
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mobile Resource Guarantees

Citation for published version:
Sannella, D, Hofmann, M, Aspinall, D, Gilmore, S, Stark, I, Beringer, L, Loidl, H-W, MacKenzie, K,
Momigliano, A & Shkaravska, O 2007, 'Mobile Resource Guarantees'. in Trends in Functional Programming.
vol. 6, Intellect Books, pp. 211-226.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Author final version (often known as postprint)

Published In:
Trends in Functional Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 20. Feb. 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979476?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.research.ed.ac.uk/portal/en/publications/mobile-resource-guarantees(617dba34-e77b-4f4d-ae2a-02c5080a653a).html


Chapter 14

Project Evaluation Paper:
Mobile Resource Guarantees
Donald Sannella1, Martin Hofmann2, David Aspinall1, Stephen Gilmore1,
Ian Stark1, Lennart Beringer1, Hans-Wolfgang Loidl2, Kenneth MacKen-
zie1, Alberto Momigliano1, Olha Shkaravska2

Abstract: The Mobile Resource Guarantees (MRG) project has developeda
proof-carrying-code infrastructure for certifying resource bounds of mobile code.
Key components of this infrastructure are a certifying compiler for a high-level
language, a hierarchy of program logics, tailored for reasoning about resource
consumption, and an embedding of the logics into a theorem prover. In this paper,
we give an overview of the project’s results, discuss the lessons learnt from it and
introduce follow-up work in new projects that will build on these results.

14.1 INTRODUCTION

The Mobile Resource Guarantees (MRG) project was a three year project funded
by the EC under the FET proactive initiative on Global Computing. The aim
of the MRG project was todevelop an infrastructure needed to endow mobile
code with independently verifiable certificates describingits resource behaviour.
These certificates are condensed and formalised mathematical proofs of resource-
related properties which are by their very nature self-evident, unforgeable, and
independent of trust networks. This “proof-carrying-code” (PCC) approach to
security [19] has become increasingly popular in recent years [13, 1, 20].

Typical application scenarios for such an infrastructure include the following.

• A provider of a distributed computational power, for example a node in a
computational Grid, may only be willing to offer this service upon receiving
dependable guarantees about the required resource consumption.

1Laboratory for Foundations of Computer Science, School of Informatics, University
of Edinburgh, Edinburgh EH9 3JZ, Scotland

2Inst. f. Informatik, Ludwig-Maximilians Universität, D-80538 München, Germany

211



• A user of a handheld device or another embedded system might want to know
that a downloaded application will definitely run within thelimited amount of
memory available.

Our PCC infrastructure combines techniques from several different research ar-
eas. Most notably, we present a novel approach to PCC of building a hierarchy
of logics and of translating high-level language properties into a specialised pro-
gram logic (see Section 14.3). This approach combines the idea of minimising the
proof infrastructure as promoted by foundational PCC [1] with exploiting high-
level program properties in the certificates. The properties are expressed in an
extended type system and type inference is used for static program analysis. Thus
we combine work on program logics in the automated theorem proving commu-
nity with type-system-based analyses in the programming language community.
We also show how the embedding of this hierarchy of logics into the Isabelle/HOL
theorem prover yields an executable formalisation that canbe directly used in the
infrastructure. Since soundness and completeness betweenthe levels are estab-
lished within the prover, the specialised logic does not enter the trusted code base.

In the following section we will outline the initial objectives of the project
(Section 14.2) and then give an overview of the key techniques used, and newly
developed, to meet these objectives. We provide an overviewof the design of
our proof and software infrastructure (Sections 14.3 and 14.4). We summarise
the main results in Section 14.5, and discuss future work which builds on these
results.

14.2 PROJECT OBJECTIVES

The objectives outlined in our initial proposal strike a balance between founda-
tional and more applied work. The foundational work develops a proof infras-
tructure built on type systems and program logics. The applied work creates a
software infrastructure in a PCC prototype which covers theentire path of mobile
code in a distributed system. A general overview of the project, developed about
half-way through the project, is presented in [5].

Objective 1 is the development of a framework in which certificates of resource
consumption exist as formal objects. This consists of a costmodel and a program
logic for an appropriate virtual machine and run time environment.

Objective 2 consists of the development of a notion of formalised and checkable
proofs for this logic playing the role of certificates.

Objective 3 is the development of methods for machine generation of suchcer-
tificates for appropriate high-level code. Type systems areused as an underlying
formalism for this endeavour. Since resource related properties of programs are
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almost always undecidable, we aim — following common practice — for a con-
servative approximation: there will be programs for which no certificate can be
obtained although they may abide by the desired resource policy.

Objective 4 While proof-like certificates are generally desirable, they may some-
times be infeasible to construct or too large to transmit. Wetherefore study relax-
ations based on several rounds of negotiation between supplier and user of code
leading to higher and higher confidence that the resource policy is satisfied.

We have fully achieved Objectives 1–3, and we started work onObjective 4,
which is now being picked up in follow-up projects (see Section 14.5).

14.3 AN INFRASTRUCTURE FOR RESOURCE CERTIFICATION

Developing an efficient PCC infrastructure is a challengingtask, both in terms
of foundations and engineering. In this section we present the foundational tools
needed in such an infrastructure, in particular high-leveltype-systems and pro-
gram logics. In terms of engineering, the main challenges are the size of the
certificates, the size of the trusted code base (TCB) and the speed of validation.

14.3.1 Proof Infrastructure

In this section we describe the proof infrastructure for certification of resources.
This is based on amulti-layered logics approach(shown in Figure 14.1), where all
logics are formalised in a proof assistant, and meta-theoretic results of soundness
and completeness provide the desired confidence.

As the basis we have the (trusted)operational semanticswhich is extended
with general “effects” for encoding the basic security-sensitive operations (for
example, heap allocation if the security policy is bounded heap consumption).
Judgements in the operational semantics have the formE ⊢ h,e⇓ h′,v,ρ, where
E maps variables to values,h represents the pre-heap andh′ the post-heap, andv
is the result value, consumingρ resources. The foundational PCC approach [1]
performs proofs directly on this level thereby reducing thesize of the TCB, but
thereby increasing the size of the generated proofs considerably. To remedy this
situation more recent designs, such as the Open Verifier Framework [12] or Certi-
fied Abstract Interpretation [10], add untrusted, but provably sound, components
to a foundational PCC design.

On the next level there is a general-purposeprogram logicfor partial correct-
ness [2, 3]. Judgements in this logic have the formΓ ⊲ e : A, where the context
Γ maps expressions to assertions, andA, an assertion, is a predicate over the pa-
rameters of the operational semantics. The role of the program logic is to serve
as a platform on which various higher level logics may be unified. The latter pur-
pose makes logical completeness of the program logic a desirable property, which
has hitherto been mostly of meta-theoretic interest. Of course, soundness remains
mandatory, as the trustworthiness of any application logicdefined at higher levels
depends upon it. Our soundness and completeness results establish a strong link
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High-Level Type System

Specialised Logic

Termination Logic

Program Logic

Operational Semantics E⊢ h,e ⇓ h′,v,ρ

Γ ⊲ e : A

⊲T{P} e ↓

⊲ ptq : D(Φ,τ)

compile

Φ ⊢H t : τ

?

FIGURE 14.1. A family of logics for resource consumption

between operational semantics and program logic, shown as thick lines in Fig-
ure 14.1. Note that, since we formalise the entire hierarchyof logics and prove
soundness, we do not need to include any of these logics in theTCB.

Whereas assertions in the core logic make statements about partial program
correctness, thetermination logicis defined on top of this level to certify termina-
tion. This separation improves modularity in developing these logics, and allows
us to use judgements of partial correctness when talking about termination. Judge-
ments in this logic have the form⊲T{P} e ↓, meaning an expressione terminates
under the preconditionP.

On top of the general-purpose logic, we define aspecialised logic(for ex-
ample the heap logic of [8]) that captures the specifics of a particular security
policy. This logic uses a restricted format of assertions, calledderived assertions,
which reflects the judgement of the high-level type system. Judgements in the
specialised logic have the form⊲ ptq : D(Φ,τ), where the expressionptq is the
result of compiling a high-level termt down to a low-level language, and the
information in the high-level type system is encoded in a special form of asser-
tion D(Φ,τ) that relies on the contextΦ and typeτ associated tot. Depending
on the property of interest, this level may be further refinedinto a hierarchy of
proof systems, for example if parts of the soundness argument of the specialised
assertions can be achieved by different type systems. In contrast to the general-
purpose logic, this specialised logic is not expected to be complete, but it should
provide support for automated proof search. In the case of the logic for heap
consumption, we achieve this by inferring a system of derived assertions whose
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level of granularity is roughly similar to the high-level type system. However, the
rules are expressed in terms of code fragments in the low-level language. Since
the side conditions of the typing rules are computationallyeasy to validate, auto-
mated proof search is supported by the syntax-directednessof the typing rules. At
points where syntax-directedness fails — such as recursiveprogram structures —
the necessary invariants are provided by the type system.

On the top level we find ahigh-level type systemthat encodes information on
resource consumption. In the judgementΦ ⊢H t : τ, the termt has an (extended)
typeτ in a contextΦ. This in an example of increasingly complex type systems
that have found their way into main-stream programming as a partial answer to
the unfeasibility of proving general program correctness.Given this complexity,
soundness proofs of the type systems become subtle. As we have seen, our ap-
proach towards guaranteeing the absence of bad behaviour atthe compiled code
level is to translate types into proofs in a suitably specialised program logic.

The case we have worked out in [3] is the Hofmann-Jost type system for heap
usage [14] and a simpler instance is given in the rest of this section. In our work,
however, we give a general framework for tying such analysesinto a fully for-
malised infrastructure for reasoning about resource consumption.

14.3.2 An Example of a Specialised Program Logic

We now elaborate our approach on a simple static analysis of heap-space con-
sumption based on [11]. The idea is to prove a constant upper bound on heap
allocation, by showing that no function allocates heap in a loop. The goal is to
detect such non-loop-allocating cases and separate them from the rest, for which
no guarantees are given.

It should be emphasised that the heap space analysis in the MRG infrastructure
(as shown in Figure 14.5) can handle recursive functions with allocations as long
as the consumption can be bounded by a linear function on the input size [14].
We choose this simpler analysis in this section to explain the principles of our
approach without adding too much complexity in the logics.

We use the expression fragment of a simple first-order, strict language similar
to Camelot [18] (see later in 14.4.1), with lists as the only non-primitive data-
type and expressions in administrative-normal-form (ANF), meaning arguments
to functions must be variables (k are constants,x variables,f function names):

e∈ expr ::= k | x | nil | cons(x1,x2) | f (x1, . . . ,xnf ) | let x=e1 in e2

| match x with nil⇒ e1;cons(x1,x2) ⇒ e2

We now define a non-standard type system for this language, where Σ( f ) is a
pre-defined type signature mapping function names toN, as follows:

⊢H e : n n≤ m

⊢H e : m
(WEAK)

⊢H k : 0
(CONST)

⊢H x : 0
(VAR)
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⊢H f (x1, . . . ,xnf ) : Σ( f )
(APP)

⊢H nil : 0
(NIL )

⊢H cons(x1,x2) : 1
(CONS)

⊢H e1 : m ⊢H e2 : n

⊢H let x=e1 in e2 : m+n
(LET)

⊢H e1 : n ⊢H e2 : n

⊢H match x with nil⇒ e1;cons(x1,x2) ⇒ e2 : n
(MATCH)

Let us say that a function isrecursiveif it can be found on a cycle in the call
graph. Further, a functionallocatesif its body contains an allocation, i.e, a subex-
pression of the formcons(x1,x2). One can show that a program is typeable iff no
recursive function allocates. Moreover, in this case the type of a function bounds
the number of allocations it can make.

In order to establish correctness of the type system and, more importantly,
to enable generation of certificates as proofs in the programlogic, we will now
develop a derived assertion and a set of syntax-directed proof rules that mimic the
typing rules and permit the automatic translation of any typing derivation into a
valid proof.

Recall thatΓ ⊲ e : A is the judgement of the core logic, and thatA is parame-
terised over variable environment, pre- and post-heap (see[2] for more details on
encoding program logics for these kinds of languages). Based on this logic, we
can now define aderived assertion, capturing the fact that the heaph′ after the
execution is at mostn units larger than the heaph before execution2:

D(n) ≡ λE h h′ v ρ. |dom(h′) |≤|dom(h) | +n

We can now provederived rulesof the canonical form⊲e : D(n) to arrive at a
program logic for heap consumption:

⊲e : D(n) n≤ m

⊲e : D(m)
(DWEAK)

⊲k : D(0)
(DCONST)

⊲x : D(0)
(DVAR)

⊲ f (x1, . . . ,xnf ) : Σ( f )
(DAPP)

⊲nil : D(0)
(DNIL )

⊲cons(x1,x2) : D(1)
(DCONS)

⊲e1 : D(m) ⊲ e2 : D(n)

⊲let x=e1 in e2 : D(m+n)
(DLET)

⊲e1 : D(n) ⊲ e2 : D(n)

⊲match x with nil⇒ e1;cons(x1,x2) ⇒ e2 : D(n)
(DMATCH)

2We do not model garbage collection here, so the size of the heap always increases.
This restriction will be lifted in the next section.
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We can now automatically construct a proof of bounded heap consumption,
by replaying the type derivation for the high-level type system⊢H , and using the
corresponding rules in the derived logic. The verification conditions coming out
of this proof will consist only of the inequalities used in the derived logic. No
reasoning about the heaps is necessary at all at this level. This has been covered
already in the soundness proof of the derived logic w.r.t. the core program logic.

14.3.3 Modelling Reusable Memory

To tackle the issue of reusable memory, we introduce the model of a global “free-
list”. Heap allocations are fed from the freelist. Furthermore, Camelot provides
a destructive patternmatch operator, which returns the heap cell matched against
to the freelist. This high-level memory model is the basis for extending the type
system and the logic to a language where memory can be reused.

We can generalise the type system to encompass this situation by assigning a
type of the formΣ( f ) = (m,n) with m,n∈ N to functions and, correspondingly, a
typing judgement of the format⊢Σ e : (m,n). The corresponding derived assertion
D(m,n) asserts that if in the pre-heap the global freelist has a length greater than
or equal tom, then the freelist in the post-heap has a length greater thanor equal
to n. Since the freelist, as part of the overall heap, abstracts the system’s garbage
collection policy, we have the invariant that the size of thepost-heap equals the
size of the pre-heap.

Now the type of an expression contains an upper bound on the space needed
for execution as well as the space left over after execution.If we know that, say,e:
(5,3) then we can executee after filling the freelist with 5 freshly allocated cells,
and we will find 3 cells left-over, which can be used in subsequent computations.

The typing rules for this extended system are as follows. Corresponding de-
rived rules are provable in the program logic.

⊢H e : (m,n) m′ ≥ m+q n′ ≤ n+q

⊢H e : (m′
,n′)

(WEAK)

⊢H k : (0,0)
(CONST)

⊢H x : (0,0)
(VAR)

⊢H f (x1, . . . ,xnf ) : Σ( f )
(APP)

⊢H nil : (0,0)
(NIL )

⊢H cons(x1,x2) : (1,0)
(CONS)

⊢H e1 : (m,n) ⊢H e2 : (n,k)

⊢H let x=e1 in e2 : (m,k)
(LET)

⊢H e1 : (m,n) ⊢H e2 : (m+1,n)

⊢H match x with nil⇒ e1;cons(x1,x2)@ ⇒ e2 : (m,n)
(MATCH)

Notice that this type system does not prevent deallocation of live cells. Doing
so would compromise functional correctness of the code but not the validity of
the derived assertions which merely speak about freelist size.

In [8] we extend the type system even further by allowing for input-dependent
freelist size using an amortised approach. Here it is crucial to rule out “rogue

217



programs” that deallocate live data. There are a number of type systems capable
of doing precisely that; among them we choose the admittedlyrather restrictive
linear typing that requires single use of each variable.

14.4 A PCC INFRASTRUCTURE FOR RESOURCES

Having discussed the main principles in the design of the MRGinfrastructure,
we now elaborate on its main characteristic features (a detailed discussion of the
operational semantics and program logic is given in [2]).

14.4.1 Proof Infrastructure

As an instantiation of our multi-layered logics approach, the proof infrastructure
realises several program logics, with the higher-level ones tailored to facilitate
reasoning about heap-space consumption. While we focus on heap-space con-
sumption here, we have in the meantime extended our approachto cover more
general resources in the form of resource algebras [4].

Low-level language: JVM bytecode In order to use the infrastructure in an envi-
ronment for mobile computation, we focus on a commonplace low-level language:
a subset of JVM bytecode. This language abstracts over certain machine-specific
details of program execution. Being higher-level than assembler code facilitates
the development of a program logic as basis for certification, but also somewhat
complicates the cost modelling. For the main resource of interest, heap consump-
tion, allocation is still transparent enough to allow accurate prediction (as shown
by the evaluation of our cost model for the JVM). For other resources, in particular
execution time, cost modelling is significantly more complicated.

The unstructured nature of JVM code usually gives rise to fairly awkward rules
in the operational semantics and in the program logic. We have therefore decided
to introduce a slight abstraction over JVM bytecode,Grail [9], an intermediate
language with a functional flavour, which is in a one-to-one correspondence with
JVM bytecode satisfying some mild syntactic conditions. Thus, we can perform
certification on the Grail level, and retrieve the Grail codefrom the transmitted
JVM bytecode on the consumer side.

The operational semanticsfor Grail is a resource-aware, big-step semantics
over this functional language. Resources are modelled in general terms by spec-
ifying a resource algebra over constructs of the language. Separating the rules
of the semantics from the propagation of resources makes it easy to model new
resources on top of this semantics.

Theprogram logicfor Grail is a VDM-style partial correctness logic. Thus,
it can make meaningful statements about heap consumption, provided that a pro-
gram terminates. To assure termination, we have also developed a separate ter-
mination logic, built on top of the core program logic. It should be emphasised
that the program logic does not rely in any way on the Grail code being compiled
from a particular high level language. It can be seen as a uniform language for
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val fac: int -> int -> int
let rec fac n b =

if n < 1 then b
else fac (n - 1) (n * b)

val fac: int -> int
let rec fac n =
if n < 1 then 1

else n * fac (n - 1)

FIGURE 14.2. Tail-recursive (left) and recursive (right) Camelot code of factorial

phrasing properties of interest as discussed in the previous section. The benefit
of compiling down from a higher-level language is that its additional structure
can be used to automatically generate the certificates that prove statements in this
program logic.

High-level language: Camelot As high-level language we have defined a vari-
ant of OCAML: Camelot [18]. It is a strict functional language with object-
oriented extensions and limited support for higher-order functions. Additionally,
it has a destructive match statement to model heap deallocation, and it uses a
freelist-based heap model that is implemented on top of the JVM’s heap model.
Most importantly, it is endowed with an inference algorithmfor heap-space con-
sumption [14], based on this internal freelist heap model. This inference can
derive linear upper bounds for Camelot programs fulfilling certain linearity con-
straints. Based on this inference, the compiler can also generate a certificate for
bounded heap consumption, and it emits a statement in the Grail program logic,
expressing this bound for the overall program.

As an example let us examine a tail-recursive and a genuinelyrecursive Camelot
program implementing the factorial function, shown in Figure 14.2. The Java
Bytecode corresponding to the tail-recursive Camelot program is given in the first
column of Figure 14.3. Recall that many JVM commands refer tothe operand
stack. If we explicitly denote the items on this stack by$0, $1, $2,. . . , starting
from the top, then we obtain a beautified bytecode of the tail-recursive version
given in the right column of Figure 14.3. In Grail we take thisone step further
by removing the stack altogether and allowing arithmetic operations on arbitrary
variables. Moreover, we use a functional notation for jumpsand local variables
as exemplified by the code in the left column of Figure 14.4. Incontrast, the
genuinely recursive version uses JVM method invocation in the recursive call.

With this functional notation of Grail it is possible to develop a program logic
that is significantly simpler compared to other JVM-level logics such as [7]. How-
ever, in our work we do not tackle issues such as multi-threading nor do we aim
to cover a full high-level language such as Java. We rather focus on the automatic
generation of resource certificates.

Meta Logic: Isabelle/HOL In order to realise our infrastructure, we have to
select and use a logical framework in the implementation of the hierarchy of pro-
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static int fac(int);
Code:
0: iconst_1
1: istore_1
2: iload_0
3: iconst_1
4: if_icmplt 18
7: iload_1
8: iload_0
9: imul
10: istore_1
11: iload_0
12: iconst_1
13: isub
14: istore_0
15: goto 2
18: iload_1
19: ireturn

static int fac(int);
Code:

0: $0 = 1
1: b = $0
2: $0 = n
3: $1 = 1
4: if ($0<$1) then 18 else 5
5: $0 = b
8: $1 = n
9: $0 = $0 * $1
10: b = $0
11: $0 = n
12: $1 = 1
13: $0 = $0 - $1
14: n = $0
15: goto 2
18: $0 = b
19: ireturn $0

FIGURE 14.3. Java bytecode in ordinary (left) and beautified(right) form

gram logics. Here we have chosen a very powerful system, Isabelle/HOL, and
to definitionally realise the program logic as an inductive definition in the meta
logic. To avoid the specification of a separate assertion language, we use a shal-
low embedding for assertions, which are simply meta-logical predicates over the
components of the operational semantics. This simplified approach comes at the
expense of an increased trusted code base, since we now have to use an entire
instance of Isabelle/HOL in the certificate validation phase, as we will see be-
low. However, we found this choice to be adequate for a prototype system in a
scenario of global computing with fairly powerful compute nodes. This choice
also enables us to use a very succinct representation of certificates as fragments
of Isabelle proof scripts. Even without any semantic compression we achieve a
certificate size of about 22-32% of the code size, close to thecommonly quoted
20% as an acceptable size for a certificate.

14.4.2 Software Infrastructure

The overall structure of the software infrastructure is depicted in Figure 14.5 and
is an instance of a general PCC infrastructure [19] with a code producer (left
hand side) and a code consumer (right hand side). The main components on the
producer side are acertifying compiler, which translates high-level Camelot pro-
grams into the Grail intermediate code and additionally generates a certificate of
its heap consumption. The latter is formalised as a lemma in the heap space logic
for the Grail language [8]. The Grail code is processed by an assembler, the Grail
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method static int fac (int n) =
let

val b = 1
fun f(int n, int b) =

if n<1 then b
else f_else(n,b)

fun f_else(int n, int b) =
let

val b = mul b n
val n = sub n 1

in
f(n,b)

end
in

f(n,b)
end

method static int fac (int n) =
let
fun f_else(n) =
let

val n’ = sub n 1
val n’ =

invokestatic <Fac Fac.fac(int)>(n’)
in mul n n’
end

in
if n<1 then 1

else f_else(n)
end

FIGURE 14.4. Tail-recursive (left) and recursive (right) Grail code of factorial

de-functionaliser (gdf), to generate JVM bytecode. This bytecode is transmitted
together with the Isabelle proof script as the certificate ofits heap consumption
to the code consumer. On the consumer side, the Grail code is retrieved via a
disassembler, the Grail functionaliser (gf). Then Isabelle/HOL is used in batch
mode to automatically check that the resource property expressed in the attached
certificate is indeed fulfilled for this program. Once this has been confirmed the
code can be executed on the consumer side.

It should also be noted that the current infrastructure doesnot represent a
closed system, in which all mobile code has to be compiled with the same com-
piler. While the preferred way of generating a code/certificate pair is to write
the program in Camelot and have the compiler automatically produce a certifi-
cate, it is also possible to use another high-level languagesuch as Java or Scheme
that compiles into JVM bytecode, and to then manually generate a proof for the
desired resource property. Since the logic has been formalised in Isabelle/HOL,
the entire development infrastructure for this prover is available in generating the
certificates. As a mixture of both scenarios, it is also possible to write the top
level program in Camelot, and call foreign language code from Camelot. This is
particularly useful for accessing Java library functions,e.g. for GUI parts of the
code. In [21] an extension of Camelot with object-oriented features is described.
These extensions have been used in implementing a directorylookup application
to be executed on a PDA, based on the MIDP standard for small devices, which
provides a restricted set of Java libraries and is partiallybased on Sun’s KVM.
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FIGURE 14.5. PCC infrastructure for MRG

14.5 RESULTS

The most visible result of the project is a complete working infrastructure for gen-
erating and checking certificates describing the resource behaviour of programs
written in a high-level functional programming language. Although the nature
of the project was foundational, we emphasised from the start the importance of
producing prototypes for the components of the PCC infrastructure — partly as
a testbed for experimentation, but also as an on-line test ofour techniques in a
realistic, distributed setting.

The main novel techniques in the development of the infrastructure are our
multi-layered logics approachfor providing reasoning support tuned to, but not re-
stricted to, the automatic verification of resource properties, and the use oftactic-
based certificatesin order to reduce the size of the certificate, albeit at the cost
of increasing the TCB size. However, since we have established soundness of all
logics in the prover, of these only the operational semantics needs to be trusted
and as validation engine the prover could be replaced by a proof checker with
support for a subset of the proof scripting language.

More specifically we have produced the following:

• A completely formalised virtual machine and cost model[9] for a JVM-like
language. We have used Isabelle/HOL as the theorem proving platform for
this formalisation and for encoding the logics.
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• A resource aware program logic[2, 3] for the bytecode language of the above
virtual machine.

• A specialised logic for heap consumption[8] that is built on top of the program
logic.

• A certifying compilerfor the strict, first-order functional, object-oriented lan-
guage Camelot [18], integrated into a prototype PCC infrastructure.

• Advanced reasoning principles[14, 17] for resources, based on high-level type
systems.

Our particular conclusions on the design of a PCC infrastructure are as follows:

• For automatic certificate generation it is crucial to make use of high-level
structural information and to propagate this information down to the program
logic. In our design we have realised this as several layers of logics, with the
heap logic being tailored to the high-level type-system used to infer informa-
tion on heap space consumption. In particular, we deliberately depart from the
standard approach of splitting certificate validation intoverification condition
generation and simplification. In our experience, the verification conditions
even for simple properties become too complex to be automatically solved by
a proof assistant. In contrast, by drawing on information from the high level
type inference, we can perform simplifications “on the fly” and thus can keep
proofs more manageable.

• The program logic serves as a common language in which to phrase program
properties. Thus, program logics over low-level languagescan be seen as the
“assembler code” for proofs of program properties and as thetarget language
for a compiler that realises high-level type systems to express such properties.

• Encoding the program logic in a proof assistant is not only useful for devel-
oping the logic and enforcing formal rigour; it can also serve as an immediate
platform for realising the required software infrastructure. While in terms of
the size of the TCB and interoperability with other systems amore general for-
mat of certificates as proof objects would be favourable, a direct embedding
into a proof assistant also yields certificates of small size.

• We found the VDM-style version of the program logic (for partial correct-
ness), with judgements of the formΓ ⊲ e : A, significantly easier to use than
an earlier Hoare-style version we had developed, with judgements of the form
Γ⊲{A} e{A′}. This confirms earlier observations on how the need forauxil-
iary variablesin a Hoare setting complicates its practical usability [16,19].

New projects that build on the MRG infrastructure are:

• MOBIUS, an Integrated Project of the FET-GC2 proactive initiative
(http://mobius.inria.fr/), deals with innovative trust management for
global computing, where the resources can be as diverse as network access
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and the secure flow of information. In contrast to MRG, this project focuses
on Java as a high-level language, and thus will bring the results of our research
to a broader community.

• EmBounded, a FET-Open STREP project (http://www.embounded.org/),
which aims to provide resource bounded computation for embedded systems,
using Hume as the high-level programming language. Here we can draw on
our amortised costs approach for developing inferences on resource consump-
tion (heap, stack and time) for Hume.

• ReQueST, an EPSRC-funded project (https://wiki.inf.ed.ac.uk/ReQueST),
aims to develop methods, invent algorithms, and engineer software to equip
each request for a Grid service with an irrefutable and accurate certificate
which specifies the quantity and type of resources which willbe consumed if
the request is serviced.

Since the end of MRG, several extensions to the infrastructure as described in
this paper have been developed. Related to Objective 4 of theproject, on ways of
reducing the size of the certificates, we are now studying theuse of two forms of
resource policies to arrive at a more flexible system withoutthe need of additional
communication. In this setup, a guaranteed resource policyis sent together with
the certificate. On the consumer side validation of a certificate now involves two
steps: a check that the guaranteed resource policy implies the target resource pol-
icy on the consumer and validation of the certificate w.r.t. the guaranteed resource
policy. Typically, the guaranteed resource policy will contain information about
the high-level program, such as the space consumption depending on the input
size, and local side-conditions on the consumer are captured in the target resource
policy. This approach is discussed in more detail in [6].

Overall we conclude that the project has been very successful in developing
the foundations for a novel PCC approach for resources and inproducing a pro-
totype infrastructure demonstrating the principles. Finally, visit our project web
pages, where you can find project summaries, published papers, and a tutorial [15]
with on-line exercises:http://groups.inf.ed.ac.uk/mrg/. An on-line demo
is directly available at:http://projects.tcs.ifi.lmu.de/mrg/pcc/.
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