achieved. A number of conclusions can be drawn from the presented 

results.

7.2.2.1 Flame Stability

The TA swirl vane angle affects significantly the aerodynamics of the entering air flow 

and its mixture level with fuel and hence the stability of the flame. It has been found 

that a high TA swirl vane angle gives rise to a stretched flame, improved stability and 

reduced NOx emissions. Under TA swirl vane angle 25°, the flame is unstable in terms 

of its geometric, luminous and fluid-dynamic characteristics.

Similar to the results of TA swirl vane angle, improved flame stability and reduced NOx 

emissions have also been observed at a decreased swirling intensity that resulted from a 

high SA swirl vane position. The flame is more stable at SA swirl vane position 65mm 

than at -17mm and 30mm.

The results of different ratios of PA to total air have suggested that the increased PA 

would result in improved flame stability, slightly decreased temperature, and decreased 

NOx emissions, provided that the primary air is less than 23%.
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Overfire air is a well-known technology for reducing NOx emissions from a combustion 

process as it can achieve a decreased flame temperature. The test results have shown 

that the temperature of the oil flame decreased with the overfire air, resulting in reduced 

NOx emissions. The comparisons between results from different nozzle positions of 

overfire air suggest that a longer delay in the injection of overfire air would increase the 

residence time of the combustion gases in low-oxygen concentration zones, resulting in 

decreased temperature and NO* emissions. It has also been observed that an increased 

overfire air would result in increased soot emissivity and concentration (KL factor). 

Furthermore, it has been found that the flame stability doesn’t deteriorate with the 

overfire air in all cases studied, provided that the overfire air is less than 20%.

Moreover, the correlation between the flame stability (expressed by flame stability 

index and oscillation frequency) and NOx emissions obtained during all the tests has 

been investigated (Section 5.3.5). The results have suggested that it is crucial to 

maintain a stable flame for reduced NOx emissions.

In summary, the experimental results have demonstrated the satisfactory sensitivity of 

the system to the variations in combustion conditions tested. It has also been proven that 

the power spectral density, oscillation frequency and flame stability index can be used 

as effective parameters for assessing the flame stability.

7.2.2.2 Burner Condition Monitoring

A range of flame characteristics have been extracted from flame images and signals. 

These flame characteristics have been used as the inputs of the KPCA model for the 

detection of abnormal conditions, and as the inputs of the SVM model for flame state 

identification and NOx prediction.

The results discussed in Section 5.4.1 have demonstrated the effectiveness of the KPCA 

model for detecting abnormal conditions in a combustion process. The KPCA model 

has exhibited clearly a better performance than a traditional linear PCA model in several 

aspects. Firstly, although both of the KPCA and PCA can correctly detect the artificially
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created faults, the KPCA gives no false warnings whilst the PCA produced noticeable 

false-positive results. Secondly, the KPCA produces a very stable and accurate 

indication, little affected by the training set size, whilst the performance of the PCA 

decreases gradually with the decreased training set size. The better performance of the 

KPCA has revealed that KPCA is more capable of tackling the nonlinear relationship 
between flame characteristics than the PCA.

The results presented in Section 5.4.2 have demonstrated the superior performance of 

SVM in flame state identification and NO* prediction. Compared to the ANN 

algorithms tested in the present study (Backpropagation neural networks), the SVM 

seems to have a higher success rate and less demand for the training set size in the flame 

state identification, and give a better and more stable performance in the NOx prediction. 

The better performance of SVM is believed to be attributed to its good generalization 

ability (less prone to over-fitting). In addition, it should be noted that although the 

present work focused on the prediction of NOx emissions from power plants, the 

presented soft computing technique is applicable to the prediction of other pollution 

emissions such as SO2.

In summary, the test results have demonstrated the effectiveness of the selected flame 

characteristics and the soft computing techniques for burner condition monitoring.

7.2.3 Tests on the 660MWth Boiler

Tests have been conducted on a 660MWth heavy-oil-fired boiler to investigate the 

characteristics, particularly the stability, of oil flames using the flame imaging system 

developed. The experimental results have further demonstrated the effectiveness of the 

system for flame stability monitoring on a full-scale industrial boiler.

The results presented in Section 6.4 have revealed that the boiler load and the radial 

position of burner’s nozzle have a significant impact on the flame stability. Either 

before or after the nozzle rotated, the flame has shown a good stability at the root region, 

indicating a satisfactory ignition of the fuel. However, the middle region of the flame5
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has shown a better stability after the nozzle rotated than before the nozzle rotated. The 

improved flame stability caused by the rotation of the nozzle has resulted in an 

increased boiler load without a vibration. This finding has been supported by the tests 

for different boiler loads, which also shows that the root region of the flame has a good 

stability under different loads in all test conditions, whilst the stability in the middle 

region of the flame decreased with the load. It can therefore be concluded that the poor 

flame stability may be the cause/trigger of the thermo-acoustic vibration of the boiler. In 

order to solve the vibration problem so as to achieve the full load of 660MWth, efforts 

should be directed to the improvement of flame stability.

7.3 Recommendations for Future Work

The work presented in this thesis has demonstrated the usefulness and potential of the 

outcomes of the research programme. However, the digital imaging and soft computing 

based techniques for the flame stability and burner condition monitoring are still in their 

development stage. There are a number of areas that require further research and 

development. This section outlines the areas that should be pursued over the next few 

years.

One of possible hardware improvements is the camera. A camera with a higher colour 

depth (e.g., 12bit Gigabit camera) will extend significantly the dynamic range of the 

temperature measurement. In addition, the use of a 3 CCD camera will provide a true 

spatial colour distribution and hence more accurate temperature distribution 

measurement. Another possible hardware improvement lies in the mini-motherboard 

and its operation system. Window XP is used as the operation system in the current 

mini-motherboard due to the limitation of the camera driver. With the progress of 

embedded computer and industrial camera technologies, a customised embedded 

operation system can be used to provide a more reliable and robust solution, more 

importantly, a lower power consumption.

One of potential research areas is to incorporate a spectrometer element into the 

developed flame imaging system for monitoring the spectroscopic characteristics of
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flame radicals. The spectroscopic characteristics of the flame radicals are closely linked 

with the composition of the fuel burnt and thus might be very useful for on-line fuel 

tracking. In addition, the intensities of radicals Sodium (Na) and Potassium (K) are 

closely related to the concentration of alkali chlorides, which are the main cause of 

furnace fouling and corrosion. Therefore, the radical information of the flame provided 

by the spectrometer might be used for monitoring alkali chlorides concentration and 

hence predicting furnace slagging and corrosion.

Another potential research area is to integrate acoustic technique with optical/imaging 

techniques for advanced flame monitoring. The acoustic information inside the furnace 

reflects the heat release characteristics of the combustion process and can be used to 

assess the performance of the furnace such as thermo-acoustic vibration, as illustrated in 

Section 6.2.2. In addition, the peak frequency of acoustic signal depends on the average 

temperature of the combustion chamber. It is possible to incorporate a microphone 

sensor in the two-colour pyrometry to achieve more the accurate measurement of the 

flame temperature and thus a better understanding of the combustion process.

In addition, better engineering to the system is required to enhance the operability, 

durability and robustness of the system. Furthermore, the calibration of the system for 

temperature measurement was conducted under the room temperature in the present 

study. It is worth calibrating the system under the industrial environments and 

investigating the effects of industrial environments on the temperature measurement of 

the system in a long duration. Further trials on industrial furnaces are also required to 

evaluate the system under wider combustion conditions including coal and biomass 

firing. Moreover, since an industrial boiler is generally a multi-burner system, it is also 

desirable to test the system through the sight-tube of an individual burner, where the 

existing flame detector is installed.

Finally, the work reported in this thesis offers very useful quantitative information

either for a control system to automatically adjust the combustion process, or for a

boiler operator to diagnose the flame state and manually regulate the process. For

example, the measured flame stability and temperature and the predicted NOx emissions

can be used directly for a control system to drive a control, as they are meaningful
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combustion parameters of practical relevance. The identified flame state can be used 

indirectly to drive a control if it is linked with a combustion parameter such as air/fuel 

flow rate and equivalence ratio. The indication of the occurrence of abnormal 

combustion events can be used to inform operators the change of combustion condition 

and hence immediate actions can be taken. The work reported in this thesis has 

demonstrated the potential of the advanced flame monitoring technique. It is envisaged 

that the completion of such technique will lead to a robust instrumentation system for 

control and diagnosis of industrial combustion processes.
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Appendix 1:

Schematic and PCB Layout of the Embedded Photodetector 

and Signal-Processing Board
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Figure A 1.3 Sensor electronics PCB layout
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Appendix 2:

Program for dsPIC Microcontroller Configuration

oyo ***********************************************
% File name: dspicConfiguration.c
% Synopses: 1) ADC
% 2) UART
% 3) Digital potentiometer
% Programmer: Duo Sun, School of Engineering and Digital Arts, University of Kent 
% Date: August 1,2011
<yo t*******************************************************^,^*^^^^^^^^^^

//********************************** ★ fr***************************//

include "p33FJ256GP710.h"
^include "dsp.h"
^include "def.h"

/* Definition of Global Variables */
fractional dmaBuffer[NUM_CHAN] [DMA_BUFF_SIZE]
__attribute__((space(dma),aligned(NUM_CHAN*DMA_BUFF_SJZE*2 )));

void InitAdcl(void)

//AD 1 CON 1: ADC 1 Control Register 1 
AD 1 CON 1 bits. ADON =0x0;

//setting to l turns on the ADC module. Keep off while changing settings 
ADI CONI bits. ADSIDL =0x0;

//Continue module operation in idle mode 
ADI CONI bits. ADDM ABM = 0x0;

//DMA buffers are written in Scatter/Gather mode 
AD 1 CON 1 bits. AD 12B =0x0;

/10-bit 4-channel mode 
ADI CONI bits.FORM =0x2;

//For 10-bit operation:
/ / l l  = Signed fractional (DOUT = sddd dddd ddOO 0000,s = .NOT.d<9>) 
//10 = Fractional (DOUT = dddd dddd ddOO 0000)
//01 = Signed integer (DOUT = ssss sssd dddd dddd, s = .NOT.d<9>)
H00 = Integer (DOUT = 0000 OOdd dddd dddd)
//NB: whatever load into the adc buffer in simulation (using register 
injection) gets shifted over to the left by 6 bits when adc buffer is read

AD 1 CONI bits.SSRC =0x2;
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//0x2=GP timer (Timer 3 for ADC1) compare ends sampling and starts 
conversion
//0x7=intemal counter ends sampling and starts conversion (auto
convert)

ADI CONI bits.SIMSAM =0x1;
//samples ch0-ch3 simultaneously (when CHPS=lx)
//setting SIMSAM=0 samples in sequence 

AD 1 CON 1 bits. AS AM =0x1;
//l=sampling begins immediately after last conversion is done; 
//0=sampling begins when SAMP bit is set 

//AD 1 CON 1 bits. SAMP =0x0;
//1=ADC sample/hold amps are sampling,
//0=ADC sample/hold amps are holding 

//AD 1 CON 1 bits.DONE =0x0;
//ADC conversion status bit: Write 'O' to clear DONE status

//AD1CON2: ADC1 Control Register2 
AD 1 CON2bits. V CFG =0x0;

//voltage reference is Avdd and Avss 
ADlCON2bits.CSCNA =0x0;

//input scan bit. Do not scan inputs 
AD 1 CON2bits.CHPS = 0x2;

//0x2 converts ch0-ch3.0x1 converts chO and chi, 0x0 converts only chO 
ADI CON2bits.SMPI =0x0;

//increments DMA address after every sample/conversion operation 
AD 1 CON2bits.BUFM = 0x0;

//always start filling the buffer from the start address 
AD 1 CON2bits. ALTS = 0x0;

//always uses channel input selects for sample A

//AD1CON3: ADC1 Control Register3 
ADlCON3bits.ADRC =0x0;

//clock derived from system clock 
AD 1 CON 3 bits. ADC S =0xFF;

//conversion clock select. Set TAD

//AD1CON4: ADC1 Control Register4 
ADlCON4bits.DMABL =0x6;

//Number of DMA Buffer Locations per Analog Input;
//total words of DMA buffer: 2k 
//64 words of buffer to each analog input.

ADI CHS 123 =0x0000;
//chi to ch3 positive inputs are AN0, AN1, and AN2 respectively; 
//negative input is VREFL 

AD1CHS0 =0x0006;
//chO positive input is AN6; negative input is VREFL;
//NB: chO is unused in application 

AD1CSSH =0x0000;
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//select channels for input scan. None selected since don't want scan 
AD1CSSL =0x0000;

//select channels for input scan. None selected since don't want scan 
AD1PCFGH = OxFFFF;

//all pins with possible analog input functions set to digital i/o 
AD1PCFGL = 0xFFB8;

//except the ones used for sensor inputs (AN0,AN 1,AN2, and AN6)

IFSObits.ADlIF =0; //Clear the A/D interrupt flag bit 
IECObits.ADlIE =0; //Disable ADC 1 interrupt

AD 1 CON 1 bits.ADON = 1; //start adc
}

void InitTmr3 Adc 1 (void)

 ̂ T3CONbits.TON =0; //Stop timer 3

T2CONbits.T32 = 0; //Timer2 and 3 act as one 16-bit timer

T3CONbits.TSIDL = 0; //continue module operation in idle mode 
T3CONbits.TGATE = 0; //gated time accumulation disabled 
T3CONbits.TCKPS =0; //prescale 1:1 
T3CONbits.TCS = 0; //internal clock source (Fey)

TMR3 = 0x0000;
P R 3  = 39062; //1024 samples per second

IFS0bits.T3IF = 0; //Clear Timer 3 interrupt 
IEC0bits.T3IE = 0; //Disable Timer 3 interrupt

T3CONbits.TON = 1; //Start Timer 3

}

void InitDmaOAdcl(void)
{
/ / DMA0 configuration
// Direction: Read from peripheral address 0x300 (ADC1BUF0) 
// and write to DMA RAM
// IRQ: ADC Interrupt

DMAOCONbits.CHEN =0; 
DMAOCONbits.SIZE = 0;
DMAOCONbits.DIR = 0;
DMAOCONbits.HALF =0;

DMAOCONbits.NULLW =0;

// disable dma channel 0
// word size data (l=byte size data)
// read from peripheral address 
// initiate block transfer complete interrupt 
// when all of the data has been moved 
// don't null write
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}

DMAOCONbits.AMODE = 0x2; 
DMAOCONbits.MODE = 0;

// Peripheral indirect addressing mode 
// 0: Continuous Ping-Pong modes disabled

DMAOREQ -  13; // select ADC1 as DMA request source
DMAOPAD =0x0300; / / Point DMA to ADC 1BUF0
DMA0CNT = DMA_BUFF_SIZE*NUM_CHAN -1;

// eg. 256 DMA request (4 buffers, each with 64 words)

DMA0STA = __builtin_dmaoffset(&dmaBuffer);

IFSObits.DMAOIF = 0; // clear the DMA interrupt flag bit
IECObits.DMAOIE = 1; // enable DMAO interrupts

DMAOCONbits.CHEN = 1;
// now that everything is set up, enable dma channel 0

yy* ****** ********** *********** UART **********************************//

//include "p33FJ256GP710.h"
//include "dsp.h"
#include "def.h"

fractional dmaUart 1T xBuffer [UART 1 _TX_DMA_BUFF_SIZE]
__attribute__((space(dma),aligned(UARTl_TX_DMA_BUFF_SIZE*2)));

void InitUartl(void)
{

//U1MODE
U1 MODEbits.UARTEN =0;

// Bit 15 TX, RX DISABLED, ENABLE at end of fune 
//U1 MODEbits.notimplemented;// Bit 14 

UlMODEbits.USIDL = 0; // Bitl3 Continue in Idle 
UlMODEbits.IREN =0; / / Bitl2 No IR translation 
UlMODEbits.RTSMD = 0;// Bitl 1 Flow Control Mode.

//U1 MODEbits.notimplemented;// Bitl 0 
U1 MODEbits.UEN =0;

// Bits8,9 TX,RX enabled, CTS, RTS not.
//CTS,RTS and BCLK pins are controlled by port latches 

UlMODEbits.WAKE = 0; // Bit7 No Wake up (since we don’t sleep here) 
UlMODEbits.LPBACK = 0; // Bit6 No Loop Back
UlMODEbits.ABAUD =0; // Bit5 No Autobaud (would require sending '55') 
U1 MODEbits.URXINV = 0; // Bit4 Idle State = 1 (for dsPIC) 
UlMODEbits.BRGH = 0; // Bit3 16 clocks per bit period 
U1 MODEbits.PDSEL = 0; // Bitsl,2 8bit, No Parity 
U1 MODEbits.STSEL = 0; // BitO One Stop Bit
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// Load a value into Baud Rate Generator. Example is for 9600.
U1BRG =21; // 40Mhz ose, 115200 Baud

11= 259; // 40Mhz ose, 9600 Baud

//U1STA
U1 STAbits.UTXISEL 1 =0;

//00 = Interrupt generated when at least one location is empty 
//in the transmit buffer

U1 STAbits.UTXISELO =0; //Bit 13 Other half of Bit 15 
UlSTAbits.UTXINV = 0; //Bitl4 U1TX idle state is '0'
//U1 STAbits.notimplemented = 0; //Bitl 2
U1 STAbits.UTXBRK 
UlSTAbits.UTXEN 
//U1 STAbits.UTXBF 
//UlSTAbits.TRMT 
U1 STAbits.URXISEL =0; 
U1 STAbits. ADDEN =0; 
//U1 STAbits.RIDLE 
//UlSTAbits.PERR 
//U1 STAbits.OERR 
//U1 STAbits.URXDA 
//U1 STAbits.FERR

= 0; 

= 0; 
= 0; 

= 0;

= 0; 
= 0; 
= 0; 
= 0; 

= 0;

//Bitl 1 Sync break transmission is disabled 
//BitlO Transmitter disabled 
//Bit9 *Read Only Bit*
//Bit8 *Read Only bit*
//Bits6,7 Int. on character recieved 
//Bit5 Address Detect Disabled 
//Bit4 *Read Only Bit*
//Bit3 *Read Only Bit*
//Bitl *Read Only Bit*
//BitO *Read Only Bit*
//Bit2 *Read Only Bit*

//IPC2bits.U 1RXIP =7; 
//IPC3bits. U1TXIP =4;

//Already set in main routine 
//no need

IFSObits.UlTXIF =0; 
IECObits.UlTXIE =0; 
IFSObits.UlRXIF =0; 
IECObits.UlRXIE = 1;

// Clear the Transmit Interrupt Flag 
// disable Transmit Interrupts 
// Clear the Recieve Interrupt Flag 
// Enable Recieve Interrupts

UlMODEbits.UARTEN =1; // And turn the peripheral on

UlSTAbits.UTXEN =1;
//The UTXEN bit should not be set until the UARTEN bit has been set; 
//otherwise,UART transmissions will not be enabled.

void InitDmalUartlTx(void)
{

// Configure DMA Channel 1 to UartlTx 
// Transfer data from RAM to UART 
// One-Shot mode
// Register Indirect with Post-Increment 
// Using single buffer 
// Transfer byte

DMAlCONbits.CHEN =0; //disable dma channel 1 
DMAlCONbits.SIZE =1; //Data transfer size; Byte
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DMA1 CONbits.DIR = 1; //From DPSRAM to peripheral address
DMA 1 CONbits.HALF =0;

//initiate block transfer complete interrupt 
//when all of the data has been moved 

DMAlCONbits.NULLW =0; //don't null write 
DMAlCONbits.AMODE =0; //Post-Increment 
DMAlCONbits.MODE =1; //One-Shot, Ping-Pong modes disabled

DMA1REQ = 0x000c // Select UART1 Transmitter
DMA1STA = __builtin_dmaoffset(dmaUartlTxBuffer);
DMA1PAD = (volatile unsigned int) &U1TXREG;

IFSObits.DMAlIF =0; //Clear DMA 1 Interrupt Flag
IECObits.DMAlIE =1; //Enable DMA 1 interrupt

void SendDataUart 1 (fractional* pData, unsigned int length Word)
//IengthWord should not exceed 512 and UART1 TX_DMA BUFF SIZE

{ ~ 
unsigned int i=0;

if (lengthWord>UART 1 _TX_DMA_BUFF_SIZE)
{

lengthWord = UART1_TX_DMA_BUFF_SIZE;
}
for (i=0; i<lengthWord; i++)
{

dmaUartlTxBuffer[i]=*(pData+i);
}

DMA1CNT = lengthWord * 2 - 1; //Number of bytes needed to be transmitted

DMAlCONbits.CHEN =1; //Enable dma channel 1 
DMAlREQbits.FORCE =1; //Manual start dma transfer

} //Least byte of a word will be sent firstly, then the Most byte.

U* *** ******■!< ****** ite****** Digital potentiometer ,,t********’i|it|***+,i,+***+,i,+,i'*//

^include ”p33FJ256GP710.h"
//include "def.h"
//include "delay.h"

void WriteDigitalRes(unsigned int rValue, unsigned int rlndex)
//rValue: 0 to 63; rlndex: O(Visible), 2(UV) or 3(IR)

{
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if (rValue>63)
//rValue must be in the range 0 to 63 for the DS1844-100 digital resistor

{
rValue = 63;

}
else if (rValueO)
{

rValue = 0;
}

rValue = 63 - rValue;
//Due to the way the resistor is set up in the circuit,
//lower values producing higher gain,
//this line makes higher values produce a higher gain.

rlndex = rlndex & Obi 1;

RV1CLK =0; 
RV1RST =0; 
RV1RW = 0;

Delay_us(l);

//a data bit is latched on a 0 to 1 transition of CLK signal 
//communication starts with a 0 to 1 transition on this pin. 
//0 = mode to write resistor value,
//I = mode toread resistor value
//Must be stable for more than 30ns before 0 to 1
//transition of RVIRST

RV1RST = 1;

//Select Potentiometer 
if (rlndex & 0b 10)
{

RV1DIN = 1
}
else
{

RV1DIN = 0;
}

Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

if (rlndex & ObOl)
{

RV1DIN = 1;
}
else
{

RV1DIN = 0;
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}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

//Set Wiper Value 
if (rValue & Ob 100000)
{

RV1DIN = 1;
}
else
{

RV1DIN = 0;
}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

if (rValue & Ob 10000)
{

RV1DIN= 1;
}
else
{

RV1DIN = 0;
}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

if (rValue & Ob 1000)
{

RV1DIN= 1;
}
else
{

RV1DIN = 0;
}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

if (rValue & Ob 100)
{

RV1DIN = 1;
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}
else
{

RV1DIN = 0;
}
Delay us(l); 
RV1CLK=1; 
Delay_us(l); 
RV1CLK=0;

if (rValue & Ob 10)
{

RV1DIN = 1;
}
else
{

RV1DIN = 0;
}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

if  (rValue & Obi)
{

RV1DIN = 1;
}
else
{

RV1DIN = 0;
}
Delay_us(l);
RV1CLK=1;
Delay_us(l);
RV1CLK=0;

Delay_us(l); 
RV1RST = 0;

}

unsigned int ReadDigitalRes(unsigned int rlndex)
{

unsigned int rVal[4]={0,0,0,0}; 
unsigned int rVallndexed; 
unsigned i, j;
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RV1CLK =0;
//a data bit is valid on the falling edge of cloc pulse after maximum 20ns 

RV1RST =0;
//communication starts with a 0 to 1 transition on this pin.

RV1RW = 1;
//0 = mode to write resistor value, 1 = mode toread resistor value 
//Must be stable for more than 30ns before 0 to 1 transition of RVIRST 

Delay_us(l);

RVIRST = 1;

Delay_us(l);

for (i=0; i<4; i++)
{

for (j=7; j>0; j--)
{

RV1CLK =1;
Delay_us(l);
RV1CLK =0;
Delay_us(l);
rVal[i] = rVal[i]|RVlDOUT; 
rVal[i] = rV al[i]« l;

}
RV1CLK =1;
Delayus(l);
RV1CLK = 0;
Delay_us(l);
rVal[i] =rVal[i]|RVlDOUT;

}

RVIRST = 0;

rVallndexed = rVal[rIndex] & ObOO 111111; 

return 63-rVallndexed;
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Appendix 3:

Program for Computation of Oscillation Frequency

% File name: 
% Synopses:
%
%
%

CalculateOscillationFrequency.c
1) Remove DC
2) Perform FFT
3) Compute power spectral density
4) Derive oscillation frequency

*%

% Programmer: Duo Sun, School of Engineering and Digital Arts, University of Kent 
% Date: August 1,2011
oyo ********** *********** ft******************** *%******** *******% ft****** tty

include "p33FJ256GP710.h" 
^include "dsp.h"
^include "def.h"
^include "main.h"
#include "twiddlefactors.h"

fractional ComputeOscillationFrequency(fractional *pBuffer)
{

unsigned int i = 0;
int peakFrequencyBi= 0; /* Declare post-FFT variables to compute the */
unsigned long peakFrequency = 0; /* frequency of the largest component */
unsigned int m =0; 
unsigned int n = 0;
fractional flicker = 0;
fractional *pFractional; 
unsigned long tempVarl = 0;
unsigned long sumA = 0;
unsigned long sumB = 0;
unsigned long sumC = 0;
fractional tempDC = 0;

// unsigned long : 32bit

// Move data from xbuffer to ymemory, scale it to [0,+0.5] 
for(i=0; i<FFT_BLOCK_LENGTH; i++)
{

sigCmpx[i].real = (*pBuffer)»2; 
sigCmpx[i].real = sigCmpx[i].real&0x3FFF; 
sigCmpx[i].imag = 0; 
pBuffer++;

}
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// Calculate DC
for(i=0; i<FFT_BLOCK_LENGTH; i++)
{

sumC = sumC + sigCmpx[i].real;
}
tempDC = sumC/FFTBLOCKLENGTH;

// Remove DC
for(i=0; i<FFT_BLOCK_LENGTH; i++)
{

sigCmpx[i].real = sigCmpx[i].real - tempDC;
}

// Perform FFT operation
FFTComplexIP (LOG2_BLOCK_LENGTH, &sigCmpx[0], (fractcomplex *)
__builtin_psvoffset(&twiddleFactors[0]), (int)
__builtin_psvpage(&twiddleF actors [0]));

// Store output samples in bit-reversed order of their addresses 
BitReverseComplex (LOG2BLOCKLENGTH, &sigCmpx[0]);

// Compute the square magnitude of the complex FFT output array 
S quareMagnitudeCplx(FFT_BLOCK_LENGTH, &si gCmpx [0], 
&sigCmpx[0].real);

// Remove DC component 
sigCmpx[0].real = 0;

// Find the frequency Bin that has the largest energy*/ 
VectorMax(FFT_BLOCK_LENGTH/2, &sigCmpx[0].real, 
&peakFrequencyBin);

// Compute the frequency (in Hz) of the largest spectral component 
peakFrequency = peakFrequencyBin; 
peakFrequency =
(peakFrequency*SAMPLING_RATE)/FFT_BLOCK_LENGTII;

// Compute the denominator of oscillation frequency computation 
// SUMB = SUM(pi) 
pFractional = &sigCmpx [0] .real; 
n = 0; 
sumB = 0;

for (i=0; i<FFT_BLOCK_LENGTH/2; i++)
{

tempVarl = *pFractional»  n; 
if (sumB&0x80000000) // in case of overflow.
{

. n++;
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sumB = sum B »l; 
tempVarl = tempVarl »  1; 
sumB = sumB + tempVarl;

}
else
{

sumB = sumB + tempVarl;
}
pFractional++;

}

// Compute the numerator of flicker computation — SUM A = SUM(pi*fi) 
pFractional = &sigCmpx[0].real; 
m = 0; 
sumA = 0;

for (i=0; i<FFT_BLOCK_LENGTH/2; i++)
{

tempVarl = *pFractional;
tempVarl = tempVarl *i* 10;
tempVarl = tempVarl »  m;
if (sumA&0x80000000) // in case of overflow
{

m++;
sumA = sum A »l; 
tempVarl = tempVarl »  1; 
sum A = sum A + tempVarl ;

}
else
{

sum A = sum A + tempVarl ;
}
pFractional-H-;

}

// Compute flicker = numerator/denominator 
// SUMA/SUMB = SUM(pi*fi)/SUM(pi); 
if (m>=n)
{

sumB = sumB »  (m - n);
}
else if (m<n)
{
// when it happens, something must be wrong! !
}

flicker = ((sumA/sumB)* SAMPLING_RATE)/FFT_BLOCK_LENGTI I; 
return flicker; // The real oscillation frequency equals to 1/10 of variable flicker.

}
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Appendix 4:

Program for Computation of Flame Stability Index

o/0 ****************************************************************t ^^^y
% File name: FlameStabilitylndexMeasurement.cpp
% Synopses: 1) Convert RGB into HSI colour space
% 2) Extract flame parameters
% 3) Data fusion
% Programmer: Duo Sun, School of Engineering and Digital Arts, University of Kent 
% Date: August 1,2011
<yQ ********************************************** ***********^^ if

void CFlameMonitoringDlg::CalculateFlameStabilityIndex(IplImage *Img)
i

int height = Img->height;
int width = Img->width;
int step = Img->widthStep/sizeof(uchar);
int channels = Img->nChannels;
uchar* pdata = (uchar *)Img->imageData;

if (m_pImgH != NULL)
{

delete []m_pImgH; 
m_pImgH = NULL;

}

if (m__pImgS != NULL)
{

delete []m_pImgS; 
m_pImgS = NULL;

}

if  (m_plmgl != NULL)
{

delete []m__plmgi; 
m_plmgl = NULL;

}

m_pImgH = new float[height*width]; 
m_pImgS = new float [height* width];
m_plmgl = new float [height* width];

int j Row, ¡Column;
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unsigned char b,g,r; 
float m,gn,bn; 
float h,s,i;
float hSum,sSum,iSum;

// Convert RGB to HSI colour space 
for(jRow=0;jRow<height;jRow++)

for(iColumn=0;iColurnn<width;iColumn++) //B,G,R
{

b = unsigned ehar(pdata[jRow*step+iCoIumn*channels+0]); 
g = unsigned char(pdata[jRow*step+iColumn*channels+lj); 
r = unsigned char(pdata[jRow*step+iColumn*channels+2]);

if (b<=THRESHOLD)||(g<=THRESHOLD)||(r<=THRESIIOLD))
{

pdata[jRow*step+iColumn*channels+0] = 0; // B 
pdata[jRow*step+iColumn*channels-}-1 ] = 0; //G 
pdata[jRow*step+iColumn*channels+2] = 0; //R

b = 0;
g = 0;
r = 0;

}

if ((b == 0)&&(g == 0)&&(r == 0))
{

h = 0; 
s = 0; 
i = 0;

}
else
{

m = static_cast<float>(r)/static_cast<float>(r + g + b); 
gn = static_cast<float>(g)/static_cast<float>(r + g + b); 
bn = static_cast<float>(b)/static_cast<float>(r + g + b);

if (bn <= gn)
{

h = acos(0.5*((m-gn)+(rn-bn))/sqrt((m-gn)*(rn- 
gn)+(m-bn)*(gn-bn)));

}
else
{

h = 2*PI - acos(0.5*((m-gn)+(m-bn))/sqrt((rn- 
gn)* (m-gn)+(m-bn) * (gn-bn)));

}
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h = h/(2*PI); //[0,1]

if ((m<gn)&&(m<bn)) //[0,1 ]
{

s = 1 - 3*m;
}
else if ((gb<m)&&(gn<bn))
{

s = 1 - 3*gn;
}
else
{

s = 1 - 3*bn;
}

i = (r + g + b)/(3*255); //[0,1]
}

*(m_pImgH+jRow*width+iColumn) = h; 
*(m_pImgS+jRow*width+iColumn) = s; 
* (m_plmgl+j Row* width+iColumn) = i;

}
}

// Extraction of parameters 
hSum = 0; 
sSum = 0; 
iSum = 0;

for(j Ro w=0 ;j Ro w<hei ght ;j Ro w++)
{

for(iColumn=0;iColumn<width;iColumn++)
{

hSum = *(m_pImgH+jRow*width+iColumn) + hSum; 
sSum = *(m__pImgS+jRow* width+iColumn) + sSum; 
iSum = *(m_pImgI+jRow*width+iColumn) + iSum;

}
}

m_dblMh = hSum/(height*width); 
m_dblMs = sSum/(height*width); 
m_dblMi = iSum/(height*width);

hSum = 0; 
sSum = 0; 
iSum = 0;

for(j Row=0;j Row<height;j Row++)
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{
for(iColumn=0;iColumn<width;iColumn++)
{

hSum = (*(m_pImgH+jRow*width+iColumn) - 
m_dblMh)*(*(m__pImgH+jRow*width+iColumn) - m_dblMh) + hSum;

sSum = (*(m_pImgS+jRow*width+iColumn) -
m_dblMs)*(*(m_pImgS+jRow*width+iColumn) - m_dblMs) + sSum;

iSum = (*(m_pImgI+jRow*width+iColumn) - 
m_dblMi)*(*(m_pImgI+jRow*width+iColumn) - m_dblMi) + iSum;

}
}

m_dblCh = sqrt(hSum/(height*width)); 
m_dblCs = sqrt(sSum/(height*width)); 
m_dblCi = sqrt(iSum/(height*width));

iSum = 0;

for(j Ro w=0y Ro w<height;j Row++)
{

for(iColumn=0;iColumn<width;iColumn++)
{

if (*(m_pImgI+jRow*width+iColumn)>iThreshoId)
{

iSum = iSum + 1;
}

}
}

m_dblAi = iSum/(height*width);

// Data fusion
m_dblMhArray[m_nStabilityCount] = m_dblMh; 
m_dblMsArray[m_nStabilityCount] = m_dblMs; 
m_dblMiArray[m_nStabiIityCount] = m_dbIMi; 
m_dblChArray[m_nStabilityCount] = m_dblCh; 
m_dblCsArray[m_nStabilityCount] = m_dblCs; 
m_dblCiArray[m_nStabilityCount] = m_dblCi; 
m_dblAiArray[m_nStabilityCount] = m_dblAi;

mnStabilityCount = m_nStabilityCount + 1;

if (m_nStabilityCount >= WINDOW_WIDTH)
{

m_nStabilityCount = 0; 
m_bISArrayFull = TRUE;

}
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if (m_bISArrayFull == TRUE)
{

m_dblMhStd = CalculateSTD(m_dblMhArray,WINDOW_WIDTII); 
mdblMsStd = CalculateSTD(m_dblMsArray,WINDOW_WIDTII); 
m_dblMiStd = CalculateSTD(m_dblMiArray,WINDOW_WIDTII); 
m_dblChStd = CalculateSTD(m_dblChArray,WINDOW_WIDTH); 
mdblCsStd = CalculateSTD(m_dblCsArray,WrNDOW_WIDTH); 
m_dbICiStd = CalcuIateSTD(m_dbICiArray,WINDOW_WIDTH); 
m_dblAiStd = CalculateSTD(m_dblAiArray,WINDOW_WIDTH);

}
else
{

m_dblMhStd = CalculateSTD(m_dblMhArray,m_nStabilityCount); 
m_dblMsStd = CalculateSTD(m_dblMsArray,m_nStabilityCount); 
m_dbIMiStd = CalculateSTD(m_dbIMiArray,m_nStabilityCount); 
m_dblChStd = CalculateSTD(m_dblChArray,m_nStabilityCount); 
m_dblCsStd = CalculateSTD(m_dblCsArray,m_nStabilityCount); 
m_dblCiStd = CalculateSTD(m_dblCiArray,m_nStabilityCount); 
m_dblAiStd = CalculateSTD(m_dblAiArray,m_nStabilityCount);

}

m_dblStabilityIndex = pow((l-2*m_dblMhStd)*(l-2*m_dblMsStd),"(l- 
2*m_dblMiStd)*( 1 -4*m_dblChStd)* (1 -4* m_dblCsStd)* (1 -4* m_dblCiStd)* (1 - 
2*m_dblAiStd),2);

CString strStabilitylndex;

strStabilityIndex.Format("%.2f',m_dblStabilityIndex); 
SetDIgItemText(IDC_EDIT_STABILITY_INDEX, strStabilitylndex);

}

double CFlameMonitoringDlg::CalculateSTD(double * dblArray,int Length)
{

double suml = 0; 
double avel = 0;

double sum2 = 0; 
double std = 0; 
int i;

if  (0 =  Length)
{

return 0;
}
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for (i = 0; i < Length; i++)
{

suml = suml + dblArray[i];
}
avel = suml/Length;

for (i = 0; i < Length; i++)
{

sum2 = sum2 + pow(dblArray[i]-avel,2);
}
std = sqrt(sum2/Length); 

return std;
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Appendix 5:

Program for Computation of Temperature

0/o ****************************************** *************** ******* * + **0/0 
n/ T'M--------  TemperatureMeasurement.cpp

1) Calculate temperature distribution
2) Display minimum, maximum and average temperature on GUI
3) Convert temperature distribution into pseudo colour image
4) Display pseudo colour image of temperature distribution on GUI 
Duo Sun, School of Engineering and Digital Arts, University of Kent 
August 1,2011

********************************************************************%

% File name 
% Synopses:
%
%
%
% Programmer: 
% Date:

#defme TEMPERATUREMAX 2100 11° C
#defme TEMPERATURE_MIN 1100 lf°C

#defme TEMPERATURELABELMAX 
#defme TEMPERATURE LABEL MIN

#define NOISELEVEL 
#defme THRESHOLD

#define Cl 
#define C2

^define LambdaR 
#define LambdaG

2000 II °C 
1200 // °C

2 // Noise level
15 //Threshold

1.191 le8 // First Planck's Constant
1.4388e4 // Second Planck's Constant

0.614 // (um)
0.541 //(um)

void CFlameMonitoringDlg::CalculateTemperatureDistribution(IplImage *Img)
IIIPlImage: OpenCV IPL image header

int height = Img->height;
int width = Img->width;
int step = Img->widthStep/sizeof(uchar);
int channels = Img->nChannels;
uchar* pdata = (uchar *)Img->imageData; // flame image

int jRow,iColumn; 
float gl,g2,ratio,s,temp; 
float tempNum = 0; 
float tempMin = 10000; 
float tempMax = 0; 
double tempSum = 0;
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if (m_pTemp != NULL)
{

delete []m_pTemp; 
m_pTemp = NULL;

m_pTemp = new float[height*width];

I I Calculate temperature distribution

for(j Row=0;j Row<height;j Row++)
{

for(iColumn=0;iColumn<width;iColumn++) //B,G,R
{

// gl = R channel
gl = unsigned char ( pdata[jRow*step+iColumn*channels+2] ); 
// g2 = G channel
g2 = unsigned char ( pdata[jRow*step+iColumn*channels+l] );

if ( (gl>THRESHOLD) && (g2>THRESH0LD) )
{

gl = gl - NOISE_LEVEL; 
g2 = g2-NOISE_LEVEL;
// intensity ratio
ratio = static_cast<float>(gl)/static_cast<float>(g2);
// instrument factor
s = 0.3557*ratio*ratio - 1.294*ratio + 2.469;
// temperature
temp = C2*(l/LambdaG -
l/LambdaR)/log(ratio*s*pow(LambdaR/LambdaG,5));

if ( (temp<=TEMPERATURE_MAX) && 
(temp>=TEMPERATURE_MIN) )
{

*(m_pTemp+jRow*width+iColumn) = temp;

if (tempMin > temp) tempMin = temp; 
if (tempMax < temp) tempMax = temp;

tempSum = tempSum + temp; 
tempNum = tempNum + 1 ;

}
else
{

*(m_pTemp+jRow*width+iColumn) = 0;
}
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}
else
{

*(m_pTemp+jRow*width+iColumn) = 0;
}

}
}

// Display minimum, maximum and average temperature on the GUI

m_dbITMax = tempMax; // maximum

if(tempMin =  10000) // minimum
{

m_dblTMin = 0;
}
else
{

m_dblTMin = tempMin;
}

if (tempNum != 0) // average
{

m_dblTAve = tempS um/tempNum;
}
else
{

m_dblTAve = 0;
}

CString strTMax,strTMin,strTAve;

strTMax.Format("%.Of °C",m_dblTMax);
SetDlgltemText(IDC_EDIT_TMAX, strTMax);

strTMin.Format("%.0f °C",m_dblTMin); 
SetDIgItemText(IDC_EDIT_TMIN, strTMin);

strTAve.Format("%.0f °C",m_dblTAve); 
SetDlgItemText(IDC_EDIT_TAVE, strTAve);

// Convert numerical temperature distribution into pseudo color image 

int k;
BOOL flag;

if ((height!=m_pCvImgT emperature->height)||(width!=m_pCvImgT emperature
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->width)| | (channels! =m_pCvImgT emperature->nChannel s))
{

if(NULL! =m_pCvImgT emperature)
{

cvReleaseImage(&m_pCvImgT emperature);
}
m_pCvImgTemperature =
cvCreateImage(cvSize(width,height),IPL_DEPTH_8U,channels);

}

// temperature distribution in pseudo color
uchar* pdataT = (uchar *)m_pCvImgTemperature->imageData;
int stepT = m__pCvImgTemperature->widthStep/sizeof(uchar);

for(j Ro w=0 ;j Ro w<height;j Row++)
{

for(iColumn=0;iColumn<width;iColumn++)
{

temp = *(m_pTemp+jRow*width+iColumn); 

flag = FALSE;

for (k=0;k<COLOR_NUMBER;k++)
{

if(temp > m_nTempScale[k])
{

pdataT[jRow*stepT+iColumn*channels+0] = 
m_colorCode[3*k+0]; //B 
pdataT[jRow*stepT+iColumn*channels+l] = 
m_colorCode[3*k+l]; //G 
pdataT0Row*stepT+iColumn*channels+2] = 
m_colorCode[3*k+2]; //R

flag = TRUE;

break;
}

}

if (TRUE != flag) // Black
{

pdataT[)Row*stepT+iColumn*channels+0] = 0; //B 
pdataT[jRow*stepT+iColumn*channels+l] = 0; //G 
pdataT[jRow*stepT+iColumn*channels+2] = 0; //R

}
}

}
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// Display the pseudo color image of temperature distribution on GUI 

CDC *pDC = GetDlgItem(IDC_DISPLAY_TEMPERATURE)->GetDC(); 

HDC hDC -  pDC->GetSafeHdc();

CRect rect;

GetDlgItem(IDC_DISPLAY_TEMPERATURE)->GetClientRect(&rect);

Cwlmage cimg;

if (m_pCvImgTemperature !=NULL)
{

cimg.CopyOf(m_pCvImgTemperature);

cimg.DrawToHDC(hDC,&rect);

ReleaseDC(pDC);

void CFlameMonitoringDlg::InitColorBar()

m_colorCode[0] = 0; 
m_colorCode[l] = 0 ; 
m_colorCode[2] = 255;

//BGR Red:highest temperature

m_colorCode[3] = 0; 
m_colorCode[4] = 64; 
m_co!orCode[5] = 255;

//BGR

m_co!orCode[6] = 0; 
m_colorCode[7] = 143; 
m_colorCode[8] = 255;

//BGR

m_colorCode[9] = 0; 
m_colorCode[10] =223; 
m_colorCode[l 1] = 255;

//BGR

m_colorCode[12] =48; 
m_colorCode[13] = 255; 
m_colorCode[14] = 207;

//BGR

m_colorCode[15] = 128 
m_colorCode[16] = 255 
m_colorCode[l7] = 128:

//BGR
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m_colorCode[18] = 207; 
m_colorCode[19] = 255; 
m_colorCode[20] = 48;

m_colorCode[21] =255; 
m_colorCode[22] =223; 
m_colorCode[23] = 0;

m_colorCode[24] =255; 
m_colorCode[25] =143; 
m_colorCode[26] =0;

m_colorCode[27] =255; 
m_colorCode[28] =64; 
m_colorCode[29] =0;

m_colorCode[30] =255; 
m_colorCode[31] =0; 
m_colorCode[32] = 0;

//BGR

//BGR

//BGR

//BGR

//BGR Bluedowest temperature

for (int i=0;i<COLOR_NUMBER;i++)
{

m_nTempScale[i] = TEMPERATURE_LABEL_MAX - 
(i+0.5)*(TEMPERATURE_LABEL_MAX - 
TEMPERATURE_LABEL_MIN)/(COLOR_NUMBER-1);

}

m_pCvImgColorbar = cvCreateImage( cvSize(4, COLOR NUMBER)
IPLJDEPTH8U, 3); “
int height = m_pCvImgColorbar->height;
int width = m_pCvImgColorbar->width;
int step = m_pCvImgColorbar->widthStep/sizeof(uchar);
int channels = m__pCvImgColorbar->nChannels;
uchar* data = (uchar *)m_pCvImgColorbar->imageData;

for (int i=0;i<height;i++)
{

for(int j=0 J <width;j ++)
{

data[i*step+j*ehannels+0] = m_colorCode[i*3+0]; //B 
data[i*step+j*channels+l] =m_colorCode[i*3+l]; //G 
data[i*step+j*channels+2] = m_colorCode[i*3+2]; //R

}
}
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Appendix 6:

Program for of Abnormal Condition Detection in a 

Combustion Process Using KPCA

o/o ***************************************#**+**+*++***+* a m  a
% File name: abnormalConditionsDetectionKPCA.m
% Synopses: l) Load data
%
%
%
%
%
%

2) Scale the data using the mean and std of training data
3) Carry out KPCA
4) Compute principal components in kernel feature space
5) Compute T2 & SPE limit
6) Compute T2, Q statistics of test data
7) Display results and draw figures

% Programmer: Duo Sun, School of Engineering and Digital Arts, University of Kent 
%Date: Augusti, 20 l l
iyo **************************************************++*++++++*+*4!+*4,41+0^

clear all; 
close all; 
clc;

%% Load data 
cdir = pwd; 
cd ([cdir '\data']);

data_normal = load ('normal.dat'); 
data_abnormal = load ('abnormal.dat');

cd (cdir);

cvp = cvpartition(size(data_normal,l),'holdout',0 .2 0 );

training_data = data_normal(cvp. training,:);
test_data = vertcat(data_normal(cvp.test,:),data_abnormal);

%% Scale the data using the mean and std of training data 
n = size(training_data,l); % number of observations 
m = size(training_data,2); % number of variables

Xmean= mean(training_data,l);
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Xstd = std(training_data);

X = bsxfun(@minus,training_data,Xmean); 
X = X./repmat(Xstd,n,l);

Xt = bsxfun(@minus,test_data,Xmean);
Xt = Xt./repmat(Xstd,size(Xt,l),l);

training__pattems = X; 
test_pattems = Xt;

%% Carry out KPCA 
rbf_var = 1000;
cov_size = size(training_pattems,l);

for i=l :cov_size, 
for j=i:cov_size,

K(ij) = exp(-norm(training__pattems(i,:)-training_patterns(j,:))A2/rbf_var); 
K(j,i) = K(ij); 

end 
end
unit = ones(cov_size, cov_size)/cov_size;
K n = K - unit*K - K*unit + unit*K*unit;

[evecs,evals] = eig(K_n); 
evals = real(diag(evals));

[evalsIX] = sort(evals,'descend'); 
evecs = evecs(:,IX);

for i=l:cov_size,
evecs(:,i) = evecs(:,i)/(sqrt(evals(i))); 

end

percent = 0.99; 
k=0;
for i = 1 :length(evals) 

per(i) = sum(evals(l :i))/sum(evals); 
if per(i) >= percent

k = i;
break;

end
end

%% Compute principal components in kernel feature space 
% training data
train_num = size(training_pattems, 1);
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for i=l :train_num, 
forj=l:cov_size,

K_train(i,j) = exp(-norm(training_patterns(i,r)-training_patterns(j,:))A2/rbf_var);
end

end
unit_train = ones(train_num,cov_size)/cov_size;
K_train_n = K_train - unit_train*K - K_train*unit + uni t_train*K* unit;

training_features = K_train_n * evecs(:,l:end);

% test data
test_num = size(test_pattems,l);

for i=l :test_num, 
for j=l:cov_size,

K_test(i,j) = exp(-norm(test_pattems(i, :)-training_patterns(j, :))A2/rbf_var); 
end 

end
unit_test = ones(test_num,cov_size)/cov_size;
K_test_n = K_test > unit_test*K - K_test*unit + unit_test*K*unit;

test_features = K_test_n * evecs(:,l rend);

%% Compute T2 & SPE limit 
beta =0.95; 
alpha = 1-beta;

T2knbeta = k*(n-l)/(n-k)*finv(beta,k,n-k)

theta=zeros(3,l); 
for i=l :3

for j=k+1 :size(evecs, 1) 
theta(i) = theta(i) + evals(j)A(i); 

end 
end
h0= 1 - 2/3*theta(l)*theta(3)/(theta(2)A2);
Qbeta = theta(l)*(l + theta(2)*hO*(hO-l)/(theta(l)A2)...

+ norminv(beta)*(2:|ttheta(2)*h0A2)A0.5/theta(l)... 
)A(l/hO)

%% Compute T2, Q statistics of test data
T2_test = diag(test_features(:,l:k)*diag(l./evals(l :k))*test_features(:,l:k).'); 

for i=l:size(test_features,l)
Q_test(i) = test_features(i,k+1 :end)*test_features(i,k+l rend).'; 

end
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%% Display results and draw figures 
T2 = [T2_test];
Q = Q_test.';

figure;
plot(T2,’k');
hold on; piot(T2knbeta*ones(l,length(T2)),'r—'); 
xlabel('Observations'); ylabel('TA{2}-Statistic');
legend('TA{2}-Statistic',['TA{2}_{\alpha}, \alpha- num2str(beta*100)'%']);

figure
plot(Q,'k');
hold on; plot(Qbeta*ones( 1 ,length(Q)),'r-'); 
xlabel('Observations'); ylabel('Q-Statistic'); 
legend('Q-Statistic',['Q_{\alpha},\alpha- num2str(beta* 100)'%']);
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Appendix 7:

Program for Flame State Identification Using SVM

( y  * *l|!!|C!(!**l|i****!t!* * * * 1tt* * :l '* * * * * * * * * * * * * * * * * * * * * * * * * * * * ’l, * * * * * ,l, * + ’l‘'l, + 't,,tl + * ,t‘ + ,t‘^ )

% File name:
% Synopses:
%
%
%
%
%
%
% Programmer: 
% Date:

flameStateldentificationSVM.m
1) Load data (flame characteristics)
2) Conduct scaling on the data
3) Divide the data randomly into training set 80%, and test set 20%
4) Use cross-validation to find the best parameter c and gamma
5) Use the best c and gamma to train the whole training set
6) Use the trained SVM model to predict test data set
7) Display results and draw figures
Duo Sun, School of Engineering and Digital Arts, University of Kent 
August 19,2012

(y t^jm****************** ****************************** ***************0/0

clear all; 
close all; 
clc;

%% Load data 
edir = pwd;
cd ([edir '\flameCharacteristics']);

classjabels =[1:18]; % 18 different test conditions
attributes = []; % input of svm: flame characteristics
target = []; % output of svm: flame state

for iClass = 1 :length(class_labels)
iClass_attributes = load ([’flameCharacteristicsC num2str(iClass) \dat’]);
attributes = vertcat(attributes,iClass_attributes);

iClass_target = iClass*ones(size(iClass_attributes,l),l);
target = vertcat(target,iClass_target);

end

cd (edir);

%% Conduct scaling on the data 
attributes=(attributes-
repmal(min(atttibules,[], 1 ̂ a t t r i b u t e s ,  1 ), l))*spdiags( t ./(max(attributes.n 1)-
min(attnbutes,[],!)) ,0,size(attributes,2),size(attributes,2));
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%% Divide the data randomly into training set 80%, and test set 20% 
nTrials = 20; % 20 trials 
for iTrial = 1 rnTrials

cvp(iTrial) = cvpartition(target,'holdout',0.2); 
end

%% Carry out SVM 
for iTrial = 1 :nTrials

disp([Trial1 num2str(iTrial)J);

test_target = target(cvp(iTrial).test);
test_attributes = attributes(cvp(iTrial).test,:);

training_target = target(cvp(iTrial).training);
training_attributes = attributes(cvp(iTrial).training,:);

nTest = cvp(iTrial).TestSize;
nTrain = cvp(iTrial).TrainSize;

% Use cross-validation to find the best parameter c and gamma 
beste v = 0;

for log2c = 3:7
for log2g = -4:l

cmd = [’-v 5 -c ’, num2str(2Alog2c), ’ -g ’, num2str(2Alog2g), ’ -q']; 
cv = svmtrain(training_target, training_attributes, cmd); 
if (cv >= bestev),

bestev = cv; beste = 2Alog2c; bestg = 2Alog2g; 
bestlog2c = log2c; bestlog2g = log2g; 

end
fprintf('%g %g %g\n', log2c, log2g, cv);
fprintf('best log2c=%g, c=%g, log2g=%g, g=%g, rate=%g\n', bestlog2c, 
beste, bestlog2g, bestg, bestev); 

end 
end

% Use the best parameter C and gamma to train the whole training set 
model = svmtrain(training_target, training_attributes, ['-c ' num2str(bestc)' -c '

num2str(bestg)' -q']); ®

% Use the trained model to predict training data set 
[training_target_predicted, training_accuracy, prob_estimatesl = 

svmpredict(trainmg_target, training_attributes, model)-
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% Use the trained model to predict test data set
[test_target_predicted, test_accuracy, prob_estimates] = svmpredict(test__target, 

test_attributes, model);

% Record results
training_target_array(iTrial,:) = training_target;
training_target_predicted_array(iTrial,:) = training_target__predicted; 
training_accuracy_array(iTrial) = training_accuracy(l);

test_target_array(iTrial,:) = test_target;
test_targetjpredicted__array(iTrial,:) = test_target_predicted;
test_accuracy_array(iTrial) = test_accuracy(l);

disp(['Success rate of predicting training data:' num2str(training_accuracy( 1))]);
disp(['Success rate of predicting test data:' num2str(test_accuracy( 1))]);

end

%% Draw figures 
figure;
plot(training_accuracy_array,'Marker','o','LineStyle',':','Color',[0 0 0]);
xlabelf'Trial number');
ylabelf'Success rate of classification of training data (%)'); 
axis([l 20 85 100]);

figure;
plot(test_accuracy_array,'Marker','o','LineStyIe’,':','Color',[0 0  0]);
xlabel('Trial number');
ylabelf'Success rate of classification of test data (%)'); 
axis([l 20 85 100]);
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Appendix 8:

Program for NOx Emission Prediction Using SVM

O/q ******************************************1|,1|,ltll|<)(()|<,|<,)ll|tl|1,|<,(lI|1J|(
% File name: 
% Synopses:
%

NOxPredictionSVM.m
1) Load data (flame characteristics)
2) Conduct scaling on the data

%
%
%
%
%
% Programmer: 
% Date:

3) Divide the data randomly into training set 80%, and test set 20%
4) Use cross-validation to find the best parameter c and gamma
5) Use the best c and gamma to train the whole training set
6) Use the trained SVM model to predict test data set
7) Display results and draw figures
Duo Sun, School of Engineering and Digital Arts, University of Kent 
August 19,2012

%  ******=m>**=i'* * * * * * * * * * * * i>******»m .***>m .* * * * * h.* * ++* +1|<++++++++>i,+1|iH(>|(i(i ))ii)ii)i
*%

clear all; 
close all; 
clc;

%% Load data 
edir = pwd;
cd ([edir 'VflameCharacteristics']);

classjabels =[1:18]; % 18 different test conditions
attributes = []; % input of svm: flame characteristics
target = []; % output of svm: flame state

for iClass = 1 :length(class_labels)
iClass_attributes = load (['flameCharacteristicsC num2str(iClass) ’.dat']);
attributes = vertcat(attributes,iClass_attributes);

iClass_target = load ([’NOxC num2str(iClass) '.dat']);
target = vertcat(target,iClass_target);

end

cd (edir);

%% Conduct scaling on the data 
attributes=(attributes-
repmat(min(attributes,[], l),size(attributes, 1), 1 ))*spdiags( 1 ./(max(attributes,[], 1 )■
min(attributes,[],l))',0 ,size(attributes,2 ),size(attributes,2 ));
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%% Divide the data randomly into training set 80%, and test set 20% 
nTrials = 20; % 20 trials 
for iTrial = 1 :nTrials

cvp(iTrial) = cvpartition(target,'holdout',0.2); 
end

%% Carry out SVM 
for iTrial = 1 rnTrials

disp(['Trial' num2str(iTrial)]);

test_target -  target(cvp(iTrial).test);
test_attributes = attributes(cvp(iTrial).test,:);

training_target = target(cvp(iTrial).training);
training_attributes = attributes(cvp(iTrial).training,:);

nTest = cvp(iTrial).TestSize;
nTrain = cvp(iTrial).TrainSize;

% Use cross-validation to find the best parameter c and gamma 
bestmse = inf;

for log2c = 3:7
for log2g = -2:3

cmd = ['-s 3 "-v 5 -c ', num2str(2Alog2c),' -gnum 2str(2Alog2g),' -q’]; 
svm_mse = svmtrain(training_target, training_attributes, cmd); 
if (svm_mse <= bestmse),

bestmse = svm_mse; beste = 2AIog2c; bestg = 2Alog2g; 
bestlog2c = log2c; bestlog2g = log2g; 

end
fprintf(’%g %g %g\n', Iog2c, log2g, svm_mse); 
fprintf('best log2c=%g, c=%g, log2g=%g, g=%g, mse=%g\n', bestlog2c, 
beste, bestlog2g, bestg, bestmse); 

end 
end

% Use the best parameter C and gamma to train the whole training set 
model = svmtrain(training_target, training_attributes, [’-s 3 ” -c ' num2str(bestc) ’ -c ’ 

num2str(bestg)' -q']);

% Use the trained model to predict training data set 
[training_target_predicted, training_accuracy, prob_estimates] = 

svmpredict(training_target, training_attributes, model);

% Use the trained model to predict test data set
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[testjarget_predicted, test_accuracy, prob_estimates] = svmpredict(test_target, 
test_attributes, model);

% Record results
training_target_array(iTrial,:) = trainingjarget;
training_target_predicted_array(iTrial,:) = trainingjarget.predicted- 
training_accuracy_array(iTrial) = training_accuracy;

test_target_array(iT rial, :)
testJarget_predicted_array(iTrial,:)
test_accuracy_array(iTrial)

= testJarget;
= testjargetjredicted; 
= test_accuracy;

end

%% Draw figure: predicted value vs. measured value 
iTriaI= 1;

figure;
pIot(testJarget_array(iTrial,:),
test Jargetj3redictedjnray(iTrial,:),'k','Marker',7,'LineStyle','none');
ylabel('Predicted NOx (ppm)'); 
xlabel('Measured NOx (ppm)');

x = [160:345]; y = x;
hold on; plot(x(2:end-8),y(2:end-8)*1.03,’k’,'LineStyle',’:') 
hold on; plot(x(l:end-5),y(l:end-5),'k','LineStyle','-') 
hold on; plot(x(5:end-4),y(5:end-4)*0.97,'k','LineStyle',':')
axis([150 350 150 350])

%% Draw figure: variation of mse with trial number 
figure;
plot(test_accuracy_array,'k','Marker','.','LineStyle',':'); 
ylabel('Mean squared error'); 
xlabel('Trial number');
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Abstract

This paper presents the design implementation and evaluation of an instrumentation system 
for the stability momtonng and characterization of combustion flames The system 
incorporating optical sensing image processing and spectral analysis techniques is’designed 
to monitor a range of flame characteristic parameters. The stability of the flame is assessed 
through statist,cal analysis of the flame parameters obtained. Embedded computer u T h S .e s  
are employed to ensure the compactness and robustness of the system Pvne P q
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1. Introduction

Unstable flames are a recognized problem in fossil-fuel-fired 
combustion processes, particularly where low-quality fuel, 
fuel blends and co-firing of biomass with fossil fuels are 
applied. The unstable flame can result in many combustion 
problems such as low combustion efficiency, high NO* 
emissions and unbumt carbon in flue gas. It may also cause 
non-uniform thermal distribution in flue gas and increase 
the wall thermal stress and vibration of the furnace [1], 
The stability of flame should therefore be monitored and 
mai ntained continuously for the improved overall performance 
o f the furnace. However, flame monitoring techniques 
currently available to the power generation industry can only 
provide basic information such as flame presence or absence
3 Author to whom any correspondence should be addressed.

0957-0233/11/114007+09S33.00 ,

for furnace safety purposes. They cannot give quantitative 
information on the stability of the flame.

The flame stability depends on many factors, including 
the ignitability of fuel or a blend, equivalence ratio, inlet 
fuel distribution, inlet swirl, burner type and boiler structure 
[2, 3]. A  number o f  studies have been devoted to such issues 
theoretically and experimentally [4-13]. Various techniques 
for flame monitoring and characterization have been proposed, 
but digital imaging has been identified as one of the most 
effective approaches for use in practical furnaces in terms 
o f system functionality, portability and cost-effectiveness [5]. 
Significant efforts have been made in the last decade to develop 
two-dimensional (2D) and three-dimensional (3D) techniques 
for the visualization and characterization of flames. However, 
only a few works focused on the quantitative assessment of the 
flame stability. Furthermore, practical issues such as optical
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Embedded photo-detectors & signal-processing board

Embedded motherboard

Figure 1. Block diagram of the flame monitoring system.

a ccess requirement, lack o f ruggedness and high capital cost 
lim it their application to industrial furnaces. Paubel d a l  [61 
used a CCD camera to record chemiluminescence images of 
excited  CH radicals in a non-premixed flame o f low calorific 
residual gases and employed topology analysis techniques to 
stud y the stability diagram o f the flame. Kiran and Mshiri 
[7 ] studied the stability characteristics o f a jet diffusion LPG 
(liquefied petroleum gas) flame in terms o f  its lift-off height 
length  and emission levels, which were derived from images 
obtained by a CCD camera. Mansour [8] investigated the 
stability  o f  a partially premixed turbulent lifted methane flame 
u sin g  the combined technique o f Rayleigh scattering, LIPF 
(laser-induced predissociation fluorescence) and LIF (Fiser 
induced fluorescence). Several prototype systems have also 
b een  developed using direct imaging techniques for 2D and 3D 
flam e monitoring and characterization on both laboratory- and 
industrial-scale combustion test facilities [9 -13J. The systems 
are designed for measuring and quantifying the characteristic 
parameters o f  a flame such as size, shape, brightness 
oscillation  frequency and temperature. Information obtained 
h as laid a foundation for advancing the imaging technology 
for the quantitative assessment o f the flame stability

This research focuses on the development o f an 
embedded instrumentation system for the monitoring and 
characterization of the flame stability in industrial furnaces 
T h e system , operating on optical sensing, digital imaging' 
signal processing and embedded computing techniques is’ 
capable o f  measuring a number o f flame parameters such 
as ignition point, brightness, oscillation frequency and 
temperature distribution on an online continuous basis. The 
stability  o f  the flame is then assessed through the statistical 
analysis o f the characteristic parameters obtained Technical 
issu es  including design considerations, computer algorithms 
and system implementation are described. Experiment'd 
resUlts on a laboratory-scale combustion test rig and on 
9  M W ,h industrial-scale heavy-oil combustion test facility are 
reported and discussed. 3 2

2 . System description

2.1- Design and implementation

Figure 1 shows a block diagram o f the prototype flame 
monitoring system. The system consists o f an optical

probe, a beam-splitting unit, an embedded photo-detector and 
signal-processing board, a digital camera and an embedded 
motherboard with associated application software. The optical 
probe, which has a 90 viewing-angle objective lens protected 
by purging air flow, is used to penetrate the furnace and 
transmit the light of flame to the imaging system. The beam 
splitter divides the light of flame into two beams. The first 
beam is captured by the camera for the measurement of 
flame geometric and luminous parameters and temperature 
distribution. The second beam is received by the photo
detectors on the signal-processing board for the measurement 
o f flame oscillation frequency.

2.1.1. Digital camera. It is an industrial CMOS RGB camera 
with resolution up to 1280(H) x I()24(V) at 25 frames s ' 1. 
It also features a partial scan mode which allows the camera 
to capture images up to 265 frames s_l with a resolution of 
320 x  256, making it ideal for imaging a fast-changing object 
such as a combustion flame.

2.1.2. Embedded photo-detectors and signal-processing 
board. The board has three separate photo-detectors, 
covering ultraviolet (UV), visible and infrared (1R) spectral 
bands. The detectors convert the incoming flame light intensity 
into current signals corresponding to the three spectral bands. 
A signal conditioning unit is used to ensure that the signals 
are adequately amplified and filtered prior to digital signal 
processing. A digital signal microcontroller (dsPIC) digitizes 
the three signals simultaneously with a processing speed of 
40 MHz. Embedded system techniques are employed for on
board signal processing to ensure robustness, compactness and 
fast response of the system.

2.1.3. Embedded motherboard. It is a high-performance 
embedded motherboard which acquires and processes images 
from the camera. It also performs as the master board for 
controlling and receiving data from the embedded photo
detectors and signal-processing board so as to achieve 
parallel and real-time signal processing and transmission (via 
Ethernet).

The optical probe and all optical and electronic parts 
are integrated as a single unit, offering the system excellent 
portability and robustness. Dedicated application software is

2
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Embedded

F igure 2. Physical implementation of the flame monitoring system (EPSB: embedded photo-detectors and signal-processing board).
a lso  developed as an integral part o f the system. Figure 2 is 
the physical implementation o f  the system.

2.2. Measurement principles

2.2.1- Geometric and luminous parameters. These 
are determined by processing flame images using digital 
im age processing techniques. The number of parameters that 
are measured can vary, depending upon the nature o f the flame 
and the purpose o f the measurement. In the case o f this study, 
the parameters computed include ignition points (maximum, 
minimum and mean), luminous region, brightness and non- 
uniformity. The detailed definition and determination o f these 
parameters were given elsewhere [10], Note that the absolute 
determination o f these parameters is dependent on the specific 
installation of the system (i.e. the distance between the flame 
and the image sensor) and the camera settings (i.e. iris and 
shutter speed, etc). In the case o f the present study, the relative 
values are used as only the variations o f these parameters are 
of interest. The instability of a flame parameter (S,) is defined 
aS the standard deviation normalized to its mean value, i.e.

Sx = j - x  100%, (1)

where x  and o x are the mean value and the standard deviation 
o f  the parameter *, respectively.

2 .2.2- Geometric and luminous instability. The geometric 
and luminous stability o f a flame can be evaluated based on the 
statistical analysis of its geometric and luminous parameters. 
To quantify the flame geometric and luminous stability, a 
parameter, 8, is defined as the sum o f weighted instabilities 
o f  the flame parameters, i.e.

8 = Y  (M*,)2,
N'-i

(2)

w ith

Y , wi —1 -
i=l

w here m is the number o f flame parameters considered and 
w . is  the weight for the corresponding parameter .v,. A larger 
weigh* is given to an estimate with a larger variance o f the 
parameter whilst a smaller weight to an estimate with a smaller 
variance. The greater the 8, the more unstable the flame in its 
geometry and luminosity.

Reference frequency (Hz)

Figure 3. Comparison between the measured and reference 
frequencies.

2.2.3. Oscillation frequency. The oscillation frequency of 
the flame is one of the most important properties closely linked 
to flame stability [9], It is derived from the flame intensity 
signals captured by the photo-detectors through frequency 
spectral analysis. A quantitative frequency is determined as 
the power-density weighted average frequency over the entire 
frequency range [9], i.e.

n In
= Y pi^  /  Y pi' (3)

;=t /  i=i
where F is the oscillation frequency,/ is the ith frequency, p, 
is the power density of the ith frequency component and n is 
the number of frequency components.

A standard frequency-varying light source with a 
resolution of 1 juHz was used as an idealized flame 
light to evaluate the accuracy of the oscillation frequency 
measurement. Figure 3 shows a comparison between the 
measured and reference frequencies. Each data point is an 
average of ten instantaneous values. It was found that the 
relative error of the frequency measurement is no greater than 
2% over the frequency range from 0 to 500 Hz.

3
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2.2.4. Temperature. The system developed can be used as 
a vision-based pyrometer, capable of measuring continuously 
two-dimensional temperature distribution o f a flame based on 
the two-colour method. The fundamental aspects o f the two- 
colour method have been given in detail elsewhere [13], In the 
present study, however, instead o f using the beam splitting and 
narrow-bandpass filtering approach that generally results in a 
com plex system configuration, the system derives the flame 
temperature based on the relationship between the primary 
colours o f the images captured by the RGB camera. The 
R G B  camera used in the system has three separate channels 
corresponding to primary colours red (R), green (G) and blue 
(B ). In other words, each image produced can be disintegrated 
into three principal images R, G and B. Combinations of the 
colour-banded images can thus be used for the determination 
o f  the flame temperature distribution using the two-colour 
technique. In this study, the R and G images have been chosen,

i.e .

T = M i - è )
ln§ ^ +l

(4)

w here C 2 is the second Planck’s constant, G(AR, T) and 
C (A g , T) are the Srey levels o f ¡mages from the red and green 
channels o f  the camera, respectively. AR and AG are the peak 
wavelengths o f the spectral ranges corresponding to the red 
and green channels, and are 540 and 615 nm, respectively. SXR 
and S xg are the spectral sensitivities o f the system for AR and 
A c, respectively. The ratio SXr/S Xg is the instrument factor 
a n d  can be determined through a calibration procedure using 
a pre-calibrated tungsten lamp. In this study, the apparent 
temperature o f  the tungsten lamp varied from 900 to 1500 CC 
w ith  an interval o f 50 °C, by controlling the current of the 
p ow er supply. The instrument factor, S =  SXR/S XG, is then
determ ined by

eCi-(i/*o-i/rR)/r
-  --  -----— « (5)G(Xg ,T) 

GOgJ) ItSL (fc)w h e r e  eXR and e*G are the en tissiv ity  o f  the tungsten lanm  at A 
and A c , respectively , and can b e  estim ated using the m ethod  

proposed in [14],
The accuracy o f  the temperature measurement was 

veri fied by applying the system to measure the true temperature 
o f  the tungsten lamp, and the results are shown in figure 4 
E a ch  data point is an average often instantaneous values The 
maximum error o f  8.5 °C occurs at the true temperature o f  
10 7 0  °C  and is equivalent to a relative error o f  0.8%

2 .3 . Evaluation o f the imaging system  S i n c e  a  tungsten  lam p has very stable irradiance for a given
Sperature, it was used to evaluate the characteristics o f the 

s y s tem  for different camera settings including exposure time 
ap ertu re  and viewing distance. me’

2 ,3 . ,  System linear^. This was assessed by „k in g  ta a „ s 

o f  ■!» "k“MCnl "f  «“  lamp for differen, camfm
exp osu re durations at a fixed temperature setting Figure ?  
illustrates the relationship between the averaged grey levels

Reference temperature (”C)

Figure 4. Comparison between the measured and reference 
temperatures.

Normalised exposure time
Figure 5. Relationship between the averaged grey levels of the 
filament images of the tungsten lamp and the camera exposure time 
for the R, G and B channels of the camera.

o f the filament images and the camera exposure time for 
the R, G and B channels at the true temperature of 1070 °C. 
The exposure time is normalized to the maximum exposure 
time at which the image is approaching saturation. As can be 
seen, the system exhibits high linearity for different camera 
exposure times. This suggests that the accuracy of the 
temperature measurement will not be affected by the variation 
in exposure time, and therefore it is unnecessary to calibrate 
the system for different camera exposure times. This 
is particularly important when applying the system to 
industrial furnaces where the flame irradiance can vary lor 
different operation conditions, and thus the camera exposure 
time has to be adjusted to avoid under- or over-exposure 
of images.

It can also be seen from figure 5 that the R channel 
gives a much stronger intensity grey level than the other
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Figure 6. Measured temperatures of the tungsten lamp for different viewing distances and camera apertures.

tw o. This could result in over-exposure on images produced 
b y the R channel and under-exposure on images by the G 
and B channels. Although adjusting the hardware gain of 
the R  channel to a relative low level or using the white 
balance function o f the camera may avoid the problem 
the resulting image may not reflect the true colour profile 
o f  the flame. In practice, the intensity grey level o f the R 
channel is continuously monitored, and the exposure time is 
then adjusted accordingly to avoid the possible saturation.

2 J .2 .  Effect o f viewing distThe imaging system
m ay  be installed on furnaces with different structures and 
dim ensions. It is therefore important to ensure that different 
v iew in g  distances (i.e. the distance between the flame and the 
ob jective lens o f  the optical probe) do not affect the sensitivity 
and accuracy o f  the temperature measurement. The effect o f  
v iew in g  distance on the measurements was evaluated usinc 
the tungsten lamp. Figure 6(a) shows the variations of the 
m easured temperature with viewing distance for two given 
temperature settings. Each data point is an average of 60 
instantaneous values, and the maximum standard deviation o f  
each  point is approximately 3 =C. It has been found that the 
m axim um  temperature difference is no greater than 9 CC for the 
temperatures tested over the distance ranging from 0.5 to 1 3 m 
T h is  relative independence o f the temperature measurement 
from  the viewing distance stems from the principle o f the 
tw o-colour method where the temperature is computed from 
the grey-level ratio o f  two-banded images, thus reducing 
the dependence on the geometrical or optical settings o f the 

im agin g  system.

*ffe“ °fCameraA ape/ tUre' Another important factor 
that sh o u ld  be considered is the aperture o f the camera w h i c h  controls the depth o f  field as well as the amount 
o f  light that reaches the imaging sensor. The diameter of
th e camera aperture is measured in f-stt 

* --------
-stops. A lower f-

stop number opens the aperture, admitting more light onto 
th e imaging sensor but narrowing the depth of field, whilst 
a higher f-stop number reduces the aperture and admits less 
light onto the sensor but deepens the depth o f field. Figure 
6(/>) shows the measured temperatures for different aperture

-  - i - ~  . . . . . .  ?0 m rw »r;itiir* » o t t i n n e  n f  tlv»  t .m o c t o n
values for the two given temperature settings of the tungsten

lamp. Again, each data point is an average of 60 instantaneous 
values with a standard deviation less than 4 "C. The maximum 
relative error of measurements is about 1.4% over the aperture 
range.

3. Experimental results and discussions

3.1. Experiments on a gas-fired combustion test rig

To evaluate the imaging system as well as the methodology 
developed, experiments were carried out on a laboratory- 
scale combustion test rig. A Bunsen-type burner with an 
outlet diameter of 11 mm was used to generate premixed 
air-propane flames in an enclosed cylindrical chamber with 
an inner diameter of 150 mm and a height of 300 mm. A 
mesh screen was mounted across the outlet of the burner to 
stabilize the flame. Fuel and air flows to the burner were 
metered during the experiments. A total of 14 test conditions 
were created by varying air supplies at a fixed fuel flowrate 
of 0.3 1 min-1 . Each combustion condition is identified by 
the equivalence ratio which has been recognized to be one 
of the most important factors relating to fuel conversion, 
pollutant emissions, heat losses and flame stability 115]. The 
equivalence ratio, O, is defined as the ratio of fuel to air 
supplied for combustion divided by the stoichiometric fuel to 
air ratio (the chemically correct fuel to air ratio necessary to 
achieve complete combustion of the fuel. For propane, the 
stoichiometric ratio is 1:23.9 by volume), i.e.

0  =  (fuel-to-air ratio).».,ual (&)
(fuel-to-air ratio)stojChjomc,rjC

The equivalence ratio created in the tests ranges between 
approximately 0.74 and 1.28, where <t> less than 1 represents a 
fuel-lean condition whilst greater than 1 indicates a fuel-rich 
condition.

Figure 7 shows the flame images captured by the camera 
for 14 different equivalence ratios. Each image is an average 
o f ten successive images taken in 1 s. It is evident that the 
physical appearance (size, brightness, etc) of the flame varies 
with the equivalence ratio.

Figure 8(o) illustrates the instabilities o f the flame 
parameters including the maximum ignition point, luminous 
region, brightness and non-uniformity for different
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Figure 7. Flame images for different equivalence ratios.
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Figure 8. Instabilities of flame parameters for different equivalence ratios.

Figure 9. PSD estimates of flame signals (visible and IR Is) and the weighted oscillation frequency (IR band).

equivalence ratios. As can be seen, the instabilities of 
parameters are relatively small above the stoichiometric 
conditions (<t> =  1). As the equivalence ratio decreases 
(i.e -  fuel-lean conditions), a significant variation in the non- 
uniform ity is observed. Such variations are the main causes of 

eometric and luminous instability of the flame, as shown 
re 8(b). It was observed during the experiments that the 

d am e was extremely unstable under the fuel-lean conditions

th e  g 
in

(<b <  1) and eventually blown off at an equivalence ratio of 
0.74.

Figure 9(a) depicts a typical example of the power spectral 
density (PSD) estimates of the flame radiation signals taken 
at the visible and IR spectral ranges for the equivalence ratio 
of 1.28 (the UV signal was too weak to be detected in the 
case studied). The sampling rate of the signals was 1024 Hz. 
The dc components of the signals were removed as dynamic
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Figure 10. Schematic diagram of the test furnace and the location of the flame imaging system. EPSB—imaging and data processing unit.
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Figure 11. Flame images for different TA swirl vane angles.

frequency  components are o f interest. It has been found that 
th e  P S D  estimates for the visible and IR signals are very similar 
w ith  the peak value occurring around the frequency of 18 Hz. 
F ig u re  9(b) shows the variation of the weighted oscillation 
frequency  with the equivalence ratio in the IR band. Each 
d a ta  point is an average o f  eight instantaneous values. It is 
ev id en t that the oscillation frequency reaches its maximum 
v a lu e  around the equivalence ratio o f  1 and then decreased 
w ilfi equivalence ratio, indicating increased flame stability in s u c h  combustion conditions.

3.2- Experiments on an industrial combustion test facility

F u rth e r  experimental work was undertaken on a 9 MW ^ 
industrial-scale heavy-oil-lired combustion test facility. The 
te s t rig has an 11 m long horizontal cylindrical combustion 
chamber with an internal cross-section o f 1.3 m in diameter. 
H eav y  oil was atomized by steam and injected into the 
com bustion  chamber through an oil gun, and then mixed

with surrounding primary air (PA), secondary air (SA), and 
tertiary air (TA) successively. The overall air flowrate was 
kept constant of 9100 N m3 h“ 1 (PA: 17%, SA: 43% and 
TA: 40%). The imaging system was installed at the side of 
furnace close to the front wall, as illustrated in figure 10. 
The resulting field o f view o f the imaging system was about 
1.3 m in diameter along the burner axis. The root region 
o f the flame, which is regarded as the primary reaction zone 
o f the combustion process in terms of energy conversion and 
emission formation, was fully observed.

In the experiments, the impact o f the TA swirl vane angle 
on the flame stability was investigated. Previous studies 
suggested that the TA swirl vane angle affects significantly 
the aerodynamics o f the entering air flow and its mixture level 
with fuel thus the structure and stability of the flame [16, 17]. 
The TA swirl vane angle can be varied from 0° to 90° with 0° 
representing the air inlet fully closed and 90' the air inlet fully 
open without any swirl. In the tests, three different TA swirl 
vane angles, i.e. 25°, 35° and 45°, were created. Figure 11

7
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Frequency (Hz)
P ¡gure 12. Averaged PSD of the flame radiation signals in visible 
band for different TA swirl vane angles.

illustrates the typical images o f  the heavy-oil-fired flame for 
the TA swirl vane angles tested. A  direct comparison among 
the images has suggested that a greater TA swirl vane angle 
resulted in a stretched flame.

Figure 12 illustrates typical examples o f  the PSD estimates 
o f  the flame radiation signals taken in the visible band for the 
three test conditions. It is evident that the amplitude o f the 
low-frequency components for 25° is much higher than that 
for 35 and 45 , whilst the high-frequency components are

(a )

(C )

very similar in all cases. Previous studies have revealed that 
the low-frequency components in the flame signal are mainly 
attributed to its geometrical fluctuations due to aerodynamic 
or convective effects, whilst the high-frequency components 
reflect kinetic variations in the heat release rate or energy 
transitions in intermediate radicals [9], The PSD estimates 
of the flame signals have thus suggested that the TA swirl 
vane angle has a significant impact on the geometrical 
characteristics o f the flame. This has been demonstrated 
more clearly in figure 13(r/) where the weighted oscillation 
frequency has shown an increased trend with the TA swirl 
vane angle, indicating increased flame stability in terms of 
the flame geometric characteristics. This result is in line 
with the data obtained through the statistical analysis o f the 
geometric and luminous parameters, as illustrated in figure 
13(h) which clearly shows greater geometric and luminous 
instability at 25°. Figure 13(c) suggests a slight increase 
in the averaged flame temperature with the TA swirl vane 
angle. An increased standard deviation o f the temperature 
(as shown as error bars in the figure, computed for 250 
instantaneous images) has been observed at 25°, indicating a 
greater fluctuation o f the flame temperature under such a vane 
angle setting. It can therefore be concluded that, under TA 
swirl vane angles 35° and 45°, the flame is more stable in terms 
of its geometric, luminous and fluid-dynamic characteristics. 
This finding is also consistent with the emission analysis 
of the flue gas, which was taken simultaneously during the 
test. As shown in ligure 13(</). the volume of NO.v in 
the flue gas decreases with the vane angle, suggesting that

(b)

(</)

Figure 13. Variation of flame parameters and NO., in flue gas with TA swirl vane angle.
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it is crucial to maintain a stable flame for reduced NO 
emissions.

Meas. Sci. Technol. 22 (3011) 114007

D Sun et al

4. Conclusions

An instrumentation system for flame stability monitoring and 
characterization in  in du s tr ia l furnaces has been developed. 
The system is based on digital imaging, spectral analysis and 
embedded computer techniques. The stability of the flame 
is quantified through statistical analysis of the characteristic 
parameters obtained. Results obtained on the gas-fired 
laboratory-scale combustion test rig have demonstrated that 
the flame was extremely unstable at the premixed fuel-lean 
conditions. Further experiments were carried out on a 9 MW* 
heavy-oil combustion test facility to study the impact of the 
swirl vane angle of tertiary air on the flame stability. It has 
been found that a decreased swirl angle gives rise to poorer 
flame stability in terms of its geometric, luminous and fluid- 
dynamic characteristics. The test results have thus suggested 
that the prototype system has provided an effective means for 
monitoring and characterizing the flame stability under both 
laboratory and industry conditions.
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Abstract—This paper presents the monitoring and
characterization of emissive properties of soot particles in heavy 
oil flames based on pyrometric imaging techniques. The soot 
tem perature is derived from the relationship between the 
p rim a ry  colors of flame images captured by a RGB camera. The 
emissivity of soot particles is then estimated by using the gray- 
level ratio of a primary color of the image to that of a blackbody 
source  a t the same temperature. The soot concentration is 
represented and estimated by KL factor, which is derived from 
th e  Hottel and Broughton s model once the emissivity is 
determ ined. The imaging system is calibrated using a blackbody 
fu rn ace  as a standard temperature source. The measurement 
accuracy is verified by applying the system to measure the true 
tem peratu re of a tungsten lamp. The maximum relative error is 
a b o u t 0.9%. Experiments were conducted on a 9MWrtl industrial- 
scale combustion test facility to investigate the impact of the ratio 
o f  overfire air to total air, and the location of overfire air ports on 
th e  soot temperature, emissivity and concentration o f a heavy oil
flam e.

Keywords-temperature; emissivity; soot concentration; digital 
im aging; heavy oil flam e; overfire air

I. Introduction

Soot temperature, emissivity and concentration o f  flames 
. fo ss il fuel fired furnaces, particularly where heavy-oil fuel 
!n used, are important parameters in the analysis o f  
' om biistion processes. The temperature o f  a flame, generally 
C ferring to the temperature o f  solid particles such as soot and
ffv-ash >n tbe ̂ ame zone’ Plays a *ce>' ro'e *n every Part °f the
ombustion process such as ignition, burnout and formation of 

C0 llutant emissions (NOx, SOx, etc) [1]. Soot contributes 
P. nificant fraction to radiative heat transfer in luminous 
flames [2], and its concentration and emissivity are important 
thermal properties required for heat transfer calculations in 
f  rnace operation and CFD (Computational Fluid Dynamics) 

odeling- Thus, online and continuous measurement of soot 
mperature, emissivity and concentration is essential for the 

• -depth understanding and subsequent optimization of 
combustion processes.

The techniques available for the temperature measurement 
0 f  a  flame caa be intrusive or non-intrusive. The intrusive 
techniques mainly include thermocouples and gas-sampling 
probes, which are simple, low cost, but only give a single-

point gas temperature measurement [3]. Non-intrusive 
techniques operate on optical principles, including laser, 
optical fiber, and direct imaging techniques [3-7]. Laser-based 
optical methods such as laser-induced fluorescence and laser 
scattering of molecules are commonly used in laboratories but 
they are unsuitable for routine operation in industry due to the 
complexity and high cost of the system. Direct imaging has 
been identified as one of the most effective approaches for use 
in practical furnaces in terms of system functionality, 
portability and cost-effectiveness. It has been widely used not 
only for the temperature but also for the soot concentration 
measurement in both fossil fuel fired furnaces and internal 
combustion engines [4, 5]. Berry et al. [6] utilized a 
monochrome CCD (charge-coupled device) camera with two 
near infrared filters in combination with neutral density filters 
to measure the temperature of laminar jet diffusion flames 
under atmospheric and elevated pressures. Huang et al. [3] 
adopted a single CCD camera with optical filters mounted on 
a rotatable holder to acquire alternatively the radiation images 
at two different wavelengths to measure the temperature of a 
coal flame in a 500kW model furnace. Lu et al. [7] constructed 
an imaging system for on-line measurement of temperature 
distribution and soot concentration of pulverized coal flames. 
The system incorporated a monochrome CCD camera with a 
beam splitting unit and two band-pass filters centered at 
650nm and 700nm to capture the flame images at two 
wavelengths. However, these systems involve a complex 
system configuration. There are some techniques which have 
been developed for the measurement of soot emissivity of a 
flame such as spectral radiometer and pyroelectric detector [8], 
The direct imaging technique has also been adopted for 
measuring soot emissivity. Lou et al. [9] used color imaging 
detectors to measure the emissivity and the radiative 
properties of the particulate media in pulverized-coal-fired 
boilers.

This paper describes a pyrometric imaging technique for 
the simultaneous and two-dimensional measurement of soot 
temperature, emissivity and concentration of heavy oil flames. 
The measurement principles, technical and operational 
considerations are included. Experimental results obtained on 
a 9MWth heavy oil combustion test facility are also presented 
and discussed.

-----' C j ' s  work is supported by the Research Council U K  (RCUK)’s Energymme (EP/F061307/1). The Energy Programme is an RCUK cross- 
Progr jnj(jative led by EPSRC and contributed to by ESRC, NERC, BBSRC
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II. Methodology

A. System Description
The measurement of the soot temperature, emissivity and 

concentration of a flame is an integral part of the flame 
imaging system [10]. The system consists of a 90° viewing- 
angle optical probe protected by a water-cooled jacket, a 1/3- 
inch CMOS (Complementary Metal Oxide Semiconductor) 
RGB camera with a resolution of 1280Hx 1024V pixels, and 
an embedded motherboard with dedicated application software. 
The optical probe penetrates the furnace wall and transmits the 
light of flame to the camera. The camera features a partial scan 
mode which allows the camera to capture images at an 
adjustable frame rate from 25 frames per second to 265 frames 
per second (with a resolution of 32011><256V), making it ideal 
for imaging a fast-changing object such as flames. The 
embedded motherboard ensures all the measurements can be 
conducted on an on-line basis. The detailed structure and 
description of the system can be found elsewhere [10].

g  M e a s u r e m e n t  P r in c ip l e s

l) Soot temperature- The measurement principle of the 
soot temperature is based on the two-color method. The two- 
color pyrometric technique has been widely accepted in the 
determination of the radiative temperature of solid particles 
(e.g., soot, flying ash) in the flame where the emissivity of the 
medium is unknown. The fundamental aspects of the two- 
color method can be found elsewhere [3, 4], In the present 
study, instead of using the complex beam splitting and 
narrow-bandpass filtering approach, the system derives flame 
temperature from the relationship between the primary colors 
o f the images captured by the RGB camera. The camera has 
three separate channels corresponding to primary colors Red 
(R), Green (G) and Blue (B). Each image frame produced can 
be disintegrated into three principal images R, G and B. A 
combination of the color-banded images can thus be used for 
the determination of the flame temperature distribution based 
on the two-color principle. In this study, the red and green 
images have been chosen, i.e.,

where T  is the soot temperature, C 2 is the second Planck's 
constant, G(Xr, T) and G(Xa, T) are the gray-level intensities of 
images from the red and green channels, respectively. XR and Xq  
are the peak wavelengths of the spectral ranges corresponding 
to the red and green channels, and are 540 nm and 615 nm, 
respectively. S Ar and S Ac are the spectral sensitivities of the 
system for XR and XG, respectively. Ratio S ^ / S ^  is the 
instrument factor which can be determined through a 
calibration procedure using a standard temperature source
[section IIC ].

The choice of red and green images for the temperature 
calculation instead of other combinations is because the 
CN^oS sensor of the camera gives higher spectral sensitivities 
for the red and green channels than that for the blue channel 

d thus a better signal-to-noise ratio can be achieved. It must 
a,sc be stressed that the use of primary color images for

temperature measurement offers advantages in simplicities in 
system design, calibration and operation. It would, however, 
result in some errors in the temperature calculation due to the 
fact that each primary color covers not only one single 
wavelength but a certain range of wavelengths. But it will not 
affect the general trend of the temperature distribution of the 
flame. In fact, experimental results show that the system has a 
very good measurement accuracy when applied to measure a 
reference temperature [section 11C].

2 )  S o o t  e m i s s i v i t y  a n d  c o n c e n tr a t io n -  Once the soot 
temperature is determined from (1), the emissivity of soot 
particles in the flame at wavelength XR for temperature T, 
£ ar ( T ) ,  can be estimated by its definition, i.e.,

MDr.T)*4.(7) = MbUR.T)' (2)

where M ( A R, T )  and M b ( X R, T )  are the monochromatic 
emissive power of a non-blackbody (e.g., soot particles) and 
that of a blackbody, respectively. For the given imaging 
system, the relationship of the gray-level intensity of images 
and the monochromatic emissive power of the non-blackbody 
and the blackbody can be expressed by.

G ( X r , T )  = i4SxRM(/iR,T), and (3)

Gb ( A R lT )  =  A S XKM b {A R lT \  (4)

where G ( X R, T ) and Gb (A R, T )  are the gray-level intensities of 
the red images of the non-blackbody and the blackbody 
captured by the imaging system for temperature T, 
respectively. The relationship between Gb and T  can be 
determined through the calibration by using a blackbody 
source [section II C]. A  is an instrument constant which is 
independent of wavelength and reflects the effect of various 
factors including the radiation attenuation due to the optical 
system, atmosphere, observation distance, lens properties and 
signal conversion. Substitute (3) and (4) into (2), we get,

^ ( D  =
g (Ar ,t ) 

cb{A n,T)' (5)

In practice, the emissivity of soot particles can also be 
estimated from the widely used empirical equation proposed 
by Hottel and Broughton [11],

£,( D  = l - e( - ^ ° ) ,  (6)

where K  is the absorption coefficient, L  is the geometrical 
thickness of the flame along the optical axis of the imaging 
system, and a is an empirical parameter depending upon A. 
For visible spectral range, a is considered to be a fixed value 
of 1.39 [11] for a steady luminous flame. Rearranging (6) 
yields,

K L  = -  A“/n (l -  E<1), (7)

thus

Previous studies have revealed that K L  is proportional to 
the concentration of soot particles in the flame [4]. Although 
an estimate of the volumetric and gravimetric density of soot 
can be obtained if some assumptions are made, the K L  factor



is used in the present study to investigate the soot 
concentration o f  a flame.

C. System Calibration
The system was calibrated by using a pre-calibrated 

blackbody furnace (Landcal R1500T). The furnace has a 
blackbody cavity o f  45mni in inner diameter and 100mm in 
length with an emissivity o f  approximately 0.99. The furnace 
w as calibrated for a temperature range from 500°C to I500°C 
with a resolution of±l°C /2°F .

The calibration for the instrument factor SXr/S Xg [refer to 
(1)] and the blackbody gray-level intensity Gb(AR, T) [refer to 
(5)] was carried out by reproducing the geometrical 
relationship between the imaging system and the flame to be 
measured in the temperature range from 900°C to 1500°C with 
an interval o f  50°C. The obtained relationship between the 
instrument factor and the gray-level ratio is given in Fig. I. A 
polynomial function, as in (9), is used to fit the relationship,

S = 0-3557 * < $ g ) '  -  1-20* * ( I S )  + 2A69 ,9)

It has been proven that the system exhibits a linear 
characteristic for different camera exposure times [10]. This 
suggests that the accuracy o f  the temperature measurement 
will not be affected by the variation in exposure time. This is 
particularly important when applying the system to industrial 
furnaces where the flame irradiance can vary with operation 
conditions and thus the camera exposure time has to be 
adjusted to avoid under- or over-exposure o f images.

The measurement accuracy was verified by applying the 
system to measure the true temperature o f  a standard tungsten 
lamp. The apparent temperature o f  the tungsten lamp varied 
from 900°C to 1500°C with an interval o f 50°C by controlling 
the current o f  the power supply. The corresponding true 
temperatures o f  the tungsten lamp, which can be derived from 
its apparent temperature by using the method given in [12], 
varied from 958°C tol650°C. Fig. 3 shows the comparison 
between measured and reference temperatures. It was found 
that the maximum error o f 14.8°C occurs at a true temperature 
o f 1650°C and is equivalent to a relative error o f  0.9%.
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Fig. 1. Variation o f instrument factor with gray-level ratio.
Fig. 2 shows the variation o f  the gray-level intensity o f  the 

red channel image with the blackbody temperature at an 
exposure time o f  Inis. It has been found that the variation is 
satisfied by a Gaussian function, i.e.,

(T-2214\2
Gb(AR,T) = 1965 * e  l * * 3  ) . ( 10)

. 2 Variation o f the gray-level intensity o f the red channel with the
**1®' blackbody temperature.

Fig. 3. Comparison between the measured and reference temperatures.

III. R e s u l t s  a n d  D is c u s s io n s

Experimental work was undertaken on a 9MW,h heavy-oil- 
fired industrial-scale combustion test facility. The facility has 
an 11-meter long horizontal cylindrical combustion chamber 
with an internal cross-section o f 1.3 meters in diameter. A 
low-NOx burner was fitted horizontally. Heavy oil was 
atomized by steam and injected into the combustion chamber 
through an oil gun, and then mixed with surrounding FA 
(Primary Air), SA (Secondary Air), and TA (Tertiary Air) 
successively. The imaging system was installed on the side 
wall o f  the furnace close to the front wall. Fig. 4 shows a 
schematic diagram o f the combustion test facility and system 
installation.

The experiments were undertaken for different OFA 
(Overfire Air) operations. The OFA is an effective technology 
for reducing NOx emissions from a combustion process. 
Combustion air is reduced from the burner to create a fuel rich 
condition in the primary combustion zone. Fuel-bound 
nitrogen conversion to NO is reduced in the furnace. The peak 
temperature o f  the flame is then restrained to limit thermal 
NOx formation. A large amount o f  air is fed and intersected 
the combustion gases in the downstream o f  the furnace to 
complete the combustion. During the experiments, a series o f



tests were conducted to reveal the impact o f  the ratio o f  the 
OFA to total air, and the position o f  OFA port on the emissive 
characteristics o f  the heavy oil fired flame. Two OFA 
injection positions, assigned OFA-A and OFA-B, were tested, 
as illustrated in Fig. 4. The distances from the burner outlet to 
the two OFA ports are 4.5m and 6.6m, respectively. For each 
OFA position, four different OFA ratios were created, i.e., 0%, 
15.0%, 17.5% and 20.0%, whilst the total air (the sum o f PA, 
SA, TA and OFA) was kept constant during the tests. The 
detailed test programme is summarized in Table I.

Fig- 4. The combustion test facility and the system installation.
Table I. TEST PROGRAMME.O F A  (%) PA (%) SA (%) TA (%)_  0 17.0 43.0 40.015.0 14.5 36.5 34.017.5 14.0 35.5 33.020.0 13.6 34.4 32.0

Fig. 5 (a) illustrates a typical averaged image o f  the heavy 
oil fired flame, which is derived from 20 instantaneous images 
taken at the non-OFA condition (0% OFA). The 
corresponding distributions o f  temperature, emissivity and KL 
factor are shown in pseudo-color in Fig. 5(b), (c) and (d),
respectively.

(c) Emissivity (d) K L  factor
Fig- 5- Averaged image of the heavy oil flame and the corresponding 

distributions o f soot temperature, emissivity and concentration.

Fig- 6 
temperature

shows the variation o f  the measured average 
o f  the flame with the ratio and nozzle position o f

the OFA. Each data point is an average o f  sixty instantaneous 
values and the standard deviation is given as an error bar. The 
decreased temperature can be explained by the fact that the 
higher the OFA, the less the air (PA, SA and TA) in the 
primary combustion zone, which reduces the combustion 
intensity and hence the temperature. The decline in the 
temperature suppresses the thermal-NOx formation. On the 
other hand, the reduction o f  the oxygen concentration in the 
primary zone o f  the flame leads to less fuel-N conversion to 
NOx [13], This is evidenced by the emission analysis data 
where NOx in flue gas has shown an almost linearly 
decreasing trend as the flame temperature, as shown in Fig. 7. 
Furthermore, under the same OFA ratio, the OFA-B results in 
a lower flame temperature and NOx emission than the OFA-A. 
This is due to a longer delay, associated to the location o f  the 
OFA-B port, in the mixing between the combustion gases 
from the primary zone and the OFA. The longer delay 
increases the residence time o f  the combustion gases in the 
zones with low oxygen concentrations, resulting in the 
reduced concentration o f nitrogen radicals reaching the 
secondary zone (OFA zone) and, thus, the reduced conversion 
o f these radicals to NOx [13],

Figs. 8 and 9 depict the average emissivity and 
concentration o f  soot particles within the flame, respectively, 
under the tested conditions. Increased soot emissivity and 
concentration (KL factor) are observed for an increased OFA. 
This may be due to the fact that the reduction o f oxygen 
concentration in the primary combustion zone could promote 
the formation process o f soot [14], It is also noted that the 
bottom part o f  the flame exhibits a higher emissivity and soot 
concentration, as shown in Fig. 5(c) and (d). This phenomenon 
is to be studied in the near future.

Fig. 6. Variations o f soot temperature with the OFA ratio and position.

Overfire air (%)Fig. 7. Variations o f NOx emissions with the OFA ratio and position.



Fig 8. Variations of average emissivity with the OFA ratio and position. IV.

Fig. 9. Variations of average K L  factor with the OFA ratio and position.
IV. C o n c l u s i o n

The monitoring and characterization o f  emissive properties 
o f  heavy oil flames has been carried out using pyrometric 
im aging techniques. The characteristic parameters including 
soo t temperature, emissivity and concentration o f  the flame 
are measured using a RBG digital imaging system based on 
the two-color pyrometric principle. The soot emissivity and 
concentration can be calculated once the temperature is 
determined. The imaging system has been calibrated using a 
blackbody furnace as a standard temperature source. The 
measurement accuracy has been verified by applying the 
system  to measure the true temperature o f  a tungsten lamp. 
The maximum relative error o f  the temperature measurement 
¡s about 0.9%. The technique developed has been applied to 
investigate the impact o f  the overfire air operation on the 
em issive characteristics o f  heavy oil flames on a 9MWth 
combustion test facility. The results have demonstrated that 
the developed technique is capable o f  providing instantaneous 
and two-dimensional measurement o f  the soot temperature, 
em issivity and concentration (KL factor) o f  the flame under 
different furnace conditions.
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Abstract -  This paper presents the design, implementation and 
evaluation of an instrumentation system for flame stability 
m onitoring and characterisation on industrial furnaces. The 
system , incorporating digital imaging and spectral analysis 
techniques, is designed to monitor a range of flame characteristic 
param eters. The stability of the flame is then assessed through 
statistical analysis o f the flame parameters obtained. Embedded 
com puter techniques are employed to ensure the system is 
com Pact and robust. Experiments were conducted on a 
laboratory-scale combustion test rig to evaluate the system. The 
im pact of the air-to-fuel ratios on the stability of a gaseous flame 
¡s investigated. The results demonstrate that the system is 
capab le  o f monitoring flame stability in a statistical way.

Keywords - flam e monitoring; flam e stability; photodetector; 
C M O S camera; embedded technology

I. Introduction

Flame stability in pulverized coal combustion is a good 
indication o f  plant safety, combustion efficiency and pollutant 
em issions. It is becoming increasingly an area o f  concern 
because o f  the trends o f  extending the use o f  low-quality coal, 
coal blends, and coal-biomass co-firing in existing power 
plants. Variations in coal diet and biomass addition can have a 
significant impact on the combustion stability and efficiency. 
Flam e characteristics should therefore be continuously 
monitored to maintain constant combustion stability. However, 
the current flame monitoring techniques available to the power 
generation industry can only provide very basic information 
such as flame on or out. They cannot give quantitative 
information o f  the flame. An advanced technique for flame 
stability monitoring is therefore desirable.

The stability of a flame depends on a number of factors 
including the ignitability of fuel or a blend, fluid-dynamic 
pattern, mixing, thermal energy release and loss, burner type 
and boiler structure [1], Many theoretical and experimental 
studies have been devoted to such issues [2-10]. Various 
techniques f°r flame monitoring and characterization have 
been proposed, but digital imaging has been identified as one 
o f  the most effective approaches for use in practical furnaces 
¡n terms of system functionality, portability and cost- 
effectiveness [3]- Significant efforts have been made in the 
last decade to develop two-dimensional (2-D) and three- 
dimcnsional (3-D) techniques for flame visualization and 

•acterization. However, few of the techniques can monitorchar
Corresponding author

flame stability. Paubel et al. [4] used a CCD camera to record 
chemiluminescence images of excited CH radicals in a non- 
premixed flame of low calorific residual gases and employed 
topology analysis techniques to study the stability diagram of 
the flame. Kiran and Mshira [5] studied the stability 
characteristics of a jet diffusion LPG (liquefied petroleum gas) 
flame in terms of its lift-off height, length, and emission levels 
which were derived from images obtained using a CCD 
camera. Mansour [6] investigated the stability characteristics 
of a partially premixed turbulent lifted methane flame using a 
combined 2-D technique based on Rayleigh scattering, LIPF 
(Laser Induced Predissociation Fluorescence) and LIF (Laser 
Induced Fluorescence). Several prototype systems have also 
been developed using direct imaging techniques for 2-D and 
3-D flame monitoring and characterization on both laboratory 
and industrial scale combustion test facilities [7-10]. The 
systems are designed for measuring and quantifying the 
characteristic parameters of a flame such as size, shape, 
temperature, and oscillation frequency. Information obtained 
from the earlier systems has laid a foundation for developing a 
technology for the quantitative assessment of flame stability.

The present research is focused on the development of a 
miniaturized instrumentation system for flame stability 
monitoring. The system, operating on optical sensing, digital 
imaging, signal processing and embedded computing 
techniques, is designed to measure a number of flame 
parameters such as ignition point, brightness, oscillation 
frequency and temperature distribution on an online continuous 
basis. The flame stability can then be assessed through the 
statistical analysis of the characteristic parameters obtained. 
This paper describes the design considerations and 
implementation aspects of the prototype system. Experimental 
results on a laboratory-scale combustion test rig are reported. 
The impact of the air-to-fuel ratios on the stability of a gaseous 
flame is investigated and discussed.

II. Sy s te m  D escr ipt io n

A . D e s i g n  a n d  I m p le m e n ta t io n

Fig.l shows a schematic diagram of the instrumentation 
system. The system consists of an optical probe, a beam- 
splitting unit, an Embedded Photodetectors and Signal
processing Board (EPSB), a digital camera, and an embedded 
motherboard with associated application software. The optical
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probe, which has a 90° view-angle objective lens protected by 
purging air, is used to penetrate the furnace and transmit the 
light o f  flame to the imaging system. The beam splitter divides 
the light o f  flame into two identical beams. The first beam is

captured by the camera for the measurement o f  flame 
geometric/luminous parameters and temperature distribution. 
The second beam is received by the EPSB for the measurement 
o f oscillation frequency.

Light of (tame
Cooling air In (out)

;

iP¿ g

E P SBsubsystem Pico-lTX  embedded 
motherboard

Gj—

B eam  splitter
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8.HDCPU
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Fig. 1. Schematic diagram of flame monitoring system.
•  Digital camera - It is an industrial CMOS RGB camera 
with a resolution up to 1280(H)x 1024(V) at 25 frames per 
second. It also features a partial scan mode which allows the 
cam era to capture images at a frame rate up to 265 frames per 
second with a resolution o f  320*256, making it ideal for 
im aging a fast-changing object such as combustion flame.

•  EPSB - The EPSB has three separate photodetectors, 
covering ultraviolet (UV), visible and infrared (IR) spectral 
bands, respectively. The detectors convert flame light intensity 
into current signals corresponding to three spectral bands. A 
signal conditioning unit is used to ensure the three signals are 
adequately amplified and filtered prior to digital signal 
processing. A digital signal microcontroller (dsPIC) digitizes 
the three signals simultaneously with a processing speed of 
40M Hz. Embedded system techniques are employed for on
board signal processing to ensure robustness, compactness and 
fast response o f  the board. The processed data is transmitted to 
the motherboard via a RS232 interface.

•  Embedded motherboard - A high-performance Pico-ITX 
embedded motherboard acquires and processes the images 
from  the camera. Ft also performs as the masterboard for 
controlling and receiving data from the EPSB so as to achieve 
parallel and real time signal processing and transmission (via 
Ethernet).

The optical probe and all optical and electronic parts are 
integrated as a single unit, offering the system excellent 
portability and robustness. Dedicated application software is 
a lso  developed as an integral part o f  the system.

¡Measurement Principles
# Geometrical and luminous parameters - The geometrical 
and luminous parameters o f  the flame are determined by 
processing flame images using digital image processing 
techniques. The number o f  the parameters that are measured 
can vary, depending upon the nature o f  the flame and purpose 
Df  measurement. In the case o f  the present study, the 
parameters computed include Ignition points (maximum, 
minimum and mean), Length, Luminous region, Brightness, 
and Non-uniformity. The detailed definition and determination o f  these parameters were given in [9], The instability o f  a flame 
parameter is defined as the standard deviation normalized to its 
mean value, i.e.,

5 x = % x 1 0 0 %  (1)
x

where 8X is the instability o f  flame parameter x, x and o x are 
the mean value and standard deviation o f  x, respectively.

• Flame instability - The stability o f  a flame can be evaluated 
based on the statistical analysis o f  its geometrical and luminous 
parameters. To quantify the flame stability, a parameter, S, is 
defined as the sum o f  weighted instabilities o f  the flame 
parameters, i.e.,

with £ w .*= ) ,
i=l

where m is the number o f flame parameters considered, w, is 
the weight for the corresponding parameter x,. A larger weight 
is given to an estimate with a larger variance o f  the parameter 
whilst a smaller weight to an estimate with a smaller variance.

•  Oscillation frequency - The oscillation frequency o f  the 
flame is one o f the most important properties closely linked to 
flame stability. It is derived from the flame intensity signals 
captured by the photodetectors through frequency spectral 
analysis. A quantitative frequency is determined as the power- 
density weighted average frequency over the entire frequency 
range [7], i.e.,

F - W i p ,  (3)i=i / i-i
where F is the oscillation frequency, f, is the ith frequency, p, is 
the power density o f  the ith frequency component, and n is the 
number o f  frequency components.

A standard frequency-varying light source has been used as 
an idealized flame light to evaluate the accuracy o f  the 
oscillation frequency measurement. Fig.2 shows a comparison 
between the measured values against the reference frequencies. 
The relative error o f  the frequency measurement is no greater 
than 2% over the frequency range from 0 to 500Hz.
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Fig. 2. Comparison between the measured and reference frequencies.
III. R e s u l t s  a n d  D i s c u s s i o n

Experiments were carried out on a laboratory-scale 
com bustion test rig to evaluate the imaging system as well as 
the methodology developed. A Bunsen type burner was used to 
generate a flame by combusting commercial grade propane in 
an enclosed combustion environment. Different test conditions 
w ere created by varying air supplies for a fixed fuel flow rate 
o f  0 .3 liter per minute. Each condition is identified by the 
equivalence ratio which is defined as the ratio o f  air to fuel 
supplied for combustion divided by the stoichiometric ratio o f  
air to fuel. Therefore, an equivalence ratio less than 1 
represents an air-lean condition whilst greater than 1 indicates 
an air-rich condition.

Fig. 3 shows the flame images captured by the camera for 
different equivalence ratios. Each image is an average o f  10 
successive images taken in one second. As can be directly 
observed, the flame physical appearance (size, brightness, etc) 
varies with the equivalence ratio. Fig. 4 illustrates 
corresponding binary images o f  the flame obtained through 
ed g e  detection and segmentation techniques. These images 
provide evidence on the changes o f  flame characteristics and 
thus form the basis for the determination o f  flame parameters.

Fig. 3. Flame images for different equivalence ranos.

n n n n n(a) 0.78 (b) 0.83 (c) 0 91 (d)0.96 (e) 1.04

H Ü I H H H(0 109 (g) 1.17 (h) 1.22 (i) 1.30 (j) 1.35Fig. 4. Binary images o f the flame shown in Fig. 3.
Fig. 5 illustrates the instabilities o f  the flame maximum 

ignition point, luminous region, brightness, and non-uniformityfor Hiffi»— * ----  1--------- u . .K
for different equivalence ratios. As can be seen, the variations 
o f the parameters are relatively small under the stoichiometric 
conditions (equivalence ratio=l). As the
¡norpoean t l  - - -  * 1____ laiio“ !). a s  the equivalence ratio
increases (i.e., air-rich conditions), a great variation in the non
uniformity is observed. Those variations arc main causes for 
the flame instability, as shown in Fig. 6. It was observed during 
the experiments that the flame was extremely unstable at the 
high equivalence ratios and eventually blown o ff at an 
equivalence ratio o f  1.35.



Fig. 7 depicts a typical example o f  the PSD (power spectral 
density) estimates o f  the flame signals, which were taken by 
the EPSB for both the visible and IR spectral ranges for the 
equivalence ratio o f  0.78. The sampling rate o f  the signals was 
1024 Hz. The DC components o f  the signals were also 
removed as dynamic frequency components are o f  interest. It 
has been found that the PSD estimates for the IR and visible 
signals are very similar with the peak value occurred around 
the frequency o f  18 Hz. Note that the UV signal was too weak 
to be detected in the case studied due to chemical properties o f  
the fuel. Fig. 8 shows the variation o f  the oscillation frequency 
with the equivalence ratio in the IR spectral range. Each data 
point is an average o f  eight instantaneous values. It is evident 
that the oscillation frequency increases with the equivalence 
ratio and reaches its max value near equivalence ratio o f  1.1, 
indicating an increased stability in such combustion conditions. 
It has also been found that a high excess air (equivalence ratio 
is greater than 1.1) results in a decreased oscillation frequency, 
and therefore poorer flame stability.

Fig. 8. Oscillation frequency for the IR spectral range.

I V . C o n c l u s i o n
An instrumentation system for flame stability monitoring 

and characterization on industrial furnaces has been developed. 
The system is based on digital imaging, spectral analysis, and 
embedded computer techniques. The stability o f  the flame is 
quantified through statistical analysis o f  the characteristic 
parameters obtained. The system has been tested on a 
laboratory-scale combustion test rig to investigate the impact o f  
the air-to-fuel ratios on the stability o f  a gaseous flame. The 
results have demonstrated that the system is capable o f  
measuring and indicating flame stability in a statistical manner. 
Future work will be to incorporate the temperature 
measurement into the system and to undertake more 
experimental work on industrial scale test facilities.

ACKNOW LEDGM ENT
The authors wish to acknowledge the UK Engineering 

Physical Science Research Council (EPSRC, EP/F061307/I) 
for providing financial support for this research.

R e f e r e n c e s[1] S. Su, J II. Polil, D. Holcombe, and J A. Hart, ‘Techniques to determine ignition, flame stability and burnout of blended coals in p.f. power station boilers,”  P rogress  in E nergy  a m i C om bu stion  Science, vol.27, pp. 75-98,2001.[2] S. Kadowaki, and T. Ilasegawa, “Numerical simulation of dynamics of premixed flames: llame instability and vortex-flame interaction," 
P ro g ress  in E n ergy  a m t C om bustion  Scien ce , vol. 31, pp 193-241, 2005.[3] R. Hernandez and J. Ballester, “ Flame imaging as a diagnostic tool for industrial combustion,” C om bustion  a n d  Flam e, vol. 155, pp. 509-528, 2008.[4] X. Paubel, A. Cessou, D. Ilonorc, L. Vervisch, and R. Tsiava, “A flame stability diagram for piloted non-premixed oxycombustion of low calorific residual gases,” P roceed in gs  o f  llie C om bu stion  Institu te, vol. 31, pp. 3385-3392,2007.[5] M. S. Mansour, “Stability characteristics of lilted turbulent partially premixed jet flames,” C om bu stion  a n d  Flam e, vol. 133, pp 263-274, 2003.[6] D Y . Kiran, 13. I’. Mishra, “ Experimental studies of flame stability and emission characteristics of simple LPG jet diffusion flame,”  Fuel, vol. 86, pp. 1545-1551,2007.[7] Y. Huang, Y. Yan, G. Lu, and A. Reed, “On-line flicker measurement of gaseous flames by images processing and spectral analysis,” 
M easu rem en t S cien ce  a n d  Technology, vol. 10, pp. 726-733, 1999.[8] G. Lu, Y. Yan, and M. Colechin, “A digital imaging based multifunctional flame monitoring system,”  IEEE T ran saction s on  
Instrum en tation  a n d  M easurem ent, vol. 53, pp. 1152-1158,2004.[9] J. Smart, G. Lu, Y. Yan, and G. Riley, “characterisation of an oxy-coal flame through digital imaging,” C om bustion  a n d  Flam e, vol. 157, pp. 1132-1139,2010.[10] G. Gilabert, G. Lu, and Y . Yan, “Tomographic reconstruction o f the luminosity distribution of a combustion llame,” IEEE T ransactions on  
Instrum entation  a n d  M easurem en t, vol 56, pp 1300-1306,2007.


