5,542 research outputs found

    A video object generation tool allowing friendly user interaction

    Get PDF
    In this paper we describe an interactive video object segmentation tool developed in the framework of the ACTS-AC098 MOMUSYS project. The Video Object Generator with User Environment (VOGUE) combines three different sets of automatic and semi-automatic-tool (spatial segmentation, object tracking and temporal segmentation) with general purpose tools for user interaction. The result is an integrated environment allowing the user-assisted segmentation of any sort of video sequences in a friendly and efficient manner.Peer ReviewedPostprint (published version

    Sensing and mapping for interactive performance

    Get PDF
    This paper describes a trans-domain mapping (TDM) framework for translating meaningful activities from one creative domain onto another. The multi-disciplinary framework is designed to facilitate an intuitive and non-intrusive interactive multimedia performance interface that offers the users or performers real-time control of multimedia events using their physical movements. It is intended to be a highly dynamic real-time performance tool, sensing and tracking activities and changes, in order to provide interactive multimedia performances. From a straightforward definition of the TDM framework, this paper reports several implementations and multi-disciplinary collaborative projects using the proposed framework, including a motion and colour-sensitive system, a sensor-based system for triggering musical events, and a distributed multimedia server for audio mapping of a real-time face tracker, and discusses different aspects of mapping strategies in their context. Plausible future directions, developments and exploration with the proposed framework, including stage augmenta tion, virtual and augmented reality, which involve sensing and mapping of physical and non-physical changes onto multimedia control events, are discussed

    Tracking interacting targets in multi-modal sensors

    Get PDF
    PhDObject tracking is one of the fundamental tasks in various applications such as surveillance, sports, video conferencing and activity recognition. Factors such as occlusions, illumination changes and limited field of observance of the sensor make tracking a challenging task. To overcome these challenges the focus of this thesis is on using multiple modalities such as audio and video for multi-target, multi-modal tracking. Particularly, this thesis presents contributions to four related research topics, namely, pre-processing of input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking, and interaction recognition. To improve the performance of detection algorithms, especially in the presence of noise, this thesis investigate filtering of the input data through spatio-temporal feature analysis as well as through frequency band analysis. The pre-processed data from multiple modalities is then fused within Particle filtering (PF). To further minimise the discrepancy between the real and the estimated positions, we propose a strategy that associates the hypotheses and the measurements with a real target, using a Weighted Probabilistic Data Association (WPDA). Since the filtering involved in the detection process reduces the available information and is inapplicable on low signal-to-noise ratio data, we investigate simultaneous detection and tracking approaches and propose a multi-target track-beforedetect Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses the detection step and performs tracking in the raw signal. Finally, we apply the proposed multi-modal tracking to recognise interactions between targets in regions within, as well as outside the cameras’ fields of view. The efficiency of the proposed approaches are demonstrated on large uni-modal, multi-modal and multi-sensor scenarios from real world detections, tracking and event recognition datasets and through participation in evaluation campaigns

    Tracking Gaze and Visual Focus of Attention of People Involved in Social Interaction

    Get PDF
    The visual focus of attention (VFOA) has been recognized as a prominent conversational cue. We are interested in estimating and tracking the VFOAs associated with multi-party social interactions. We note that in this type of situations the participants either look at each other or at an object of interest; therefore their eyes are not always visible. Consequently both gaze and VFOA estimation cannot be based on eye detection and tracking. We propose a method that exploits the correlation between eye gaze and head movements. Both VFOA and gaze are modeled as latent variables in a Bayesian switching state-space model. The proposed formulation leads to a tractable learning procedure and to an efficient algorithm that simultaneously tracks gaze and visual focus. The method is tested and benchmarked using two publicly available datasets that contain typical multi-party human-robot and human-human interactions.Comment: 15 pages, 8 figures, 6 table

    Advanced visual rendering, gesture-based interaction and distributed delivery for immersive and interactive media services

    Get PDF
    The media industry is currently being pulled in the often-opposing directions of increased realism (high resolution, stereoscopic, large screen) and personalisation (selection and control of content, availability on many devices). A capture, production, delivery and rendering system capable of supporting both these trends is being developed by a consortium of European organisations including partners from the broadcast, film, telecoms and academic sectors, in the EU-funded FascinatE project. This paper reports on the latest project developments in the delivery network and end-user device domains, including advanced audiovisual rendering, computer analysis and scripting, content-aware distributed delivery and gesture-based interaction. The paper includes an overview of existing immersive media services and concludes with initial service concept descriptions and their market potential.Peer ReviewedPreprin

    Audio‐Visual Speaker Tracking

    Get PDF
    Target motion tracking found its application in interdisciplinary fields, including but not limited to surveillance and security, forensic science, intelligent transportation system, driving assistance, monitoring prohibited area, medical science, robotics, action and expression recognition, individual speaker discrimination in multi‐speaker environments and video conferencing in the fields of computer vision and signal processing. Among these applications, speaker tracking in enclosed spaces has been gaining relevance due to the widespread advances of devices and technologies and the necessity for seamless solutions in real‐time tracking and localization of speakers. However, speaker tracking is a challenging task in real‐life scenarios as several distinctive issues influence the tracking process, such as occlusions and an unknown number of speakers. One approach to overcome these issues is to use multi‐modal information, as it conveys complementary information about the state of the speakers compared to single‐modal tracking. To use multi‐modal information, several approaches have been proposed which can be classified into two categories, namely deterministic and stochastic. This chapter aims at providing multimedia researchers with a state‐of‐the‐art overview of tracking methods, which are used for combining multiple modalities to accomplish various multimedia analysis tasks, classifying them into different categories and listing new and future trends in this field

    Algorithmic Compositional Methods and their Role in Genesis: A Multi-Functional Real-Time Computer Music System

    Get PDF
    Algorithmic procedures have been applied in computer music systems to generate compositional products using conventional musical formalism, extensions of such musical formalism and extra-musical disciplines such as mathematical models. This research investigates the applicability of such algorithmic methodologies for real-time musical composition, culminating in Genesis, a multi-functional real-time computer music system written for Mac OS X in the SuperCollider object-oriented programming language, and contained in the accompanying DVD. Through an extensive graphical user interface, Genesis offers musicians the opportunity to explore the application of the sonic features of real-time sound-objects to designated generative processes via different models of interaction such as unsupervised musical composition by Genesis and networked control of external Genesis instances. As a result of the applied interactive, generative and analytical methods, Genesis forms a unique compositional process, with a compositional product that reflects the character of its interactions between the sonic features of real-time sound-objects and its selected algorithmic procedures. Within this thesis, the technologies involved in algorithmic methodologies used for compositional processes, and the concepts that define their constructs are described, with consequent detailing of their selection and application in Genesis, with audio examples of algorithmic compositional methods demonstrated on the accompanying DVD. To demonstrate the real-time compositional abilities of Genesis, free explorations with instrumentalists, along with studio recordings of the compositional processes available in Genesis are presented in audiovisual examples contained in the accompanying DVD. The evaluation of the Genesis system’s capability to form a real-time compositional process, thereby maintaining real-time interaction between the sonic features of real-time sound objects and its selected algorithmic compositional methods, focuses on existing evaluation techniques founded in HCI and the qualitative issues such evaluation methods present. In terms of the compositional products generated by Genesis, the challenges in quantifying and qualifying its compositional outputs are identified, demonstrating the intricacies of assessing generative methods of compositional processes, and their impact on a resulting compositional product. The thesis concludes by considering further advances and applications of Genesis, and inviting further dissemination of the Genesis system and promotion of research into evaluative methods of generative techniques, with the hope that this may provide additional insight into the relative success of products generated by real-time algorithmic compositional processes

    Can integrated titles improve the viewing experience? Investigating the impact of subtitling on the reception and enjoyment of film using eye tracking and questionnaire data

    Get PDF
    Historically a dubbing country, Germany is not well-known for subtitled productions. But while dubbing is predominant in Germany, more and more German viewers prefer original and subtitled versions of their favourite shows and films. Conventional subtitling, however, can be seen as a strong intrusion into the original image that can not only disrupt but also destroy the director’s intended shot composition and focus points. Long eye movements between focus points and subtitles decrease the viewer’s information intake, and especially German audiences, who are often not used to subtitles, seem to prefer to wait for the next subtitle instead of looking back up again. Furthermore, not only the placement, but also the overall design of conventional subtitles can disturb the image composition – for instance titles with a weak contrast, inappropriate typeface or irritating colour system. So should it not, despite the translation process, be possible to preserve both image and sound as far as possible? Especially given today’s numerous artistic and technical possibilities and the huge amount of work that goes into the visual aspects of a film, taking into account not only special effects, but also typefaces, opening credits and text-image compositions. A further development of existing subtitling guidelines would not only express respect towards the original film version but also the translator’s work.   The presented study shows how integrated titles can increase information intake while maintaining the intended image composition and focus points as well as the aesthetics of the shot compositions. During a three-stage experiment, the specifically for this purpose created integrated titles in the documentary “Joining the Dots” by director Pablo Romero-Fresco were analysed with the help of eye movement data from more than 45 participants. Titles were placed based on the gaze behaviour of English native speakers and then rated by German viewers dependant on a German translation. The results show that a reduction of the distance between intended focus points and titles allow the viewers more time to explore the image and connect the titles to the plot. The integrated titles were rated as more aesthetically pleasing and reading durations were shorter than with conventional subtitles. Based on the analysis of graphic design and filmmaking rules as well as conventional subtitling standards, a first workflow and set of placement strategies for integrated titles were created in order to allow a more respectful handling of film material as well as the preservation of the original image composition and typographic film identity
    corecore