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Chapter 14

Project Evaluation Paper:
Mobile Resource Guarantees

Donald Sannelfy Martin Hofmanr, David Aspinalf, Stephen Gilmork
lan Stark, Lennart Beringer, Hans-Wolfgang Loidl, Kenneth MacKen-
ziel, Alberto Momigliand, Olha Shkaravska

Abstract: The Mobile Resource Guarantees (MRG) project has develaped
proof-carrying-code infrastructure for certifying reso@ bounds of mobile code.
Key components of this infrastructure are a certifying cdemgor a high-level
language, a hierarchy of program logics, tailored for reasp about resource
consumption, and an embedding of the logics into a theorenweprin this paper,
we give an overview of the project’s results, discuss thedes learnt from it and
introduce follow-up work in new projects that will build ohdse results.

14.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project was a thregpyegect funded
by the EC under the FET proactive initiative on Global Conmt The aim
of the MRG project was talevelop an infrastructure needed to endow mobile
code with independently verifiable certificates describiagesource behaviour
These certificates are condensed and formalised mathat@aofs of resource-
related properties which are by their very nature self-entdunforgeable, and
independent of trust networks. This “proof-carrying-co(feCC) approach to
security [19] has become increasingly popular in recentsy/gss, 1, 20].

Typical application scenarios for such an infrastructamtide the following.

e A provider of a distributed computational power, for exaepl node in a
computational Grid, may only be willing to offer this sergiapon receiving
dependable guarantees about the required resource cotisump

1| aboratory for Foundations of Computer Science, Schoohfafratics, University
of Edinburgh, Edinburgh EH9 3JZ, Scotland
2|nst. f. Informatik, Ludwig-Maximilians Universitat, 30538 Munchen, Germany
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¢ A user of a handheld device or another embedded system magtittavknow
that a downloaded application will definitely run within tlmited amount of
memory available.

Our PCC infrastructure combines techniques from seveftdrdint research ar-
eas. Most notably, we present a novel approach to PCC ofibgil hierarchy
of logics and of translating high-level language propsriigo a specialised pro-
gram logic (see Section 14.3). This approach combines #eedfiminimising the
proof infrastructure as promoted by foundational PCC [lthvexploiting high-
level program properties in the certificates. The properiee expressed in an
extended type system and type inference is used for statijggom analysis. Thus
we combine work on program logics in the automated theoremipg commu-
nity with type-system-based analyses in the programmingudage community.
We also show how the embedding of this hierarchy of logiasting Isabelle/HOL
theorem prover yields an executable formalisation thateadirectly used in the
infrastructure. Since soundness and completeness bethvedevels are estab-
lished within the prover, the specialised logic does no¢etfite trusted code base.

In the following section we will outline the initial objeets of the project
(Section 14.2) and then give an overview of the key techriqised, and newly
developed, to meet these objectives. We provide an overefelve design of
our proof and software infrastructure (Sections 14.3 and)14We summarise
the main results in Section 14.5, and discuss future worlkchwbiilds on these
results.

14.2 PROJECT OBJECTIVES

The objectives outlined in our initial proposal strike adale between founda-
tional and more applied work. The foundational work devslapproof infras-
tructure built on type systems and program logics. The agphork creates a
software infrastructure in a PCC prototype which coversthtére path of mobile
code in a distributed system. A general overview of the mtoeveloped about
half-way through the project, is presented in [5].

Objective1l is the development of a framework in which certificates obtese
consumption exist as formal objects. This consists of amastel and a program
logic for an appropriate virtual machine and run time envinent.

Objective2 consists of the development of a notion of formalised andkalele
proofs for this logic playing the role of certificates.

Objective 3 is the development of methods for machine generation of sach
tificates for appropriate high-level code. Type systemsauaesl as an underlying
formalism for this endeavour. Since resource related ptigseof programs are
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almost always undecidable, we aim — following common pcact- for a con-
servative approximation: there will be programs for whichaertificate can be
obtained although they may abide by the desired resourdgypol

Objective4  While proof-like certificates are generally desirableythey some-
times be infeasible to construct or too large to transmit.théeefore study relax-
ations based on several rounds of negotiation betweenisuppld user of code
leading to higher and higher confidence that the resouréeypelsatisfied.

We have fully achieved Objectives 1-3, and we started worlobjective 4,
which is now being picked up in follow-up projects (see Sattl4.5).

14.3 AN INFRASTRUCTURE FOR RESOURCE CERTIFICATION

Developing an efficient PCC infrastructure is a challengimk, both in terms
of foundations and engineering. In this section we presenfdundational tools
needed in such an infrastructure, in particular high-leypé-systems and pro-
gram logics. In terms of engineering, the main challengestiag size of the
certificates, the size of the trusted code base (TCB) andpexsof validation.

14.3.1 Proof Infrastructure

In this section we describe the proof infrastructure fotifieation of resources.
This is based onmulti-layered logics approactshown in Figure 14.1), where all
logics are formalised in a proof assistant, and meta-ttiegesults of soundness
and completeness provide the desired confidence.

As the basis we have the (trustemperational semanticwhich is extended
with general “effects” for encoding the basic securitysitve operations (for
example, heap allocation if the security policy is boundedhconsumption).
Judgements in the operational semantics have the Eornh,e || i, v,p, where
E maps variables to valuels represents the pre-heap ahnidhe post-heap, and
is the result value, consumimgresources. The foundational PCC approach [1]
performs proofs directly on this level thereby reducing siee of the TCB, but
thereby increasing the size of the generated proofs caditye To remedy this
situation more recent designs, such as the Open Verifieréwank [12] or Certi-
fied Abstract Interpretation [10], add untrusted, but pldyaound, components
to a foundational PCC design.

On the next level there is a general-purppssgram logicfor partial correct-
ness [2, 3]. Judgements in this logic have the férm e : A, where the context
" maps expressions to assertions, &ndn assertion, is a predicate over the pa-
rameters of the operational semantics. The role of the prodogic is to serve
as a platform on which various higher level logics may be adifiThe latter pur-
pose makes logical completeness of the program logic aatdsiproperty, which
has hitherto been mostly of meta-theoretic interest. Ofsmsoundness remains
mandatory, as the trustworthiness of any application Idgfined at higher levels
depends upon it. Our soundness and completeness resaltigsa strong link
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High-Level Type System Pyttt

compile
Specialised Logic >t7:D(P,1)
Termination Logic >1{P} e |
I
Program Logic MN>e:A
Operational Semantics Ehelh, vp

FIGURE 14.1. A family of logics for resource consumption

between operational semantics and program logic, showhigls lines in Fig-
ure 14.1. Note that, since we formalise the entire hieraafHggics and prove
soundness, we do not need to include any of these logics ifGBe

Whereas assertions in the core logic make statements abdigl program
correctness, thermination logids defined on top of this level to certify termina-
tion. This separation improves modularity in developingsil logics, and allows
us to use judgements of partial correctness when talkingtabaomination. Judge-
ments in this logic have the formT{P} e |, meaning an expressierterminates
under the preconditioR.

On top of the general-purpose logic, we definepacialised logiqfor ex-
ample the heap logic of [8]) that captures the specifics ofréiqudar security
policy. This logic uses a restricted format of assertioafiedderived assertions
which reflects the judgement of the high-level type systendg&ments in the
specialised logic have the form "t : D(®,1), where the expressidrt ™ is the
result of compiling a high-level terma down to a low-level language, and the
information in the high-level type system is encoded in acgddorm of asser-
tion D(®, 1) that relies on the context and typet associated ta. Depending
on the property of interest, this level may be further refiired a hierarchy of
proof systems, for example if parts of the soundness arguaiehe specialised
assertions can be achieved by different type systems. lmagirio the general-
purpose logic, this specialised logic is not expected todmeptete, but it should
provide support for automated proof search. In the caseetdbic for heap
consumption, we achieve this by inferring a system of derassertions whose
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level of granularity is roughly similar to the high-levelty system. However, the
rules are expressed in terms of code fragments in the loal-lamguage. Since
the side conditions of the typing rules are computationedigy to validate, auto-
mated proof search is supported by the syntax-directedrfi#ss typing rules. At
points where syntax-directedness fails — such as recupsdgram structures —
the necessary invariants are provided by the type system.

On the top level we find high-level type systethat encodes information on
resource consumption. In the judgem@rty t : T, the termt has an (extended)
typet in a context®. This in an example of increasingly complex type systems
that have found their way into main-stream programming aartigb answer to
the unfeasibility of proving general program correctnésiven this complexity,
soundness proofs of the type systems become subtle. As veeskawn, our ap-
proach towards guaranteeing the absence of bad behavithe ebmpiled code
level is to translate types into proofs in a suitably spésgal program logic.

The case we have worked out in [3] is the Hofmann-Jost typeesyfor heap
usage [14] and a simpler instance is given in the rest of #gdan. In our work,
however, we give a general framework for tying such analysesa fully for-
malised infrastructure for reasoning about resource copson.

14.3.2 An Example of a Specialised Program Logic

We now elaborate our approach on a simple static analysieapspace con-
sumption based on [11]. The idea is to prove a constant upmemdon heap
allocation, by showing that no function allocates heap ina@pl The goal is to
detect such non-loop-allocating cases and separate tloemtffie rest, for which
no guarantees are given.

It should be emphasised that the heap space analysis in ti&iMRstructure
(as shown in Figure 14.5) can handle recursive functionis allbcations as long
as the consumption can be bounded by a linear function omihé size [14].
We choose this simpler analysis in this section to explagngtinciples of our
approach without adding too much complexity in the logics.

We use the expression fragment of a simple first-ordert $amnguage similar
to Camelot [18] (see later in 14.4.1), with lists as the ondyprimitive data-
type and expressions in administrative-normal-form (ANRganing arguments
to functions must be variablek ére constants variables,f function names):

ecexpr = Kk|X|nil|cons(X1,X2) | f(X1,...,Xn)|let X=€1 ine
| match Xwithnil = e1;cons(X1,X2) = €

We now define a non-standard type system for this languageredif) is a
pre-defined type signature mapping function names, tas follows:

(VAR)

Fphe:n n<m
_ Fu k:0 Fpx:0

Fh e
HE TWEAK) (CoNsT)
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Fr f(X1,... %) 1 Z(T) Frnil: 0 Fu cons(Xg,x2): 1

(APP) (NIL) (CoNs)
Fuel:m Fue:n Fuer:n Fue:n
FH let X=€1 in&:m+n Fy match Xwithnil = eg;cons(Xg,X2) =€ :n
(LET) (MATCH)

Let us say that a function iecursiveif it can be found on a cycle in the call
graph. Further, a functioallocatesf its body contains an allocation, i.e, a subex-
pression of the forneons(x1,X%2). One can show that a program is typeable iff no
recursive function allocates. Moreover, in this case tipe tyf a function bounds
the number of allocations it can make.

In order to establish correctness of the type system ande ringportantly,
to enable generation of certificates as proofs in the prodogia, we will now
develop a derived assertion and a set of syntax-directexf putes that mimic the
typing rules and permit the automatic translation of anyrgplerivation into a
valid proof.

Recall thaf™ > e: Ais the judgement of the core logic, and ties parame-
terised over variable environment, pre- and post-heap[2éer more details on
encoding program logics for these kinds of languages). @asethis logic, we
can now define aerived assertioncapturing the fact that the he&pafter the
execution is at most units larger than the hedpbefore executioh

D(n)=AE hHvp. |[domh)|<|dom(h)| +n

We can now provelerived rulesof the canonical form>e: D(n) to arrive at a
program logic for heap consumption:

>e:D(n) n<m

- >k: D(0) >x: D(0)
>e:D(m)
(DWEAK) (DCoNsT) (DVAR)
> (X, %n; ) 2 2(F) >nil: D(0) >cons(Xg,X2) : D(1)
(DAPP) (DNIL) (DCoNS)
>e;:D(m) >ex:D(n) >ep:D(n) >ex:D(n)
>let x=e€1 in € : D(M+n) >match Xwithnil = €p;cons(X1,X2) = € : D(n)
(DLET) (DMATCH)

2We do not model garbage collection here, so the size of the &lesys increases.
This restriction will be lifted in the next section.
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We can now automatically construct a proof of bounded heaswoption,
by replaying the type derivation for the high-level typetsysty, and using the
corresponding rules in the derived logic. The verificationditions coming out
of this proof will consist only of the inequalities used iretlerived logic. No
reasoning about the heaps is necessary at all at this lek&d.h@s been covered
already in the soundness proof of the derived logic w.ret.cibre program logic.

14.3.3 Modelling Reusable Memory

To tackle the issue of reusable memory, we introduce the hod@eglobal “free-
list”. Heap allocations are fed from the freelist. Furtheray Camelot provides
a destructive pattenmat ch operator, which returns the heap cell matched against
to the freelist. This high-level memory model is the basisdrtending the type
system and the logic to a language where memory can be reused.

We can generalise the type system to encompass this situatiassigning a
type of the form=(f) = (m,n) with m,n € N to functions and, correspondingly, a
typing judgement of the forméts e: (m,n). The corresponding derived assertion
D(m,n) asserts that if in the pre-heap the global freelist has alhegigeater than
or equal tom, then the freelist in the post-heap has a length greaterahaqual
to n. Since the freelist, as part of the overall heap, abstrhetsystem’s garbage
collection policy, we have the invariant that the size of plost-heap equals the
size of the pre-heap.

Now the type of an expression contains an upper bound on teespeeded
for execution as well as the space left over after executfave know that, saye:
(5,3) then we can executzafter filling the freelist with 5 freshly allocated cells,
and we will find 3 cells left-over, which can be used in subssgeomputations.

The typing rules for this extended system are as follows.r&smonding de-
rived rules are provable in the program logic.

Fne:(mn) m>m+q n<n+q

Fn k: (0,0) Fu x: (0,0)
b e:(m,n)

(WEAK) (ConsT) (VAR)

Fu f(xe, ..., %) 1 Z(F) Fy nil: (0,0) Fu cons(Xg,%2) : (1,0)

(APP (NIL) (CoNs)
FH el:(m7n) '_Hez:(nvk) }_Hel:(m7n) FH 62:(m+l,n)

Fh let x=6y in & : (MK) Fn match Xwith nil = eg; cons (X1, %) @_ = & : (M, n)
(LET) (MATCH)

Notice that this type system does not prevent deallocafitimencells. Doing
so would compromise functional correctness of the code btithe validity of
the derived assertions which merely speak about freetist si

In [8] we extend the type system even further by allowing fmuit-dependent
freelist size using an amortised approach. Here it is chuciaule out “rogue
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programs” that deallocate live data. There are a numbempaf $ystems capable
of doing precisely that; among them we choose the admittedher restrictive
linear typing that requires single use of each variable.

14.4 A PCCINFRASTRUCTURE FOR RESOURCES

Having discussed the main principles in the design of the MR@structure,
we now elaborate on its main characteristic features (aléétdiscussion of the
operational semantics and program logic is given in [2]).

14.4.1 Proof Infrastructure

As an instantiation of our multi-layered logics approatte proof infrastructure
realises several program logics, with the higher-levelsotadored to facilitate
reasoning about heap-space consumption. While we focusap-$pace con-
sumption here, we have in the meantime extended our apptoamtver more
general resources in the form of resource algebras [4].

Low-level language: JVM bytecode In order to use the infrastructure in an envi-
ronment for mobile computation, we focus on a commonplasdével language:

a subset of JVM bytecode. This language abstracts ovelirtenschine-specific
details of program execution. Being higher-level than adser code facilitates
the development of a program logic as basis for certificathor also somewhat
complicates the cost modelling. For the main resource efést, heap consump-
tion, allocation is still transparent enough to allow aetarprediction (as shown
by the evaluation of our cost model for the JVM). For otheorases, in particular
execution time, cost modelling is significantly more coroaied.

The unstructured nature of JVM code usually gives rise ttyfaivkward rules
in the operational semantics and in the program logic. We tlzerefore decided
to introduce a slight abstraction over JVM byteco@gail [9], an intermediate
language with a functional flavour, which is in a one-to-oagespondence with
JVM bytecode satisfying some mild syntactic conditionsud,hwe can perform
certification on the Grail level, and retrieve the Grail cddem the transmitted
JVM bytecode on the consumer side.

The operational semantickor Grail is a resource-aware, big-step semantics
over this functional language. Resources are modelledriergéterms by spec-
ifying a resource algebra over constructs of the languagma@ting the rules
of the semantics from the propagation of resources makesijt ® model new
resources on top of this semantics.

The program logicfor Grail is a VDM-style partial correctness logic. Thus,
it can make meaningful statements about heap consumptiovided that a pro-
gram terminates. To assure termination, we have also desela separate ter-
mination logic, built on top of the core program logic. It sie be emphasised
that the program logic does not rely in any way on the Grailecheing compiled
from a particular high level language. It can be seen as aunifanguage for
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val fac: int ->int ->int val fac: int ->int

let rec fac nb = let rec fac n =
if n<1thenb if n<1thenl
else fac (n- 1) (n * b) else n* fac (n - 1)

FIGURE 14.2. Tail-recursive (left) and recursive (right) Camelot code of factorial

phrasing properties of interest as discussed in the prevdeation. The benefit
of compiling down from a higher-level language is that itgliéidnal structure
can be used to automatically generate the certificates thae gtatements in this
program logic.

High-level language: Camelot  As high-level language we have defined a vari-
ant of OCAML: Camelot [18]. It is a strict functional languagvith object-
oriented extensions and limited support for higher-ordecfions. Additionally,
it has a destructive match statement to model heap deaflacatnd it uses a
freelist-based heap model that is implemented on top of\'sTheap model.
Most importantly, it is endowed with an inference algoritfon heap-space con-
sumption [14], based on this internal freelist heap modéehis Tnference can
derive linear upper bounds for Camelot programs fulfilliegtain linearity con-
straints. Based on this inference, the compiler can alsergém a certificate for
bounded heap consumption, and it emits a statement in thepgBogram logic,
expressing this bound for the overall program.

As an example let us examine a tail-recursive and a genuieelysive Camelot
program implementing the factorial function, shown in Fgu4.2. The Java
Bytecode corresponding to the tail-recursive Camelot gaags given in the first
column of Figure 14.3. Recall that many JVM commands refah&operand
stack. If we explicitly denote the items on this stackfioy $1, $2,..., starting
from the top, then we obtain a beautified bytecode of theréailirsive version
given in the right column of Figure 14.3. In Grail we take thise step further
by removing the stack altogether and allowing arithmetieragions on arbitrary
variables. Moreover, we use a functional notation for jurapd local variables
as exemplified by the code in the left column of Figure 14.4.cdntrast, the
genuinely recursive version uses JVM method invocatiohéréecursive call.

With this functional notation of Grail it is possible to déep a program logic
that is significantly simpler compared to other JVM-levgites such as [7]. How-
ever, in our work we do not tackle issues such as multi-thireador do we aim
to cover a full high-level language such as Java. We ratleersfon the automatic
generation of resource certificates.

Meta Logic: Isabelle/HOL In order to realise our infrastructure, we have to
select and use a logical framework in the implementatiomettierarchy of pro-
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static int fac(int); static int fac(int);
Code: Code:

0: iconst_1 0: $0 =1

1. istore_l 1. b =3%0

2: iload 0 2. $0 =n

3: iconst_1 3 $1=1

4: if _icnplt 18 4: if ($0<$1) then 18 else 5

7: iload_1 5. $0 =b

8: iload 0 8 $1=n

9: iml 9: $0 =%0 * $1

10: istore 1 10: = $0

11: iload 0 11: $0 =n

12: iconst_1 12: $1 =1

13: isub 13: $0 = $0 - $1

14: istore 0 14: n = $0

15. goto 2 15. goto 2

18: iload 1 18: $0 =b

19: ireturn 19: ireturn $0

FIGURE 14.3. Java bytecode in ordinary (left) and beautified(right) form

gram logics. Here we have chosen a very powerful systemelisgHOL, and
to definitionally realise the program logic as an inductiedimition in the meta
logic. To avoid the specification of a separate assertiogdage, we use a shal-
low embedding for assertions, which are simply meta-ldgicadicates over the
components of the operational semantics. This simplifigit@xrh comes at the
expense of an increased trusted code base, since we nowchase an entire
instance of Isabelle/HOL in the certificate validation phaas we will see be-
low. However, we found this choice to be adequate for a pypmsystem in a
scenario of global computing with fairly powerful computedes. This choice
also enables us to use a very succinct representation dfazes as fragments
of Isabelle proof scripts. Even without any semantic coragign we achieve a
certificate size of about 22-32% of the code size, close tadnemonly quoted
20% as an acceptable size for a certificate.

14.4.2 Software Infrastructure

The overall structure of the software infrastructure isiciegl in Figure 14.5 and
is an instance of a general PCC infrastructure [19] with aecpbducer (left
hand side) and a code consumer (right hand side). The maipauents on the
producer side are eertifying compiley which translates high-level Camelot pro-
grams into the Grail intermediate code and additionallyegates a certificate of
its heap consumption. The latter is formalised as a lemmizeiihéap space logic
for the Grail language [8]. The Grail code is processed bysaembler, the Grail

220



met hod static int fac (int n) =
| et
val b =1 met hod static int fac (int n) =
fun f(int n, int b) = | et
if n<l then b fun f_else(n) =
el se f_else(n,b) | et
val n" =subnl
fun f_else(int n, int b) = val n'" =
| et i nvokestatic <Fac Fac.fac(int)>(n")
val b =ml bn inml nn
val n =subnl end
in in
f(n,b) if n<l then 1
end el se f_else(n)
in end
f(n,b)
end

FIGURE 14.4. Tail-recursive (left) and recursive (right) Grail code of factorial

de-functionaliser (gdf), to generate JVM bytecode. Thigebgde is transmitted
together with the Isabelle proof script as the certificatéoheap consumption
to the code consumer. On the consumer side, the Grail codgrisved via a
disassembiler, the Grail functionaliser (gf). Then IsadelOL is used in batch
mode to automatically check that the resource propertyesged in the attached
certificate is indeed fulfilled for this program. Once thislieeen confirmed the
code can be executed on the consumer side

It should also be noted that the current infrastructure dugsrepresent a
closed system, in which all mobile code has to be compiled thié same com-
piler. While the preferred way of generating a code/cedtiicpair is to write
the program in Camelot and have the compiler automaticatgyice a certifi-
cate, it is also possible to use another high-level langsagk as Java or Scheme
that compiles into JVM bytecode, and to then manually geeagroof for the
desired resource property. Since the logic has been fasethlh Isabelle/HOL,
the entire development infrastructure for this prover @ilable in generating the
certificates. As a mixture of both scenarios, it is also gmesio write the top
level program in Camelot, and call foreign language codmft@amelot. This is
particularly useful for accessing Java library functiomg}. for GUI parts of the
code. In [21] an extension of Camelot with object-orienteatfires is described.
These extensions have been used in implementing a dirdotukyp application
to be executed on a PDA, based on the MIDP standard for smatiete which
provides a restricted set of Java libraries and is partialyed on Sun’s KVM.
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Producer : Network : Consumer
Camelot 1 1
1 |
1 |
1 ! Ok?
1 |
VM
1 1
1 |
1 1
1 |
I | Proof
1 1 Checker
Resource I | (Isabelle)
ng_r:['r]l Predicate I 1
4 I 1
Proof 1 1 Proof Grail VM
Seript 1 | (Grail) Program Program
1 |
| |
| | GF
1 Certificate !
Program ! Code !
L I

FIGURE 14.5. PCC infrastructure for MRG

14.5 RESULTS

The most visible result of the project is a complete workimfgastructure for gen-
erating and checking certificates describing the resouet@viour of programs
written in a high-level functional programming languagelthAugh the nature
of the project was foundational, we emphasised from thé gtarimportance of
producing prototypes for the components of the PCC infuatire — partly as
a testbed for experimentation, but also as an on-line testinfechniques in a
realistic, distributed setting.

The main novel techniques in the development of the infuastre are our
multi-layered logics approador providing reasoning support tuned to, but not re-
stricted to, the automatic verification of resource prapsriand the use aéctic-
based certificates order to reduce the size of the certificate, albeit at thst co
of increasing the TCB size. However, since we have estaddisbundness of all
logics in the prover, of these only the operational semant&eds to be trusted
and as validation engine the prover could be replaced by of pteecker with
support for a subset of the proof scripting language.

More specifically we have produced the following:

e A completely formalised virtual machine and cost md@éfor a JVM-like
language. We have used Isabelle/HOL as the theorem provétfgpmn for
this formalisation and for encoding the logics.
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e A resource aware program logi2, 3] for the bytecode language of the above
virtual machine.

e A specialised logic for heap consumpti@that is built on top of the program
logic.

¢ A certifying compilerfor the strict, first-order functional, object-orientedia
guage Camelot [18], integrated into a prototype PCC infuastre.

e Advanced reasoning principl§s4, 17] for resources, based on high-level type
systems.

Our particular conclusions on the design of a PCC infrastinecare as follows:

e For automatic certificate generation it is crucial to make o$ high-level
structural information and to propagate this informatiomd to the program
logic. In our design we have realised this as several layldegas, with the
heap logic being tailored to the high-level type-systendusednfer informa-
tion on heap space consumption. In particular, we delibgraepart from the
standard approach of splitting certificate validation iaification condition
generation and simplification. In our experience, the @&ifon conditions
even for simple properties become too complex to be autcaibtisolved by
a proof assistant. In contrast, by drawing on informati@mfrthe high level
type inference, we can perform simplifications “on the flytlahus can keep
proofs more manageable.

e The program logic serves as a common language in which tselmagram
properties. Thus, program logics over low-level languagesbe seen as the
“assembler code” for proofs of program properties and asaiget language
for a compiler that realises high-level type systems to @espsuch properties.

e Encoding the program logic in a proof assistant is not ongfuisfor devel-
oping the logic and enforcing formal rigour; it can also seag an immediate
platform for realising the required software infrastruetuWhile in terms of
the size of the TCB and interoperability with other systemae general for-
mat of certificates as proof objects would be favourable rectiembedding
into a proof assistant also yields certificates of small.size

e We found the VDM-style version of the program logic (for palrcorrect-
ness), with judgements of the fori> e : A, significantly easier to use than
an earlier Hoare-style version we had developed, with jodrés of the form
I >{A} e {A’}. This confirms earlier observations on how the needifoxil-
iary variablesin a Hoare setting complicates its practical usability [19].

New projects that build on the MRG infrastructure are:

e MOBIUS, an Integrated Project of the FET-GC2 proactive iatite
(http://mobius.inria.fr/), deals with innovative trust management for
global computing, where the resources can be as diversetasrikeaccess
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and the secure flow of information. In contrast to MRG, thigj@ct focuses
on Java as a high-level language, and thus will bring thdtsestiour research
to a broader community.

e EmBounded, a FET-Open STREP projeutt(p: / / www. embounded. or g/ ),
which aims to provide resource bounded computation for elube systems,
using Hume as the high-level programming language. Hereamedcaw on
our amortised costs approach for developing inferencessmurce consump-
tion (heap, stack and time) for Hume.

e ReQueST, an EPSRC-funded projédti(ps: // wi ki . i nf. ed. ac. uk/ ReQueST),
aims to develop methods, invent algorithms, and engindéwvaie to equip
each request for a Grid service with an irrefutable and ateucertificate
which specifies the quantity and type of resources whichhveltonsumed if
the request is serviced.

Since the end of MRG, several extensions to the infrastracig described in
this paper have been developed. Related to Objective 4 girthject, on ways of
reducing the size of the certificates, we are now studyingitieeof two forms of
resource policies to arrive at a more flexible system withiogiheed of additional
communication. In this setup, a guaranteed resource pislisgnt together with
the certificate. On the consumer side validation of a ceatéimow involves two
steps: a check that the guaranteed resource policy impkasitget resource pol-
icy on the consumer and validation of the certificate whig.guaranteed resource
policy. Typically, the guaranteed resource policy will tain information about
the high-level program, such as the space consumption demeon the input
size, and local side-conditions on the consumer are capintbe target resource
policy. This approach is discussed in more detail in [6].

Overall we conclude that the project has been very sucdassfieveloping
the foundations for a novel PCC approach for resources aptbitucing a pro-
totype infrastructure demonstrating the principles. Fynaisit our project web
pages, where you can find project summaries, published pagret a tutorial [15]
with on-line exercisesht t p: // groups. i nf. ed. ac. uk/ nr g/ . An on-line demo
is directly available athtt p: // proj ects.tcs.ifi.lnu.de/nmg/pcc/.
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