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Abstract

Target motion tracking found its application in interdisciplinary fields, including but not
limited to surveillance and security, forensic science, intelligent transportation system,
driving assistance, monitoring prohibited area, medical science, robotics, action and
expression recognition, individual speaker discrimination in multi-speaker environ-
ments and video conferencing in the fields of computer vision and signal processing.
Among these applications, speaker tracking in enclosed spaces has been gaining rele-
vance due to the widespread advances of devices and technologies and the necessity for
seamless solutions in real-time tracking and localization of speakers. However, speaker
tracking is a challenging task in real-life scenarios as several distinctive issues influence
the tracking process, such as occlusions and an unknown number of speakers. One
approach to overcome these issues is to use multi-modal information, as it conveys
complementary information about the state of the speakers compared to single-modal
tracking. To use multi-modal information, several approaches have been proposed
which can be classified into two categories, namely deterministic and stochastic. This
chapter aims at providing multimedia researchers with a state-of-the-art overview of
tracking methods, which are used for combining multiple modalities to accomplish
various multimedia analysis tasks, classifying them into different categories and listing
new and future trends in this field.

Keywords: audio-visual tracking, multi-speaker tracking, deterministic, stochastic
approaches

1. Introduction

Speaker tracking aims at localizing the moving speakers in a scene by analysing the data

sequences captured by sensors or arrays of sensors. It gained relevance in the past decades

due to its widespread applications such as automatic camera steering in video conferencing
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[1], individual speaker discriminating in multi-speaker environments [2], acoustic beam-

forming [3], audio-visual speech recognition [4], video indexing and retrieval [5], human-

computer interaction [6], and surveillance and monitoring [7] in security applications. There

are numerous challenges, which make speaker tracking a difficult task including, but not

limited to, the estimation of the variable number of speakers and their states, and dealing with

various conditions such as occlusions, limited view of cameras, illumination change and room

reverberations [8–10].

Using multi-modal information is one way to address these challenges since more comprehen-

sive observations for the state of the speakers can be collected in multi-modal tracking as

compared to the single-modal case, and the collection of the multi-modal information can be

achieved by sensors such as audio, video, thermal vision, laser-range finders and radio-fre-

quency identification (RFID) [11–13]. Among these sensors, audio and video sensors are

commonly used in speaker tracking compared to others, because of their easier installation,

cheaper cost and more data-processing tools [9, 14, 15].

Earlier methods in speaker tracking employ either visual-only or audio-only data, and each

modality offers some advantages but is also limited by some weaknesses [16, 17]. Tracking

with only video [16–18] offers robust and accurate performance when the camera field of view

covers the speakers. However, it degrades when the occlusion between speakers happens,

when the speakers go out of the camera field of view, or any changes on illumination or target

appearance have occurred. Although audio tracking [19–21] is not restricted by these limita-

tions, it has a tendency to non-negligible-tracking errors because of intermittency of audio

data. In addition, audio data may be corrupted by background noise and room reverberations.

Nevertheless, the combination of audio and video data may improve the tracking performance

when one of the modalities is missing or neither provides accurate measurements, as audio

and visual modalities are often complementary to each other which can be exploited to further

enhance their respective strengths and mitigate their weaknesses in tracking.

Previous techniques were focused on tracking a single person in a static and controlled envi-

ronment. However, theoretical and algorithmic advances together with the increasing capabil-

ity in computer processing have led to the emergence of more sophisticated techniques for

tracking multiple speakers in dynamic and less controlled (or natural) environments [22–24]. In

addition, the type of sensors used to collect the measurements is advanced from single- to

multi-modal.

In the literature, there are many approaches for speaker tracking using multi-modal informa-

tion, which can be categorized into two methods as one is deterministic and data-driven while

the other is stochastic and model-driven [25, 26]. Deterministic approaches are considered as

an optimization problem by minimizing a cost function, which needs to be defined appropri-

ately. A representative method in this category is the mean-shift method [27, 28], which defines

the cost function in terms of colour similarity measured by Bhattacharyya distance. The

stochastic and model-driven approaches use a state-space approach based on the Bayesian

framework as it is suitable for processing of multi-modal information [29]. Representative

methods are the Kalman filter (KF) [30], extended KF (EKF) and particle filter (PF) [31]. The

PF approach is more robust for non-linear and non-Gaussian models as compared with the KF
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and EKF approaches since it easily approaches the Bayesian optimal estimate with a suffi-

ciently large number of particles [11].

One challenge in the implementation of the PF to tracking problem is to choose an optimal

number of particles [9, 32]. An insufficient number may introduce a particle impoverishment,

while a larger number (than required) will lead to extra computational cost. Therefore, choos-

ing the optimal number of particles is one of the issues that affect the performance of the

tracker. To address this issue and to find the optimal number of particles for the PF to use,

adaptive particle filtering (A-PF) approaches have been proposed in Refs. [9, 32–35]. Fox [34]

proposed KLD sampling, which aims to bind the error introduced by the sample-based repre-

sentations of the PF using the Kullback-Leibler divergence between maximum likelihood

estimates (MLEs) of the states and the underlying distribution to optimize the number of

particles. The KLD-sampling criterion is improved in Ref. [35] for the estimation of the number

of particles, leading to an approach for adaptive propagation of the samples. Subsequent work

[33] introduces the innovation error to estimate the number of particles by employing a

twofold metric. The particles are removed by the first metric in case their distance to a

neighbouring particle is smaller than a predefined threshold. The second metric is used to set

the threshold on the innovation error in order to control the birth of the particles. These two

thresholds need to be set before the algorithm is run. A new approach is proposed in Refs.

[9, 32], which estimates noise variance besides the number of particles in an adaptive manner.

Different from other existing adaptive approaches, adaptive noise variance is employed in this

method for the estimation of the optimal number of particles based on tracking error and the

area occupied by the particles in the image.

One assumption in the traditional PF used in multi-speaker tracking is that the number of

speakers is known and invariant during the tracking. In practice, the presence of the speakers

may change in a random manner, resulting in time-varying number of speakers. To deal with

the unknown and variable number of speakers, the theory of random finite sets (RFSs) has been

introduced, which allows multi-speaker filtering by propagation of the multi-speaker posterior

[36–39]. However, the computational complexity of RFS grows exponentially as the number of

speakers increases since the complexity order of the RFS is OðMΞÞ where M is the number of

measurements and Ξ is the number of speakers. The PHD filtering [40] approach is proposed to

overcome this problem, as the first-order approximation of the RFS whose complexity scales

linearly with the number of speakers since the complexity order of the PHD is OðMΞÞ. This

framework has been found to be promising for multi-speaker tracking [36]. However, the PHD

recursion involves multiple integrals that need to have closed-form solutions for implementa-

tion. So far, two analytic solutions have been proposed: Gaussian mixture PHD (GM-PHD)

filter [41, 42] and sequential Monte Carlo PHD (SMC-PHD) filter [43, 44]. Applications of GM-

PHD filter are limited by linear Gaussian systems, which lead us to consider SMC-PHD filter to

handle non-linear/non-Gaussian problems in audio-visual tracking [15, 45].

Apart from the stochastic methodologies mentioned above, the mean-shift [28] is a determin-

istic and data-driven method, which focuses on target localization using representation of the

target. The mean-shift easily convergences to peak of the function with a high speed and a

small computational load. Moreover, as a non-parametric method, the solution of the mean
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shift is independent from the features used to represent the targets. On the other hand, the

performance of the mean-shift is degraded by occlusion or clutter as it searches the densest

(most similar) region starting from the initial position in the region of interest. In this sense, the

mean-shift trackers may fail easily in tracking small- and fast-moving targets as the region of

interest may not cover the targets, which results in a track being lost after a complete occlusion.

Also, it is formulated for single-target tracking, so it cannot handle a variable number of

targets. Therefore, several methods [14, 15, 46–49] have been proposed by integrating both

deterministic and stochastic approaches to benefit their respective strengths which will be

discussed in Section 4.

2. Tracking modalities

2.1. Visual cues

Visual tracking is a challenging task in real-life scenarios, as the performance of a tracker is

affected by the illumination conditions, occlusion by background objects and fast and compli-

cated movements of the target [50, 51]. To address these problems, several visual features, that

is, colour, texture, contour and motion [52], are employed in existing tracking systems.

Using colour feature is a very intuitive approach and commonly applied in target tracking as

the information provided by colour helps to distinguish between targets and other objects.

Several approaches can be found in the literature which employs colour information to track

the target. In Ref. [53], a colour mixture model based on a Gaussian distribution is used for

tracking and segmentation, while in Ref. [58], an adaptive mixture model is developed. Target

detection and tracking can be easily maintained using colour information if the colour of the

target is distinct from those of the background or other objects.

Another approach for tracking is contour-based where shape matching or contour-evolution

techniques [54] are used to track the target contour. Active models like snakes, geodesic-active

contours, B-splines or meshes [55] can be employed to represent the contours. Occlusion of the

target by other objects is the common problem in tracking. This problem can be addressed by

detecting and tracking the contour of the upper body [56] rather than tracking the contour of

the whole bodies, which leads to the detection of a new person as the upper bodies are often

distinguishable from back and front view for different people.

Texture is another cue defined as a measure for surface intensity variation. Properties like

smoothness and regularity can be quantified by the texture [57–59]. The texture feature is used

with Gabor wavelet in Ref. [60]. The Gabor filters can be employed as orientation and scale-

tunable edge and line detectors, and the statistics of these micro-features are mostly used to

characterize the underlying texture information in a given region [61]. For improved detection

and recognition, local patterns of image have gained attention recently. Local patterns are used

in several application areas such as image classification and face detection since they offer

promising results. In Ref. [62], the local binary patterns (LBPs) method is used to create a type

of texture descriptor based on a grey-scale-invariant texture measure. Such a measure is

tolerant to illumination changes.
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Another cue used in tracking, particularly in indoor environments, is motion which is an

explicit cue of human presence. One way to extract this cue is to apply foreground detection

algorithms. A simple method for foreground detection is to compute the difference of two

consecutive frames which gives the moving part of the image. Although it has been used in

multi-modal-tracking systems [63], it fails when the person remains stationary since the person

is considered part of background after some time.

The scale-invariant feature transform (SIFT) proposed in Ref. [64] has found wide use in

tracking applications. SIFT uses local features to transform the image data into scale-invariant

coordinates. Distinctive invariant features are extracted from images to provide matching

between several views of an object. The SIFT feature is invariant to scaling, translation, clutter,

rotation, occlusion and lighting which makes it robust to changes in three-dimensional (3D)

viewpoint and illumination, and the presence of noise. Even a single feature has high matching

rate in a large database because the SIFT features are generally distinctive. On the other hand,

non-rigid targets [65] in noisy environments degrade the SIFT matching rate and recognition

performance.

So far, several visual cues were introduced, and among them colour cues have been used more

commonly in tracking applications due to their easy implementation and low complexity.

Colour information can be used in the calculation of the histogram of possible targets at the

initialization step as reference images which can be used in detection and tracking of the

target. There are two common colour histogram models, RGB or HSV [66] in the literature

and HSV is more preferable since it is observed to be more robust to illumination variation [9].

2.2. Audio cues

There are a variety of audio information that could be used in audio tracking such as sound

source localization (SSL), time-delay estimation (TDE) and the direction of arrival (DOA) angle.

The audio source localization methods can be divided into three categories [67], namely

steered beamforming, super-resolution spectral estimation and time-delay estimation.

Beamformer-based source localization offers comparatively low resolution and needs a search

over a highly non-linear surface [20]. Also, it is computationally expensive which may be

limited in real-time applications. Super-resolution spectral estimation methods are not well

suited for locating a moving speaker since it is under the assumption that the speaker location

is fixed for a number of frames [68]. However, the location of a moving speaker may change

considerably over time. In addition, these methods are not robust to modelling errors caused

by room reverberation and mostly have high computational cost [20, 69]. The time-delay of

arrival (TDOA)-based location estimators use the relative time delay between the wave-front

arrivals at microphone positions in order to estimate the location of the speaker. As compared

with the other two methods, the TDOA-based approach has advantages in the following two

aspects. The first one is its computational efficiency and the second one its direct connection to

the speaker location.

The problem of DOA estimation is similar to that of the TDOA estimation. To estimate the

DOA, the TDOA needs to be determined between the sensor elements of the microphone
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array. Estimation of source locations mainly depends on the quality of the DOA measure-

ments. In the literature, several DOA estimation techniques such as the MUSIC algorithm [70]

and the coherent signal subspace (CSS) [71] have been proposed. The main differences

between them are the way of dealing with reverberation, background noise and movement of

the sources [20]. The following three factors influence the quality of the DOA estimation. The

spectral content of the speech segment is considered as the first one which is used for deriva-

tion of the DOAs. The reverberation level of the room is the second one which causes outlier in

the measurements because of the reflections from the objects and walls. The positions of the

microphone array to the speakers and the number of simultaneous sources in the field are

considered the third factor.

3. Audio-visual speaker tracking

Speaker tracking is a fundamental part of multimedia applications which plays a critical role to

determine the speaker trajectories and analyse the behaviour of speakers. Speaker tracking can

be accomplished with the use of audio-only, visual-only or audio-visual information.

Audio-only information based approaches for speaker tracking have been presented in

[19, 20, 37, 72–74]. An audio-based fusion scheme was proposed in Ref. [20] to detect multiple

speakers where the locations from multiple microphone arrays are estimated and fused to

determine the state of the same speaker. Separate KFs are employed for all the individual

microphone arrays for the location estimation. To deal with motion of the speaker and mea-

surement uncertainty, the probabilistic data association technique is used with an interacting

model.

One issue in Ref. [20] is that it cannot deal with the tracking problem for a time-varying

number of speakers. Ma et al. [37, 72] proposed an approach based on random finite set to

track an unknown and time-varying number of speakers. The RFS theory and SMC implemen-

tation are used to develop the Bayesian RFS filter, which tracks the time-varying number of

speakers and their states. The random finite set theory can deal with a time-varying number of

speakers; however, the maximum number of speakers that can be handled is limited as its

computational complexity increases exponentially with the number of speakers. In that sense,

a cardinalized PHD (CPHD) filter is proposed in Ref. [74], which is the first-order approxima-

tion of the RFS, to reduce the computational cost caused by the number of speakers. The

positions of the speakers are estimated using TDOA measurements from microphone pairs

by asynchronous sensor fusion with the CPHD filter.

A time-frequency method and the PHD filter are used in Ref. [73] to localize and track

simultaneous speakers. The location of multiple speakers is estimated based on the time-

frequency method, which uses an array of three microphones, then the PHD filter is employed

to the localization results as post-processing to handle miss-detection and clutters.

Speaker tracking with multi-modal information has also gained attention, and many approaches

have been proposed in the past decade using audio-visual information [2, 6, 23, 29, 75–81],
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providing the complementary characteristics of each modality. The differences among these

existing works arise from the overall objective such as tracking either single or multiple speakers

and the specific detection/tracking framework.

Audio-visual measurements are fused by graphical models in Ref. [23] to track a moving

speaker in a cluttered and noisy environment. Audio and video observations are used jointly

by computing their mutual dependencies. The model parameters are learnt using the expecta-

tion-maximization algorithm from a sequence of audio-visual data.

A hierarchical Kalman filter structure was proposed in Refs. [2, 80] to track people in a three-

dimensional space using multiple microphones and cameras. Two independent local Kalman

filters are employed for audio and video streams, and then the outputs of these two local filters

are combined under one global Kalman filter.

Unlike [2, 80], particle filters are used in Ref. [81] to estimate the predictions from audio- and

video-based measurements and audio-visual information fusion is performed at the feature

level. In other words, the independent particle coordinates from the features of both modalities

are fused for speaker tracking. These works [2, 23, 80, 81] have focused on the single-speaker

case which cannot directly address the tracking problem for multiple speakers.

Two multi-modal systems are introduced in Ref. [75] for the tracking of multiple persons. A

joint probabilistic data association filter is employed to detect speech and determine active

speaker positions. Two systems are performed for visual features where a particle filter is

applied first using foreground, colour, upper body detection and person region cues from

multiple camera images and the latter is a blob tracker using only a wide-angle overhead view.

Then, acoustic and visual tracks are integrated using a finite state machine. Unlike [75], a

particle filtering framework is proposed in Ref. [29, 77] which incorporates the audio and

visual detections into the particle filtering framework using an observation model. It has the

capability to track multiple people jointly with their speaking activity based on a mixed-state

dynamic graphical model defined on a multi-person state space. Another particle filter based

multi-modal fusion approach is proposed in Ref. [78] where a single speaker can be identified

in the presence of multiple visual observations. Gaussian mixtures model was adopted to fuse

multiple observations and modalities. Compared to [29, 75, 77, 78], particle filtering frame-

work is not used in Ref. [6]; instead, hidden Markov model based iterating decoding scheme is

used to fuse audio and visual cues for localization and tracking of persons.

In Refs. [14, 76, 79], the Bayesian framework is used to handle the tracking problem for a varying

number of speakers. The particle filter is used in Ref. [76], and observation likelihoods based on

both audio and video measurements are formulated to use in the estimation of the weights of the

particles, and then the number of people is calculated using the weights of these particles. The

RFS theory based on multi-Bernoulli approximations is employed in Ref. [79] to integrate audio

and visual cues with sequential Monte Carlo implementation. The nature of the random finite set

formulation allows their framework to deal with the tracking problem for a varying number

of targets. Sequential Monte Carlo implementation (or particle filter) of PHD filter is used in

Ref. [14] where audio and visual modalities are fused in the steps of particle filter rather than

using any data fusion algorithms. Their work substantially differs from existing works in AV
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multi-speaker tracking with respect to the capabilities for dealing with multiple speakers, simul-

taneous speakers, and unknown and time-varying number of speakers.

4. Tracking algorithms

In this section, a brief review of tracking algorithms is presented which covers the following

topics: Bayesian statistical methods, visual and audio-visual algorithms and non-linear filter-

ing approaches.

Recall that in Section 1, tracking methods are either stochastic and model-driven or determin-

istic and data-driven [25].

The stochastic approaches are based on the Bayesian framework which uses a state-space

approach [82]. Representative methods in this category are the Kalman filter (KF) [30],

extended Kalman filter (EKF) [83, 84] and particle filter (PF) [11]. The PF approach is more

robust as compared to the KF and EKF approaches as it can approach the Bayesian optimal

estimate with a sufficiently large number of particles [11]. It has been widely applied to

speaker tracking problems [29, 76, 81]. The PF is used to fuse object shapes and audio infor-

mation in Refs. [29, 81]. In Ref. [76], independent audio and video observation models are

fused for simultaneous tracking and detection of multiple speakers. However, one challenge in

PF is to choose an appropriate number of particles. While an insufficient number may lead to

particle impoverishment (i.e. loss of diversity among the particles), a larger number (than

required) will induce additional computational cost. Therefore, the performance of the tracker

depends on the number of particles that are estimated as an optimal value.

The PHD filter [85] is another stochastic method based on the finite-set statistics (FISST) theory,

which propagates the first-order moment of a dynamic point process. The PHD filter is used in

many application areas after its proposal and some applications with speaker tracking are

reported in Refs. [37, 73]. It has an advantage over other Bayesian approaches such as Kalman

and PF filters, in that the number of targets does not need to be known in advance since it is

estimated in each iteration. The issue in the PHD filter is that it is prone to estimation error in

the number of speakers in the case of low signal-to-noise ratio [36]. The reason is that the PHD

filter restricts the propagation of multi-target posterior to the first-order distribution moment,

resulting in loss of information for higher order cardinality. To address this issue, the cardinal-

ity distribution is also propagated with PHD distribution in the cardinalized PHD (CPHD)

filter which improves the estimation of the target number [36, 86] and state of the speakers

[74]. However, additional distribution for cardinality requires extra computational load, which

makes the CPHD computationally more expensive than the PHD filter. Moreover, the

spawning of new targets is not modelled explicitly in the CPHD filter.

As a deterministic and data-driven method, the mean-shift [28] uses representation of the

target for localization, which is based on minimizing an appropriate cost function. In that

sense, a similarity function is defined in Ref. [32] to reduce the state estimation problem to a

search in the region of interest. To obtain fast localization, a gradient optimization method is
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performed. The mean-shift works under the assumption that the representation of the target is

sufficiently distinct from the background which may not be always true. Although the mean-

shift is an efficient and robust approach, in occlusion and rapid motion scenarios [87, 88], it

may fail when the target is out of the region of interest, in other words, the search area.

Many approaches have been proposed in the literature to address these problems in mean-shift

tracking, which can be categorized into two groups. One group [87, 89–91] improves the mean-

shift tracking by, for example, introducing adaptive estimation of the search area, iteration

number and bin number. In the other group, the mean-shift algorithm is combined with other

methods such as particle filter [46–49]. The stochastic and deterministic approaches are inte-

grated under the same framework in many studies. Particle filtering (stochastic) is integrated

with a variation approach (deterministic) in Ref. [25] where the ‘switching search’ algorithm is

run for all the particles. In this algorithm, the momentum of the particles is compared with a

pre-determined threshold value, and if it is smaller than the threshold, the deterministic search

is run; otherwise, the particles are propagated in terms of a stochastic motion model.

The particle filtering and mean-shift are combined in Ref. [48] under the name of mean-shift

embedded particle filter (MSEPF). It is inspired by Sullivan and Rittscher [25], but the mean

shift is used as a variational method. It is aimed to integrate the advantages of the particle

filtering and mean-shift method. The MSEPF has a capability to track the target with a small

number of particles as the mean-shift search concentrates on the particles around local modes

(maxima) of the observation. To deal with the possible changes in illuminations, a skin colour

model is used and updated for every frame. As an observation model, colour and motion cues

are employed. To use a multi-cue observation model, the mean-shift analysis is modified and

applied to all the particles. Resampling (selective resampling) is, then, applied when the

effective sample size is too small. The mean-shift and particle filtering methods are used

independently in Ref. [46]. The estimated positions of the target obtained by these two

methods are compared using the Bhattacharyya distance at every iteration and the best value

is chosen as the estimated position of the target to avoid the algorithm from being trapped to a

local maximum, and thus finding the true maximum beyond the local one.

A hybrid particle with a mean-shift tracker is proposed in Ref. [92] which works in a similar

manner to that in Ref. [48]. Alternatively, [92] uses the original application of the mean-shift

and performs the mean-shift process on all the particles to reach the local maxima. Moreover,

an adaptive motion model is used to deal with manoeuvring targets, which have a high speed

of movement. The kernel particle filter is proposed in Ref. [93] where small perturbations are

added to the states of the particles after the mean-shift iteration to prevent the gradient ascent

from being stopped too early in the density. Kernel radius is calculated adaptively every

iteration and this method is applied to multiple target tracking using multiple hypotheses

which are then evaluated and assigned to possible targets. An adaptive mean-shift tracking

with auxiliary particles is proposed in Ref. [49]. As long as the conditions are met, such as the

target remaining in the region of interest, and there are no serious distractions, the mean-shift

is used as the main tracker. When sudden motions or distractions are detected by the motion

estimator, auxiliary particles are introduced to support the mean-shift tracker. As the mean

shift may diverge from the target and converge on the background, background/foreground
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feature selection is applied to minimize the tracking error. Even though this study is inspired

by Sullivan and Rittscher [25], where the main tracker is a particle filter, in Ref. [49], the main

tracker is the mean-shift. In addition, the switched trackers are used to handle sudden move-

ments, occlusion and distractions. Moreover, to maintain tracking even when the target

appearance is affected by illumination or view point, the target model is updated online.

In the literature, several frameworks have been proposed to combine the mean-shift and

particle filters. However, it is still required to have an explicitly designed framework for a

variable number of targets. Both the mean-shift and particle filter were derived for tracking

only a single target. To address this issue, the PHD filter is found as a promising solution as it

is originally designed for multi-target tracking. However, the PHD filter does not have closed-

form solutions as the recursion of the PHD filter includes multi-dimensional integrals. To

derive analytical solution of the PHD filter, the particle filter or sequential Monte Carlo (SMC)

implementation [44] is introduced which leads to SMC-PHD filtering. In Ref. [14], the mean-

shift is integrated with standard SMC-PHD filtering, aiming at improving computational

efficiency and estimation accuracy of the tracker for a variable number of targets.

Besides the tracking methods explained so far, speaker tracking with multi-modal usage

introduces a problem which is known as data association. Each measurement coming from

multi-modality needs to be associated with an appropriate target. Data association methods

are divided into two classes [94]. Unique neighbour is the first data association, and a repre-

sentative method in this class is multiple hypothesis tracking (MHT). Here, each existing track

is associated with one of the measurements. All-neighbours data association belongs to the

second class which uses all the measurements for updating the entire track estimate, for

example, the joint probabilistic data association (JPDA). In MHT, the association between a

target state and the measurements is maintained by multiple hypotheses. However, the

required number of hypotheses increases exponentially over time [95]. In JPDA, separate

Gaussian distributions for each target [96] are used to approximate the posterior target distri-

bution which results in an extra computational cost. Data association algorithms in target-

tracking applications with Bayesian methods and the PHD filter can be found in [20, 97–100].

However, it is found that classical data association algorithms are computationally expensive

which lead to the fusion of multi-modal measurements inside the proposed framework

[8, 9, 29, 73, 80, 81, 83]. As in Refs. [8, 9], audio and visual modalities are fused in the steps of

the visual particle filter.

Among the methods explained above, the PF, RFS, PHD filter and mean-shift are the main

methods discussed throughout this chapter and the main concepts of the methods are

presented below.

4.1. Particle filtering

The PF became widely used tools in tracking after being proposed by Isard et al. [31] due to its

ability to handle non-linear and non-Gaussian problems. The main idea of the PF is to repre-

sent a posterior density by a set of random particles with associated weights, and then

compute estimates based on these samples and weights [101]. The principle of the particle

filter is illustrated in Figure 1. Ten particles are initialized with equal weights in the first step.
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In the second step, the particles are weighted based on given measurements, and as a result,

some particles require small weights while others require larger weights represented by the

size of the particles. The state distribution is represented by these weighted particles. Then, a

resampling step is performed which selects the particles with large weights to generate a set of

new particles with equal weights in the third step. In step four, these new particles are

distributed again to predict the next state. This loop continues from steps two through four

until all the observations are exhausted.

Although there are various extensions of the PF in the literature, the basic concept is the same

and based on the idea of representing the posterior distribution by a set of particles.

4.2. Random finite set and PHD filtering

The generic PF is designed for single-target tracking. Multi-target tracking is more complicated

than single-target tracking as it is necessary to jointly estimate the number of targets and the

state of the targets. One multi-target tracking scenario is illustrated in Figure 2a, where five

targets exist in state space (bottom plane) given at the previous time with eight measurements

in observation space (upper plane). In this scenario, the number of measurements is larger than

the number of targets due to clutter or noise. When the targets are passed to the current time,

the number of targets becomes three and two targets no longer exist.

In that sense, the variable number of targets and noisy measurements need to be handled for

reliable tracking in multi-target case. The RFS approach [36] is an elegant solution to address

this issue. The basic idea behind the RFS approach is to treat the collection of targets as a set-

valued state called the multi-target state and the collection of measurements as a set-valued

observation, called multi-observation. So, the problem of estimating multiple targets in the

presence of clutter and uncertainty is handled by modelling these set-valued entities as

Figure 1. Steps of the particle filter. The first step is particle initialization with equal weights. The particles are weighted in

the second step. After a resampling step is performed in the third step, the particles are distributed to predict the next state

in the fourth step. This figure is adapted from Ref. [102].
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random finite sets [41]. The point here is to generalize the tracking problem from single target

to multiple targets.

Figure 2b illustrates the RFS approach where all the targets are collected in one target set and

all the measurements are considered as one measurement set. The RFS propagates the full

multi-target posterior for multi-target filtering. The state model of the RFS incorporates indi-

vidual target dynamics which are target birth, target spawn and target death. In addition, the

observation model of the RFS incorporates the measurement likelihood as target detection

uncertainty (miss-detection) and clutter (false alarm). These incorporations are implemented

by assigning hypotheses, and all possible associations between hypotheses and measurement/

targets need to be repeated at every time step, resulting in increased computational cost in the

case of a high number of targets and measurements.

To alleviate the computational cost, the PHD filter is introduced which is a computationally

cheaper alternative to the RFS. The PHD filter is the first-order approximation of the RFS and

propagates only the first-order moments instead of the full multi-target posterior [44, 104]. The

PHD filter function is denoted as the intensity vðxÞ whose integral on any region of the state

space gives the expected number of targets. The peaks of the PHD function point the highest

local concentration of the expected number of targets, which can be used to provide estimates

of individual targets [36]. The PHD filter is illustrated in Figure 3 by a simple example [36]

which corresponds to Eq. (1)

(a)

(b)

Figure 2. An illustration of the RFS theory in a multi-target tracking application. One possible multi-target tracking

scenario is given in (a), and (b) represents the RFS approach to multi-target tracking. The figures are adapted from Ref.

[103].
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vðxÞ ¼ N
σ
2ðx� aÞ þN

σ
2ðx� bÞ ¼ 1

ffiffiffiffiffiffiffiffiffi

2πσ
p exp �ðx� aÞ2

2σ2

 !

þ exp �ðx� bÞ2
2σ2

 !" #

ð1Þ

Figure 3 is plotted for Eq. (1) with σ ¼ 1, a ¼ 1 and b ¼ 4. The peaks of vðxÞ is near the target

locations x ¼ 1 and x ¼ 4.

The integral of vðxÞ computes the actual number of targets Ξ:

Ξ ¼
Z

vðxÞdx ¼
Z

N ðσÞ2ðx� aÞdxþ
Z

N ðσÞ2ðx� bÞdx ¼ 1þ 1 ¼ 2 ð2Þ

4.3. Mean-shift tracking

Different from stochastic approaches such as the PF, RFS and PHD filter, the mean-shift is a

deterministic method [28]. The mean-shift can be defined as a simple iterative procedure that

shifts each data point to the average of data points in its neighbourhood [105].

Common application areas are clustering [106], mode seeking [107], image segmentation [108]

and tracking [109]. Simple implementation of the mean-shift method is illustrated in Figure 4

where the purpose is to find the densest region of the distributed balls. The first step is to select

an initial point with the region of interest as shown in Figure 4a where the circle indicates the

region of interest centred on the initial point. In Figure 4b, the centre of the mass is calculated

using the balls inside the region of interest. To get the distance and direction for shifting the

initial point, the mean-shift vector is calculated in Figure 4c. The initial point is shifted to a new

point together with the region of interest in Figure 4d. The centre of the mass is calculated

again using the balls inside the region of interest which leads to new mass point in Figure 4e.

The mean-shift vector is calculated to obtain the direction and distance for shifting and the

region of interest is shifted to a new point as illustrated in Figures 4f and g, respectively. This

iteration continues until the mean-shift method reaches the densest point in Figure 4h.

Figure 3. A simple example for the PHD filter. This figure is adapted from Ref. [36].
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4. Simple descriptions of the mean-shift process. These figures are adapted from Ref. [110].

Motion Tracking and Gesture Recognition58



5. Relevant datasets

In order to perform a quantitative evaluation of the audio-visual tracker, both audio and video

sequences are required. In that sense, several datasets are presented in the literature that

combine multiple audio and video sources for tracking.

The augmented multi-party interaction (AMI) [111] corpus includes 100 h of meetings, which

were recorded in English using three different rooms. Natural conversations are included in

some of the meetings, and many others, in particular those using a scenario in which the

participants play different roles in a design team, are also reasonably natural. The number of

speakers in the natural conversations varies from three to five. In one artificial meeting, four

speakers are involved, taking four pre-arranged roles (as industrial designer, interface designer,

marketing and project manager). Other artificial meetings also appear in the AMI corpus, such

as a film club scenario. Generally, the speakers are mostly static or with small movements. In

addition, calibration information is not available which is required for 3D tracking as it is needed

to project the coordinates from the two-dimensional (2D) image into 3D space.

CLEAR (CLassification of Events, Activities and Relationships) is the next dataset created for

people identification, activities, human-human interaction and relevant scenarios [112].

Recordings are captured with multiple users in realistic meeting rooms equipped with a

multitude of audio-visual sensors. The rooms have five calibrated cameras, and four of them

are mounted to the corners of the room while the last panoramic camera is mounted to the

ceiling of the room. All cameras are synchronized with the audio streams collected by the

linear microphone array placed on the walls. In most scenarios, the speakers are generally still

and seated around the table. They speak one by one.

Another dataset is SPEVI (Surveillance performance evaluation initiative) [113] created for

single- and multi-modal people detection and tracking. Sequences are captured by a video

camera and two linear microphone arrays. The SPEVI dataset has three sequences. The

sequences motinas_Room160 and motinas_Room105 are captured in rooms with reverbera-

tion. The sequence motinas_Chamber is captured in a reduced reverberation room. In this

dataset, audio signals were recorded with linear microphone arrays and the calibration infor-

mation is not available.

One of the most challenging datasets that can be used for the evaluation of audio-visual

tracking algorithm is AV16.3 corpus which is developed by the IDIAP research institute [114].

The corpus AV16.3 involves various scenarios where subjects are moving and speaking at the

same time whilst being recorded by three calibrated video cameras and two circular eight-

element microphone arrays.

Recordings in the AV16.3 involve challenging scenarios such as object initialization, partial and

total occlusion, overlapped speech, illumination change, close and far locations, variable num-

ber of objects, and small and large angular separations. Circular microphone arrays were used

to record the audio signals at 16 kHz and video sequences were captured at 25 Hz. The

recordings of audio and video were performed independently from each other. Each video

Audio‐Visual Speaker Tracking
http://dx.doi.org/10.5772/intechopen.68146

59



frame is a colour image of 288 · 360 pixels and some sequences are annotated to get the

ground truth (GT) speaker position which allows one to measure the accuracy of each tracker

and to compare the performance of the algorithms. In addition, it provides calibration infor-

mation of the cameras and challenging scenarios like occlusions and moving speakers.

The most recently released dataset is ‘S3A speaker tracking with Kinect2’ [115, 116] which uses a

Kinect for Windows V2.0 for recording the visual data and dummy head for recording the audio

data. It contains four sequences in a studio where people are talking and walking slowly around

a dummy head which is located at the centre of the room. Different from other cameras, Kinect

sensor provides in-depth information besides the colour which helps to extract the 3D position of

the speaker without using additional view of the scene. In addition, annotated data are provided

which can be used as ground truth data to estimate the performance of the tracker.

6. Performance metrics

Several metrics have been proposed to evaluate the performance of tracking methods in the

literature. In this section, four metrics are introduced.

The first one is the mean absolute error (MAE), which is computed as the Euclidean distance in

pixels between the estimated and the ground truth positions, and then divided by the number

of frames. This metric offers simplicity and explicit output for the performance comparison.

The multiple object tracking (MOT) metric is the next metric which was proposed in Ref. [117].

It is defined with MOT precision (MOTP) andMOTaccuracy (MOTA) quantities. The precision

is measured with the MOTP using a pre-defined threshold value

MOTP ¼

X
i,k
dikX

k
ck

ð3Þ

where dik is the distance between the ith object and its corresponding hypothesis and ck is the

number of matches between the objects and hypotheses for time frame k.

Tracking errors are measured with the MOTAwhich covers the false positives, false negatives

and mismatches. If the error is greater than the threshold value, it is assumed that the false

positive and false negative count if the speaker is not tracked with the accuracy measured by

the threshold. Mismatches are the case where the speaker identity is switched [117]

MOTA ¼ 1�

X
k
ðmk þ f pk þmmkÞX

k
gk

ð4Þ

where mk, f pk, mmk and gk define the number of misses (false negatives), false positives,

mismatches and objects present, respectively, for the time frame k.

The next metric is the trajectory-based measures (TBMs) proposed in Refs. [118, 119], where

the performance is measured based on trajectory. It categorizes the trajectories as mostly

Motion Tracking and Gesture Recognition60



tracked (MT), mostly lost (ML) and partially tracked (PT). MT is defined as if the tracker

follows at least 80% of its ground truth (GT) trajectory. If the tracker follows less than 20% of

its GT, it is called ML. If the followed trajectory is between 20 and 80% of the GT trajectory, it is

called PT. Also, track fragmentation (Frag) is defined as the total number of times that GT is

interrupted. Identity switches (IDs) are computed by calculating change in GT identity.

OSPA-T (Optimal Subpattern Assignment for Tracks) [120] is the last performance metric

designed for the evaluation of multi-speaker tracking systems. It is an improved version of

the OSPA metric [121] by extending it for tracking management evaluation. To transfer the

cardinality error into the state error, a penalty value is used in the OSPA. So its performance

evaluation includes both source number estimation and speaker position estimation:

eOSPAðX̂ k,X kÞ ¼ min
π∈Π

Ξ̂k,Ξk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

Ξk

X

Ξ̂k

i¼1

d
ðcÞ
ðx̂i,k,xπi,kÞ

a þ caðΞk � Ξ̂kÞ

 !

a

v

u

u

t ð5Þ

where X̂ k ¼ fx̂1,k,…, x̂
Ξ̂k ,k

g is an estimation of the ground-truth state set X k ¼ fx1,k,…, xΞk,kg

and Π
Ξ̂k ,Ξk

is the set of maps π : 1,…, Ξ̂k ! 1,…,Ξk. The state cardinality estimation Ξ̂k may

not be the same as the ground truth Ξk. The OSPA error defined in Eq. (5) is for Ξ̂k ≤Ξk. If

Ξk < Ξ̂k, then eOSPAðX̂ k,X kÞ ¼ eOSPAðX k, X̂ kÞ. The function d
ðcÞ

is denoted as min ðc, dð�ÞÞ. Here,

c is defined as the cut-off value in order to weight the penalties for cardinality and localization

errors. Additionally, the metric order is defined by a which determines the sensitivity to

outliers. The OSPA-T metric differs from other metrics since it considers not only the position

estimation of the speaker but also the estimation of the number of speakers in the evaluation of

the tracking results. As OSPA-T measures the error based on these two terms, state (position

estimation) and cardinality (number of speaker estimation), it causes ambiguities about how

much error is contributed from each term to the final error. In addition to the x1 and x2

variables of the state vector, the scale variable, s, may be considered in the evaluation. How-

ever, this will cause more ambiguities in the contributions of the terms to the final error and

deteriorate the reliability of the metric.

As a summary, four metrics are introduced which evaluate the methods from their own

perspectives. To see howwell the tracker follows its trajectory, the TBM can be used to measure

its performance. If the tracking error needs to be estimated, the MAE or the more advanced

option MOT can be used to see how accurately the tracker follows the target. If an unknown

and variable number of targets need to be tracked, then the OSPA-T metric is more suitable

than the others as it considers both position estimation and the estimated number of targets in

the performance evaluation.

7. Experimental results and analysis

In this chapter, six trackers are included to cover the recent paradigms. The trackers are

restricted to the ones either for which access to the source code has been permitted or tracker

performance has been reported on commonly used datasets.
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To deal with the tracking problem for unknown and time-varying number of speakers, Kılıç et al.

[14] propose to use particle PHD (SMC-PHD) filter. DOA information is employed as an audio

cue and it is integrated with video data under SMC-PHD filter framework. Audio data are used

to determine when to propagate and re-allocate surviving, spawned and born particles based on

their types. The particles are concentrated around the DOA line, which is drawn from the centre

of the microphone array to the estimated speaker position by audio information.

As a baseline algorithm, the visual SMC-PHD (V-SMC-PHD) filter, which uses colour informa-

tion as a visual cue, is compared with the audio-visual SMC-PHD (AV-SMC-PHD) to see the

advantage of using multi-modal information in challenging tracking scenarios like occlusion.

Sequence 24 from AV16.3 dataset is run for V-SMC-PHD and AV-SMC-PHD, and tracking

results are given in Figure 5.

The first row shows the results of V-SMC-PHD filter which fails to track after occlusion. Also, it

shows poor performance before the occlusion in terms of the detection of the speakers. It is

reported in Ref. [14] that the AV-SMC-PHD filter tracks the speakers more accurately and

shows better performance than the V-SMC-PHD filter in terms of accuracy and ability for re-

detection of the speakers after lost.

The same experiments are repeated for three-speaker case using Sequence 45 camera #3 from

the AV16.3 dataset and the results are given in Figure 6. It is reported in Ref. [14] that AV-SMC-

Figure 5. AV16.3, sequence 24 camera #1: occlusions with two speakers [14]. Performance of the V-SMC-PHD filter is

shown in the first row. The second row is given for the AV-SMC-PHD filter.

Figure 6. AV16.3, sequence 45 camera #3: occlusions with three speakers [14]. The tracking results of the V-SMC-PHD and

the AV-SMC-PHD filters are shown in the first and second rows, respectively.
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PHD filter has better capability in detecting and following all the speakers even after the

occlusions.

To improve the estimation accuracy of the AV-SMC-PHD filter, [12] integrates the mean-shift

method in order to shift the particles to a local maximum of the distribution function which

drives particles closer the speaker position. The generic mean-shift algorithm is modified for

multiple-speaker case and applied after the audio contribution to the particles, and this algo-

rithm is named as AVMS-SMC-PHD filter.

Even though the integration of the mean-shift improves the estimation accuracy, applying the

mean-shift process to all the particles introduces extra computational cost [12]. To address this

problem, [12] proposes a sparse sampling scheme which chooses sparse particles and runs the

mean-shift method only on those particles rather than all the particles which results in a

significant reduction in computational cost. This method is named as sparse-AVMS-SMC-

PHD filter. Another tracking algorithm is given in Ref. [122], which uses the merits of dictio-

nary learning for multi-speaker tracking. It is tested using some sequences (seq24, seq25 and

seq30) of the AV16.3 dataset.

The results of these five trackers on sequences of AV16.3 are given in Table 1 and the OSPA-T

metric is used for comparison. The tracker in Ref. [122] outperforms the V-SMC-PHD; how-

ever, the AVMS-SMC-PHD shows better performance than the others.

These tracking results are compared with those of [123] which uses the PHD filter for tracking

and reports the results only for seq24 cam1 and cam2 in terms of Wasserstein distance. Table 2

shows the results of six trackers.

Tracking algorithm #1

[122]

V SMC-PHD

[14]

AV SMC-PHD

[14]

AVMS SMC-PHD

[14]

Sparse AVMS

SMC-PHD [14]

seq24 cam1 22.28 27.12 17.71 13.93 14.50

cam2 17.60 25.91 19.83 14.97 15.35

cam3 28.18 24.32 18.94 14.12 15.72

seq25 cam1 21.49 25.84 19.13 15.72 17.17

cam2 19.17 25.66 18.47 13.93 15.39

cam3 29.35 29.99 21.61 17.07 17.62

seq30 cam1 35.98 35.60 25.22 16.65 19.27

cam2 28.40 24.97 19.37 14.86 16.16

cam3 34.60 37.64 25.31 19.29 19.67

seq45 cam1 NA 48.68 29.46 22.95 23.40

cam2 NA 39.24 29.47 21.47 23.16

cam3 NA 39.09 28.43 22.43 23.80

Average 26.34 32.01 22.75 17.28 18.43

Table 1. Comparison results of the tracking algorithms for the AV16.3 dataset using the OSPA-T metric [14].
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Among six trackers, the AVMS-SMC-PHD outperforms the other trackers in terms of the

average accuracy.

The trackers of [14] are also tested in different datasets. One sequence from each AMI and

CLEAR dataset is used to test the trackers. Figure 7 shows the results of V-SMC-PHD and AV-

SMC-PHD for a sequence of the AMI dataset. In this dataset, the speakers talk one by one.

Hence, one DOA line is drawn per time instance. Since the speakers remain still, the visual

trackers do not fail to track the speakers.

Other sequence is UKA_20060726 from the CLEAR dataset where the speakers talk one by one

and mostly sit around the table. The performance of visual and audio-visual trackers is given

in Figure 8.

The average error of the trackers for sequences IS1001a and UKA_20060726 is given in Table 3

in terms of the OSPA-T metric. It is reported in Ref. [14] that there is no significant difference

on the performance of the visual and audio-visual trackers since the speakers talk one by one.

The audio-visual tracker runs as a visual tracker for the silent speakers, while it is more

seq24 Tracking

algorithm #1 [122]

Tracking

algorithm #2 [123]

V SMC-PHD

[14]

AV SMC-

PHD [14]

AVMS SMC-PHD

[14]

Sparse AVMS

SMC-PHD [14]

cam1 9.02 7.20 16.96 7.94 6.67 7.45

cam2 6.40 4.80 19.17 7.59 5.24 5.73

Average 7.71 6.00 18.06 7.76 5.96 6.59

Table 2. Tracking algorithms are compared in terms of mean Wasserstein distance (in pixel) [14].

Figure 7. AMI dataset, sequence IS1001a. The first and second rows show the results of the V-SMC-PHD and the AV-

SMC-PHD filter, respectively [14].
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effective for the talking speakers because of the additional information coming from audio

modality.

8. Chapter summary

In this chapter, a review of multi-speaker tracking has been provided on modalities, existing

tracking techniques, datasets and performance metrics that have been developed over the past

few decades.

After a broad survey of the tracking methods, a technical background of the methods such as

particle filtering, random finite set, PHD filter and mean-shift, which are commonly used as

baseline methods in the literature, is introduced with their basic mathematical, statistical

concepts and definitions, which are required for understanding the mathematics and tech-

niques behind the proposed tracking algorithms.

In order to perform a quantitative evaluation of the proposed algorithms, both audio and

video sequences are required. Publicly available datasets such as AV16.3, CLEAR, AMI, SPEVI

and S3Awere introduced with the fundamental differences including physical setup, scenarios

and challenges.

Figure 8. CLEAR dataset, sequence UKA_20060726. The first and second rows show the results of the V-SMC-PHD and

the AV-SMC-PHD filters, respectively [14].

Sequences V SMC-PHD [14] AV SMC-PHD [14] AVMS SMC-PHD [14] Sparse AVMS SMC-PHD [14]

IS1001a 25.32 21.51 18.91 20.37

UKA_20060726 28.33 25.94 23.14 24.82

Table 3. Comparison results of the tracking algorithms for the AMI and CLEAR dataset.
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Moreover, performance metrics were analysed in order to see which aspects are considered

more in the evaluation and impacts of these perspectives on the evaluation results.
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