
Theoretical Computer Science 283 (2002) 305–331
www.elsevier.com/locate/tcs

Correctness of Java Card method lookup via
logical relations�

Ewen Denneya, Thomas Jensenb; ∗
aMathematical Reasoning Group, Division of Informatics, University of Edinburgh,

Edinburgh EH1 1HN, Scotland, UK
bIRISA=CNRS, Campus de Beaulieu, F-35042 Rennes Cedex, France

Abstract

This article presents a formalisation of the bytecode optimisation of Sun’s Java Card language
from the class *le to CAP *le format as a set of constraints between the two formats, and
de*nes and proves its correctness. Java Card bytecode is formalised using an abstract operational
semantics, which can then be instantiated into the two formats. The optimisation is given as a
logical relation such that the instantiated semantics are observably equal. c© 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Compiler correctness; Optimisation; Operational semantics; Java; Smart cards

1. Introduction

Using a high-level language for programming embedded systems may require a trans-
formation phase in order that the compiled code *ts on the device. This is the case
when mapping Java onto smart cards. In this paper we describe a method for formally
proving the correctness of such a transformation. The method makes extensive use of
types to describe the various run-time structures and relies on the notion of logical
relation to relate the two representations of the code.

The Java Card language [14] is a trimmed down dialect of Java aimed at program-
ming smart cards. As with Java, Java Card is compiled into bytecode, which is then
veri*ed and executed on a virtual machine [6], installed on a chip on the card itself.
However, the memory and processor limitations of smart cards necessitate a further
stage, in which the bytecode is optimised from the standard class *le format of Java,
to the CAP 0le format [15]. The core of this optimisation is a tokenisation in which

� This work was supported by the INRIA Action de recherche coop2erative Java Card.
∗ Corresponding author.
E-mail addresses: ewd@dai.ed.ac.uk (E. Denney), thomas.jensen@irisa.fr (T. Jensen)

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00138 -4

306 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

names (strings) are replaced with tokens (integer values). Replacing strings with inte-
gers reduces the size of the code and enables a faster lookup of, e.g., virtual methods.
Additional optimisations are obtained by a componentisation that merges class *les
from the same package into one CAP 0le. This means that symbolic references be-
tween classes from the same CAP *le can be transformed into memory oDsets relative
to the CAP *le.

We describe a semantic framework for proving the correctness of Java Card tokeni-
sation. The basic idea is to give an abstract description of the constraints from the
oFcial speci*cation of the tokenisation and show that any transformation satisfying
these constraints is ‘correct’. Notice that this is independent of showing that there ac-
tually exists a collection of functions satisfying these constraints (which is not done
here). The main advantage of decoupling ‘correctness’ into two steps is that we get
a more general result: rather than proving the correctness of one particular algorithm,
we are able to show that the constraints described in Sun’s oFcial speci*cation [15]
(given certain assumptions) are suFcient. Moreover, the technique used to develop an
algorithm is orthogonal to this proof. In this article we give a formalisation and cor-
rectness proof for the part concerned with dynamic method lookup. A comprehensive
formalisation appears as a technical report [4].

A distinguishing feature of our approach is the use of types and logical relations
to structure and describe the transformation of low-level code. The proof is presented
in the setting of Java Card byte code but the technique itself is not limited to this
particular language.

2. The conversion

Java source code is compiled on a class by class basis into the class 0le format.
By contrast, Java Card CAP 0les correspond to packages. They are produced by the
conversion of a collection of class *les. In the class *le format, methods, *elds and
so on are referred to using strings. In CAP *les, however, tokens are ascribed to the
various entities. The idea is that if a method, say, is publically visible, 1 then it is
ascribed a token. If the method is only visible within its package, then it is referred
to directly using an oDset into the relevant data structure. Thus references are either
internal or external. In addition, ‘top-level’ references, to packages (and applets) are
made using application identi0ers (AIDs).

The conversion groups entities from diDerent class *les into the components of
a CAP *le. For example, all constant pools of the class *les forming a package are
merged into one constant pool component, and all method implementations are gathered
in the same method component. There are a number of such components, of which
we will consider the constant pool, class, and method components. One signi*cant

1 We follow the terminology of [15], where a method is public visible if it has either a protected or a
public modi*er, and package visible if it is declared private or has no visibility modi*er.

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 307

diDerence between the two formats is the way in which the method tables are arranged.
In a class *le, the methods item contains all the information relevant to methods
de*ned in that class. In the CAP *le, this information is shared between the class
and method components. The method component contains the implementation details
(i.e. the bytecode) for the methods de*ned in this package. The class component is
a collection of class information structures. Each of these contains separate tables for
the package and public methods, mapping method tokens to oDsets into the method
component. The method tables contain the information necessary for resolving any
method call in that class.

The conversion is presented in [15] as a collection of constraints on the CAP *le,
rather than as an explicit mapping between class and CAP formats. For example, if a
class inherits a method from a superclass then the conversion can choose to include the
method token in the relevant method table or, instead, that the table of the superclass
should be searched. There is a choice, therefore, between copying all inherited methods,
or having a more compressed table. The speci*cation does not constrain this choice.

We adopt a simpli*ed de*nition of the conversion, only considering classes, constant
pools, and methods. In particular, we ignore *elds, exceptions and interfaces. The
conversion also includes a number of mandatory optimisations such as the inlining of
*nal *elds, and the type-based specialisation of instructions, which we do not treat
here—see the oFcial documentation [4, 15] for details.

3. Overview of formalisation

The conversion from class *le to CAP format is a transformation between formats
of two virtual machines. The *rst issue to be addressed is determining in what sense,
exactly, the conversion to token format should be regarded as an equivalence. We can-
not simply say that the JVM and JCVM have the same behaviour for all bytecodes,
in class and CAP *le format respectively, because, a priori, the states of the virtual
machines are themselves in diDerent formats. Instead, we adopt a simple form of equiv-
alence based on the notion of representation independence [11, 7]. This is expressed
in terms of so-called observable types. This limits us to comparing the two interpreta-
tions in terms of words (there are no double words in Java Card), but this is suFcient
to observe the operand stack and local variables, where the results of execution are
stored.

Representation independence may be proven by de*ning coupling relations between
the two formats that respect the tokenisation and are the identity at observable types.
This can be seen as formalising a data re0nement from class to CAP *le. We formalise
the relations non-deterministically as any family of relations which satis*es certain con-
straints, rather than as explicit transformations. This is because there are many possible
tokenisations and we wish to prove any reasonable optimisation correct. Formally, we
say that a function is representation independent if it maps related inputs to related
outputs. This is the de*nition of a logical relation at function types.

308 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

The virtual machines are formalised in an operational style, as transition relations
over abstract machines. We adopt a style of semantics proposed by Mosses [8], using
a mixture of operational and denotational styles: the virtual machines are formalised
operationally, parameterised with respect to a number of auxiliary functions, which are
then interpreted denotationally. Transitions are decorated with operations that describe
the eDect of the transition on the global state. By presenting the bytecode semantics
in such a modular manner we can more easily make the comparison between the two
formats where signi*cant. We prove the correctness of tokenisation with respect to
these semantics.

It should be noted that the particular formalisation of the semantics is orthogonal
to the technique used for proving equivalence. The main point is to give a set of
operational rules which can be used for both virtual machines, with all the semantic
diDerences abstracted out into a number of auxiliary functions. This means that we
only have to prove that the auxiliary functions behave equivalently in the two formats
in order to prove the semantics equivalent. This reduces the proof burden considerably.

In Section 5, we de*ne abstract types for the various entities converted during
tokenisation, which are common to the two formats. For example, Class ref and
Environment. It is this type structure which is used to de*ne the logical relations.
In Section 6 we give an operational semantics which is independent of the underlying
class=CAP *le format. The structure of the class=CAP *le need not be visible to the
operational semantics. We need only be able to extract certain data corresponding to
a particular method, such as the appropriate constant pool. In Sections 7 and 8, we
give the speci*c details of the class *le and CAP *le formats, respectively, de*ned as
interpretations of types and auxiliary functions, <:=name and <:=tok . We refer to these as
the name and the token interpretation, respectively.

To illustrate how it is natural to conceive the operational semantics independently of
certain auxiliary functions, we consider dynamic method lookup, used in the semantics
of the method invocation instructions. The lookup function which searches for the
implementation of a method is dependent on the layout of the method tables. There
are also a number of choices for how it is aDected by method modi*ers, each of
which is apparently consistent with the oFcial speci*cation. The operational rule giving
the semantics of the virtual method invocation instruction, presented in Section 6, is
parameterised with respect to the lookup function. Then in Sections 7 and 8 two
possible interpretations of lookup are given. The operational semantics, together with
the interpretations of the auxiliary functions, induces an ‘interpretation’ of the bytecode,
and it is in terms of this that we compare the two formats.

In Section 9, we de*ne the logical relation, {R�}�∈Abstract type. It is convenient to
informally group the de*nition into several levels. First of all, there are various basic
observable types (byte, short, etc.), �, for which we have R� = id�. Second, there are
the references, �, such as package and class references, for which the relation R� repre-
sents the tokenisation of named items. Third, the constraints on the componentisation
are expressed in R�, where � includes method information structures, constant pools,
and so on. This represents the relationship between components in CAP *les and the

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 309

corresponding entities in class *les. Using the above three families of relations we can
de*ne R� for each type, �, where

� ::= � | � | � | �× �′ | � → �′ | � + �′ | �∗

The family of relations, {R�}�∈Abstract type, represents the overall construction of com-
ponents in the CAP *le format from a class *le. The relations are ‘logical’ in the sense
that the de*nitions for de*ned types follows automatically. For example, we de*ne the
type of the environment that contains the class hierarchy as

Environment = Package ref → Package

and so the de*nition of REnvironment follows from those of RPackage ref; RPackage and
the (standard 2) construction of R → . Intuitively, this imposes the restriction that in
order for two environments en and et to be related. a package reference prefn and its
conversion preft must be mapped into packages pn and pt such that pt is a conversion
of pn. In Section 10, we use this semantic format to prove the correctness. Finally,
we make some concluding remarks in Section 11.

4. Related work

There have been a number of formalisations of the Java Virtual Machine which have
some relevance for our work here on Java Card. Bertelsen [2] gives an operational
semantics which we have used as a starting point. He also considers the bytecode
veri*cation conditions, which considerably complicates the rules, however. Pusch has
formalised the JVM in HOL [10]. Like us, she considers the class *le to be well
formed so that the hypotheses of rules are just assignments. The operational semantics
is presented directly as a formalisation in HOL, whereas we have chosen (equivalently)
to use inference rules. BNorger and Schulte [3] present a formalisation of the JVM using
the formalism of abstract state machines (ASMs). By progressively adding language
features such as classes, objects and exceptions to a core set of bytecode instructions,
they provide an incremental development of a JVM semantics as an abstract machine
for executing JVM bytecode. By coupling this semantics with an ASM semantics for
Java, BNorger and Schulte are able to provide a set of constraints that are suFcient
for a Java compiler to be correct. All these works make various simpli*cations and
abstractions. Since these are formalisations of Java rather than Java Card they do not
consider the CAP *le format. We have chosen a small-step operational semantics for
this paper but the other formalisms could likely have been used as well. Our main
criteria was to obtain a semantics that allows to isolate the diDerences between the
bytecode and the CAP formats in a few auxillary functions and our choice ful*lls this
goal.

2 In fact, we allow functions to be partial.

310 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

In contrast to the above-mentioned works, the work of Lanet and Requet [5] is
speci*cally concerned with Java Card. They also aim to prove the correctness of Java
Card tokenisation. Their work can be seen as complementing ours. They concentrate on
optimisations, including the type specialisation of instructions, and do not consider the
conversion as such. In contrast, we have speci*ed the conversion but ignored the sub-
sequent optimisations. Their formalism is based on the B method, so the speci*cation
and proof are presented as a series of re*nements.

In [9], Pusch proves the correctness of an implementation of Prolog on an abstract
machine, the WAM. The proof structure is similar to ours, although there are re*ne-
ments through several levels. There are operational semantics for each level, and cor-
rectness in expressed in terms of equivalence between levels. The diDerences between
the semantics are signi*cant, since they are not factored out into auxiliary functions
as here. She uses a big-step operational semantics, which is not appropriate for us
because we wish to compare intermediate results. Moreover, she uses an abstraction
function on the initial state, the results being required to be identical, whereas we have
a relation for both initial and *nal states. In his Ph.D. Thesis [12], Schellhorn proves
a similar correctness result for a WAM-implementation of Prolog using an Abstract
State Machines semantics. The correctness of the translation is expressed in Dynamic
Logic and checked using the veri*cation tool KIV.

5. Abstract types

This section introduces the fundamental notions of abstract and concrete types that
are used to structure the transformation. These are not the types of the Java Card
language, but rather standard types such as sums, products, functions and lists. Here
and in later sections, we use record types with the actual types of *elds (drawn from
the oFcial speci*cation where not too confusing) serving as labels. We write elements
of sum types in the form 〈tag; value〉.

There are two sorts of types: abstract and concrete. The idea is that abstract types
are those we can think of independently of a particular format. The concrete types
are the particular realisations of these, as well as types which only make sense in one
particular model. For example, CP index is the abstract type of indices into a constant
pool for a given package. In the name interpretation, this is modelled by a class name
and an index into the constant pool of the corresponding class *le, i.e.

<CP index=name = Class name× Index

where Index is a concrete type. In the token format, however, since all the constant
pools are merged, we have

<CP index=tok = Package tok× Index:

Another example is the various distinctions that are made between method and *eld
references in CAP *les, but not class *les, and which are not relevant at the level

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 311

of the operational semantics, which concerns terms of abstract types. We arrange the
types so that as much as possible is common between the two formats. For example,
it is more convenient to uniformly de*ne the environment containing the hierarchy of
de*ned classes as a mapping from package references to packages

Environment = Package ref → Package

and then de*ne the diDerent representations of packages by having Package interpreted
as Class name → Class file in the class *le format and as a CAP file in the CAP
*le format.

There is a ‘type of types’ for the two forms of data type in Java Card—primitive
types, i.e. the simple types supported directly on the card, and reference types.

Type = {Boolean, Byte, Short} + Reference type

Reference type = Array type + Class ref:

We have not included Int, which is optional. We use a separate type, Object ref,
to refer to objects on the heap. The objects themselves contain a reference to the
appropriate class or array of which they form an instance.

The type Word is an abstract unit of storage and is platform speci*c. All we need
know is that object references and the basic types, Byte, Short and Boolean, can be
stored in a Word. Rather than use an explicit coercion, we assume

Word = Object ref + Null + Boolean + Byte + Short:

Thus, a word is (i.e. represents) either a reference (possibly null) or an element of
a primitive type. Furthermore, we de*ne Value= Word. Although this is not strictly
necessary, there is a conceptual distinction. If we were to introduce values of type int,
then a value could be either a word or a double word.

There are several forms of reference 3 used during tokenisation:

Package ref | Class ref | Method ref.

We distinguish Package from Package ref, and similarly for the other items. Note
that a reference is a composite entity which can be context dependent. For example,
in the CAP format a class reference can be in internal or external forms depending on
whether the reference is internal to a package or to a class in another package. We
assume, however, that suFcient information is given so that references make sense
globally. For example, class names are fully quali*ed, and class tokens are paired with
a package token. We take *eld and method references to be to particular members of
some class, and so contain a class reference. In contrast, an identi0er is a name or a
token (these are not used at the abstract level though).

Using these basic types, we can then construct complex types using the usual type
constructors: (non-dependent) sum, product, function and list types (denoted �∗) as we

3 Which we distinguish from Reference type.

312 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

did when de*ning the environment of classes at the end of Section 3. The heap of
dynamically allocated objects is another example. It is modelled by

Heap = Object ref → Object

Object = Class inst obj + Array obj

Class inst obj = Class ref× (Field ref → Value)

Array obj = Nat× Array type× (Nat → Value)

Array type = Primitive type + Class ref.

For completeness, we mention that the abstract type for the constant pool would be
de*ned as follows:

Constant pool=CP index → (Class ref + Method ref + Field ref),

but in this article we are not concerned with the componentisation of the constant pool
and do not deal with it in any further detail.

6. Operational semantics

In this section we de*ne an operational semantics framework that allows us to model
the execution of both class and CAP *les. This is obtained by parameterising the
semantics on a number of auxiliary functions that embody the diDerences between
the two formats. This factorisation of the semantics reduces the equivalence proof
considerably, as shown in Section 10.

The oFcial speci*cation of the JCVM (and JVM) is given in terms of frames.
A frame represents the state of the current method invocation, together with any other
useful data. There is some choice for how to model frames and the various formalisa-
tions of bytecode semantics in the literature diDer slightly in their approach. Although
the oFcial speci*cation also mentions a reference to the current constant pool we
can calculate this from the current class reference. We abstract away from details of
program counters and (literal) byte codes, and instead formalise the code as abstract
syntax. The state of the virtual machine is captured by the notion of con0guration, con-
sisting of (the abstract syntax of) the code of the current method still to be executed,
the operand stack, the local variables, and the current class reference. We write these
as Config (b; o; l; c) or just 〈b; o; l; c〉. To account for method invocations, we allow a
con*guration itself to be considered as an instruction. When a method is invoked, the
current instruction becomes a new con*guration. Instead of a stack of frames, then, we
have a single piece of ‘code’ (in this general sense). This form of closure is equivalent
to the traditional idea of a call stack.

We use a single-step SOS with rules given in a particular semantics style (proposed
by Mosses [8]) as

con0g
statechange

=⇒ con0g′

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 313

meaning that the con*guration con0g becomes con0g′ with a change in the environment
and heap given by statechange. We use heap and env as ‘global variables’ in the
hypotheses. When the heap and environment do not change, we will not write the
label explicitly. If an instruction changes the heap or the environment, then we label
the arrow with an operation which abstracts the eDect on the global state. For example,
add(r,o) is the arrow

〈h; e〉 	→ 〈h + (r 	→ o); e〉

which extends the heap with the binding of reference r to object o, and leaves the
environment unchanged. Similarly, the instruction, putstatic, is de*ned using the
function, update, which takes a class, a static *eld of that class, and a value of
compatible type, and overlays the change to the environment given by updating the
*eld with that value:

f ref : = constant pool (c)(i)

〈putstatic i; v : : ops; l; c〉 update(f ref;v)
=⇒ 〈nop; ops; l; c〉

Since execution does not terminate, as such, we introduce an arti*cial instruction nop

to signify the termination of an instruction. The following two rules are standard for
SOS:

〈b1; ops; l; c〉 ⇒ 〈b′1; ops′; l′; c′〉
〈b1; b2; ops; l; c〉 ⇒ 〈b′1; b2; ops′; l′; c′〉

〈b1; ops; l; c〉 ⇒ 〈nop; ops′; l′; c′〉
〈b1; b2; ops; l; c〉 ⇒ 〈b2; ops′; l′; c′〉

Method invocation is modelled by replacing the invoking instruction with a con*gu-
ration that contains the code of the invoked method (see the detailed description of
invokevirtual below). Execution of a method body is modelled by allowing transi-
tions inside a con*guration:

f ⇒ f′

〈Config f; ops; l; c〉 ⇒ 〈Configf′; ops; l; c〉
By using con*gurations we can model return from methods very simply by the transi-
tion

〈〈return; ; ; 〉; ops; l; c〉 ⇒ 〈nop; ops; l; c〉

that replaces the current con*guration with the nop instruction. This, together with
the rule for sequential composition will result in the control being transferred to the
instruction following the invocation of the method:

〈〈return; ; ; 〉; ops; l; c〉 ⇒ 〈nop; ops; l; c〉
The method invocation instructions (and others) take an argument which is an index
into either the constant pool of a class *le, or into the constant pool component of a

314 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

CAP *le. This means that the ‘concrete’ bytecode is itself dependent on the implemen-
tation and is therefore modelled by an abstract type. Formally, we de*ne a transition
relation

⇒ ⊆ Config× Arrow× Config.

The Instruction type lists all those instructions whose behaviour depends on the
particular format.

Config= Bytecode× Word∗ × Locals× Class ref

Arrow= Global state → Global state

Global state= Environment× Heap

Bytecode= Instruction + (Bytecode× Bytecode) + Config

Instruction= Nop + Invokevirtual CP index + Invokestatic CP index +

Invokeinterface CP index + Invokespecial SM index +

Return + New CP index + Putstatic CP index +

Getstatic CP index + Putfield CP index +

Getfield CP index + Checkcast Typecode +

Instanceof Typecode:

As mentioned above, the structure of the class=CAP *le need not be visible to the
operational semantics. We use a number of auxiliary functions, some of which have
preconditions that we take as concomitant with the well-formedness of the class *le.
The de*nition of method invocation uses the lookup function

lookup : Class ref× Method ref → Class ref× Bytecode

that takes the class reference where a method is declared, together with the actual
method reference (which contains the actual class reference), and returns the class refer-
ence where the method is de*ned together with the code. The function
method nargs : Method ref→Nat returns the number of arguments for a given
method reference.

6.1. Invokevirtual

The instruction is evaluated as follows:
(1) The two byte index, i, into the constant pool is resolved to get the declared method

reference containing the declared class reference and a method identi*er (either a
signature or token).

(2) The number of arguments to the method is calculated.
(3) The object reference, r, is popped oD the operand stack.
(4) Using the heap, we get heap(r) = 〈act cref; 〉, the actual class reference (fully

quali*ed name or a package=class token pair).

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 315

(5) We then do lookup(act cref; dec mref), getting the class where the method is
implemented, and its bytecode. The lookup function is used with respect to the
class hierarchy (environment).

(6) A con*guration is created for this method and evaluation proceeds from there.

Formally, this is expressed by the following inference rule:

dec mref : = constant pool (c)(i) get declared method
reference

n : = method nargs(dec mref) get number of
arguments

〈act cref ; 〉 : = heap(r) get actual class reference from
heap

〈m cl; m cd〉 := lookup(act cref ; dec mref) look up
method

〈invokevirtual i; a1 : : : an : : r : : s; l; c〉⇒〈〈m cd; 〈〉; a1 : : : an : : r; m cl〉; s; l; c〉
In the following sections we show how to instantiate the semantic framework (in
particular the lookup function) to obtain a class *le and a CAP *le semantics.

7. Name interpretation

The name interpretation gives semantics to Java class *les (see Fig. 1). Since this
is fairly standard we only give a brief description. Classes are described by fully
quali*ed names (the set Class name). We assume a function pack name which gives
the package name of a class name. Methods and *elds, on the other hand, are given
signatures, consisting of an unquali*ed name and a type, together with the class of
de*nition. The signature is not considered to include the return type of a method.

The class *les are grouped by package into a global environment that is accessed by
the function env name. Thus env name(p)(c) denotes the class *le in package p with
name c. A package is modelled as a function from class names to class *les. A class
*le contains all the information corresponding to a particular class, viz., the various
Pags (public, final, etc) given to the class, a reference to the super class (which is
void for java.lang.Object), a collection Methods item of the methods de0ned in
the class, a constant pool and the fully quali*ed name of the class. We only give the
interpretation of those parts used here (for more details see [4]) and so leave, e.g. the
constant pool unspeci*ed.

Each method de*ned in a class is represented by a method item that lists the Pags
of the method, its signature and return type, the maximal size of the operand stack and
number of local variables and the bytecode of the method.

The procedure for method lookup in class *les

lookup : Class ref× Method ref → Class ref× Bytecode

316 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

Types
Class file =

Class flags× Super× Methods item× Constant pool× Class name

Method info =

Method flags× Sig× (<Type=name+ Void)× Maxstack× Maxlocals×
Bytecode

<Package=name = Class name → Class file

<Class ref=name = Class name

<Method ref=name = Class name× Sig

Sig = Method name× <Type=*name

<Class=name = Class file

Super = Class name + Void

<Pack methods=name = Class name → Methods item

Methods item = Sig → Method info

Fig. 1. Name interpretation.

is de*ned in Fig. 2 using an extended lambda calculus with conditionals, case expres-
sions, let expressions, and pattern matching in both lets and abstractions. There are a
number of possibilities for how method lookup should be de*ned, depending on the
de*nition of inheritance. The basic functionality is standard: in order to *nd the imple-
mentation of a method sig that was declared in the class dec class we recursively
search for the last overriding of sig, starting form the current class and moving up
in the class hierarchy towards dec class. DiDerences in the literature occur when it
comes to taking visibility modi*ers for methods into account. For example, [2, 10] use
a ‘naive’ lookup which does not take account of visibility modi*ers. Our de*nition of
method lookup takes these into account by making the test

dec flags(protected) or dec flags(public)

or act pk = dec pk

This test ensures that the declaration of the method being looked up is indeed visible
from the class in which the candidate implementation is given. This is a necessary
condition for the actual method to override a method with the same signature declared
in package dec pk. A fuller discussion of this appears in [13].

8. Token interpretation

In the JCVM, data is arranged by packages into CAP *les. Each CAP *le consists
of a number of components, but not all are used for method lookup (or, indeed, the

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 317

lookup_name (act_class, (sig, dec_class)) =

let

dec_pk = pack_name(dec_class)

act_pk = pack_name(act_class)

(_,_,meth_dec,_,_)

= env_name (dec_pk) (dec_class)

(_,super,_,meth_act,_,_)

= env_name (act_pk) (act_class)

(dec_flags,_,_,_,_,_) = meth_dec(sig)

in

if meth_act(sig) = undefined then

lookup_name(super, (sig, dec_class))

else if

dec_flags(protected) or dec_flags(public)

or act_pk = dec_pk

then let (_,_,_,_,_,code) = meth_act(sig)

in (act_class,code)

else lookup_name(super, (sig, dec_class))

Fig. 2. The lookup function for the class *le format.

rest of the operational semantics). Here we limit the discussion to the class and method
components.

References to items external to a package are via tokens—for packages, classes,
static *elds, static methods, instance *elds, virtual methods, and instance methods—
each with a particular range and scope. These are then used to *nd internal oDsets into
the components. For example, a class reference is either an internal oDset into the class
component of the CAP *le of the class’ package, or an external reference composed of
a package token and a class token. However, since we need to relate the reference to
class names, we will assume that all references come with package information, even
though this is superPuous in the case of internal references. 4

The CAP *le interpretation of the abstract types is given in Fig. 3. The class
component consists of a list of class information structures where the main diDer-
ence with respect to the name interpretation is the replacement of the method item
by method tables. There are two method tables: one for publicly visible methods
and one for methods visible only in the package. The entries in the method ta-
bles give oDsets into the method component, where the method implementations are
found. The token of a method is used to calculate the entry of the method. First,

4 Note that although package tokens should be scoped within a particular CAP *le (being indices to an
AID in the package table), we will assume they have global scope.

318 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

Types
<Package= tok = CAP file

CAP file = Constant pool comp× Class comp× Method comp

<Package ref=tok = Package tok

<Class ref=tok = Package tok× (Class tok + Offset)
<Method ref=tok = <Class ref=tok × Virtual method tok

<Class=tok = Class info

Class comp = Offset → Class info

Class info =

Class flags× Super× Public table× Package table× Class ref

Public table = Public base× Public size× (Index → Offset+
{OxFFFF})

Package table = Package base× Package size× (Index → Offset)
<Pack methods=tok = Method comp

Method comp = Offset → Method info

Method info = Method flags× Maxstack× Nargs× Max locals× Bytecode

Fig. 3. Token interpretation.

public methods must have tokens in the range 0–127 and package-visible methods in
the range 128–255. Thus, method access information is given implicitly by the tokens
(rather than by Pags); in particular they indicate which table to
look in.

The Java Card speci*cation includes the possibility of compressing the method tables.
The two method tables each contain a base, size and ‘list’ of entries and the table
only contains entries from the base to base + size − 1 inclusive. The methods with
tokens lower than base (which by construction are methods inherited from the super-
classes—see Section 9.2) must be looked up in the method tables of the super-class.
This avoids duplicating parts of method tables at the expense of a more complicated
method lookup. Finally, the entry for a public method will be OxFFFF if the method
is de*ned in another package (this is the case for public methods that are inherited by
classes in other packages).

The lookup function

lookup : Class ref× Method ref → Class ref× Bytecode

for the CAP format (given in Fig. 4) takes a class reference (the declared class), a
method reference (in the actual class), and returns the reference to the class where the
code is de*ned, together with the bytecode itself. The main steps of the algorithm are:
(1) Get method array for the package of the actual class.
(2) Get class information for the actual class.
(3) If public: if de*ned then get info else lookup super

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 319

lookup_tok (act_class_ref, (dec_class_ref, method_tok)) =

let methods = method_array (act_class_ref)

in

let (_,super,(public_base,_,public_table),

(package_base,_,package_table),_)

= class_info(act_class_ref)

in

if method_tok div 128 = 0 then /* public */

if method_tok >= public_base then

let method_offset = public_table[method_tok - public_base]

in

if method_offset <> 0xFFFF then

(act_class_ref, methods[method_offset].Bytecode)

else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))

else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))

else /* package */

if method_tok >= package_base and

same_package(dec_class_ref, act_class_ref)

then

let method_offset = package_table[method_tok mod 128 -

package_base]

in (act_class_ref, methods[method_offset].Bytecode)

else /* look in superclass */

lookup_tok(super, (dec_class_ref, method_tok))

Fig. 4. The lookup function for the CAP *le format.

If package: if de*ned and visible then get info else lookup super
It uses tokens to calculate the corresponding method table index as described above.
We assume several local auxiliary functions:

class info : Class ref → Class info

methods array : Class ref → (Offset → Method info)
same package : Package ref× Package ref → bool

class offset : Package tok× Class tok → Offset

method offset : Package tok× Class tok× Virtual method tok →
Offset

For a given class reference, the function class info *nds the corresponding class
information structure in the global environment. The function method array simply

320 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

*nds the method component for a given class reference. In addition, we assume the
existence of functions class offset and method offset for resolving external tokens
to internal oDsets.

9. Formalisation of equivalence

We now formalise the correct conversions from class to CAP *les as a family of
relations,

{R� : <�=name ↔ <�=tok}�∈Abstract type

indexed by abstract type, �. The idea is that there is a *xed family of relations such
that x R� y when y is a possible transformation of x.

Recall that the set of abstract types is de*ned by the grammar:

� ::= Bool | Nat | Object ref | Boolean | Byte | Short | Value | Word

� ::= Package ref | Ext class ref | Class ref | Method ref

� ::= CP index | CP info | Method info | Package | Class |

Constant pool | Pack methods

� ::= � | � | � | �× �′ | � → �′ | � + �′ | �∗

where � are the observable types, � the type of entities that are tokenised, � the type of
entities transformed by the componentisation and � contains the type of the compound
entities built from the basic entities (such as constant pools, class environments, etc).
We structure the description according to the grammar. We *rst de*ne the relations for
observable and compound types (Section 9.1). These are essentially logical relations
for the type constructors and are used throughout the de*nition of the transformation.
Then there are two parts to the transformation itself: the tokenisation, de*ned as the
relations R� (Section 9.2), and the componentisation, de*ned as the R� (Section 9.3).
The relations are not necessarily total, i.e. for some x : <�=name, there may not be a y
such that x R� y. We make no restrictions on the relation domains. 5

There are two sources of underspeci*cation here. First, the relations really can be
non-functional. Second, there is a choice for what some of the relations are. For ex-
ample, RClass ref is some bijection satisfying certain constraints. The relations be-
tween the ‘large’ structures, however, are completely de*ned in terms of those between
smaller ones.

5 For example, arrays are not in the domain of RClass ref. This is not important for the proof of
correctness. However, this would certainly have to be taken into account for the development of an algorithm.

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 321

9.1. Observable and compound types

For each basic observable type �, we have R� = id�. For the compound types there
are standard de*nitions of R�×�′ , R�→�′ and R�+�′ in terms of R� and R�′ .

a R� a′ ⇔ a = a′

〈a; b〉R�×�′〈a′; b′〉 ⇔ a R� a′ ∧ b R� b′

[]R�∗ []

a :: as R�∗ a′ :: as′ ⇔ a R� a′ ∧ as R�∗ as′

fR�→�′ f′ ⇔ ∀a R� a′ : fa R�′ f′a′

In general, functions are partial. Thus if fa is de*ned and a R� a′, then f′a′ must be
de*ned.

a R�+�′ a′ ⇔

(∃b; b′ : a = Theta b ∧ a′ = Theta b′ ∧ b R� b′)
∨

(∃c; c′ : a = Theta’ c ∧ a′ = Theta’ c′ ∧ c R�′ c′)

Strictly speaking, because the types are mutually recursive, we should de*ne the rela-
tions recursively, but we will gloss over this point. As an example of a derived relation,
it follows that RHeap is de*ned as

heapname RHeap heaptok ⇔ ∀r : Object ref : heapname(r) RObject heaptok(r)

where RObject, in turn, is de*ned in terms of RClass ref.

9.2. Tokenisation

The tokenisation process assigns tokens to external class references, static *elds
and static methods, and to all instance *elds, virtual methods and interface methods.
The relations, R�, represent the tokenisation of items. The general idea is to set up
relations between the names and tokens assigned to the various entities, subject to
certain constraints described in the speci*cation. These relations are de*ned with respect
to the environment (in name format). We use a number of abbreviations for extracting
information from the environment. We write c¡c′ for the subclass relation (i.e. the
transitive closure of the direct subclass relation) and 6 for its rePexive closure. In
the token interpretation this is modulo Equiv. We write m tok ∈ c ref when a method
with token m tok is declared in the class with reference c ref , and pack name(c) for
the package name of the class named c.

We de*ne function Class flag for checking the presence of attributes such as
public, final, etc. The tokenisation uses the notion of external visibility of public
classes that are visible outside their de*ning package:

Externally visible(c name) = Class flag(c name; Public)

We will also write public(sig) and package(sig) according to the visibility of a method.

322 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

In order to account for token scope, we relate names to tokens paired with the
appropriate context information. For example, method tokens are scoped within a class,
so the relation RMethod ref is between pairs of class names and signatures, and pairs
of class references and method tokens. Therefore, we add a condition to ensure that
the package token corresponds to the package name of this class name.
Package ref: As mentioned above, we take package tokens to be externally visible.

The relation RPackage ref is simply de*ned as any bijection between package names
and tokens.
Ext class ref: In order to de*ne the relation for class references we *rst de*ne

the relation for external class references. We de*ne RExt class ref as a bijection such
that

c name RExt class ref (p tok; c tok)⇒
{
Externally visible(c name)∧
pack name(c name)RPackage ref p tok

Method ref: The relation for Method ref uses Class ref, de*ned in Section 9.3.
RMethod ref is not a bijection because we couple method tokens with class tokens to
give the context of the method token. This results in a method token being coupled
with class tokens for all the classes in which the method is inherited, thus we only
have the property:

〈c name; sig〉RMethod ref 〈c ref ; m tok〉
∧

〈c name; sig〉RMethod ref 〈c′ ref ; m′ tok〉
⇒

(c ref6c′ ref ∨ c′ ref6c ref)
∧

m tok = m′ tok

However, ‘from names to tokens’ we do have:

〈c name; sig〉RMethod ref 〈c ref ; m tok〉
∧

〈c′ name; sig′〉 RMethod ref 〈c ref ; m tok〉

 ⇒

c name = c′ name
∧

sig = sig′

The following conditions on RMethod ref are formalisations of the constraints stated
informally (though quite precisely) in the Java Card speci*cation [15]. The *rst con-
dition says that if a method overrides a method implemented in a superclass, then it
gets the same token. Restrictions on the language means that overriding cannot change
the method modi*er from public to package or vice versa.

〈c name; sig〉 RMethod ref 〈c ref ; m tok〉 ∧
〈c′ name; sig〉RMethod ref 〈c′ ref ; m′ tok〉 ∧
c′ name ¡ c name ∧
(package(sig) ⇒ same package(c name; c′ name))

⇒ m tok = m′ tok

The second condition says that the tokens for public introduced methods must have
higher token numbers that those in the superclass. We assume a predicate, new method,

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 323

which holds of a method signature and class name when the method is de*ned in the
class, but not in any superclass.

public(sig)∧
new method(sig; c name)∧
(c name; sig) RMethod ref (c ref ; m tok)

 ⇒

{ ∀m′ tok ∈ super(c ref):
m tok ¿ m′ tok

Package-visible tokens for introduced methods are similarly numbered, if the superclass
is in the same package:

package(sig)∧
new method(sig; c name)∧
(c name; sig)RMethod ref(c ref; m tok)∧
same package(c name; super(c name))

⇒
{ ∀m′ tok ∈ super(c ref):

m tok ¿ m′ tok

The third condition says that public tokens are in the range 0–127, and package tokens
in the range 128–255. Formally, if

〈c name; sig〉 RMethod ref 〈c ref ; m tok〉

then

{
(public(sig)) ⇒ 06m tok6127∧
(package(sig)) ⇒ 1286m tok6255

The speci*cation also says that tokens must be contiguously numbered starting at 0
but we will not enforce this.

9.3. Componentisation

The relations in the previous section formalise the correspondence between named
and tokenised entities. The componentisation rearranges the class *les into components.
The three ‘big’ components are the constant pool, method, and class components. We
limit our de*nition of equivalence to the method and class component since these are
the ones that are of relevance for method lookup.

9.3.1. Class references
When creating the CAP *le components, all the entities are converted, including

the package visible ones. Thus, we need to extend the tokenisation relation for public
classes to cover the package visible classes as well. However, within its de*ning pack-
age, a class (public or package visible) can now be referenced by an oDset into the
class component of the CAP *le corresponding to the package. For public classes this
means that it can be referenced either by its token or by its oDset. For this reason the

324 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

relation for class references is not a bijection, and we have to impose further coherence
constraints in order to ensure that if a class name corresponds to both an external
token and to an internal oDset, then the token and the oDset correspond to the same
entity. Formally, we de*ne an equivalence, Equiv, of class references as the rePexive
symmetric closure of:

Equiv(〈p tok; o>set〉; 〈p tok; c tok〉) ⇔ class offset(p tok; c tok) = o>set

where class offset : Package tok× Class tok→ Offset returns the internal oD-
set corresponding to an external token. The coherence constraint on the relation is
then

a R b ∧ a′ R b ⇒ a = a′

a R b ⇒ (a R b′ ⇔ Equiv(b; b′))

The second condition contains two parts: that the relation is injective modulo Equiv,
and that it is closed under Equiv. We say that R is an external bijection when these
conditions hold. The de*nition of Equiv and external bijection extends in the obvious
way to the other references.
Class ref: We de*ne RClass ref as an external bijection which respects the relation
RExt class ref, that is, such that

c name RClass ref(p tok; c tok) ⇔ c name RExt class ref (p tok; c tok)

9.3.2. Methods and classes
Method info: We only treat certain parts of the method information here:

〈 @ags; sig; ; ; maxstack; maxlocals; code; 〉
RMethod info

〈@ags′; maxstack ′; nargs′; maxlocals′; code′〉
⇔

@ags RMethod flags @ags′∧
maxstack = maxstack ′∧
size(sig) = nargs′∧
maxlocals = maxlocals′∧
code RBytecode code′

In the name interpretation all the information is in one package and so, for example,

<Pack methods=name : Class name → Methods item

is the ‘set’ of method data for all classes. In the token format the method informa-
tion is spread between the two components. The coupling relations rePect this: the
relation RClass ensures that a named method corresponds to a particular oDset, and
RPack methods ensures that the entry at this oDset is related by RMethod info.

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 325

Pack methods: The method item and method component contain the implementa-
tions of both static and virtual methods:

methods name RPack methods method comp
⇔

∀〈c name; sig〉RMethod ref〈p tok; c tok; m tok〉:
methods name(c name; sig)

RMethod info

(methods comp:methods)(method offset(p tok; c tok; m tok))

Class: We de*ne RClass. There are a number of equivalences expressing correctness
of the construction of the class component. For the lookup, the signi*cant ones are
those between the method tables. These say that if a method is de*ned in the name
format, then it must be de*ned (and equivalent) in the token format. Since the converse
is not required, this means we can copy method tokens from a superclass. Instead, there
is a condition saying that if there is a method token, then there must be a corresponding
signature in some superclass.

If a method is visible in a class, then there must be an entry in the method table,
indicating how to *nd the method information structure in the appropriate method
component. For package visible methods this implies that the method must be in the
same package. For public methods, if the two classes are in the same package, then
this entry is an oDset into the method component of this package. Otherwise, the entry
is OxFFFF, indicating that we must use the method token to look in another package.
The full de*nition of RClass is given in Fig. 5. (writing c name for cf:Class name and
c ref for ci:Class ref):

10. Proof

We *rst prove that the auxiliary functions preserve the appropriate relations. 6 Since
the heap and environment are not passed as explicit arguments to the functions, we
need to assume the corresponding entities are related. Note that this proof is dependent
on the speci*c implementations of auxiliary functions and, in particular, the choice of
lookup algorithm used here.

Lemma 10.1. If the heap and environment are related in the two formats; then: for
all auxiliary functions f : � → �′; given the corresponding preconditions; we have
<f=name R�→�′ <f=tok .

Proof. We will consider the case of the lookup function.

lookup : Class ref× Method ref → Class ref× Bytecode

6 Thus showing that we have indeed de*ned a logical relation.

326 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

cf : Class fileRClassci : Class info⇔

cf:Class flags RClass flags ci:Class flags ∧
cf:Super RClass refci:Super ∧
∀sig ∈ cf:Methods item:
public(sig) ⇒
∃m tok : ci:Public base6 m tok ¡ ci:Public base + ci:Public size ∧
〈c name; sig〉 RMethod ref 〈c ref; m tok〉 ∧
ci:Public table[m tok − ci:Public base] = method offset(c ref; m tok)
∧
package(sig) ⇒
∃m tok:ci:Package base6 m tok&127 ¡ ci:Package base + ci:Package size
∧
〈c name; sig〉 RMethod ref 〈c ref; m tok〉 ∧
ci:Package table[m tok & 127− ci:Package base] =

method offset(c ref; m tok)
∧
∀m tok ∈ ci:Public table ∪ ci:Package table:∃sig:∃c′ name:
〈c′ name; sig〉 RMethod ref 〈c ref;m tok〉 ∧ c name6 c′ name ∧
public(sig) ⇒ [(same package(c name; c′ name) ⇔
ci:Public table[m tok − ci:Public base] �= OxFFFF)]

Fig. 5. De*nition of RClass.

The proof is by induction over the class hierarchy (possible since the subclass ordering
is well-founded) using the constraints on RClass and RMethod. Formally; we prove that

act name RClass refact ref ∧ (dec name; sig)RMethod ref(dec ref; m tok)

implies that

lookup name(act name; (dec name; sig))
RClass ref×Bytecode

lookup tok(act ref; (m tok; dec ref)):

The functions lookup name and lookup tok have similar structures, cf. Figs. 2 and
4. lookup name takes one of three branches and we show that the conditions and the
results are equivalent for lookup tok. Either the method is de0ned and visible in the
actual class, or de0ned and not visible, or unde0ned.

Suppose the method is de*ned and visible in the actual class, i.e., methods item(sig)
is de*ned and the visibility condition holds. If the method token is public, then it must
be that m tok ¿ public base and the oDset is not 0xFFFF. If the method token is
package visible, then it must be greater than the package base, and the packages must
be the same. In both cases, we return the actual class together with the code at that
class.

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 327

Now, by RClass we have that there exists a token m′ tok such that

〈act name; sig〉RMethod ref〈act ref; m′ tok〉:
We deduce that (act name; sig) RMethod ref(act ref; m tok). Thus, again by RClass, it
must be that method offset(act ref; m tok) is the entry in the method table com-
puted by the lookup. Then, by RPack methods, we get that the corresponding method
information structures are related by RMethod info, and in particular, the bytecodes are
equivalent.

Suppose the method is de*ned but not visible. This must be for a package token
then, and we have method tok ¿ package base and the same package condition is
false. In both formats then we look at the superclass, which is the same due to the
de*nition of RClass, and because the environments and actual class references are
related. Equality follows from the inductive hypothesis at the superclass.

Finally, there is the case where the function is not de*ned at the actual class in
the class format. If it is not de*ned in the token format either then both algorithms
look in the superclass and we appeal to the inductive hypothesis at the superclass.
By the second constraint on RMethod ref, this must be because the token is less
than the base. Otherwise, if the method is unde*ned in the name format, but de-
*ned (and visible) in the token format, this must be because the method was copied
from a superclass (and the token is greater than the base). We can then use the in-
ductive hypothesis at this superclass, as in the previous case. This tells us that the
results are equal at the superclass. Thus, by de*nition of lookup name and the over-
riding constraint on RMethod ref, we have that the results are equal in the current
class.

In order to use the operational semantics with the logical relations approach it is con-
venient to view the operational semantics as giving an interpretation. We
de*ne

<code=(〈env; heap; op stack; loc vars; c ref 〉)
as the resulting state from the (unique) transition from 〈code; op stack; loc vars〉 with
environment env and heap heap. Thus, we regard interpreted bytecode as having the
type

State → Bytecode× State

where

State = Global state× Local state

Global state = Environment× Heap

Local state = Operand stack× Local variables× Class ref

Operand stack = Word∗

Local variables = Nat → Word

328 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

Now, the following fact is trivial to show: if RB = idB for all basic observable types,
then R� = id� for all observable �. In combination with the following theorem, then,
this says that if a transformation satis*es certain constraints (formally expressed by
saying that it is contained in R) then it is correct, in the sense that no diDerence can
be observed in the two semantics. In particular, we can observe the operand stack (of
observable type Word∗) and the local variables (of observable type Nat → Word) so
these are identical under the two formats.

Theorem 10.2. Assume that
(1) envname REnvironment envtok ;
(2) heapname RHeap heaptok ;
(3) ls RLocal state ls′; and
(4) code RBytecode code′.
Then

<code=name(envname; heapname; ls) RBytecode×State <code′=tok(envtok ; heaptok ; ls′):

Proof. It is straightforward to show that the representation independence of instructions
follows from that of the auxiliary functions. Most of the work was in formulating the
operational semantics so as to be independent of the underlying format. For the case
of invokevirtual (see Section 6) suppose

heapname RHeap heaptok ; envnameREnvironment envtok ; mnameRMethod mtok :

Then, from the representation independence (Lemma 10.1) of the function constant

pool for accessing the constant pool, we have

dec mrefname RMethod ref dec mreftok :

By the assumption on heap we have

act crefname RClass ref act creftok :

From Lemma 10.1 applied to the lookup function we get that

m classname RClass ref m classtok and m codename RBytecode m codetok :

Since the heap and environment do not change, we can conclude that invokevirtual
is representation independent. The cases of the other instructions are proven
similarly.

11. Conclusion

We have formalised the virtual machines and *le formats for Java and Java Card,
and the optimisation as a relation between the two. Correctness of this optimisa-
tion was expressed in terms of observable equivalence of the operational semantics,

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 329

and this was deduced from the constraints that de*ne the optimisation. Although the
framework we have presented is quite general, the proof is speci*c to the instan-
tiations of auxiliary functions we chose. It could be argued, in particular, that we
might have proven the equivalence of two incorrect implementations of lookup. The
remedy for this would be to specify the functions themselves, and independently
prove their correctness. In addition to these problems, we have made a number of
simpli*cations which could be relaxed. It would also be easy to incorporate AID’s
and so make package tokens internal. Another extension would be to incorporate
the export *les and descriptor component. One detail that is important for the de-
velopment of the algorithm is the domains of the various functions and relations.
We have not been too precise about the domains of the partial functions, and have
used a notion of relational bijection accordingly. Currently, the relations are between
all names and an in*nite set of tokens but, in reality, we should use the actual
names.

We have used a simple de*nition of RBytecode here, which just accounts for the
changing indexes into constant pools (as well as method references in con*gurations).
We have not considered inlining or the specialisation of instructions, however. We
expressed equivalence in terms of an identity at observable types but, more realistically,
we should account for the diDerence in word size. This has been considered in [5].
Although it seems that ‘conversion’ and ‘optimisation’, to borrow their terminology, are
orthogonal, it would, nevertheless, be interesting to extend our formalisation to include
these aspects. The Java Card set of byte codes contains a number of instructions that
operate on one particular type (e.g. there is a getfiled s for fetching a value from
a *eld of type short). The specialisation of instructions could be handled by our
technique (suitably combined with a type analysis), however, the extension is less
clear for the more non-local optimisations.

We emphasised that the particular form of operational semantics used here is orthogo-
nal to the rest of the proof. This version suFces for the instructions considered here, but
could easily be changed (along with the de*nition of RBytecode). The auxiliary func-
tions could be given diDerent de*nitions; for example, an abstract interpretation or, go-
ing in the opposite direction, including error information. For example, if the bytecode
is not assumed to be veri*ed, the lookup function could return NoSuchMethodError

or IllegalAccessError.
These de*nitions have been formalised in Coq [1], and the lemmas veri*ed [13].

The discipline this imposed on the work presented here was very helpful in reveal-
ing errors. Even just getting the de*nitions to type-check uncovered many errors. It
is worth rePecting on the fact that Sun presents their speci*cation as a formal def-
inition of Java Card, which we have ‘formalised’ here, and then used as the basis
of a formalisation in Coq! We take the complexity of the proofs (in Coq) as evi-
dence for the merit in separating the correctness of a particular algorithm from the
correctness of the speci*cation. In fact, the operational semantics, correctness of the
speci*cation, and development of the algorithm are all largely independent of each
other.

330 E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331

As mentioned in the introduction, there are two main steps to showing correctness:
(1) Give an abstract characterisation of all possible transformations and show that the

abstract properties guarantee correctness.
(2) Show that an algorithm implementing such a transformation exists.
We are currently working on a formal development of a tokenisation algorithm
using Coq’s program extraction mechanism together with constraint-solving tactics.
For extraction, we prove (roughly speaking)

∀�:∀x : �name:∃y : �tok : xR�y

and from the constructive proof of this proposition, we then extract the program that
converts from name to token format. The constructive essence of an extraction proof lies
in the de*nition of RPackage. There are at least two possibilities for how the theorem
could be proven for �= Package. One possibility is to *rst prove it for �= Class and
use this to construct the elements of Packagetok. This is necessary if dependencies
between packages are such that the transformation must be carried out on a class by
class basis. However, if the dependencies are ensured to give a tree-structure we can
prove the Package case directly. This would correspond to a package by package
transformation. Either way, the structure of the induction mirrors the overall structure
of the algorithm.

Acknowledgements

Thanks to Tommy Thorn and GaNelle Segouat for the formalisation in Coq and to
Pascal Fradet for all the discussions pertaining to the tokenisation and its proof.

References

[1] B. Barras, S. Boutin, C. Cornes, J. Courant, J.C. Filliâtre, E. GimUenez, H. Herbelin, G. Huet, C. Muñoz,
C. Murthy, C. Parent, C. Paulin, A. SaNWbi, B. Werner, The Coq Proof Assistant Reference Manual—
Version V6.1, Tech. Report 0203, INRIA, August 1997.

[2] P. Bertelsen, Semantics of Java byte code, Tech. Report, Department of Information Technology,
Technical University of Denmark, March 1997.

[3] E. BNorger, W. Schulte, De*ning the Java virtual machine as platform for provably correct Java
compilation, in: L. Brim, J. Grunska, J. Zlatusla (Eds.), Proc. 23rd Internat. Symp. on Mathematical
Foundations of Computer Science, Lecture Notes in Computer Sciences, Vol. 1450, Springer, Berlin,
1998.

[4] E. Denney, Correctness of Java Card Tokenisation, Tech. Report 1286, Project Lande, IRISA, 1999.
Also appears as INRIA research report 3831.

[5] J.-L. Lanet, A. Requet, Formal proof of smart card applets correctness, Third Smart Card Research and
Advanced Conf. (CARDIS’98), 1998.

[6] T. Lindholm, F. Yelling, The Java Virtual Machine Speci*cation, Addison-Wesley, Reading, MA, 1997.
[7] J. Mitchell, Foundations for Programming Languages, Foundations of Computing Series, MIT Press,

Cambridge, MA, 1996.
[8] D. Mosses, Modularity in structural operational sematics, Extended abstract, November 1998.
[9] C. Pusch, Veri*cation of Compiler Correctness for the WAM, in: J. von Wright, J. Grundy, J. Harrison

(Eds.), Theorem Proving in Higher Order Logics (TPHOLs’96), Springer, Berlin, 1996, pp. 347–362.

E. Denney, T. Jensen / Theoretical Computer Science 283 (2002) 305–331 331

[10] C. Pusch, Formalizing the Java Virtual Machine in Isabelle=HOL, Tech. Report TUM-I9816, Institut
fNur Informatik, Technische UniversitNat MNunchen, 1998.

[11] J.C. Reynolds, Types, abstraction and parametric polymorphism, Information Processing 83,
North-Holland, Amsterdam, 1983.

[12] G. Schellhorn, Veri*cation of abstract state machines, Ph.D. Thesis, University of Ulm, 1999.
[13] G. Segouat, Preuve en Coq d’une mise en oeuvre de Java Card, Master’s Thesis, Project Lande, IRISA,

1999.
[14] Sun Microsystems, Java Card 2.0 Language Subset and Virtual Machine Speci*cation, October 1997,

Final Revision.
[15] Sun Microsystems, Java Card 2.1 Virtual Machine Speci*cation, March 1999, Final Revision 1.0.

