2,002 research outputs found

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    A technical perspective on integrating artificial intelligence to solid-state welding

    Get PDF
    The implementation of artificial intelligence (AI) techniques in industrial applications, especially solid-state welding (SSW), has transformed modeling, optimization, forecasting, and controlling sophisticated systems. SSW is a better method for joining due to the least melting of material thus maintaining Nugget region integrity. This study investigates thoroughly how AI-based predictions have impacted SSW by looking at methods like Artificial Neural Networks (ANN), Fuzzy Logic (FL), Machine Learning (ML), Meta-Heuristic Algorithms, and Hybrid Methods (HM) as applied to Friction Stir Welding (FSW), Ultrasonic Welding (UW), and Diffusion Bonding (DB). Studies on Diffusion Bonding reveal that ANN and Generic Algorithms can predict outcomes with an accuracy range of 85 – 99%, while Response Surface Methodology such as Optimization Strategy can achieve up to 95 percent confidence levels in improving bonding strength and optimizing process parameters. Using ANNs for FSW gives an average percentage error of about 95%, but using metaheuristics refined it at an incrementally improved accuracy rate of about 2%. In UW, ANN, Hybrid ANN, and ML models predict output parameters with accuracy levels ranging from 85 to 96%. Integrating AI techniques with optimization algorithms, for instance, GA and Particle Swarm Optimization (PSO) significantly improves accuracy, enhancing parameter prediction and optimizing UW processes. ANN’s high accuracy of nearly 95% compared to other techniques like FL and ML in predicting welding parameters. HM exhibits superior precision, showcasing their potential to enhance weld quality, minimize trial welds, and reduce costs and time. Various emerging hybrid methods offer better prediction accuracy

    Modelling of Metallurgical Processes Using Chaos Theory and Hybrid Computational Intelligence

    Get PDF
    The main objective of the present work is to develop a framework for modelling and controlling of a real world multi-input and multi-output (MIMO) continuously drifting metallurgical process, which is shown to be a complex system. A small change in the properties of the charge composition may lead to entirely different outcome of the process. The newly emerging paradigm of soft-computing or Hybrid Computational Intelligence Systems approach which is based on neural networks, fuzzy sets, genetic algorithms and chaos theory has been applied to tackle this problem In this framework first a feed-forward neuro-model has been developed based on the data collected from a working Submerged Arc Furnace (SAF). Then the process is analysed for the existence of the chaos with the chaos theory (calculating indices like embedding dimension, Lyapunov exponent etc). After that an effort is made to evolve a fuzzy logic controller for the dynamical process using combination of genetic algorithms and the neural networks based forward model to predict the system’s behaviour or conditions in advance and to further suggest modifications to be made to achieve the desired results

    Intelligent machining methods for Ti6Al4V: a review

    Get PDF
    Digital manufacturing is a necessity to establishing a roadmap for the future manufacturing systems projected for the fourth industrial revolution. Intelligent features such as behavior prediction, decision- making abilities, and failure detection can be integrated into machining systems with computational methods and intelligent algorithms. This review reports on techniques for Ti6Al4V machining process modeling, among them numerical modeling with finite element method (FEM) and artificial intelligence- based models using artificial neural networks (ANN) and fuzzy logic (FL). These methods are intrinsically intelligent due to their ability to predict machining response variables. In the context of this review, digital image processing (DIP) emerges as a technique to analyze and quantify the machining response (digitization) in the real machining process, often used to validate and (or) introduce data in the modeling techniques enumerated above. The widespread use of these techniques in the future will be crucial for the development of the forthcoming machining systems as they provide data about the machining process, allow its interpretation and quantification in terms of useful information for process modelling and optimization, which will create machining systems less dependent on direct human intervention.publishe

    Smart Sensor Monitoring in Machining of Difficult-to-cut Materials

    Get PDF
    The research activities presented in this thesis are focused on the development of smart sensor monitoring procedures applied to diverse machining processes with particular reference to the machining of difficult-to-cut materials. This work will describe the whole smart sensor monitoring procedure starting from the configuration of the multiple sensor monitoring system for each specific application and proceeding with the methodologies for sensor signal detection and analysis aimed at the extraction of signal features to feed to intelligent decision-making systems based on artificial neural networks. The final aim is to perform tool condition monitoring in advanced machining processes in terms of tool wear diagnosis and forecast, in the perspective of zero defect manufacturing and green technologies. The work has been addressed within the framework of the national MIUR PON research project CAPRI, acronym for “Carrello per atterraggio con attuazione intelligente” (Landing Gear with Intelligent Actuation), and the research project STEP FAR, acronym for “Sviluppo di materiali e Tecnologie Ecocompatibili, di Processi di Foratura, taglio e di Assemblaggio Robotizzato” (Development of eco-compatible materials and technologies for robotised drilling and assembly processes). Both projects are sponsored by DAC, the Campania Technological Aerospace District, and involve two aerospace industries, Magnaghi Aeronautica S.p.A. and Leonardo S.p.A., respectively. Due to the industrial framework in which the projects were developed and taking advantage of the support from the industrial partners, the project activities have been carried out with the aim to contribute to the scientific research in the field of machining process monitoring as well as to promote the industrial applicability of the results. The thesis was structured in order to illustrate all the methodologies, the experimental tests and the results obtained from the research activities. It begins with an introduction to “Sensor monitoring of machining processes” (Chapter 2) with particular attention to the main sensor monitoring applications and the types of sensors which are employed in machining. The key methods for advanced sensor signal processing, including the implementation of sensor fusion technology, are discussed in details as they represent the basic input for cognitive decision-making systems construction. The chapter finally presents a brief discussion on cloud-based manufacturing which will represent one of the future developments of this research work. Chapters 3 and 4 illustrate the case studies of machining process sensor monitoring investigated in the research work. Within the CAPRI project, the feasibility of the dry turning process of Ti6Al4V alloy (Chapter 3) was studied with particular attention to the optimization of the machining parameters avoiding the use of coolant fluids. Since very rapid tool wear is experienced during dry machining of Titanium alloys, the multiple sensor monitoring system was used in order to develop a methodology based on a smart system for on line tool wear detection in terms of maximum flank wear land. Within the STEP FAR project, the drilling process of carbon fibre reinforced (CFRP) composite materials was studied using diverse experimental set-ups. Regarding the tools, three different types of drill bit were employed, including traditional as well as innovative geometry ones. Concerning the investigated materials, two different types of stack configurations were employed, namely CFRP/CFRP stacks and hybrid Al/CFRP stacks. Consequently, the machining parameters for each experimental campaign were varied, and also the methods for signal analysis were changed to verify the performance of the different methodologies. Finally, for each case different neural network configurations were investigated for cognitive-based decision making. First of all, the applicability of the system was tested in order to perform tool wear diagnosis and forecast. Then, the discussion proceeds with a further aim of the research work, which is the reduction of the number of selected sensor signal features, in order to improve the performance of the cognitive decision-making system, simplify modelling and facilitate the implementation of these methodologies in a cloud manufacturing approach to tool condition monitoring. Sensor fusion methodologies were applied to the extracted and selected sensor signal features in the perspective of feature reduction with the purpose to implement these procedures for big data analytics within the Industry 4.0 framework. In conclusion, the positive impact of the proposed tool condition monitoring methodologies based on multiple sensor signal acquisition and processing is illustrated, with particular reference to the reliable assessment of tool state in order to avoid too early or too late cutting tool substitution that negatively affect machining time and cost

    Tribological Properties of Polymer Composites Using Non Traditional Optimization Technique: a review

    Get PDF
    Specific wear rate of composite materials plays a significant role in industry. The processes to measure it are both time and cost consuming. It is essential to suggest a modeling method to predict and analyze the effectiveness of parameters of specific wear rate. Nowadays, computational methods such as Grey Relational Analysis (GRA), Artificial Neural Network (ANN), Fuzzy Inference System (FIS) and adaptive neuro-fuzzy inference system (ANFIS) are mainly considered as applicable tools from modeling point of view. The objective of using ANN, ANFIS is also to apply this tool for systematic parameter studies in the optimum design of composite materials for specific applications. In the present review, various principles of the neural network approach for predicting certain properties of polymer composite materials are discussed. The aim of this review is to promote more consideration of using GRA, ANN and ANFIS in the field of polymer composite property prediction and design

    Machine Learning for High-entropy Alloys: Progress, Challenges and Opportunities

    Full text link
    High-entropy alloys (HEAs) have attracted extensive interest due to their exceptional mechanical properties and the vast compositional space for new HEAs. However, understanding their novel physical mechanisms and then using these mechanisms to design new HEAs are confronted with their high-dimensional chemical complexity, which presents unique challenges to (i) the theoretical modeling that needs accurate atomic interactions for atomistic simulations and (ii) constructing reliable macro-scale models for high-throughput screening of vast amounts of candidate alloys. Machine learning (ML) sheds light on these problems with its capability to represent extremely complex relations. This review highlights the success and promising future of utilizing ML to overcome these challenges. We first introduce the basics of ML algorithms and application scenarios. We then summarize the state-of-the-art ML models describing atomic interactions and atomistic simulations of thermodynamic and mechanical properties. Special attention is paid to phase predictions, planar-defect calculations, and plastic deformation simulations. Next, we review ML models for macro-scale properties, such as lattice structures, phase formations, and mechanical properties. Examples of machine-learned phase-formation rules and order parameters are used to illustrate the workflow. Finally, we discuss the remaining challenges and present an outlook of research directions, including uncertainty quantification and ML-guided inverse materials design.Comment: This review paper has been accepted by Progress in Materials Scienc

    Online Tool Condition Monitoring Based on Parsimonious Ensemble+

    Full text link
    Accurate diagnosis of tool wear in metal turning process remains an open challenge for both scientists and industrial practitioners because of inhomogeneities in workpiece material, nonstationary machining settings to suit production requirements, and nonlinear relations between measured variables and tool wear. Common methodologies for tool condition monitoring still rely on batch approaches which cannot cope with a fast sampling rate of metal cutting process. Furthermore they require a retraining process to be completed from scratch when dealing with a new set of machining parameters. This paper presents an online tool condition monitoring approach based on Parsimonious Ensemble+, pENsemble+. The unique feature of pENsemble+ lies in its highly flexible principle where both ensemble structure and base-classifier structure can automatically grow and shrink on the fly based on the characteristics of data streams. Moreover, the online feature selection scenario is integrated to actively sample relevant input attributes. The paper presents advancement of a newly developed ensemble learning algorithm, pENsemble+, where online active learning scenario is incorporated to reduce operator labelling effort. The ensemble merging scenario is proposed which allows reduction of ensemble complexity while retaining its diversity. Experimental studies utilising real-world manufacturing data streams and comparisons with well known algorithms were carried out. Furthermore, the efficacy of pENsemble was examined using benchmark concept drift data streams. It has been found that pENsemble+ incurs low structural complexity and results in a significant reduction of operator labelling effort.Comment: this paper has been published by IEEE Transactions on Cybernetic

    Uncertainty and Interpretability Studies in Soft Computing with an Application to Complex Manufacturing Systems

    Get PDF
    In systems modelling and control theory, the benefits of applying neural networks have been extensively studied. Particularly in manufacturing processes, such as the prediction of mechanical properties of heat treated steels. However, modern industrial processes usually involve large amounts of data and a range of non-linear effects and interactions that might hinder their model interpretation. For example, in steel manufacturing the understanding of complex mechanisms that lead to the mechanical properties which are generated by the heat treatment process is vital. This knowledge is not available via numerical models, therefore an experienced metallurgist estimates the model parameters to obtain the required properties. This human knowledge and perception sometimes can be imprecise leading to a kind of cognitive uncertainty such as vagueness and ambiguity when making decisions. In system classification, this may be translated into a system deficiency - for example, small input changes in system attributes may result in a sudden and inappropriate change for class assignation. In order to address this issue, practitioners and researches have developed systems that are functional equivalent to fuzzy systems and neural networks. Such systems provide a morphology that mimics the human ability of reasoning via the qualitative aspects of fuzzy information rather by its quantitative analysis. Furthermore, these models are able to learn from data sets and to describe the associated interactions and non-linearities in the data. However, in a like-manner to neural networks, a neural fuzzy system may suffer from a lost of interpretability and transparency when making decisions. This is mainly due to the application of adaptive approaches for its parameter identification. Since the RBF-NN can be treated as a fuzzy inference engine, this thesis presents several methodologies that quantify different types of uncertainty and its influence on the model interpretability and transparency of the RBF-NN during its parameter identification. Particularly, three kind of uncertainty sources in relation to the RBF-NN are studied, namely: entropy, fuzziness and ambiguity. First, a methodology based on Granular Computing (GrC), neutrosophic sets and the RBF-NN is presented. The objective of this methodology is to quantify the hesitation produced during the granular compression at the low level of interpretability of the RBF-NN via the use of neutrosophic sets. This study also aims to enhance the disitnguishability and hence the transparency of the initial fuzzy partition. The effectiveness of the proposed methodology is tested against a real case study for the prediction of the properties of heat-treated steels. Secondly, a new Interval Type-2 Radial Basis Function Neural Network (IT2-RBF-NN) is introduced as a new modelling framework. The IT2-RBF-NN takes advantage of the functional equivalence between FLSs of type-1 and the RBF-NN so as to construct an Interval Type-2 Fuzzy Logic System (IT2-FLS) that is able to deal with linguistic uncertainty and perceptions in the RBF-NN rule base. This gave raise to different combinations when optimising the IT2-RBF-NN parameters. Finally, a twofold study for uncertainty assessment at the high-level of interpretability of the RBF-NN is provided. On the one hand, the first study proposes a new methodology to quantify the a) fuzziness and the b) ambiguity at each RU, and during the formation of the rule base via the use of neutrosophic sets theory. The aim of this methodology is to calculate the associated fuzziness of each rule and then the ambiguity related to each normalised consequence of the fuzzy rules that result from the overlapping and to the choice with one-to-many decisions respectively. On the other hand, a second study proposes a new methodology to quantify the entropy and the fuzziness that come out from the redundancy phenomenon during the parameter identification. To conclude this work, the experimental results obtained through the application of the proposed methodologies for modelling two well-known benchmark data sets and for the prediction of mechanical properties of heat-treated steels conducted to publication of three articles in two peer-reviewed journals and one international conference
    corecore