1,814 research outputs found

    Event-driven grammars: Relating abstract and concrete levels of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10270-007-0051-2In this work we introduce event-driven grammars, a kind of graph grammars that are especially suited for visual modelling environments generated by meta-modelling. Rules in these grammars may be triggered by user actions (such as creating, editing or connecting elements) and in their turn may trigger other user-interface events. Their combination with triple graph transformation systems allows constructing and checking the consistency of the abstract syntax graph while the user is building the concrete syntax model, as well as managing the layout of the concrete syntax representation. As an example of these concepts, we show the definition of a modelling environment for UML sequence diagrams. A discussion is also presented of methodological aspects for the generation of environments for visual languages with multiple views, its connection with triple graph grammars, the formalization of the latter in the double pushout approach and its extension with an inheritance concept.This work has been partially sponsored by the Spanish Ministry of Education and Science with projects MOSAIC (TSI2005-08225-C07-06) and MODUWEB (TIN 2006-09678)

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Graphical Encoding of a Spatial Logic for the pi-Calculus

    Get PDF
    This paper extends our graph-based approach to the verification of spatial properties of π-calculus specifications. The mechanism is based on an encoding for mobile calculi where each process is mapped into a graph (with interfaces) such that the denotation is fully abstract with respect to the usual structural congruence, i.e., two processes are equivalent exactly when the corresponding encodings yield isomorphic graphs. Behavioral and structural properties of π-calculus processes expressed in a spatial logic can then be verified on the graphical encoding of a process rather than on its textual representation. In this paper we introduce a modal logic for graphs and define a translation of spatial formulae such that a process verifies a spatial formula exactly when its graphical representation verifies the translated modal graph formula

    EMorF - A tool for model transformations

    Get PDF
    In this paper, we present EMorF - a model transformation tool for EMF. EMorF supports the specification and execution of in-place model transformations as well as model-to-model transformations. The graphical though formal specification is based on (triple-) graph grammars, which are executed by an interpreter system. Inthis paper, we focus on the provided tool support for the development and execution of model transformations

    Multi-Domain Integration with MOF and extended Triple Graph Grammars

    Get PDF

    Towards a navigational logic for graphical structures

    Get PDF
    One of the main advantages of the Logic of Nested Conditions, defined by Habel and Pennemann, for reasoning about graphs, is its generality: this logic can be used in the framework of many classes of graphs and graphical structures. It is enough that the category of these structures satisfies certain basic conditions. In a previous paper [14], we extended this logic to be able to deal with graph properties including paths, but this extension was only defined for the category of untyped directed graphs. In addition it seemed difficult to talk about paths abstractly, that is, independently of the given category of graphical structures. In this paper we approach this problem. In particular, given an arbitrary category of graphical structures, we assume that for every object of this category there is an associated edge relation that can be used to define a path relation. Moreover, we consider that edges have some kind of labels and paths can be specified by associating them to a set of label sequences. Then, after the presentation of that general framework, we show how it can be applied to several classes of graphs. Moreover, we present a set of sound inference rules for reasoning in the logic.Peer ReviewedPostprint (author's final draft

    Towards a Step Semantics for Story-Driven Modelling

    Full text link
    Graph Transformation (GraTra) provides a formal, declarative means of specifying model transformation. In practice, GraTra rule applications are often programmed via an additional language with which the order of rule applications can be suitably controlled. Story-Driven Modelling (SDM) is a dialect of programmed GraTra, originally developed as part of the Fujaba CASE tool suite. Using an intuitive, UML-inspired visual syntax, SDM provides usual imperative control flow constructs such as sequences, conditionals and loops that are fairly simple, but whose interaction with individual GraTra rules is nonetheless non-trivial. In this paper, we present the first results of our ongoing work towards providing a formal step semantics for SDM, which focuses on the execution of an SDM specification.Comment: In Proceedings GaM 2016, arXiv:1612.0105

    Complex Attribute Manipulation in TGGs with Constraint-Based Programming Techniques

    Get PDF
    Model transformation plays a central role in Model-Driven Engineering (MDE) and providing bidirectional transformation languages is a current challenge with important applications.  Triple Graph Grammars (TGGs) are a formally founded,  bidirectional model transformation language shown by numerous case studies to be quite promising and successful.  Although TGGs provide adequate support for structural aspects via object  patterns in TGG rules, support for handling complex relationships between different attributes is still missing in current implementations.  For certain applications, such as bidirectional model-to-text transformations, being able to manipulate attributes via string manipulation or arithmetic operations in TGG rules is vital.  Our contribution in this paper is to formalize a TGG extension that provides a means for complex attribute manipulation in TGG rules.  Our extension is compatible with the existing TGG formalization, and retains the "single specification'' philosophy of TGGs
    corecore