363 research outputs found

    CoqJVM : an executable specification of the Java Virtual Machine using dependent types

    Get PDF
    We describe an executable specification of the Java Virtual Machine (JVM) within the Coq proof assistant. The principal features of the development are that it is executable, meaning that it can be tested against a real JVM to gain confidence in the correctness of the specification; and that it has been written with heavy use of dependent types, this is both to structure the model in a useful way, and to constrain the model to prevent spurious partiality. We describe the structure of the formalisation and the way in which we have used dependent types

    Correctness of Java card method lookup via logical relations

    Get PDF
    AbstractThis article presents a formalisation of the bytecode optimisation of Sun's Java Card language from the class file to CAP file format as a set of constraints between the two formats, and defines and proves its correctness. Java Card bytecode is formalised using an abstract operational semantics, which can then be instantiated into the two formats. The optimisation is given as a logical relation such that the instantiated semantics are observably equal

    WCET of OCaml Bytecode on Microcontrollers: An Automated Method and Its Formalisation

    Get PDF
    Considering the bytecode representation of a program written in a high-level programming language enables portability of its execution as well as a factorisation of various possible analyses of this program. In this article, we present a method for computing the worst-case execution time (WCET) of an embedded bytecode program fit to run on a microcontroller. Due to the simple memory model of such a device, this automated WCET computation relies only on a control-flow analysis of the program, and can be adapted to multiple models of microcontrollers. This method evaluates the bytecode program using concrete as well as partially unknown values, in order to estimate its longest execution time. We present a software tool, based on this method, that computes the WCET of a synchronous embedded OCaml program. One key contribution of this article is a mechanically checked formalisation of the aforementioned method over an idealised bytecode language, as well as its proof of correctness

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    A Machine-Checked, Type-Safe Model of Java Concurrency : Language, Virtual Machine, Memory Model, and Verified Compiler

    Get PDF
    The Java programming language provides safety and security guarantees such as type safety and its security architecture. They distinguish it from other mainstream programming languages like C and C++. In this work, we develop a machine-checked model of concurrent Java and the Java memory model and investigate the impact of concurrency on these guarantees. From the formal model, we automatically obtain an executable verified compiler to bytecode and a validated virtual machine

    SCP special issue on Bytecode 2012 - Preface

    Get PDF
    Preface to SCP special issue on Bytecode 201

    Partial Evaluation of String Obfuscations for Java Malware Detection

    Get PDF
    The fact that Java is platform independent gives hackers the opportunity to write exploits that can target users on any platform, which has a JVM implementation. Metasploit is a well-known source of Javaexploits and to circumvent detection by Anti Virus (AV) software, obfuscation techniques are routinely applied to make an exploit more difficult to recognise. Popular obfuscation techniques for Java include stringobfuscation and applying reflection to hide method calls; two techniques that can either be used together or independently. This paper shows how to apply partial evaluation to remove these obfuscations and thereby improve AV matching. The paper presents a partial evaluator for Jimple, which is an intermediate language for JVM bytecode designed for optimisation and program analysis, and demonstrates how partially evaluated Jimple code, when transformed back into Java, improves the detection rates of a number of commercial AV products

    Analysing Java's safety guarantees under concurrency

    Get PDF
    Two features distinguish Java from other main-stream programming languages like C and C++: its built-in support for concurrency and safety guarantees such as type safety or safe execution in a sandbox. In this work, we build a formal, unified model of Java concurrency, validate it empirically, and analyse it with respect to the safety guarantees using a proof assistant. We show that type safety and Java's data race freedom guarantee hold. Our analysis, however, revealed a weakness in the Java security architecture, because the Java memory model theoretically allows pointer forgery. As a result, this work clarifies the specification of the Java memory mode

    A Unified, Machine-Checked Formalisation of Java and the Java Memory Model

    Get PDF
    We present a machine-checked formalisation of the Java memory model and connect it to an operational semantics for Java source code and bytecode. This provides the link between sequential semantics and the memory model that has been missing in the literature. Our model extends previous formalisations by dynamic memory allocation, thread spawns and joins, infinite executions, the wait-notify mechanism and thread interruption. We prove the Java data race freedom guarantee for the complete formalisation in a modular way. This work makes the assumptions about the sequential semantics explicit and shows how to discharge them
    corecore