
WCET of OCaml Bytecode on Microcontrollers:
An Automated Method and Its Formalisation
Steven Varoumas
Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6
F-75005, Paris, France
Cnam, Centre d’études et de recherche en informatique et communications, Cédric
292 rue Saint Martin, 75003, Paris, France

Tristan Crolard
Cnam, Centre d’études et de recherche en informatique et communications, Cédric
292 rue Saint Martin, 75003, Paris, France

Abstract
Considering the bytecode representation of a program written in a high-level programming language
enables portability of its execution as well as a factorisation of various possible analyses of this
program. In this article, we present a method for computing the worst-case execution time (WCET)
of an embedded bytecode program fit to run on a microcontroller. Due to the simple memory model
of such a device, this automated WCET computation relies only on a control-flow analysis of the
program, and can be adapted to multiple models of microcontrollers. This method evaluates the
bytecode program using concrete as well as partially unknown values, in order to estimate its longest
execution time. We present a software tool, based on this method, that computes the WCET of
a synchronous embedded OCaml program. One key contribution of this article is a mechanically
checked formalisation of the aforementioned method over an idealised bytecode language, as well as
its proof of correctness.

2012 ACM Subject Classification Computer systems organization → Embedded software; Computer
systems organization → Real-time systems

Keywords and phrases Worst-case execution time, microcontrollers, synchronous programming,
bytecode, OCaml

Digital Object Identifier 10.4230/OASIcs.WCET.2019.5

Supplement Material http://stevenvar.github.io

1 Introduction

Due to their low cost and efficient power use, microcontrollers are heavily used by the
embedded system industry. Nonetheless, the very limited memory and power resources of
these devices has lead developers to use traditional low-level languages such as C or assembly.
While being precise and powerful, these languages often lack the hardware abstraction
that would allow programmers that are not system programming experts to write various
applications, from home automation to more critical applications. For this reason, many
projects have emerged that make it possible to run, on microcontrollers with less than
10 kilo-bytes (kb) of RAM, programs written in higher-level languages such as Java [3],
Scheme [19] [6], or OCaml [24]. The runtime environments developed in these projects usually
include an optimised virtual machine that interprets bytecode of the language directly on
the device. Beyond the usual hardware abstraction layer, these languages offer a higher-level
expressiveness for the development of programs, and more guarantees over them (thanks to
strong static type systems and automatic memory management among other features).

© Steven Varoumas and Tristan Crolard;
licensed under Creative Commons License CC-BY

19th International Workshop on Worst-Case Execution Time Analysis (WCET 2019).
Editor: Sebastian Altmeyer; Article No. 5; pp. 5:1–5:12

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/222445927?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/OASIcs.WCET.2019.5
http://stevenvar.github.io
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 WCET of OCaml Bytecode on Microcontrollers

Timing constraints are frequent in embedded systems: they must often retain quick
reaction times, in order to handle rapid changes in their environments. Computing the
worst-case execution time (WCET) of the program’s routine responsible for reacting to input
stimuli is thus necessary, in order to ensure that no input is ignored during execution, and
thus prevent a potential incorrect or dangerous behaviour from the system. A usual method
of handling these timing constraints is to rely on schedulability analyses together with the use
of real-time operating systems such as FreeRTOS [7]. However, those systems are often quite
heavy and not particularly adapted for microcontrollers with low memory resources. For
this reason, the approach we present relies instead on the synchronous programming model.
This model offers a lightweight reactive and concurrent programming model, particularly
adapted to the applications of microcontrollers and their material limitations [21], as well as
advantageous properties for WCET computing: by construction, the generated code does
not contain loops and does not need annotations.

In this article, we use a toolchain stemming from our previous works that consists in an
OCaml virtual machine implementation fit for running on various models of microcontrollers,
as well as a compatible synchronous programming extension to the OCaml language. This
solution enjoys the high-level features of the OCaml programming language in order to
develop safer programs for embedded system, and benefits from a model of concurrent
programming adapted to the scarce memory resources of microcontrollers. Our approach,
which uses a bytecode representation of embedded OCaml programs, provides portability,
and enables a modularisation of various analyses done over these programs.

The main contribution presented in this article is an automated method that computes
the WCET of a bytecode program on partially unknown inputs, together with its correctness
proof. The method is implemented as a prototype tool called Bytecrawler which supports any
OCaml bytecode instruction found in a compiled synchronous program. The formalisation is
currently based on a small idealised bytecode language, all the proofs have however been
mechanically checked.

Section 2 presents some preliminaries: we introduce the OMicroB virtual machine [23]
and OCaLustre, a synchronous extension to the OCaml language [21]. Section 3 describes
our method for computing the WCET of OCaml bytecode, and its implementation. Section
4 contains the formalisation and the correctness proof of the method. Section 5 concludes
with a short discussion about related and future works.

2 Preliminaries

2.1 OMicroB: an OCaml virtual machine for microcontrollers
OMicroB [23] is an implementation of the OCaml virtual machine (named ZAM - Zinc
Abstract Machine [11]) dedicated to run OCaml bytecode on microcontrollers with very
scarce resources (typically, less than 10kb of RAM and less than 100kb of flash memory).
Lightweight and configurable, it provides every feature of the language and its runtime,
such as a strong static type system with type inference, the use of various programming
paradigms (functional, imperative, modular, and object-oriented), as well as automatic
memory management with garbage collection (GC). OMicroB is designed to be portable,
due to its implementation in standard C, that we consider as a portable assembly language,
since most of the target models of microcontrollers come with a dedicated C compiler. We
were successful in porting OMicroB to AVR microcontrollers, and ports to ARM Cortex-M0
(used by BBC micro:bit cards) and PIC32 are promising works in progress.

S. Varoumas and T. Crolard 5:3

The main component of OMicroB is an optimised stack-based bytecode interpreter,
capable of running all the 149 bytecode instructions of the language. This interpreter handles
various registers (such as a stack pointer, a code pointer, an accumulator, etc.) whose values
are accessed and modified by the instructions of the running OCaml program. Moreover,
the interpreter may invoke various low-level primitives (mostly dealing with input/output
operations) that are directly implemented in C.

As shown in Figure 1, in order to execute an OCaml program on a microcontroller, the
source code is first compiled into bytecode (by the standard ocamlc compiler), which is
then “cleaned” by the ocamlclean tool which performs dead-code elimination. This bytecode
program is then embedded into a C source code as an array of bytes by a tool called
bc2c. It is then compiled together with the OCaml runtime library and interpreter by
some platform-dependent C compiler and linker, and thus turned into an executable. For
simulation purposes, the program can also be compiled for (and executed on) a generic PC.

OCaml
file

ocamlc

(bytecode compilation and link)

bytecode
file

ocamlclean

(bytecode cleanup)

bytecode
file

C file

bc2c

(conversion to a byte array) gcc

avr-gcc

sdcc

gcc-arminterpreter
+ runtime

Figure 1 Compilation of an OCaml program with OMicroB (taken from [23]).

OMicroB offers a safer and more expressive model of programming than the classical
C and assembly languages that are traditionally used to program microcontrollers. The
robustness and the greater hardware abstractions gained by such a higher-level programming
language makes it easier for developers that are not particularly well-versed in hardware
specifics to develop programs for embedded systems.

2.2 OCaLustre: a synchronous extension of OCaml
Due to their constant interactions with their environment, embedded systems must react
quickly to various stimuli. A model of concurrent programming, suitable for the size of the
limited resources of microcontrollers might thus be a welcomed addition to the programming
of microcontrollers [21]. Therefore, we use OCaLustre [22], a synchronous programming
extension of OCaml, inspired by the Lustre [4] language. Synchronous programming rely on
the main principle that computations made during a logical instant are instantaneous: that
is, the time required at each instant by the program to compute its output from its input
should be ignored when reasoning about programs.

In OCaLustre, as in Lustre, the elementary synchronous component is called a node: a
function that takes flows of values as input and computes output flows. The body of a node
is a system of equations, defining the set of output or local values. For example, the count
node of figure 2 takes an r flow as an input, and returns the cpt flow as its output. The -»
operator, equivalent to the fby (“followed-by”) Lustre operator, has the following semantics:
x = a -» b means that x is equal to a for the first instant, and then to the previous value
of b (i.e. the value computed for b at the preceding synchronous instant) for the subsequent
instants. Therefore, count computes the series of natural numbers, reset to zero when the
value of the r flow is true.

WCET 2019

5:4 WCET of OCaml Bytecode on Microcontrollers

let%node count r ~return :cpt =
aux = 0 ->> (cpt + 1);
cpt = if r then 0 else aux

Figure 2 A synchronous node.

During the compilation of an OCaLustre program, each node is separately turned into
standard OCaml code, compatible with the ocamlc bytecode compiler, and thus with
OMicroB. Our compilation method, derived from the single loop code generation used
by most Lustre compilers, produces lightweight code, compatible with the resources of
microcontrollers. It also provides guarantees over the program, such as the absence of
causality loops (i.e. flows should not mutually depend on each other during the same instant).

3 Worst case execution time analysis of OCaml bytecode

In order to compute the WCET of a synchronous OCaLustre program, we created Bytecrawler,
a tool that computes an upper bound of the execution time of each synchronous instant.
This tool has the main advantage of working over the bytecode instructions of the virtual
machine, rather than the underlying native-code instructions. It relies on the fact that
bytecode analyses and platform-dependent analyses are separated ([9]) to free the application
developer from needing to put additional annotations in their program: loop bounds for the
program are not required due to the chosen programming model, and lower-level annotations,
that can appear in the bytecode interpreter or the runtime library, are provided by the
platform developer.

3.1 Bytecrawler WCET computation function
Values of variables that come from the environment of the program (such as values returned
by electronic sensors) are unknown at compile-time, and thus introduce an external non-
determinism. Bytecrawler can thus be seen as an abstract bytecode interpreter, extended
to deal with unknown values. It is based on the standard method of [14] that considers
all possible paths of the program to compute the costlier one, but Bytecrawler refines this
evaluation by performing a hybrid execution that uses concrete values whenever possible.
The program is normally executed by Bytecrawler with all values that are known at compile-
time, but the evaluation function is generalised to handle unknown values: when reaching
a conditional branching bytecode instruction (namely, BRANCHIF and BRANCHIFNOT) whose
condition’s value is unknown, Bytecrawler will explores the different possible paths.

Figure 3 is an excerpt of Bytecrawler’s WCET computation function. It computes an
upper bound of the timing cost (in cycles) of a given OCaml program using a cost function
that maps each bytecode instruction to its cycle count, and following the bytecode semantics.
In particular, the CCALL instruction corresponds to the call to an I/O primitive (written in
C): the return value of such a call is always unknown at compile time.

Note that, while this method might work for any OCaml program, some limitations
quickly appear: any looping program whose number of iterations depends of an unknown
value could not be bounded, and the triggering of the garbage collection (GC) algorithm
could break the WCET estimation. For this reason, Bytecrawler is better suited to work
only on the synchronous extension of OCaml, which enjoys the nice properties that instants
do not contain any loop, and they handle only basic data types which never trigger the GC.

S. Varoumas and T. Crolard 5:5

let rec wcet state =
let state ’ = {state with pc = state.pc + 1} in
let instr = state. instrs .(pc) in
cost instr + match instr with
| CONST i -> wcet {state ’ with accu = Int i}
| BRANCH ptr -> wcet {state with pc = ptr}
| BRANCHIF ptr ->

(match state.accu with
| Int 0 -> wcet state ’
| Int _ -> wcet {state with pc = ptr}
| Unknown -> max (wcet {state with pc = ptr }) (wcet state ’))

| ADDINT ->
(match state.accu, state.stack with
| Int x, (Int y)::s -> wcet {state ’ with accu = Int (x+y); stack = s}
| _, _ -> wcet {state ’ with accu = Unknown })

| CCALL _ -> wcet {state ’ with accu = Unknown }
| STOP -> 0

Figure 3 Bytecrawler WCET computation function (excerpt).

I Remark. Symbolic execution [1] might allow us to refine even more the WCET estimate
by pruning unreachable paths. Such an analysis for a stack-based virtual machine seems
more involved than for imperative languages. For instance, the symbolic execution of Java
bytecode is clearly not straightforward [13]). Moreover, functional programs usually feature
higher-order functions and the OCaml virtual machine is tailored for an efficient evaluation
of such programs. A recent experiment with a symbolic execution for Haskell [8] shows
that defunctionalisation into some intermediate first-order functional language might be
required. While our synchronous extension does not currently include higher-order functions,
translating back from this higher-order bytecode language to a first-order intermediate
representation would already prove difficult. We thus keep the study of this method for a
future work.

3.2 Cost function for bytecode instructions

The cost function which associates each bytecode instruction to a cycle count is a finite map,
represented as a table. This table can be computed by a classic WCET tool (such as the
Bound-T execution time analyser [10]), configured for the correct model of microcontroller.
A key benefit of our approach resides in the fact that this table must be computed only once
for each microcontroller. The targeted devices are supposed to not induce timing anomalies
[15] due to their simple hardware model (cache-less, with in-order pipelines which are not
timing anomalous [5]): this ensures that the computed cost of each bytecode instruction
remains the same for every given OCaml program, and provides compositionality of the
timing analysis.

For most of the bytecode instructions, the execution time is a constant, and our method
thus does not overestimate their execution time. For some other instructions, the execution
time is dependent on some argument (for example, the APPTERM instruction which performs
tail calls depends on the number of parameters of the function) which is explicit in the
bytecode: their cost can be pre-computed for every realistic instruction/parameter pair. For
some of the remaining bytecode instructions (for instance, those dealing with higher-order
closures), the execution time might be more difficult to bound statically. However, these
instructions do not appear, by hypothesis, in the considered bytecode. Lastly, calls to C
primitives (via the CCALL bytecode instruction) may require an execution time that depends

WCET 2019

5:6 WCET of OCaml Bytecode on Microcontrollers

on the values of the arguments of the function. The WCET of these calls might thus
overestimate the actual execution time of the CCALL evaluation. Handling these primitive
calls relies on another cost table that maps each C primitive name to its maximum cycle
count. The costs of these primitives are hardware-specific and need to be provided by the
platform developer. Each primitive cost should be computed using classical methods and
tools for WCET analysis.

I Example. The excerpt of OCaml bytecode on the left side of figure 4 corresponds to the
body of the step function created by compilation of the count node of figure 2. On the right
side of this figure is displayed a table associating a cost to every bytecode instruction, which
has been computed by Bound-T (configured for an AVR ATmega32U4 microcontroller).
From this table, Bytecrawler computes a maximum cost of 2121 cycles for this function.
For sake of simplicity, calls to I/O primitives (via the CCALL bytecode instruction) are not
mentioned in this example. For instance, in a complete synchronous program, calls to input
(resp. output) primitives happen in the beginning (resp. end) of each synchronous instant.
These calls should thus also be taken into account.

(...)
69 ACC0
70 GETFIELD0
71 PUSHACC2
72 BRANCHIFNOT 75
73 CONST0
74 BRANCH 76
75 ACC0
76 PUSHACC0
77 OFFSETINT 1
78 PUSHACC0
79 PUSHACC4
80 SETFIELD0
81 ACC1
82 PUSHACC4
83 SETFIELD1
84 CONST0

Instruction Cost (cycles)
ACC0 74
ACC1 74

CONST0 66
GETFIELD0 96
SETFIELD0 145
SETFIELD1 150
PUSHACC0 95
PUSHACC2 115
PUSHACC4 115
BRANCH 299

BRANCHIFNOT 315
OFFSETINT 301

(...) (...)

Figure 4 OCaml bytecode (left) and instructions cost table (right).

4 Formalisation and correctness proof

In this section, we describe a formalisation of the inner working of the Bytecrawler tool. For
this purpose, we first introduce an idealised bytecode language that serves as an illustration
on a small subset of OCaml bytecode instructions. We then formalise how to compute an
upper bound of the WCET for a program written with these instructions, and we prove the
correctness of this computation. Our conjecture is that, because of the imperative nature of
the OCaLustre programs, and because of the absence of dynamic memory allocation during
the execution of a synchronous instant, the results over this idealised bytecode language can
be transposed to the actual subset of the OCaml instructions coming from the compilation
of an OCaLustre source code.

The specifications presented in this section have been developed with the Ott tool [18],
and the various lemmas and theorems were proven using the Coq proof assistant [20]. The
corresponding proof scripts are available at http://stevenvar.github.io.

http://stevenvar.github.io

S. Varoumas and T. Crolard 5:7

The idealised bytecode language contains instructions for initialising variables (Init),
assigning values to variables (Assign), arithmetic operations over integers (Sub and Add),
branching (Branch and Branchif), as well as an instruction to terminate execution (Stop).

instr ::= Init x v | Assign x y | Add x y | Sub x y | Branch v | Branchif x v | Stop
values, v, w ::= int_litteral | v + w | v − w

A state σ of a program is a tuple (P, pc,M) that contains an array P representing
the instructions of the program, a code pointer pc, and a memory M that associates any
initialised variable name to its value. The small-step operational semantics of the language
is defined on figure 5.

P[pc] = Init x v
(P, pc,M) −→ (P, pc + 1,M [x := v])

P[pc] = Assign x y M [y] = v
(P, pc,M) −→ (P, pc + 1,M [x := v])

P[pc] = Add x y M [x] = v M [y] = w
(P, pc,M) −→ (P, pc + 1,M [x := v+w])

P[pc] = Sub x y M [x] = v M [y] = w
(P, pc,M) −→ (P, pc + 1,M [x := v−w])

P[pc] = Branch v
(P, pc,M) −→ (P, v,M)

P[pc] = Branchif x v M [x] = 0
(P, pc,M) −→ (P, pc + 1,M)

P[pc] = Branchif x v M [x] 6= 0
(P, pc,M) −→ (P, v,M)

Figure 5 Operational semantics of the idealised bytecode language.

I Definition 1 (Execution trace). An execution trace T is the sequence of states taken by the
program, following the operational semantics of the language.

During the actual execution of a program, the values of all variables are known, and
the corresponding execution trace is unique. Moreover, when the computation terminates
normally, the trace ends on instruction Stop. We call such a trace deterministic:

I Definition 2 (Deterministic trace). The run function computes the deterministic execution
trace beginning with a state σ:

P[pc] = Stop
run((P, pc,M)) = [(P, pc,M)]

σ −→ σ′ run(σ′) = T
run(σ) = σ :: T

I Remark. Note that, by definition, a deterministic trace is always finite. Indeed, since it is
a certainty (due to absence of loops or recursion) that the actual execution of a synchronous
instant will terminate, we are only interested in finite traces.

We associate a cost to every language instruction with the costinstr : instr → nat function.
The cost of a transition is equal to the cost of the corresponding instruction, and the cost of
a trace is the sum of the costs of all transitions:

coststep(P, pc,M) = costinstr(P [pc]) cost(T) =
∑
σ∈T

coststep(σ)

WCET 2019

5:8 WCET of OCaml Bytecode on Microcontrollers

4.1 Erasure of variables
In order to compute an upper-bound for the execution time of an OCaLustre program, we
reason over an abstract representation of the program which considers every possible path
that the control flow can take. In this abstract representation, variables can hold unknown
values, that represent the values that depend on the state of the program environment during
execution. The grammar of the idealised bytecode language is extended accordingly, where
unknown values are denoted by ⊥ :

values, v, w ::= int_litteral | v + w |v − w | ⊥

The memory of an abstract execution of a program might thus contain unknown values.
We call such a memory an erasure of the actual memory of the program:

I Definition 3 (Erasure). A memory M ′ is an erasure of a memory M (written M 99K M ′)
if M ′ and M share the same set of variables, but M ′ contains more unknown variables than
M . The following induction rules formally define the erasure of a memory:

∅99K ∅
M 99K M ′

M ∪ x = v99K M ′ ∪ x = v
M 99K M ′

M ∪ x = v99K M ′ ∪ x = ⊥

By extension, if two states σ and σ′ differ only by the fact that the memory of σ′ is an
erasure of the memory of σ, we will use the same notation: σ99K σ′ and say that σ′ is an
erasure of σ.

Since it depends only on the code pointer and the program instructions, the cost of a
transition stays the same after an erasure of the memory of the program:

I Lemma 4. ∀σ σ′, σ
99K σ′ ⇒ coststep(σ) = coststep(σ′)

The wcet function of figure 3 computes the worst-case execution time of a program by
always considering the maximum cost between two possible branches. In our formalism, this
function is implemented by the costmax function as follows:

I Definition 5 (Maximum cost). The costmax function computes the maximum cost of a
program:

P[pc] = Stop
costmax((P, pc,M)) = costinstr(Stop)

σ −→ σ′ coststep(σ) = c costmax(σ′) = k
costmax(σ) = c + k

P[pc] = Branchif x v
M [x] = ⊥
coststep((P, pc,M)) = c
costmax((P, pc + 1,M)) = k
costmax((P, v,M)) = k ′

costmax((P, pc,M)) = c +max(k, k ′)
The main result of this paper can now be stated as follows: the maximum cost of a

program, computed from an erasure of its initial state, is greater than the actual execution
time of the program.

I Theorem 6 (Correctness). ∀ σ T , run(σ) = T ⇒ ∀ σ′, σ
99K σ′ ⇒ costmax(σ′) ≥ cost(T)

In particular, the costmax function can be applied to a memory where all variables are
unknown (equivalent to the initial state of a synchronous instant) since this memory is an
obvious erasure of all possible initial states. The result obtained is thus an upper bound of
the execution times of all possible program runs.

The remainder of this section is devoted to the proof of this theorem.

S. Varoumas and T. Crolard 5:9

4.2 Non-deterministic evaluation

The use of unknown values (⊥) induces a non-determinism on the evaluation semantics
of the language: branching choices might depend on such variables, and thus it becomes
statically impossible to guess which path would be the actual one. We thus introduce a
non-deterministic operational semantics of the language which is a standard abstraction
of the deterministic operational semantics where conditional branching is generalised to
non-deterministic branching. The rules for this new semantics, denoted by , are the same
as the rules for the deterministic semantics, extended with the two rules given in figure 6
(and the obvious lifting of arithmetic operations to account for ⊥).

P[pc] = Branchif x v M [x] = ⊥
(P, pc,M) (P, pc + 1,M)

P[pc] = Branchif x v M [x] = ⊥
(P, pc,M) (P, v,M)

Figure 6 Rules for non-deterministic branching.

I Definition 7 (Non-deterministic trace). A non-deterministic trace is a finite sequence of
transitions following the non-deterministic semantics of the language.

Because the non-deterministic semantics of the language is an extension of its deterministic
semantics, a transition in the former stays the same in the latter. We say that it is embedded
into the non-deterministic semantics:

I Lemma 8. ∀ σ σ′, (σ → σ′)⇒ (σ σ′)

Moreover, after erasing a memory, any transition from the deterministic semantics is still
possible (possibly among other possible non-deterministic transitions):

I Lemma 9. ∀σ1 σ2 σ
′
1, (σ1 σ2) ∧ (σ1

99K σ′
1)⇒ (∃ σ′

2, (σ′
1 σ′

2) ∧ (σ2
99K σ′

2))

By combining the two previous lemmas, we state that any erasure preserves the transition
when going from the deterministic semantics to the non-deterministic one:

I Theorem 10 (Preservation). ∀ σ1 σ2 σ
′
1,

(σ1 → σ2) ∧ (σ1
99K σ′

1)⇒ (∃ σ′
2, (σ′

1 σ′
2) ∧ (σ2

99K σ′
2))

As illustrated by figure 7, the previous embedding and preservation properties hold
for traces.

σ1 σ2 . . . σn

σ′
1 σ′

2 . . . σ′
n

. . .σ′′
1 σ′′

2 σ′′
n

Figure 7 Trace preservation.

WCET 2019

5:10 WCET of OCaml Bytecode on Microcontrollers

4.3 Maximum trace
In order to prove that costmax is the cost of the “most expensive” run of the program, we
need to formally define the notion of a maximum trace. We thus defined the runmax function
and proved that it actually computes a non-deterministic trace with the maximum cost.

I Definition 11 (Maximum trace). The runmax function is inductively defined as follows:

P[pc] = Stop
runmax((P, pc,M)) = (P, pc,M) :: ∅

P[pc] = Branchif x v
M [x] = ⊥
runmax((P, pc + 1,M)) = T
runmax((P, v,M)) = T ′

cost(T) ≤ cost(T ′)
runmax((P, pc,M)) = ((P, pc,M) :: T ′)

σ −→ σ′ runmax(σ′) = T
runmax(σ) = (σ :: T)

P[pc] = Branchif x v
M [x] = ⊥
runmax((P, pc + 1,M)) = T
runmax((P, v,M)) = T ′

cost(T) > cost(T ′)
runmax((P, pc,M)) = ((P, pc,M) :: T)

As expected, costmax and runmax are related by the following equality:

I Lemma 12. ∀ σ, costmax(σ) = cost(runmax(σ))

Using the trace preservation lemma, we derive the key property of this proof of correctness:
the cost of the maximum trace is greater than the cost of every other finite trace, even when
considering an erasure of their memories. In other words, the cost of the maximum trace
computed from an erased state is greater than the actual cost of the program:

I Lemma 13. ∀ σ T , run(σ) = (σ :: T)⇒ ∀ σ′, σ
99K σ′ ⇒ costmax(σ′) ≥ cost(σ :: T)

The combination of the previous lemmas allows us to conclude with our main theorem
stating that the cost, estimated from an erasure of the initial memory, is an upper bound of
the real cost of any actual run of the program:

I Theorem 14 (Correctness). ∀ σ T , run(σ) = T ⇒ ∀ σ′, σ
99K σ′ ⇒ costmax(σ′) ≥ cost(T)

5 Conclusion, related and future works

We presented a virtual machine approach to microcontrollers programming that makes
it possible to run programs developed with a high-level, multi-paradigms, programming
language on devices with limited resources. This language, OCaml, is extended with a
synchronous programming model which is adapted to the concurrent nature of embedded
programs. In particular, our approach provides a tool, called Bytecrawler, that makes it
possible to compute the WCET of a synchronous instant by reasoning over the bytecode
instructions of the program, thus providing an automated, factorised method to compute the
reaction time of a program. The aforementioned method has been formalised on a idealised
language, and a proof of its correctness has been developed in the Coq proof assistant. To the
best of our knowledge, a formalised and automated WCET estimation of OCaml bytecode
has not been done before. Similar studies exist on other embedded virtual machines for
different programming languages (in particular, multiple works have been done on Java
bytecode [2][16][9]), although these results do not seem to have been formally verified. Some
recent work on proving the correctness of a WCET estimation tool is available [12], but this
tool is integrated within the CompCert C compiler, and thus operates only over C programs.

S. Varoumas and T. Crolard 5:11

As a work in progress, we are adapting the formalisation and proof presented in this article
to the actual, stack-based, language of OCaml bytecode instructions, in order to extract
a certified implementation of Bytecrawler from Coq. As discussed in section 3, symbolic
execution could improve the WCET estimate, but adapting it to the OCaml virtual machine
might be difficult. Concolic execution [17], a hybrid model of execution that mixes concrete
and symbolic execution, seems close to our method, and might also refine WCET estimation.

Finally, it is worth mentioning that our solution could quite easily be adapted to other
kinds of analysis: for example, modifying the cost function to indicate the number of words
allocated in memory by each bytecode instruction could provide an upper bound for the
total amount of memory used by the program, and thus be an estimate of the maximum
memory usage of any given OCaml program.

References
1 Clément Ballabriga, Julien Forget, and Giuseppe Lipari. Symbolic WCET computation. ACM

Transactions on Embedded Computing Systems (TECS), 17(2):39, 2018. doi:10.1145/3147413.
2 Guillem Bernat, Alan Burns, and Andy J. Wellings. Portable worst-case execution time

analysis using Java Byte Code. In Proceedings of the 12th Euromicro Conference on Real-Time
Systems (ECRTS 2000), Stockholm, Sweden, June 19-21, 2000, pages 81–88, New York, NY,
USA, 2000. IEEE. doi:10.1109/EMRTS.2000.853995.

3 Niels Brouwers, Koen Langendoen, and Peter Corke. Darjeeling, a Feature-rich VM for the
Resource Poor. In Proceedings of the 7th International Conference on Embedded Networked
Sensor Systems (SenSys 2009), Berkeley, CA, USA, November 4-6, 2009, pages 169–182, New
York, NY, USA, 2009. ACM. doi:10.1145/1644038.1644056.

4 Paul Caspi, Daniel Pilaud, Nicolas Halbwachs, and John Plaice. Lustre: A Declarative
Language for Programming Synchronous Systems. In Proceedings of the 14th annual ACM
Symposium on Principles of Programming Languages (POPL 1987), Munich, Germany,
January 21-23, 1987, pages 178–188, New York, NY, USA, 1987. ACM. doi:10.1145/41625.
41641.

5 Franck Cassez, René Rydhof Hansen, and Mads Chr. Olesen. What is a Timing Anomaly?
In Proceedings of the 12th International Workshop on Worst-Case Execution Time Analysis
(WCET 2012), Pisa, Italy, July 10, 2012, volume 23 of OpenAccess Series in Informatics
(OASIcs), pages 1–12, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/OASIcs.WCET.2012.1.

6 Marc Feeley and Danny Dubé. PICBIT: A Scheme system for the PIC microcontroller. In
Proceedings of the 4th Workshop on Scheme and Functional Programming, Boston, MA, USA,
pages 7–15, 2003. URL: http://www.schemeworkshop.org/2003.

7 Fei Guan, Long Peng, Luc Perneel, and Martin Timmerman. Open Source FreeRTOS As
a Case Study in Real-time Operating System Evolution. Journal of Systems and Software,
118(C):19–35, August 2016. doi:10.1016/j.jss.2016.04.063.

8 William Hallahan, Anton Xue, and Ruzica Piskac. Building a Symbolic Execution Engine
for Haskell. In Proceedings of the 8th Workshop on Tools for Automatic Program Analysis
(TAPAS 2017), New York, NY, USA, August 29, 2017, 2017. URL: https://cs.nyu.edu/
acsys/tapas2017.

9 Trevor Harmon and Raymond Klefstad. A Survey of Worst-Case Execution Time Analysis for
Real-Time Java. In Proceedings of the 21th International Parallel and Distributed Processing
Symposium (IPDPS 2007), 26-30 March 2007, Long Beach, CA, USA, pages 1–8. IEEE, 2007.
doi:10.1109/IPDPS.2007.370422.

10 Niklas Holsti and Sam Saarinen. Status of the Bound-T WCET tool. In Proceedings of the 2nd
International Workshop on Worst-Case Execution Time Analysis (WCET 2002), Technical
University of Vienna, Austria, June 2002. URL: http://www.cs.york.ac.uk/rts/wcet2002.

WCET 2019

http://dx.doi.org/10.1145/3147413
http://dx.doi.org/10.1109/EMRTS.2000.853995
http://dx.doi.org/10.1145/1644038.1644056
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.1145/41625.41641
http://dx.doi.org/10.4230/OASIcs.WCET.2012.1
http://www.schemeworkshop.org/2003
http://dx.doi.org/10.1016/j.jss.2016.04.063
https://cs.nyu.edu/acsys/tapas2017
https://cs.nyu.edu/acsys/tapas2017
http://dx.doi.org/10.1109/IPDPS.2007.370422
http://www.cs.york.ac.uk/rts/wcet2002

5:12 WCET of OCaml Bytecode on Microcontrollers

11 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical Report 117, INRIA, 1990. URL: https://hal.inria.fr/inria-00070049/file/
RT-0117.pdf.

12 André Oliveira Maroneze, Sandrine Blazy, David Pichardie, and Isabelle Puaut. A Formally
Verified WCET Estimation Tool. In Proceedings of the 14th International Workshop on
Worst-Case Execution Time Analysis (WCET 2014), Ulm, Germany, July 8, 2014, volume 39
of OpenAccess Series in Informatics (OASIcs), pages 11–20, Dagstuhl, Germany, 2014. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2014.11.

13 Corina S. Pasareanu and Neha Rungta. Symbolic PathFinder: symbolic execution of Java
bytecode. In Proceedings of the 25th IEEE/ACM International Conference on Automated
Software Engineering (ASE 2010), Antwerp, Belgium, September 20-24, 2010, pages 179–180,
New York, NY, USA, 2010. ACM. doi:10.1145/1858996.1859035.

14 Peter P. Puschner and Christian Koza. Calculating the Maximum Execution Time of Real-Time
Programs. Real-Time Systems, 1(2):159–176, 1989. doi:10.1007/BF00571421.

15 Jan Reineke, Björn Wachter, Stefan Thesing, Reinhard Wilhelm, Ilia Polian, Jochen Eisinger,
and Bernd Becker. A Definition and Classification of Timing Anomalies. In Proceedings of the
6th International Workshop on Worst-Case Execution Time Analysis (WCET ’06), Dresden,
Germany, July 4, 2006, volume 4 of OpenAccess Series in Informatics (OASIcs), Dagstuhl,
Germany, 2006. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
WCET.2006.671.

16 Martin Schoeberl and Rasmus Pedersen. WCET analysis for a Java processor. In Proceedings
of the 4th international workshop on Java technologies for real-time and embedded systems
(JTRES ’06), Paris, France, October 11-13, 2006, pages 202–211, New York, NY, USA, 2006.
ACM. doi:10.1145/1167999.1168033.

17 Koushik Sen. Concolic testing. In Proceedings of the 22nd IEEE/ACM International Conference
on Automated Software Engineering (ASE 2007), Atlanta, Georgia, USA, November 5-9, 2007,
pages 571–572, New York, NY, USA, 2007. ACM. doi:10.1145/1321631.1321746.

18 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, et al. Ott: Effective tool support for the working semanticist. Journal of Functional
Programming, 20(1):71–122, 2010. doi:10.1017/S0956796809990293.

19 Vincent St-Amour and Marc Feeley. PICOBIT: a compact Scheme system for microcontrollers.
In Proceedings of the 21st International Symposium on Implementation and Application of
Functional Languages (IFL 2009), South Orange, NJ, USA, September 23-25, 2009, pages
1–17. Springer, 2009. doi:10.1007/978-3-642-16478-1_1.

20 The Coq Development Team. The Coq Proof Assistant, version 8.9.0, January 2019. doi:
10.5281/zenodo.2554024.

21 Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. Concurrent Programming of
Microcontrollers, a Virtual Machine Approach. In Proceedings of the 8th European Congress
on Embedded Real Time Software and Systems (ERTS 2016), Toulouse, France, 2016. URL:
https://hal.archives-ouvertes.fr/ERTS2016.

22 Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. OCaLustre : une extension
synchrone d’OCaml pour la programmation de microcontrôleurs. In Vingt-huitièmes Journées
Francophones des Langages Applicatifs (JFLA 2017), Gourette, France, 2017. URL: https:
//hal.archives-ouvertes.fr/JFLA2017.

23 Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. A Generic Virtual Machine
Approach for Programming Microcontrollers: the OMicroB Project. In Proceedings of the 9th
European Congress on Embedded Real Time Software and Systems (ERTS 2018), Toulouse,
France, 2018. URL: https://hal.archives-ouvertes.fr/ERTS2018.

24 Benoît Vaugon, Philippe Wang, and Emmanuel Chailloux. Programming Microcontrollers
in OCaml: The OCaPIC Project. In Proceedings of the 17th International Symposium on
Practical Aspects of Declarative Languages (PADL 2015), Portland, OR, USA, June 18-19,
2015, pages 132–148. Springer, 2015. doi:10.1007/978-3-319-19686-2_10.

https://hal.inria.fr/inria-00070049/file/RT-0117.pdf
https://hal.inria.fr/inria-00070049/file/RT-0117.pdf
http://dx.doi.org/10.4230/OASIcs.WCET.2014.11
http://dx.doi.org/10.1145/1858996.1859035
http://dx.doi.org/10.1007/BF00571421
http://dx.doi.org/10.4230/OASIcs.WCET.2006.671
http://dx.doi.org/10.4230/OASIcs.WCET.2006.671
http://dx.doi.org/10.1145/1167999.1168033
http://dx.doi.org/10.1145/1321631.1321746
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1007/978-3-642-16478-1_1
http://dx.doi.org/10.5281/zenodo.2554024
http://dx.doi.org/10.5281/zenodo.2554024
https://hal.archives-ouvertes.fr/ERTS2016
https://hal.archives-ouvertes.fr/JFLA2017
https://hal.archives-ouvertes.fr/JFLA2017
https://hal.archives-ouvertes.fr/ERTS2018
http://dx.doi.org/10.1007/978-3-319-19686-2_10

	Introduction
	Preliminaries
	OMicroB: an OCaml virtual machine for microcontrollers
	OCaLustre: a synchronous extension of OCaml

	Worst case execution time analysis of OCaml bytecode
	Bytecrawler WCET computation function
	Cost function for bytecode instructions

	Formalisation and correctness proof
	Erasure of variables
	Non-deterministic evaluation
	Maximum trace

	Conclusion, related and future works

