
Graphical Encoding of a Spatial Logic
for the π-calculus?

Fabio Gadducci and Alberto Lluch Lafuente

Dipartimento di Informatica, Università di Pisa
largo Bruno Pontecorvo 3c, I-56127 Pisa, Italia
gadducci@di.unipi.it, lafuente@di.unipi.it

Abstract. This paper extends our approach to the verification of spa-
tial properties of π-calculus specifications. The mechanism is based on a
graphical encoding for mobile calculi where each process is mapped into
a graph (with interfaces) such that the denotation is fully abstract with
respect to the usual structural congruence, i.e., two processes are equiv-
alent exactly when the corresponding encodings yield the same graph.
Behavioral and structural properties of π-calculus processes expressed in
a spatial logic are verified on the graphical encoding of a process rather
than on its textual representation. For this purpose we introduce a modal
logic for graphs and define a faithful translation of spatial formulae such
that a process verifies a spatial formula exactly when its graphical rep-
resentation verifies the translated modal graph formula.

1 Introduction

Spatial logics are formalisms for expressing behavioral and topological properties
of system specifications, given as processes of a calculus. Besides the temporal
modalities of the Hennessy-Milner tradition, these logics include ingredients for
reasoning about the structural properties of a system. The connective 0 repre-
sents e.g. the (processes structurally congruent to the) empty system, and the
formula φ1|φ2 is satisfied by processes that can be decomposed into two par-
allel components, satisfying φ1 and φ2, respectively. Moreover, these logics are
equipped with mechanisms for reasoning about the names occurring in a system.

There are several approaches to the verification of spatial properties, on logics
either for process calculi (see e.g. [4–6] and the references therein) or for other
data structures such as heaps [22], trees [8] and graphs [7]. In this paper we
present an approach [16] to the verification of spatial formulae [4] for π-calculus
specifications, based on a graphical encoding for nominal calculi [15]. Even if
a few articles have been already proposed on the verification of graphically de-
scribed systems (see e.g [1, 21, 23]), to the best of our knowledge our approach
is the only one that deals with specification of spatial properties for processes
of nominal calculi, based on a graphical presentation. The approach was intro-
duced in previous works, first describing the graphical encoding of processes in
? Research partially supported by the EU FP6-IST IP 16004 SEnSOria (Software

Engineering for Service-Oriented Overlay Computers).

CORE Metadata, citation and similar papers at core.ac.uk

Provided by IMT Institutional Repository

https://core.ac.uk/display/12096133?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a nominal calculus [15] and then an algorithm to verify properties on such rep-
resentations [16]. The present paper elaborates in the latter work, removing the
restriction to finite processes and formulae and further proposing an encoding
of formulae in a spatial logic for processes into formulae in a modal graph logic.
Our encoding is sound and complete, i.e., a process verifies a spatial formula
exactly when its graphical representation verifies the translated formula.

The main novelty of this work is likely the modal graph logic we introduce.
Indeed, our first approximation to the approach was to obtain an encoding in an
existing graph logic. The approaches (e.g. [2, 12, 21]) we are aware of, however,
cannot properly model notions like freshness. We have thus devised a graph logic
equipped with a modal operator that captures the names of those items involved
in a graph transformation and that ensures that the new items to be fresh, i.e.,
different from any item in the formula and in the transformed graph.

Our paper provides a mechanism for specifying spatial formulae on the graph-
ical representation of processes. We believe that our approach offers novel in-
sights on the specification of spatial formulae, thanks especially to the link with
a logics for graphs; moreover, it offers further evidence of the adequacy of graph-
based formalisms for system design and specification; finally, it suggests a rich
and flexible formalism for expressing properties of graph transformation.

The structure of the paper is as follows. Section 2 summarizes the π-calculus
and the spatial logic for processes proposed in [4]. Sections 3 and 4 recalls the
main definitions concerning graphs with interfaces [9] and their rewritings. Sec-
tion 5 presents an encoding of π-calculus processes into graphs with interfaces,
streamlining the proposal already discussed in [15]. Section 6 illustrates a set of
graph transformation rules for simulating process reductions and assisting the
encoding. Section 7 defines our modal graph logic, while Section 8 proposes the
encoding of spatial formulae into graph formulae. The final section concludes the
paper and outlines future research avenues.

2 The π-calculus and a Spatial Logic

This section recalls the basics of one of the foremost calculi for specifying dis-
tributed systems, namely the π-calculus [18], and of a logic [4] for expressing
spatial properties of a system specified as a process of that calculus.

Definition 1 (processes). Let N be a set of names; let X be a set of process
variables; and let ∆ = {a(b), ab | a, b ∈ N} be the set of prefix operators. A
process P is a term generated by the syntax

P ::= 0 | (νa)P | P | P | δ.P | δ.x | recx.P

where a ∈ N , x ∈ X and δ ∈ ∆. We denote by P the set of closed processes,
i.e., such that each process variable x occurs inside the scope of a recx operator.

The standard definition for the set of free names of a process P , denoted by
fn(P), is assumed. Similarly for α-convertibility, with respect to the restriction

operators (νa)P and the input operators b(a).P : In both cases, the name a is
bound in P , and it can be freely α-converted.

Using the definition above, the behavior of a process P is described as a
relation over abstract processes, i.e., a relation obtained by closing a set of basic
reduction rules under structural congruence.

Definition 2 (structural congruence). The structural congruence for pro-
cesses is the relation ≡⊆ P × P, closed under process construction and α-
conversion, inductively generated by the following set of axioms

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P recx.P ≡ P{recx.P /x}
(νa)(νb)P ≡ (νb)(νa)P (νa)(P | Q) ≡ P | (νa)Q for a 6∈ fn(P)

As usual, P{Q/x} denotes process P after the substitution of each free oc-
currence of process variable x with process Q.

Definition 3 (reductions). The reduction relation for processes is the equiv-
alence relation →⊆ P×P, closed under the structural congruence ≡, inductively
generated by the following set of axioms and inference rules

a(b).P | ac.Q→ P{c/b} | Q
P → Q

(νa)P → (νa)Q
P → Q

P | R→ Q | R

The first rule denotes the communication between two processes: Process
ac.Q is ready to communicate the (possibly global) name c along channel a; it
then synchronizes with process a(b).P , and the local name b is substituted by c
on the residual process P (avoiding, as usual, the capture of name c). The latter
rules state the closure of the reduction relation with respect to the operators of
restriction and parallel composition.

We now recall the spatial logics for the π-calculus presented in [4].

Definition 4 (spatial logic syntax). Let VN be a set of name variables; and
let VS be a set of propositional variables. A spatial formula is a term generated
by the syntax

φ ::= T | ¬φ | φ∨φ | 0 | φ|φ | ηrφ | ∃x.φ | Ix.φ | η = η′ | 3φ | Z | µZ.φ

where η, η′ ∈ VN]N , x ∈ VN and Z ∈ VSF . We denote by SF the set of well-
formed, name-closed formulae, i.e., such that each propositional variable occurs
inside the scope of an even number of negation operators and each name variable
occurs inside the scope of a name quantifier.

Boolean connectives and fixpoints have the usual meaning; 0 characterizes
processes that are structurally congruent to the empty process; φ1|φ2 holds
for processes that are structurally congruent to the composition of two sub-
processes, satisfying φ1 and φ2, respectively; ηrφ is true for those processes
such that φ holds after the revelation of name η; ∃x.φ characterizes processes
such that φ holds for some name in N ; Ix.φ holds for a process P if φ holds

for some name of N that is fresh with respect to P and φ (see below); η = η′

requires η and η′ to be equal; and 3φ is satisfied by a process P if P can be
reduced into Q1 and Q satisfies φ.

The semantics of a (well-formed, name-closed) formula is given in terms of
the domain PS of Psets. A Pset is a family of processes that is closed under
structural congruence and name permutations, for all the names outside its sup-
port. Intuitively, the support for a Pset is a set of names that are relevant for
the property, i.e., such that any permutation of those names outside the support
does not affect the property.

Definition 5 (Pset [5]). Let Y be a set of processes. Then Y forms a Pset if
it is closed under structural congruence and there exists a finite set of names
N ⊂ N such that P{a ↔ b} ∈ Y for all a, b 6∈ N and P ∈ Y, where P{a ↔ b}
denotes the process P after the transposition of names a and b.

Every Pset Y has a least support [5, Prop. 4.13], denoted supp(Y). For in-
stance, the set P of all processes is a Pset with empty support.

Formulae with open propositional variables are interpreted under an envi-
ronment σ : VS → PS which maps every open propositional variable into a Pset.
The semantics of Ix.φ requires x to be instantiated with a name that is fresh
with respect to φ and to any process in the Psets to which the open propositional
variables of φ are mapped, i.e., the name must be different from any name in φ
or in the least support of σ(Z) for any open propositional variable Z in φ. Such
a set of names is defined as nσ(φ) = n(φ)∪

⋃
Z∈fpv(φ) supp(σ(Z)), where fpv(φ),

n(φ) and supp(Y) respectively denote the set of the free propositional variables
of φ, the set of names of φ, and the least support of Y.

Definition 6 (spatial logic semantics). Let φ be a (well-formed, name-
closed) spatial formula and let σ be a mapping for the free propositional variables
of φ into Psets. The denotation JφKσ, mapping a formula φ into a Pset, is defined
by structural induction according to the following rules

JT Kσ = P JarφKσ = {P | ∃P ′.P ≡ (νa)P ′ and P ′ ∈ JφKσ}
J¬φKσ = P \ JφKσ J∃x.φKσ =

⋃
a∈N Jφ{a/x}Kσ

Jφ1 ∨ φ2Kσ = Jφ1Kσ ∪ Jφ2Kσ JIx.φKσ =
⋃
a6∈nσ(φ)(Jφ{a/x}Kσ \ {P | a ∈ fn(P)})

J0Kσ = {P | P ≡ 0} Ja = bKσ = P if a = b and ∅ otherwise
JZKσ = σ(Z) JµZ.φKσ = lpf(λY.JφKσ[Y/Z])

Jφ1|φ2Kσ = {P | ∃P1, P2.P ≡ P1|P2 and P1 ∈ Jφ1Kσ and P2 ∈ Jφ2Kσ}
J3φKσ = {P | ∃Q.P → Q and Q ∈ JφKσ}

where lpf(f) denotes the least fixed-point of the function f .

The restriction on the use of negation guarantees each possible function
lpf(λY.JφKσ[Y/Z]) to be monotonic, so that fixed points are well defined. In-
deed, its semantics coincides with

⋂
Y∈Ps|Y⊆JφKσ[Y/Z]

[4].

1 For the sake of brevity, the unique action modality is synchronization: Our approach
can be easily extended to handle commitments as defined in [4].

3 Graphs and their extension with interfaces

We recall a few definitions concerning (typed hyper-)graphs, and their extension
with interfaces, referring to [3, 9] for a more detailed introduction.

Definition 7 (graphs). A(n hyper-)graph is a four-tuple 〈V,E, s, t〉 where V is
the set of nodes, E is the set of edges and s, t : E → V ∗ are the source and target
functions. A(n hyper-)graph morphism is a pair of functions 〈fV , fE〉 preserving
the source and target functions, i.e., fV ◦ s = s ◦ fE and fV ◦ t = t ◦ fE.

However, we shall consider typed graphs [10], i.e., graphs labeled over a struc-
ture that is itself a graph.

Definition 8 (typed graphs). Let T be a graph. A typed graph G over T is
a graph |G|, together with a graph morphism τG : |G| → T . A morphism between
T -typed graphs f : G1 → G2 is a graph morphism f : |G1| → |G2| consistent
with the typing, i.e., such that τG1 = τG2 ◦ f .

In the following, a chosen type graph T is assumed.
In order to inductively define the encoding for processes, we need to provide

operations over typed graphs. The first step is to equip them with suitable
“handles” for interacting with an environment.

Definition 9 (graphs with interfaces). A (T -typed) graph with interfaces
(shortly, gwi) is a triple G = 〈iG, G, oG〉, for G a T -typed graph and iG : IG →
G, oG : OG → G the input and output graph morphisms.

An interface graph morphism f : G ⇒ G2 is a triple of graph morphisms
〈fI , f, fO〉, with fI , fO injective, preserving the input and output morphisms.

The category of T -typed graphs with interfaces is denoted by I-T -Graph. We
let I i−→ G

o← O denote a graph (body) with input interface I and output interface
O. With an abuse of notation, we sometimes refer to the image of the input
and output morphisms as inputs and outputs, respectively. More importantly,
in the following we often refer implicitly to a gwi as the representative of its
isomorphism class, still using the same symbols to denote it and its components.

In order to define our process encoding, we introduce two operators on graphs
with discrete interfaces (gwdis), i.e., such that their set of edges is empty.

Definition 10 (two operators). Let G = I
i−→ G

j← J and G′ = J
j′−→ G′ o← O

be gwdis. Then, their sequential composition is the gwdi G ◦G′ = I
i′−→ G′′ o

′

←
O, for G′′ the disjoint union G] G′, modulo the equivalence on nodes induced
by j(x) = j′(x) for all x ∈ NJ , and i′, o′ the uniquely induced arrows.

Let G = I
i−→ G

o← O and H = I ′
i′−→ H

o′← O′ be gwdis with compatible

interfaces.2 Then, their parallel composition is the gwdi G ⊗ H = (I ∪ I ′) i′′−→
2 That is, any node in NI ∩NI′ has the same type in I and I ′ (similarly for NO∩NO′).

G′ o′′← (O ∪ O′), for G′ the disjoint union G] H, modulo the equivalence on
nodes induced by o(y) = o′(y) for all y ∈ NO ∩ NO′ and i(y) = i′(y) for all
y ∈ NI ∩NI′ , and i′′, o′′ the uniquely induced arrows.

With an abuse of notation, the set-theoretic operators on graphs are defined
component-wise, and the typing morphism is extended accordingly. Intuitively,
the sequential composition G ◦ G′ is obtained by taking the disjoint union of
the bodies of G and G′, and gluing the outputs of G with the corresponding
inputs of G′. Similarly, the parallel composition G⊗H is obtained by taking the
disjoint union of the bodies of G and H, additionally gluing the inputs (outputs)
of G with the corresponding inputs (outputs) of H. The two operations are
defined on “concrete” graphs, even if the result is independent of the choice of
the representatives, up-to isomorphism3.

A graph expression is a term over the syntax containing all graphs with
discrete interfaces as constants, and parallel and sequential composition as binary
operators. An expression is well-formed if all occurrences of those operators
are defined for the interfaces of their arguments, according to Definition 10; its
interfaces are computed inductively from the interfaces of the graphs occurring
in it, and its value is the graph obtained by evaluating all operators in it.

4 Rewriting graphs with interfaces

This section recalls the basic tools of the double-pushout (dpo) approach to
(typed hyper-)graph transformation, as presented in [11, 13]. More precisely, it
directly introduces the extension of the approach to gwis, which is needed later
on for our modeling purposes.

Definition 11 (graph production). A graph production is a pair of arrows
〈l : K → L, r : K → R〉 in I-T -Graph such that the three components of l are
injective. A T -typed graph transformation system (gts) G is a tuple 〈T, P, π〉
where T is the type graph, P is a set of production names and π is a function
mapping each name to a T -typed production.

A production π(p) is usually denoted by a span L l←− K r−→ R, and it is often
indicated just by the name p. Usually, l is denoted as being a monomorphism.

Definition 12 (derivation). Let p : L l←− K r−→ R be a T -typed production
and G a T -typed gwi. A match of p in G is a morphism mL : L→ G. A direct

3 While the sequential operator corresponds to categorical composition, the parallel
operator only recalls the tensor product of monoidal categories. A more standard
definition for the latter operator can be found in [9]. Our choice, though, allows for
a compact presentation of the graphical encoding in the following sections.

derivation from G to H via production p at a match mL is a diagram

Lp :

mL

��

(1)

K r //loo

mK

��

(2)

R
mR

��

G D
r∗
//

l∗
oo H

where (1) and (2) are actually pushout squares in I-T -Graph. We thus write
p/m : G =⇒ H, for m the morphism 〈mL,mK ,mR〉, or simply G =⇒ H.

Operationally, the application of a production p to a gwi G consists of three
steps, performed component-wise. Consider, e.g., the bodies of the gwis. First,
the match mL : L → G is chosen, providing an occurrence of L in G. Then, all
the items of G matched by L− l(K) are removed, leading to the context graph
D. If D is well-defined, and the resulting square is indeed a pushout, the items
of R− r(K) are added to D, further coalescing those nodes and edges identified
by r, obtaining the derived graph H.

Let p be a production, let p/m : G =⇒ H be a direct derivation and let
tr(p/m) be the partial function r∗ ◦ (l∗)−1 : G→ H. By construction, tr(p/m) is
injective on interfaces. The derivation is interface preserving if tr(p/m) actually
preserves node identity on interfaces. From now on, we will restrict our attention
to derivations that are interface preserving.

5 From Processes to Graphs

We now present an encoding of π-calculus processes into graphs with interfaces,
based on the encoding introduced in [15].

The type graph is defined in Fig. 1. Note that all edges have at most one
node in the source, connected by an incoming tentacle; the nodes in the target
list are instead always enumerated clock-wise, starting from the only incoming
tentacle, unless otherwise specified by an enumerating label. For example, the
edge ν has the node • as source, and the node ◦ as target. The edge op actually
stands as a concise representation for two edges, namely in and out, with the
same source and target: they have the node • as source and the node list 〈•, ◦, ◦〉
as target, further specified by the enumerating labels 0, 1, and 2.

op

1

""0

��
2

00 ◦

• <<

<<

ν

OO

Fig. 1. The type graph (for op ∈ {in, out}).

The type graph is used to model processes syntactically, and our encoding
corresponds to the usual construction of the tree associated to a term of an

algebra: Names are interpreted as variables, so that they are mapped to leaves
of the tree and can be safely shared. Intuitively, a tree with a node of type • as
root corresponds to a process, whilst each node of type ◦ basically represents a
name. Clearly, the operators in and out simulate the input and output prefixes,
respectively; and operator ν stands for restriction. Furthermore, note that there
is instead no explicit operator accounting for parallel composition.

The second step is the characterization of a class of graphs, such that all
processes can be encoded into a graph expression. Let p 6∈ N : Our choice is
depicted in Fig. 2, for all a, b ∈ N .

• poo

p // • // op

>>

//

◦ aoo

◦ boo

p // • poo

a // ◦ aoo

p // • // ν // ◦ aoo

p // •

a // ◦

Fig. 2. Graphs opa,b (for op ∈ {in, out}); idp, ida, and νa; 0p and 0a.

Finally, let us denote idΓ and 0Γ as a shorthand for
⊗

a∈Γ ida and
⊗

a∈Γ 0a,
respectively, for a finite set of names Γ ⊂ N (since the ordering is immaterial).
The encoding of finite processes into gwdis, mapping each finite process into a
graph expression, is presented below.

Definition 13 (encoding for finite processes). Let P be a finite process,
and let Γ be a set of names, such that fn(P) ⊆ Γ . The process encoding TPUΓ ,
mapping a process P into a gwdi, is defined by structural induction according
to the following rules (where {c}] Γ implies that c 6∈ Γ)

T(νa)PUΓ =
{

TPUΓ if a 6∈ fn(P)
(idp ⊗ νc ⊗ idΓ) ◦ TP{c/a}U{c}]Γ otherwise

TP | QUΓ = TPUΓ ⊗ TQUΓ Ta(b).PUΓ = (ina,c ⊗ idΓ) ◦ TP{c/b}U{c}]Γ
T0UΓ = 0p ⊗ 0Γ Tab.PUΓ = (outa,b ⊗ idΓ) ◦ TPUΓ

Note the conditional rule for (νa).P : It is required for removing the occur-
rence of useless restriction operators, i.e., those binding a name not occurring in
the process. The mapping is well-defined, since the resulting graph expression is
well-formed, and the encoding TPUΓ is a graph with interfaces ({p} ∪ Γ, ∅).

The mapping T·U is not surjective, since there are graphs of rank ({p}∪Γ, ∅)
that are not (isomorphic to) the image of any process. Nevertheless, our encoding
is sound and complete, as stated by the proposition below (adapted from [15]).

Proposition 1 (correct process encoding). Let P , Q be finite processes and
let Γ be a set of names such that fn(P) ∪ fn(Q) ⊆ Γ . Then, P ≡ Q if and only
if TPUΓ = TQUΓ .

In order to show how recursive processes can be encoded as suitable infinite
graphs, the first step is to consider a complete partial order on graphs.

Definition 14 (graph order). Let G, H be gwdis with interfaces (I,O).
Then, G vI,O H if there exists an injective graph morphim f : G→ H.

Thus, we consider the standard subgraph relationship, partitioned over inter-
faces: often, we skip subscripts whenever clear from the context. These partial
orders are complete with respect to ω-chains, and it is noteworthy that the encod-
ing T0UΓ is the bottom of the order for those gwdis with interfaces ({p}∪Γ, ∅).

Definition 15. Let recx.P be a process, and let Γ be a set of names, such that
fn(P) ⊆ Γ . Then, the encoding Trecx.PUΓ is defined as lpf(λX.TP{X/x}UΓ).

Two recursive processes may be mapped to isomorphic gwdis, even if they
are not structurally congruent. Nevertheless, the extended encoding is still sound.

6 Process reductions vs graph rewrites

This section introduces a rule for simulating the reduction relation as well as a
few rules that are useful for the encoding of the logic. In the following, even if not
explicitly stated, all the spans involve only graphs with empty output interfaces.

So, let us start with rule pπ (depicted in Fig. 3) for simulating the reduction
relation over processes given in Definition 3.

Let us explain our notation. The nodes may be labeled. If the label is an
element in {p} ∪ N , that means that the node is actually in the image of the
input interface. Otherwise, the label is a natural number, and it is used just for
describing the actions performed by the rule, so that e.g. the ◦ nodes identified
by 2 and 3 are coalesced by the rule. These identifiers are of course arbitrary:
They correspond to the actual elements of the set of nodes/interfaces, and they
unambiguously characterise the (interface preserving) span of functions.

p• //

//

in

2 ##

1
$$

0 // •

◦2

out //
>>

00

• ◦1

◦3

p• •

◦2

• ◦1

◦3

p•

◦23

◦1

Fig. 3. The rule pπ for synchronization.

It is noteworthy that just one rule is needed to recast the reduction semantics
for the π-calculus. The structural rules are taken care of by the fact that graph
morphisms allow for embedding a graph into a larger one, thus simulating the

closure of reduction with respect to contexts. Similarly, no distinct instance of
the rule is needed, since graph isomorphism takes care of the closure with respect
to structural congruence, and of the renaming of free names.

We now introduce a set of “house-keeping” rules for performing specific tasks
requested by our encoding of the spatial logic. The rule pn for adding nodes to the
interface is depicted on the left of Fig. 4. Since the left-most and middle graphs
are empty, the rule can be applied to any graph resulting in the addition of a
node to the right-most graph. This rule is going to be used in conjunction with
rule pr: It reveals a restricted name (see Fig. 5), consuming a restriction-edge
and coalescing the attached node with the image of an interface node.

◦a ◦a ◦a ◦a ◦a

Fig. 4. Rules for introducing (left), checking for (center) and removing a name (right).

p• // ν // ◦ ◦a p• ◦ ◦a p• ◦a

Fig. 5. The rule for revealing a restricted name.

The identity rule p∃i , represented on the right of Fig. 4, is used to test the
presence of a node among the inputs. We do not depict the similar rule p∃b

,
without the node a in the interface, testing for the presence of any node.

Finally, the garbage collection rule pg depicted on the center of Fig. 4 is used
to remove a name from the interface: Note that the dpo formalism ensures that
the rule is applied properly, i.e., to an isolated node only.

7 Modal Graph Logic

This section introduces our flavor of graph logic, inspired by [2, 12, 21] and re-
sulting in a monadic second order µ-calculus with a first-order action modality.
In particular, our logic is closely related to [2], where a fragment of Courcelle’s
monadic second order logic [12], combined with the propositional µ-calculus, is
considered. The main novelty of our proposal is a first-order action modal opera-
tor that requires a rewriting via a given rule to exist and binds a set of variables
with the identities of the nodes involved in the corresponding derivation.

Definition 16 (graph logic syntax). Let VZ be a set of propositional vari-
ables, Vn a set of node variables, Ve, VE set of first and second order edge vari-
ables, respectively, and finally 〈T, P, π〉 a gts The set GF of all graph formulae

over the gts 〈T, P, π〉 is the set of terms generated by

ψ ::= T | θ | ¬ψ | ψ ∨ ψ | 〈p(x,x′)〉ψ | ∃sx.ψ | ∃y.ψ | ∃Y.ψ | Z | µZ.ψ
θ ::= ε = ε | y = y | τ(y) = te | y ∈ Y ε ::= η | i(η) | s(y) | t[k](y)

where k ∈ N, x ∈ Vn, η ∈ Vn∪N , y ∈ Ve, x,x′ ∈ V ∗
n , Y ∈ VE, Z ∈ VZ , te ∈ ET ,

and p ∈ P .

For readability sake, the rule p in the above definition is interface preserving,
and x, x′ are vectors of node variables indexed over the nodes of the left-hand
side L and of the right-hand side R, respectively.

As we shall see, the modal operator is used to bind variables with the iden-
tities of items matched in both the left- and the right-hand side of a rule. Thus,
the modal operator p(〈x1, . . . , xn〉, 〈x′1, . . . , x′m〉).φ bounds the n + m variables
in φ. In the following we consider closed formulae only, i.e., formulae where each
occurrence of a node, edge, edge set or propositional variable is bound.

The logic includes booleans, a first-order node quantifier, first and second-
order edge quantifiers, a modal operator, fixpoints, and equalities of edge identi-
ties or nodes (possibly referred to by node variables), the source or i-th target of
an edge, or the images of an input, denoted by η, s(y), t[k](y), and i(η) respec-
tively. Note the lack of constraints on the number of tentacles departing from
an edge variable, so that a formula as ∃n.t[i](e) = n might turn out to be false.

We introduce now the concept of Gsets, sets of gwdis closed under graph
isomorphism and permutations of interface nodes outside its support.

Definition 17 (Gset). Let Y be a set of gwdis. Then Y forms a Gset if there
exists a finite set of interface nodes N such that f(G) ∈ Y for all gwis G ∈ Y
and isomorphisms f being identities on the nodes in N .

Each Gset Y can be proved to have a finite support, denoted by supp(Y);
and clearly (the union of) the encoding of (the members of) a Pset turns out to
be a Gset. We let nρ(ψ) denote the set of interface names of a formula ψ under
a valuation ρ defined as n(ψ) ∪

⋃
Z∈fpv(ψ) supp(ρ(Z)), where fpv(ψ) and n(ψ)

respectively denote the set of the free propositional variables and the names of
a formula ψ (constants and free name variables).

The formulae of the logic are intended to be interpreted over Gsets.

Definition 18 (graph logic semantics). Let ψ be a graph formula and let ρ
be a 4-tuple 〈ρx, ρy, ρY , ρZ〉 of mappings from node, edge, edge set and proposi-
tional variables into nodes, edges, edge sets, and Gsets, respectively. The deno-
tation JψKρ, mapping a formula ψ into a Gset, is defined by structural induction
according to the following rules

JT Kρ = S J∃y.ψKρ = {G ∈ S | ∃e ∈ EG.G ∈ JψKρ[e/y]}
J¬ψKρ = S \ JψKρ J∃Y.ψKρ = {G ∈ S | ∃E ⊆ EG.G ∈ JψKρ[E/Y]}
JZKρ = ρZ(Z) JµZ.ψKρ = lpf(λv.JψKρ[v/Z])
JθKρ = ‖ρ(θ)‖ Jp(x,x′)ψKρ = {G | p/m : G→ H and H ∈ JψKρ′}

Jψ1 ∨ ψ2Kρ = Jψ1Kρ ∪ Jψ2Kρ J∃sx.ψKρ =
⋃
a∈nρ(ψ)JψKρ[a/x]

where lpf(f) denotes the least fixed-point of the function f , ‖θ‖ maps true and
false to SM and ∅, respectively, and ρ′ = tr†(p/m)◦ (ρ∪{x 7→ m(NL)})∪{x′ 7→
m(NR)}, for NL and NR the nodes of the left-hand side L and the righ-hand side
R of the rule p, and tr†(p/m) the total extension of tr(p/m).

Intuitively, the variables in x are assigned to the matched items of the left-
hand side of the derivation, and the resulting mapping is composed with the trace
of the derivation to get rid of item renaming (no renaming is needed instead for
x′). In addition, we require new interface items in H to be different from the
interface names of ψ, i.e., not to occur in nρ(ψ): This ensures the new items to
be fresh with respect to the formula and its environment.

Boolean connectives and item comparisons have the expected meaning, and,
since the denotation is for closed formulae, the interpretation of the terms gen-
erated by θ is obvious. Note however that as in [2] we consider environments ρ
that might map a variables into items that are not part of some graphs. Thus,
a formula like x = y is satisfied by a graph in environment ρ if ρ(x) = ρ(y),
independently, hence, on whether or not ρ(x) or ρ(y) are nodes of the graph.

Indeed, the main difference with the approach of [2] is the semantics of the
modal operator. In order for p(x,x′)ψ to hold in an environment ρ we require
a direct derivation from G into a graph H via rule p and match m to exist such
that H fulfills ψ in an environment ρ′ that is like ρ after applying the trace of
the derivation (to get rid of item renaming) and the addition of the mapping of
variables in vectors x, x′ with the items of the left- and right-hand side of the
match of rule p. In that way, one can express not only the possibility of applying
a graph transformation rule, but we can bind variables with the items involved
in the transformation which we can use in the residual formula.

8 From Spatial to Graph Logic

We can now finally turn our attention to the encoding [·] : SF → GF , mapping
spatial formulae into graph formulae. Our goal is to define a complete and sound
encoding such that for any process P we have that P ∈ JφK iff TPU ∈ J[φ]K.

For the sake of readability, for each modal operator we consider only those
arguments that are relevant for the encoding. So, pπ(x1, x2) bounds x1 and x2

with the items 1 and 2 of the left-hand side of the rule pπ (see Fig. 3), i.e., the
channel on which synchronization occurs and the sent name. These nodes are
relevant for the encoding since they might become isolated and thus need to
be garbage collected. Similarly, pn(xa) bounds xa with the item a of the right-
hand side of the rule pn (see Fig. 4, right), i.e., the new interface node; p∃i(xa)
bounds xa with the item a of the rule p∃i (see Fig. 4, center), i.e., the checked
for interface node (while p∃b

(x) bounds x with the only node of the rule); pg(xa)
bounds xa with the item a of the right-hand side of rule pg (see Fig. 4, right),
i.e., of the deleted interface node; and pr(xa) bounds xa with the item a of the
right-hand side of rule pg (see Fig. 5), i.e., the revealed interface node.4

4 Note that, except for pπ(x1, x2) and p∃b(x), all the operators bounds interface nodes,
since they are used for checking name properties.

∃y ∈ Y.ψ ≡ ∃y.(y ∈ Y ∧ ψ)
in(x, Y) ≡ ∃y ∈ Y.(s(y) = x ∨ t[0](y) = x ∨ t[1](y) = x ∨ t[2](y) = x)
x ∈ Y ≡ 〈〈p∃b(x)〉〉in(x, Y) ∨ 〈〈p∃i(x)〉〉in(i(x), Y)

{∃y.ψ}Y ≡ ∃y ∈ Y.{ψ}Y

{∃Y.ψ}Y ≡ ∃Y ′.(∀y.y ∈ Y ′ → y ∈ Y) ∧ {ψ}Y

{∃sx.ψ}Y ≡ ∃sx.i(x) ∈ Y ∧ {ψ}Y

{〈p(x,x′)〉.ψ}Y ≡ 〈p(x,x′)〉(
V

x∈x∪x′ x ∈ Y ∧ {ψ}Y)
I(x) ≡ ¬∃Y.x ∈ Y

S(y, y′) ≡ s(y′) = t[0](y)
C(Y) ≡ 〈p∃b(x)〉(x = i(p) ∧ ∀y.(y ∈ Y → x = s(y) ∨ ∃y′ ∈ Y.S(y′, y)))

R(Y, Y ′) ≡ ∀y.(τ(y) = ν → (t[0](y) ∈ Y ↔ t[0](y) 6∈ Y ′))
P(Y, Y ′) ≡ ∀y.(y ∈ Y ↔ y 6∈ Y ′)

〈〈p(x1,x
′
1)〉〉ψ ≡ 〈p(x,x′)〉(x = x1 ∧ x′ = x′

1 ∧ ψ{x/x1 ,
x′
/x′

1
})

Fig. 6. Auxiliary graph formulae.

Fig. 8 summarizes some additional abbreviations that provide a more read-
able and concise presentation of the encoding. First, as a shorthand, ∃y ∈ Y.ψ
quantifies over the edges of an edge set, while in(x, Y) is a shorthand for the
formula expressing the occurrence of the node x in either the source or the tar-
get of an edge in Y . Since the type graph considers at most three targets, the
formula considers only up to the third target. Similarly, x ∈ Y states that x is
in either the source or the target of an edge in Y . Furthermore, {ψ}Y denotes
the formula ψ relativized to the set of edges Y . Fig 8 defines the most significant
cases for ψ, the others are recursively defined in a straightforward way. Formula
I(x) states that x is not the source or target of any edge, thus characterizing
isolated nodes. Formula S(y, y′) states that edges y,y′ occur consecutively. This
can happen in encoded processes only if the source of one of the edges to be equal
to the first target of the other edge. Another property is that a set of edges (in
an acyclic graph, as those representing processes) is connected: In words, C(Y)
requires each edge of set Y to occur consecutively to another edge of Y unless
it has the root of the graph (the image of p) as source. Then R(Y, Y ′) states the
confinement of the target of a restriction operator, i.e., the target of each ν edge
must to be either in Y or in Y ′. We also use a formula P(Y, Y ′) to express that
two sets of edges Y ,Y ′ are disjoint and complementary, i.e., they partition the
set of edges. Another abbreviation is that we sometimes want to express the fact
that a rule p can be applied for a certain match denoted by 〈〈p(x1,x

′
1)〉〉φ.

We finally present our encoding of spatial formulae into graph formulae

Definition 19 (Logics encoding). Let φ be a spatial formula. The logics en-
coding [φ], mapping a spatial formula φ into a graph formula, is defined by
structural induction according to the rules in Fig. 7.

The encoding of boolean connectives (b1) and fixpoints (µ1) is trivial.

[0] = ∀y.F (v1)
[T] = T [¬φ] = ¬[φ] [φ1 ∨ φ2] = [φ1] ∨ [φ2] (b1)

[η1 = η2] = (η1 = η2) (n1)
[Z] = Z [µZ.φ] = µZ.[φ] (µ1)

[Ix.φ] = 〈pn(x)〉[φ] (f1)
[∃x.φ] = [Ix.φ] (e1)

∨ 〈〈p∃i(x)〉〉[φ] (e2)
∨ ∃sx.[φ] (e3)

[ηrφ] = (〈〈p∃i(η)〉〉I(i(η)) ∧ 〈〈pr(η)〉〉[φ]) (r1)

∨ (¬〈〈p∃i(η)〉〉T ∧ 〈pn(x′)〉〈〈pr(x
′)〉〉[φ{x′/η}]) (r2)

[3φ] = 〈pπ(x, x′)〉(I(x) ∧ I(x′) ∧ 〈〈pg(x)〉〉〈〈pg(x′)〉〉[φ]) (a1)
∨ (I(x) ∧ ¬I(x′) ∧ 〈〈pg(x)〉〉[φ]) (a2)
∨ (¬I(x) ∧ I(x′) ∧ 〈〈pg(x′〉〉[φ]) (a3)
∨ (¬I(x) ∧ ¬I(x′) ∧ [φ])) (a4)

[φ1|φ2] = ∃Y.∃Y ′.P(Y, Y ′) (c1)
∧ C(Y) ∧ C(Y ′) (c2)
∧ R(Y, Y ′) (c3)

∧ {[φ1]}Y ∧ {[φ2]}Y ′
(c4)

Fig. 7. The encoding of spatial formulae into graph formulae.

Regarding the encoding of name equalities, it is worth noticing that the
encoding works with interface nodes rather than with their images. Because the
input morphism is injective in any process encoding, we can safely encode name
comparison as comparison of the corresponding interface nodes (n1).

The encoding of an empty process is the graph 0p depicted in Fig. 2, i.e., it
is a graph with just one node and no edges. Moreover, no other gwi modeling a
process has an empty set of edges. Thus, the encoding of 0 is a graph formula
that characterizes graphs without edges (v1).

The encoding of the freshness quantifier exploits Gabbay-Pitts property [14]:
It suffices to consider just one fresh name, neither occurring in φ nor previously
in the process. We obtain such a name via the freshness rule pn, which bounds
the variable x as the fresh name it is introduced. The rule ensures that x will be
effectively fresh for the process and the formula (f1).

Also the encoding of ∃x.φ relies on Gabbay-Pitts property. Indeed, to check if
φ holds for some name x it suffices to consider (e1) a fresh name (thus relying on
the encoding of freshness quantification), (e2) all the free names of the process
(the nodes of its interface) and (e3) the nodes in nσ([φ]) (i.e., all the names of
φ plus the least support of σ(Z) for any open propositional variable Z in φ).

The encoding of ηrφ distinguishes two cases: Either (r1) the node η occurs
in the interface and its image is isolated or (r2) it is not in the interface. The
first turns out to be true when η has been introduced by the application of the
freshness rule pr. In other words, ηrφ was nested in a freshness quantification on
η (which is a variable rather than a constant). In this case the encoding considers
the revelation of a restricted node as η using rule pr. If η does not occur in the

interface, then η is not a free name, hence, we introduce it in the interface via
rule pr and proceed as in the first case.

The action modality requires the rule pπ to be applicable. The resulting graph
must then satisfy φ, but we may need to garbage collected those nodes involved
in the synchronization. For that purpose we use four cases (a1-a4).

Finally, consider the encoding of composition. The encoding of the parallel
composition P of two processes is done via the parallel composition ⊗ of the
corresponding graphical encodings. The resulting graph TPU is a tree with the
image of p as root, from where several edges depart. Some of them represent
subprocesses and the rest correspond to name restrictions. Thus, the encoding
of φ1|φ2 is a graph formula that states whether there is a correct decomposition of
a graph into two components, one satisfying φ1 and the other satisfying φ2 (c4).
A correct decomposition requires (c1) to find two complementary and mutually
disjoint sets of edges; each set must form (c2) a connected graph including the
image of (p) and at least an edge whose source is the image of p; and (c3) any
restriction edge has to belong to the right set.

The theorem below states that the proposed encoding is correct.

Theorem 1. Let P be a process, let Γ be a set of names such that fn(P) ⊆ Γ ,
and let φ be a closed spatial formula. Then, P ∈ JφK iff TPUΓ ∈ J[φ]K.

9 Conclusions and Future Work

The paper introduced a graph-based technique for the verification of spatial
properties of finite π-calculus specifications. We considered only the deterministic
fragment of the calculus, in order to offer as simple a presentation as possible:
The choice operator could be included with little effort.

Besides being intuitively appealing, the graphical presentation offers canon-
ical representatives for abstract processes, since two processes are structurally
congruent exactly when they are mapped to the same graph wih interfaces (up to
isomorphism). The encoding has a unique advantage with respect to most of the
approaches to the graphical implementation of calculi with name mobility (such
as bigraphs [19]): It allows for the reuse of standard graph transformation theory
and tools for simulating the reduction semantics of the calculus [15]. Thus, we
proposed to check whether a process satisfies a spatial property (formulated in
a suitable logic [4]) by encoding spatial formulae in a novel modal graph logic.

With respect to other approaches [2, 12, 21], the main novelty of our logic is a
modal operator that binds variables with the items involved in a graph rewriting
rule and, in addition, ensures items created by the rule to be new with respect to
the environment in which the formula is interpreted. This operator generalizes
node quantification, for instance, and this is the key to encode spatial ingredients
like revealation of restricted nodes and creation of fresh names.

Besides any consideration on the efficiency and usability of our approach, we
believe that a main contribution of our paper is the further illustration of the
usefulness of graphical techniques for the design and validation of concurrent
systems.

We are planning an implementation of our approach, possibly by extending
existing tools for the analysis of graphically designed systems, such as [17, 20].

References

1. P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In K. Larsen and M. Nielsen, editors, Concurrency Theory,
volume 2154 of Lect. Notes in Comp. Sci., pages 381–395. Springer, 2001.

2. P. Baldan, A. Corradini, B. König, and A. Lluch Lafuente. A temporal graph
logic for verification of graph transformation systems. In Algebraic Development
Techniques, Lect. Notes in Comp. Sci. Springer, 2006. To Appear.

3. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connec-
tions. Theor. Comp. Sci., 286:247–292, 2002.

4. L. Caires. Behavioral and spatial observations in a logic for the π-calculus. In
I. Walukiewicz, editor, Foundations of Software Science and Computation Struc-
tures, volume 2987 of Lect. Notes in Comp. Sci., pages 72–87. Springer, 2004.

5. L. Caires and L. Cardelli. A spatial logic for concurrency (part I). Information
and Computation, 186(2):194–235, 2003.

6. L. Caires and L. Cardelli. A spatial logic for concurrency – II. Theor. Comp. Sci.,
322(3):517–565, 2004.

7. L. Cardelli, P. Gardner, and G. Ghelli. A spatial logic for querying graphs. In
P. Widmayer and F. Trigueiro Ruiz et alii, editors, Automata, Languages and
Programming, volume 2380 of Lect. Notes in Comp. Sci., pages 597–610. Springer,
2002.

8. L. Cardelli, P. Gardner, and G. Ghelli. Manipulating trees with hidden labels. In
A. Gordon, editor, Foundations of Software Science and Computation Structures,
volume 2620 of Lect. Notes in Comp. Sci., pages 216–232. Springer, 2003.

9. A. Corradini and F. Gadducci. An algebraic presentation of term graphs, via
gs-monoidal categories. Applied Categorical Structures, 7:299–331, 1999.

10. A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta Infor-
maticae, 26:241–265, 1996.

11. A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe. Alge-
braic approaches to graph transformation I: Basic concepts and double pushout
approach. In G. Rozenberg, editor, Handbook of Graph Grammars and Computing
by Graph Transformation, volume 1, pages 163–245. World Scientific, 1997.

12. B. Courcelle. The expression of graph properties and graph transformations in
monadic second-order logic. In G. Rozenberg, editor, Handbook of Graph Gram-
mars and Computing by Graph Transformation, pages 313–400. World Scientific,
1997.

13. F. Drewes, A. Habel, and H.-J. Kreowski. Hyperedge replacement graph grammars.
In G. Rozenberg, editor, Handbook of Graph Grammars and Computing by Graph
Transformation, volume 1, pages 95–162. World Scientific, 1997.

14. M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2002.

15. F. Gadducci. Term graph rewriting and the π-calculus. In A. Ohori, editor, Pro-
gramming Languages and Semantics, volume 2895 of Lect. Notes in Comp. Sci.,
pages 37–54. Springer, 2003.

16. F. Gadducci and A. Lluch Lafuente. Graphical verification of a spatial logic for the
π-calculus. In R. Heckel, B. König, and A. Rensink, editors, Graph Transformation

for Verification and Concurrency, Electr. Notes in Theor. Comp. Sci. Elsevier,
2006.

17. V. Kozioura and B. König. AUGUR: A tool for the analysis of graph transformation
systems. Bulletin of EATCS, 87:126–137, 2005. tool available at http://www.fmi.
uni-stuttgart.de/szs/tools/augur.

18. R. Milner. Communicating and Mobile Systems: The π-calculus. Cambridge Uni-
versity Press, 1992.

19. R. Milner. Bigraphical reactive systems. In K. Larsen and M. Nielsen, editors, Con-
currency Theory, volume 2154 of Lect. Notes in Comp. Sci., pages 16–35. Springer,
2001.

20. A. Rensink. The GROOVE simulator: A tool for state space generation. In
J. Pfaltz, M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations
with Industrial Relevance, volume 3062 of Lect. Notes in Comp. Sci., pages 479–
485. Springer, 2003. tool available at http://sourceforge.net/projects/groove.

21. A. Rensink. Towards model checking graph grammars. In M. Leuschel, S. Gruner,
and S. Lo Presti, editors, Automated Verification of Critical Systems, volume
DSSE–TR–2003–2 of University of Southampton Technical Reports, pages 150–160.
University of Southampton, 2003.

22. J. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic
in Computer Science, pages 55–74. IEEE Computer Society, 2002.

23. D. Varró. Automated formal verification of visual modeling languages by model
checking. Software and Systems Modeling, 3(2):85–113, 2004.

