86 research outputs found

    A novel low-voltage reconfigurable ΣΔ modulator for 4G wireless receivers

    Get PDF
    This paper presents a new adaptable cascade ΣΔ modulator architecture fo r low-voltage multi-stan- dard applications. It uses two reconfiguration strategies: a programmable global resonation and a variable loop-filter order. These techniques are properly com- bined in a novel topology that allows to increase the effec- tive resolution in a given bandwidth, whereas keeping relaxed output swing requirements and high robustness to mismatch and to non-linearities of the amplifiers. Time-domain simulations incl uding the main circuit-level non-idealities are shown to demonstrate the benefits of the presented modulator when it is configured to cope with the requirements of GSM, UMTS, WLAN and Wi-Max.España, Ministerio de Educación y Ciencia TEC2007-67247-C02-01/MICEspaña, Ministerio de Innovación, Ciencia y Empresa, Junta de Andalucía TIC-253

    Multirate cascaded discrete-time low-pass ΔΣ modulator for GSM/Bluetooth/UMTS

    Get PDF
    This paper shows that multirate processing in a cascaded discrete-time ΔΣ modulator allows to reduce the power consumption by up to 35%. Multirate processing is possible in a discrete-time ΔΣ modulator by its adaptibility with the sampling frequency. The power reduction can be achieved by relaxing the sampling speed of the first stage and increasing it appropriately in the second stage. Furthermore, a cascaded ΔΣ modulator enables the power efficient implementation of multiple communication standards.@The advantages of multirate cascaded ΔΣ modulators are demonstrated by comparing the performance of single-rate and multirate implementations using behavioral-level and circuit-level simulations. This analysis has been further validated with the design of a multirate cascaded triple-mode discrete-time ΔΣ modulator. A 2-1 multirate low-pass cascade, with a sampling frequency of 80 MHz in the first stage and 320 MHz in the second stage, meets the requirements for UMTS. The first stage alone is suitable for digitizing Bluetooth and GSM with a sampling frequency of 90 and 50 MHz respectively. This multimode ΔΣ modulator is implemented in a 1.2 V 90 nm CMOS technology with a core area of 0.076 mm2. Measurement results show a dynamic range of 66/77/85 dB for UMTS/ Bluetooth/GSM with a power consumption of 6.8/3.7/3.4 mW. This results in an energy per conversion step of 1.2/0.74/2.86 pJ

    A novel low-voltage reconfigurable ΣΔ modulator for 4G wireless receivers

    Get PDF
    Trabajo presentado al 23rd DCIS celebrado en Grenoble (Francia) del 12 al 14 de noviembre de 2008.This paper presents a new adaptable cascade ΣΔ modulator architecture for low-voltage multi-standard applications. It uses two reconfiguration strategies: a programmable global resonation and a variable loop-filter order. These techniques are properly combined in a novel topology that allows to increase the effective resolution in a given bandwidth, whereas keeping relaxed output swing requirements and high robustness to mismatch and to non-linearities of the amplifiers. Time-domain simulations including the main circuit-level non-idealities are shown to demonstrate the benefits of the presented modulator when it is configured to cope with the requirements of GSM, UMTS, WLAN and Wi-Max.This work has been supported by the Spanish Ministry of Science and Education (with support from the European Regional Development Fund) under contract TEC2007-67247-C02-01/MIC and the Andalusian (Regional) Ministry of Innovation, Science and Enterprise under contract TIC-2532.Peer Reviewe

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding

    Error Correction For Automotive Telematics Systems

    Get PDF
    One benefit of data communication over the voice channel of the cellular network is to reliably transmit real-time high priority data in case of life critical situations. An important implementation of this use-case is the pan-European eCall automotive standard, which has already been deployed since 2018. This is the first international standard for mobile emergency call that was adopted by multiple regions in Europe and the world. Other countries in the world are currently working on deploying a similar emergency communication system, such as in Russia and China. Moreover, many experiments and road tests are conducted yearly to validate and improve the requirements of the system. The results have proven that the requirements are unachievable thus far, with a success rate of emergency data delivery of only 70%. The eCall in-band modem transmits emergency information from the in-vehicle system (IVS) over the voice channel of the circuit switch real time communication system to the public safety answering point (PSAP) in case of a collision. The voice channel is characterized by the non-linear vocoder which is designed to compress speech waveforms. In addition, multipath fading, caused by the surrounding buildings and hills, results in severe signal distortion and causes delays in the transmission of the emergency information. Therefore, to reliably transmit data over the voice channels, the in-band modem modulates the data into speech-like (SL) waveforms, and employs a powerful forward error correcting (FEC) code to secure the real-time transmission. In this dissertation, the Turbo coded performance of the eCall in-band modem is first evaluated through the adaptive white Gaussian noise (AWGN) channel and the adaptive multi-rate (AMR) voice channel. The modulation used is biorthogonal pulse position modulation (BPPM). Simulations are conducted for both the fast and robust eCall modem. The results show that the distortion added by the vocoder is significantly large and degrades the system performance. In addition, the robust modem performs better than the fast modem. For instance, to achieve a bit error rate (BER) of 10^{-6} using the AMR compression rate of 7.4 kbps, the signal-to-noise ratio (SNR) required is 5.5 dB for the robust modem while a SNR of 7.5 dB is required for the fast modem. On the other hand, the fading effect is studied in the eCall channel. It was shown that the fading distribution does not follow a Rayleigh distribution. The performance of the in-band modem is evaluated through the AWGN, AMR and fading channel. The results are compared with a Rayleigh fading channel. The analysis shows that strong fading still exists in the voice channel after power control. The results explain the large delays and failure of the emergency data transmission to the PSAP. Thus, the eCall standard needs to re-evaluate their requirements in order to consider the impact of fading on the transmission of the modulated signals. The results can be directly applied to design real-time emergency communication systems, including modulation and coding

    Design Considerations for Multistandard Cascade ΣΔ Modulators

    Get PDF
    This paper discusses design considerations for cascade Sigma-Delta Modulators (ΣΔMs) included in multistandard wireless receivers. Four different standards are covered: GSM, Bluetooth, UMTS, and WLAN. A top-down design methodology is proposed to find out the optimum modulator architecture in terms of circuit complexity and reconfiguration parameters. Several reconfiguration strategies are adopted at both architecture- and circuit-level in order to adapt the modulator performance to the different standards requirements with adaptive power consumption. Time-domain behavioural simulations considering a 0.13μm CMOS implementation are shown to validate the presented approach.This work has been supported by the Spanish Ministry of Science and Education (with support from the European Regional Development Fund) under contract TEC2004-01752/MIC.Peer reviewe

    Design Considerations for Multistandard Cascade ΣΔ Modulators

    Get PDF
    This paper discusses design considerations for cascade Sigma-Delta Modulators (ΣΔMs) included in multistandard wireless receivers. Four different standards are covered: GSM, Bluetooth, UMTS, and WLAN. A top-down design methodology is proposed to find out the optimum modulator architecture in terms of circuit complexity and reconfiguration parameters. Several reconfiguration strategies are adopted at both architecture- and circuit-level in order to adapt the modulator performance to the different standards requirements with adaptive power consumption. Time-domain behavioural simulations considering a 0.13μm CMOS implementation are shown to validate the presented approach.Ministerio de Educación y Ciencia TEC2004-01752/MI

    [[alternative]]High Speed Low Power Sigma Delta Modulator Analog-to-Digital Converter for Heterogeneously Next Generation Communication System(I)

    Get PDF
    計畫編號:NSC96-2221-E032-053研究期間:200708~200807研究經費:911,000[[abstract]]本計畫專注於4G晶片組中介面轉換器的設計,由完整的系統模擬中,設計適合系統使用的積分三角調變器(Sigma Delta Modulator, SDM)式類比數位轉換器(Analog to Digital Converter, ADC)。在設計ADC時,由於未來的4G將使用在許多具行動概念的器材上,結合現有高經濟效益的GSM、WiMax、與WLAN等系統,多重系統的結合將是一個重要的應用趨勢;由於是行動通信器材,因此在設計電路時,必須審慎考量低功率消耗(Low Power)、高速度(High Speed)、與高解析度(High Resolution)等三項特點,以求達到長時間使用及降低成本的目的。在研究與設計4G所使用的ADC的過程中,我們將著重於從系統的層級來考慮及設計電路,也就是Top-Down Design的電路設計方式,使執行本計畫的研究生能建立對整體系統的設計概念,在有限的資源與成本下,精確的設計符合系統需求的電路,並期望藉著本研究計畫的執行,能對國內混合式系統IC的設計能力有所助益。 本計畫為期兩年,計畫中將發展下列兩項技術: (1) 多模切換技術之積分三角調變器。 使用SC電路時,適當的切換在不同系統下的電路架構,利用可重新配置的特性節省電路的功率消耗與成本;在最佳電流值與供應電流時間下,使消耗功率最佳化,同時保有高速操作的特色。 (2) 低功率消耗、高解析度的連續時間式多級串接積分三角調變器。 利用連續型積分三角調變器高速度低功率消耗的特色,使第一年完成的離散型積分三角調變器高解析度的轉換成連續型積分三角調變器,再配合最佳化功率技術,使得調變器之消耗功率達到最低,並同時保有高速度與高解析度的特色。 預期之工作項目如下: 第ㄧ年 (1) 瞭解整個4G系統,並訂定規格與參數。 (2) 以Matlab做DT MASH SDM ADC的系統參數設計。 (3) 協調各區塊信號之傳輸形式。 (4) 類比數位轉換器之參數量測及規格制定。 (5) 發展可重新配置式電路技術。 (6) 發展低功率電路技術。 (7) 高速、低功率之寬頻類比數位轉換器研製與晶片量測。 第二年 (1) 瞭解整個4G系統,並訂定規格與參數。 (2) 以Matlab做CT MASH SDM ADC的系統參數設計。 (3) 協調各區塊信號之傳輸形式。 (4) 發展CT電路。 (5) 發展低功率電路技術。 (6) 類比數位轉換器之參數量測及規格制定。 (7) 高速、低功率之寬頻類比數位轉換器研製與晶片量測。[[sponsorship]]行政院國家科學委員

    Bandpass delta-sigma modulators for radio receivers

    Get PDF
    This thesis concerns discrete-time (DT) bandpass (BP) ΔΣ modulators targeted for intermediate frequency (IF) analog-to-digital (A/D) conversion in radio receivers. The receiver architecture adopted has to be capable of operating with different radio frequencies, channel bandwidths, and modulation techniques. This is necessary in order to achieve an extensive operating area and the possibility of utilizing a local mobile phone standard or a standard suitable for a specific service. The digital IF receiver is a good choice for a multi-mode and multi-band mobile phone receiver, because the signal demodulation and channel filtering are performed in the digital domain. This increases the flexibility of the receiver and relieves the design of the baseband part, but an A/D conversion with high dynamic range and low power dissipation is required. BP ΔΣ modulators are capable of converting a high-frequency narrow band signal and are therefore suitable for signal digitization in an IF receiver. First, the theory of BP ΔΣ modulators is introduced. It has been determined that resonators are the most critical circuit blocks in the implementation of a high performance BP ΔΣ modulator. Different DT resonator topologies are studied and a double-delay (DD) resonator is found to be the best candidate for a high quality resonator. A new DD switched-capacitor (SC) resonator structure has been designed. Furthermore, two evolution versions of the designed SC resonator are presented and their nonidealities are analyzed. The three designed DD SC resonator structures are a main point of the thesis, together with the experimental results. Five different DT BP ΔΣ modulator circuit structures have been implemented and measured. All three of the designed SC resonators are used in the implemented circuits. The experimental work consists of both single-bit and multi-bit structures, as well as both single-loop and cascade architectures. The circuits have been implemented with a 0.35 μm (Bi)CMOS technology and operate with a 3.0 V supply. The measured maximum signal-to-noise-and-distortion ratios (SNDRs) are 78 dB over 270 kHz (GSM), 75 dB over 1.25 MHz (IS-95), 69 dB over 1.762 MHz (DECT), and 48 dB over 3.84 MHz (WCDMA) bandwidths using a 60 MHz IF signal.reviewe

    Analog baseband circuits for sensor systems

    Get PDF
    This thesis is composed of six publications and an overview of the research topic, which also summarizes the work. The research presented in this thesis focuses on research into analog baseband circuits for sensor systems. The research is divided into three different topics: the integration of analog baseband circuits into a radio receiver for sensor applications; the integration of an ΔΣ modulator A/D converter into a GSM/WCDMA radio receiver for mobile phones, and the integration of algorithmic A/D converters for a capacitive micro-accelerometer interface. All the circuits are implemented using deep sub-micron CMOS technologies. The work summarizes the design of different blocks for sensor systems. The research into integrated analog baseband circuits for a radio receiver focuses on a circuit structures with a very low power dissipation and that can be implemented using only standard CMOS technologies. The research into integrated ΔΣ modulator A/D converter design for a GSM/WCDMA radio receiver for mobile phones focuses on the implications for analog circuit design emerging from using a very deep sub-micron CMOS process. Finally, in the research into algorithmic A/D converters for a capacitive microaccelerometer interface, new ways of achieving a good performance with low power dissipation, while also minimizing the silicon area of the integrated A/D converter are introduced
    corecore