356 research outputs found

    Artificial intelligence in the cyber domain: Offense and defense

    Get PDF
    Artificial intelligence techniques have grown rapidly in recent years, and their applications in practice can be seen in many fields, ranging from facial recognition to image analysis. In the cybersecurity domain, AI-based techniques can provide better cyber defense tools and help adversaries improve methods of attack. However, malicious actors are aware of the new prospects too and will probably attempt to use them for nefarious purposes. This survey paper aims at providing an overview of how artificial intelligence can be used in the context of cybersecurity in both offense and defense.Web of Science123art. no. 41

    Novel Computationally Intelligent Machine Learning Algorithms for Data Mining and Knowledge Discovery

    Get PDF
    This thesis addresses three major issues in data mining regarding feature subset selection in large dimensionality domains, plausible reconstruction of incomplete data in cross-sectional applications, and forecasting univariate time series. For the automated selection of an optimal subset of features in real time, we present an improved hybrid algorithm: SAGA. SAGA combines the ability to avoid being trapped in local minima of Simulated Annealing with the very high convergence rate of the crossover operator of Genetic Algorithms, the strong local search ability of greedy algorithms and the high computational efficiency of generalized regression neural networks (GRNN). For imputing missing values and forecasting univariate time series, we propose a homogeneous neural network ensemble. The proposed ensemble consists of a committee of Generalized Regression Neural Networks (GRNNs) trained on different subsets of features generated by SAGA and the predictions of base classifiers are combined by a fusion rule. This approach makes it possible to discover all important interrelations between the values of the target variable and the input features. The proposed ensemble scheme has two innovative features which make it stand out amongst ensemble learning algorithms: (1) the ensemble makeup is optimized automatically by SAGA; and (2) GRNN is used for both base classifiers and the top level combiner classifier. Because of GRNN, the proposed ensemble is a dynamic weighting scheme. This is in contrast to the existing ensemble approaches which belong to the simple voting and static weighting strategy. The basic idea of the dynamic weighting procedure is to give a higher reliability weight to those scenarios that are similar to the new ones. The simulation results demonstrate the validity of the proposed ensemble model

    EPRENNID: An evolutionary prototype reduction based ensemble for nearest neighbor classification of imbalanced data

    Get PDF
    Classification problems with an imbalanced class distribution have received an increased amount of attention within the machine learning community over the last decade. They are encountered in a growing number of real-world situations and pose a challenge to standard machine learning techniques. We propose a new hybrid method specifically tailored to handle class imbalance, called EPRENNID. It performs an evolutionary prototype reduction focused on providing diverse solutions to prevent the method from overfitting the training set. It also allows us to explicitly reduce the underrepresented class, which the most common preprocessing solutions handling class imbalance usually protect. As part of the experimental study, we show that the proposed prototype reduction method outperforms state-of-the-art preprocessing techniques. The preprocessing step yields multiple prototype sets that are later used in an ensemble, performing a weighted voting scheme with the nearest neighbor classifier. EPRENNID is experimentally shown to significantly outperform previous proposals

    Energy and Performance: Management of Virtual Machines: Provisioning, Placement, and Consolidation

    Get PDF
    Cloud computing is a new computing paradigm that offers scalable storage and compute resources to users on demand through Internet. Public cloud providers operate large-scale data centers around the world to handle a large number of users request. However, data centers consume an immense amount of electrical energy that can lead to high operating costs and carbon emissions. One of the most common and effective method in order to reduce energy consumption is Dynamic Virtual Machines Consolidation (DVMC) enabled by the virtualization technology. DVMC dynamically consolidates Virtual Machines (VMs) into the minimum number of active servers and then switches the idle servers into a power-saving mode to save energy. However, maintaining the desired level of Quality-of-Service (QoS) between data centers and their users is critical for satisfying users’ expectations concerning performance. Therefore, the main challenge is to minimize the data center energy consumption while maintaining the required QoS. This thesis address this challenge by presenting novel DVMC approaches to reduce the energy consumption of data centers and improve resource utilization under workload independent quality of service constraints. These approaches can be divided into three main categories: heuristic, meta-heuristic and machine learning. Our first contribution is a heuristic algorithm for solving the DVMC problem. The algorithm uses a linear regression-based prediction model to detect over-loaded servers based on the historical utilization data. Then it migrates some VMs from the over-loaded servers to avoid further performance degradations. Moreover, our algorithm consolidates VMs on fewer number of server for energy saving. The second and third contributions are two novel DVMC algorithms based on the Reinforcement Learning (RL) approach. RL is interesting for highly adaptive and autonomous management in dynamic environments. For this reason, we use RL to solve two main sub-problems in VM consolidation. The first sub-problem is the server power mode detection (sleep or active). The second sub-problem is to find an effective solution for server status detection (overloaded or non-overloaded). The fourth contribution of this thesis is an online optimization meta-heuristic algorithm called Ant Colony System-based Placement Optimization (ACS-PO). ACS is a suitable approach for VM consolidation due to the ease of parallelization, that it is close to the optimal solution, and its polynomial worst-case time complexity. The simulation results show that ACS-PO provides substantial improvement over other heuristic algorithms in reducing energy consumption, the number of VM migrations, and performance degradations. Our fifth contribution is a Hierarchical VM management (HiVM) architecture based on a three-tier data center topology which is very common use in data centers. HiVM has the ability to scale across many thousands of servers with energy efficiency. Our sixth contribution is a Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. UP-BFD can avoid SLA violations and needless migrations by taking into consideration the current and predicted future resource requirements for allocation, consolidation, and placement of VMs. Finally, the seventh and the last contribution is a novel Self-Adaptive Resource Management System (SARMS) in data centers. To achieve scalability, SARMS uses a hierarchical architecture that is partially inspired from HiVM. Moreover, SARMS provides self-adaptive ability for resource management by dynamically adjusting the utilization thresholds for each server in data centers.Siirretty Doriast

    Knowledge management overview of feature selection problem in high-dimensional financial data: Cooperative co-evolution and Map Reduce perspectives

    Get PDF
    The term big data characterizes the massive amounts of data generation by the advanced technologies in different domains using 4Vs volume, velocity, variety, and veracity-to indicate the amount of data that can only be processed via computationally intensive analysis, the speed of their creation, the different types of data, and their accuracy. High-dimensional financial data, such as time-series and space-Time data, contain a large number of features (variables) while having a small number of samples, which are used to measure various real-Time business situations for financial organizations. Such datasets are normally noisy, and complex correlations may exist between their features, and many domains, including financial, lack the al analytic tools to mine the data for knowledge discovery because of the high-dimensionality. Feature selection is an optimization problem to find a minimal subset of relevant features that maximizes the classification accuracy and reduces the computations. Traditional statistical-based feature selection approaches are not adequate to deal with the curse of dimensionality associated with big data. Cooperative co-evolution, a meta-heuristic algorithm and a divide-And-conquer approach, decomposes high-dimensional problems into smaller sub-problems. Further, MapReduce, a programming model, offers a ready-To-use distributed, scalable, and fault-Tolerant infrastructure for parallelizing the developed algorithm. This article presents a knowledge management overview of evolutionary feature selection approaches, state-of-The-Art cooperative co-evolution and MapReduce-based feature selection techniques, and future research directions

    Intelligent instance selection techniques for support vector machine speed optimization with application to e-fraud detection.

    Get PDF
    Doctor of Philosophy in Computer Science. University of KwaZulu-Natal, Durban 2017.Decision-making is a very important aspect of many businesses. There are grievous penalties involved in wrong decisions, including financial loss, damage of company reputation and reduction in company productivity. Hence, it is of dire importance that managers make the right decisions. Machine Learning (ML) simplifies the process of decision making: it helps to discover useful patterns from historical data, which can be used for meaningful decision-making. The ability to make strategic and meaningful decisions is dependent on the reliability of data. Currently, many organizations are overwhelmed with vast amounts of data, and unfortunately, ML algorithms cannot effectively handle large datasets. This thesis therefore proposes seven filter-based and five wrapper-based intelligent instance selection techniques for optimizing the speed and predictive accuracy of ML algorithms, with a particular focus on Support Vector Machine (SVM). Also, this thesis proposes a novel fitness function for instance selection. The primary difference between the filter-based and wrapper-based technique is in their method of selection. The filter-based techniques utilizes the proposed fitness function for selection, while the wrapper-based technique utilizes SVM algorithm for selection. The proposed techniques are obtained by fusing SVM algorithm with the following Nature Inspired algorithms: flower pollination algorithm, social spider algorithm, firefly algorithm, cuckoo search algorithm and bat algorithm. Also, two of the filter-based techniques are boundary detection algorithms, inspired by edge detection in image processing and edge selection in ant colony optimization. Two different sets of experiments were performed in order to evaluate the performance of the proposed techniques (wrapper-based and filter-based). All experiments were performed on four datasets containing three popular e-fraud types: credit card fraud, email spam and phishing email. In addition, experiments were performed on 20 datasets provided by the well-known UCI data repository. The results show that the proposed filter-based techniques excellently improved SVM training speed in 100% (24 out of 24) of the datasets used for evaluation, without significantly affecting SVM classification quality. Moreover, experimental results also show that the wrapper-based techniques consistently improved SVM predictive accuracy in 78% (18 out of 23) of the datasets used for evaluation and simultaneously improved SVM training speed in all cases. Furthermore, two different statistical tests were conducted to further validate the credibility of the results: Freidman’s test and Holm’s post-hoc test. The statistical test results reveal that the proposed filter-based and wrapper-based techniques are significantly faster, compared to standard SVM and some existing instance selection techniques, in all cases. Moreover, statistical test results also reveal that Cuckoo Search Instance Selection Algorithm outperform all the proposed techniques, in terms of speed. Overall, the proposed techniques have proven to be fast and accurate ML-based e-fraud detection techniques, with improved training speed, predictive accuracy and storage reduction. In real life application, such as video surveillance and intrusion detection systems, that require a classifier to be trained very quickly for speedy classification of new target concepts, the filter-based techniques provide the best solutions; while the wrapper-based techniques are better suited for applications, such as email filters, that are very sensitive to slight changes in predictive accuracy

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Intrusion detection by machine learning = Behatolás detektálás gépi tanulás által

    Get PDF
    Since the early days of information technology, there have been many stakeholders who used the technological capabilities for their own benefit, be it legal operations, or illegal access to computational assets and sensitive information. Every year, businesses invest large amounts of effort into upgrading their IT infrastructure, yet, even today, they are unprepared to protect their most valuable assets: data and knowledge. This lack of protection was the main reason for the creation of this dissertation. During this study, intrusion detection, a field of information security, is evaluated through the use of several machine learning models performing signature and hybrid detection. This is a challenging field, mainly due to the high velocity and imbalanced nature of network traffic. To construct machine learning models capable of intrusion detection, the applied methodologies were the CRISP-DM process model designed to help data scientists with the planning, creation and integration of machine learning models into a business information infrastructure, and design science research interested in answering research questions with information technology artefacts. The two methodologies have a lot in common, which is further elaborated in the study. The goals of this dissertation were two-fold: first, to create an intrusion detector that could provide a high level of intrusion detection performance measured using accuracy and recall and second, to identify potential techniques that can increase intrusion detection performance. Out of the designed models, a hybrid autoencoder + stacking neural network model managed to achieve detection performance comparable to the best models that appeared in the related literature, with good detections on minority classes. To achieve this result, the techniques identified were synthetic sampling, advanced hyperparameter optimization, model ensembles and autoencoder networks. In addition, the dissertation set up a soft hierarchy among the different detection techniques in terms of performance and provides a brief outlook on potential future practical applications of network intrusion detection models as well
    corecore