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Tracking Gaze and Visual Focus of Attention of
People Involved in Social Interaction

Benoit Massé, Silèye Ba, and Radu Horaud

Abstract—The visual focus of attention (VFOA) has been
recognized as a prominent conversational cue. We are interested
in estimating and tracking the VFOAs associated with multi-
party social interactions. We note that in this type of situations
the participants either look at each other or at an object of
interest; therefore their eyes are not always visible. Consequently
both gaze and VFOA estimation cannot be based on eye detection
and tracking. We propose a method that exploits the correlation
between eye gaze and head movements. Both VFOA and gaze are
modeled as latent variables in a Bayesian switching state-space
model (also referred switching Kalman filter). The proposed
formulation leads to a tractable learning method and to an
efficient online inference procedure that simultaneously tracks
gaze and visual focus. The method is tested and benchmarked
using two publicly available datasets, Vernissage and LAEO,
that contain typical multi-party human-robot and human-human
interactions.

Index Terms—Visual focus of attention, eye gaze, head pose,
dynamic Bayesian models, switching state-space models, multi-
party interaction, human-robot interaction.

I. INTRODUCTION

In this paper we are interested in the computational analysis
of social interactions. In addition to speech, people com-

municate via a large variety of non-verbal cues, e.g. prosody,
hand gestures, body movements, head nodding, eye gaze, and
facial expressions. For example, in a multi-party conversation,
a common behavior consists in looking either at a person,
e.g. the speaker, or at an object of current interest, e.g. a
computer screen, a painting on a wall, or an object lying on
a table. We are particularly interested in estimating the visual
focus of attention (VFOA), or who is looking at whom or at
what, which has been recognized as one of the most prominent
social cues. It is used in multi-party dialog to establish face-
to-face communication, to respect social etiquette, to attract
someone’s attention, or to signify speech-turn taking, thus
complementing speech communication.

The VFOA characterizes a perceiver/target pair. It may be
defined either by the line from the perceiver’s face to the
perceived target, or by the perceiver’s direction of sight or gaze
direction (which is often referred to as eye gaze or simply
gaze). Indeed, one may state that the VFOA of person i is
target j if the perceiver’s gaze is aligned with the perceiver-
to-target line. From a physiological point of view, eye gaze
depends on both eyeball orientation and head orientation. Both
the eye and the head are rigid bodies with three and six degrees
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of freedom respectively. The head position (three coordinates)
and the head orientation (three angles) are jointly referred to
as the head pose. With proper choices for the head- and eye-
centered coordinate frames, one can assume that gaze is a
combination of head pose and of eyeball orientation,1 and the
VFOA depends on head pose, eyeball orientation, and target
location.

In this paper we are interested into estimating and tracking
jointly the VFOAs of a group of people that communicate with
each other and with a robot, or multi-party HRI (human-robot
interaction), which may well be viewed as a generalization
of single-user HRI. From a methodological point of view the
former is more complex than the latter. Indeed, in single-user
HRI the person and the robot face each other and hence a
camera mounted onto the robot head provides high-resolution
frontal images of the user’s face such that head pose and
eye orientation can both be easily and robustly estimated.
In the case of multi-party HRI the eyes are barely detected
since the participants often turn their faces away from the
camera. Consequently, VFOA estimation methods based on
eye detection and eye tracking are ineffective and one has to
estimate the VFOA, indirectly, without explicit eye detection.

We propose a Bayesian switching dynamic model for the
estimation and tracking gaze directions and VFOAs of several
persons involved in social interaction. While it is assumed
that head poses (location and orientation) and target locations
can be directly detected from the data, the unknown gaze
directions and VFOAs are treated as latent random variables.
The proposed temporal graphical model, that incorporates gaze
dynamics and VFOA transitions, yields (i) a tractable learn-
ing algorithm and (ii) an efficient gaze-and-VFOA tracking
method.2 The proposed method may well be viewed as a
computational model of [1], [2].

The method is evaluated using two publicly available
datasets, Vernissage [3] and LAEO [4]. These datasets consist
of several hours of video containing situated dialog between
two persons and a robot (Vernissage) and human-human
interactions (LAEO). We are particularly interested in finding
participants that either gaze to each other, gaze to the robot,
or gaze to an object. Vernissage is recorded with a motion
capture system (a network of infrared cameras) and with a

1Note that orientation generally refers to the pan, tilt and roll angles of
a rigid-body pose, while direction refers to the polar and azimuth angles or,
equivalently, a unit vector. Since the contribution of the roll angle to gaze is
generally marginal, in this paper we make no distinction between orientation
and direction.

2Supplementary materials, that include a software package and examples
of results, are available at https://team.inria.fr/perception/research/eye-gaze/.
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camera placed onto the robot head. LAEO is collected from
TV shows.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of related work in gaze, VFOA
and head-pose estimation. Section III introduces the paper’s
mathematical notations and definitions, states the problem
formulation and describes the proposed model. Section IV
presents in detail the model inference and Section V derives
the learning algorithm. Section VI provides implementation
details and Section VII describes the experiments and reports
the results.

II. RELATED WORK

As already mentioned, the VFOA is correlated with gaze.
Several methods proceed in two steps, in which the gaze
direction is estimated first, and then used to estimate VFOA.
In scenarios that rely on precise estimation of gaze [5], [6]
a head-mounted camera, like the one in [7], can be used
to detect the iris with high accuracy. Head-mounted eye
trackers provide extremely accurate gaze measurements and in
some circumstances eye-tracking data can be used to estimate
objects of interest in videos [8]. Nevertheless, they are invasive
instruments and hence not appropriate for analyzing social
interactions.

Gaze estimation is relevant for a number of scenarios, such
as car driving [9] or interaction with smartphones [10]. In these
situations, either the field of view is limited, hence the range of
gaze directions is constrained (car driving), or active human
participation ensures that the device yields frontal views of
the user’s face, thus providing accurate eye measurements [7],
[9], [11], [12]. In some scenarios the user is even asked to
limit head movements [13], or to proceed through a calibration
phase [12], [14]. Even if no specific constraints are imposed,
single-user scenarios inherently facilitate the task of eye mea-
surement [11]. At the best of our knowledge, there is no gaze
estimation method that can deal with unconstrained scenarios,
e.g. participants not facing the cameras, partially or totally
occluded eyes, etc. In general, eye analysis is inaccurate when
participants are faraway from the camera.

An alternative is to approximate gaze direction with head
pose [15]. Unlike eye-based methods, head pose can be
estimated from low-resolution images, i.e. distant cameras
[16], [17], [18], [19], [20]. These methods estimate gaze
only approximatively since eyeball orientation can differ from
head orientation by ±35° [21]. Gaze estimation from head
orientation can benefit from the observation that gaze shifts
are often achieved by synchronously moving the head and the
eyes [22], [1], [2]. The correlation between head pose and gaze
has also been exploited in [23]. More recently, [24] combined
head and eye features to estimate the gaze direction using an
RGB-D camera. The method still requires that both eyes are
visible.

Several methods were proposed to infer VFOAs either from
gaze directions [25], or from head poses [4], [26], [27], [28].
For example, in [4] it is proposed to build a gaze cone around
the head orientation and targets lying inside this cone are used
to estimate the VFOA. While this method was successfully

applied to movies, its limitation resides in its vagueness: the
VFOA information is limited to whether there are two people
looking at each other or not.

An interesting application of VFOA estimation it the anal-
ysis of social behavior of participants engaged in meetings,
e.g. [23], [26], [29], [30]. Meetings are characterized by
interactions between seated people that interact based on
speech and on head movements. Some methods estimate the
most likely VFOA associated with a head orientation [23],
[29]. The drawback of these approaches is that they must be
purposively trained for each particular meeting layout. The
correlation between VFOA and head pose was also investi-
gated in [26] where an HMM is proposed to infer VFOAs
from head and body orientations. This work was extended
to deal with more complex scenarios, such as participants
interacting with a robot [27], [31]. An input-output HMM is
proposed in [31] to enable to model the following contextual
information: participants tend to look to the speaker, to the
robot, or to an object which is referred to by the speaker or
by the robot. The results of [31] show that this improves the
performance of VFOA estimation. Nevertheless, this method
requires additional information, such as speaker identification
or speech recognition.

The problem of joint estimation of gaze and of VFOA
was addressed in a human-robot cooperation task [28]. In
such a scenario the user doesn’t necessarily face the camera
and robot-mounted cameras have low-resolution, hence the
estimation of gaze from direct analysis of eye regions is not
feasible. [28] proposes to learn a regression between the space
of head poses and the space of gaze directions and then
to predict an unknown gaze from an observed head pose.
The head pose itself is estimated by fitting a 3D elliptical
cylinder to a detected face, while the associated gaze direction
corresponds to the 3D line joining the head center to the
target center. This implies that during the learning stage,
the user is instructed to gaze at targets lying on a table
in order to provide training data. The regression parameters
thus estimated correspond to a discrete set of head-pose/gaze-
direction pairs (one for each target); an erroneous gaze may be
predicted when the latter is not in the range of gaze directions
used for training.

A summary of the proposed Bayesian dynamic model and
experiments with the Vernissage [3] motion capture dataset
were presented in [32]. In this article we provide a detailed
and comprehensive description and analysis of the proposed
model, of the model inference, of the learning methodology,
and of the associated algorithms. We show results with both
motion capture and RGB data from Vernissage. Additionally,
we show results with the LAEO dataset [4].

III. PROPOSED MODEL

The proposed mathematical model model is inspired from
psychophysics [1], [2]. In unconstrained scenarios a person
switches his/her gaze from one target to another target,
possibly using both head and eye movements. Quick eye
movements towards a desired object of interest are called
saccades. Eye movements can also be caused by the vestibule-
ocular reflex that compensates for head movements such that
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Figure 1. This figure illustrates the principle of our method and displays the observed and latent variables associated with a person (left-person indexed by
i). The two images were grabbed with a camera mounted onto the head of a robot and they correspond to frames t − n (left image) and t (right image),
respectively. The following variables are displayed: head orientation (red arrow), Hi

t−n,H
i
t (observed variables), as well as the latent variables estimated

with the proposed method, namely gaze direction (green arrow), Gi
t−n,G

i
t, VFOA, Vi

t−n,V
i
t, and head reference orientation (black arrow), Ri

t−n,R
i
t

(that coincides with upper-body orientation). In this example left-person gazes towards the robot at t − n, then turns her head to eventually gaze towards
right-person at t, hence her VFOA switches from Vi

t−n = robot to Vi
t = right-person.

one can maintain his/her gaze in the direction of the target of
interest. Therefore, in the general case, gazing to an object is
achieved by a combination of eye and head movements.

In the case of small gaze shifts, e.g. reading or watching
TV, eye movements are predominant. In the case of large
gaze shifts, often needed in social scenarios, head movements
are necessary since eyeball movements have limited range,
namely ±35° [21]. Therefore, the proposed model considers
that gaze shifts are produced by head movements that occur
simultaneously with eye movements.

A. Problem Formulation

We consider a scenario composed of N active targets and
M passive targets. An active target is likely to move and/or to
have a leading role in an interaction. Active targets are persons
and robots.3 Passive targets are objects, e.g. wall paintings.
The set of all targets is indexed from 0 to N + M , where
the index 0 designates “no target". Let i be an active target (a
person or a robot), 1 ≤ i ≤ N , and j be a passive target (an
object), N + 1 ≤ j ≤ N +M . A VFOA is a discrete random
variable defined as follows: Vi

t = j means person (or robot) i
looks at target j at time t. The VFOA of a person (or robot)
i that looks at none of the known targets is Vi

t = 0. The case
Vi
t = i is excluded. The set of all VFOAs at time t is denoted

by Vt =
(
V1
t , . . . ,V

N
t

)
.

Two continuous variables are now defined: head orientation
and gaze direction. The head orientation of person i at t
is denoted with Hi

t = [φiH,t, θ
i
H,t]
>, i.e. the pan and tilt

angles of the head with respect to some fixed coordinate
frame. The gaze direction of person i is denoted with Gi

t

and is also parameterized by pan and tilt with respect to the
same coordinate frame, namely Gi

t = [φiG,t, θ
i
G,t]
>. Although

eyeball orientation is neither needed nor used, it is worth

3Note that in case of a robot, the gaze direction and the head orientation
are identical and that the latter can be easily estimated from the head motors.

noticing that it is the difference between Gi
t and Hi

t. These
variables are illustrated on Fig. 1.

Finally, to establish a link between VFOAs and gaze di-
rections, the target locations must be defined as well. Let
Xi
t = [xit, y

i
t, z

i
t]
> be the location of target i. In the case

of a person, this location corresponds to the head center
while in the case of a passive target, it corresponds to the
target center. These locations are defined in the same coor-
dinate frame as above. Also notice that the direction from
the active target i to target j is defined by the unit vector
Xij
t = (Xj

t−Xi
t)/‖X

j
t−Xi

t‖ which can also be parameterized
by two angles, Xij

t = [φi,jX,t, θ
i,j
X,t]
>.

As already mentioned, target locations and head orientations
are observed random variables, while VFOAs and gaze direc-
tions are latent random variables. The problem to be solved
can now be formulated as a maximum a posteriori (MAP)
problem:

V̂t, Ĝt = argmax
Vt,Gt

P (Vt,Gt|H1:t,X1:t) (1)

Since there is no deterministic relationship between head
orientation and gaze direction, we propose to model it prob-
abilistically. For this purpose, we introduce an additional
latent random variable, namely the head reference orientation,
Ri
t = [φiR,t, θ

i
R,t]
>, which we choose to coincide with

the upper-body orientation. We use the following generative
model, initially introduced in [26], linking gaze direction, head
orientation, and head reference orientation:

P (Hi
t|Gi

t,R
i
t;α,ΣH) = N (Hi

t;µ
i
H,t,ΣH), (2)

with µiH,t = αGi
t + (I2 −α)Ri

t, (3)

where ΣH ∈ R2×2 is a covariance matrix, I2 ∈ R2×2 is the
identity matrix and α = Diag (α1, α2) is a diagonal matrix
of mixing coefficients, 0 < α1, α2 < 1. Also it is assumed
that the covariance matrix is the same for all the persons and
over time. Therefore, head orientation is an observed random
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Gt−1 Gt

Ht−1 Ht

Rt−1 Rt

Xt−1 Xt

Vt−1 Vt

Figure 2. Graphical representation showing the dependencies between the
variables of the proposed Bayesian dynamic model. The discrete latent
variables (visual focus of attention) are shown with squares while continuous
variables are shown with circles: observed variables (head pose and target
locations) are shown with shaded circles and latent variables (gaze and
reference) are shown with white circles.

variable normally distributed around a convex combination
between two latent variables: gaze direction and head reference
orientation.

B. Gaze Dynamics

The following model is proposed:

P (Gi
t|Gi

t−1Ġ
i
t−1,V

i
t = j,Xt) = N (Gi

t;µ
ij
G,t,ΓG), (4)

P (Ġi
t|Ġi

t−1) = N (Ġi
t; Ġ

i
t−1,ΓĠ), (5)

with:

µijG,t =

{
Gi
t−1 + Ġi

t−1 dt, if j = 0,

βGi
t−1 + (I2 − β)Xij

t + Ġi
t−1 dt, if j 6= 0,

(6)

where Ġi
t = dGi

t/dt is the gaze velocity, ΓG,ΓĠ ∈ R2×2

are covariance matrices, and β = Diag (β1, β2) is a diagonal
matrix of mixing coefficients, 0 < β1, β2 < 1. Therefore, if a
person looks at one of the targets, then his/her gaze dynamics
depends on the person-to-target direction Xij

t at a rate equal
to β, and if a person doesn’t look at one of the targets, then
his/her gaze dynamics follows a random walk.

The head reference orientation dynamics can be defined in
a similar way:

P (Ri
t|Ri

t−1, Ṙ
i
t−1) = N (Ri

t;µ
i
R,t,ΓR), (7)

P (Ṙi
t|Ṙi

t−1) = N (Ṙi
t; Ṙ

i
t−1,ΓṘ), (8)

with µiR,t = Ri
t−1 + Ṙi

t−1 dt,

where Ṙi
t = dRi

t/dt is the head reference orientation velocity
and ΓR,ΓṘ ∈ R2×2 are covariance matrices. The dependen-
cies between all the model variables are shown as a graphical
representation in Figure 2.

It is assumed that the gaze directions associated with differ-
ent people are independent, given the VFOAs V1:t. The cross-
dependency between different people is taken into account
by the VFOA dynamics as detailed in section III-C below.

Similarly, head orientations, and head reference orientations
associated with different people are independent, given the
VFOAs. By combining the above equations with this inde-
pendency assumption, we obtain:

P (Ht|Gt,Rt) =
∏
i

N (Hi
t;µ

i
H,t,ΣH) (9)

P (Gt|Gt−1, Ġt−1,Vt,Xt) =
∏
i,j

N (Gi
t;µ

ij
G,t,ΓG)δj(V

i
t)

(10)

P (Rt|Rt−1, Ṙt−1) =
∏
i

N (Ri
t;µ

i
R,t,ΓR) (11)

where the dependencies between variables are embedded in
the variable means, i.e. (3) and (6). The covariance matrices
will be estimated via training. While gaze directions can vary
a lot, we assume that head reference orientations are almost
constant over time, which can be enforced by imposing that
the total variance of gaze is much larger than the total variance
of head reference orientation, namely:

Tr(ΓG)� Tr(ΓR), (12)

C. VFOA Dynamics

Using a first-order Markov approximation, the VFOA tran-
sition probabilities can be written as:

P (Vt|V1:t−1) = P (Vt|Vt−1), (13)

Notice that matrix P (Vt|Vt−1) is of size (N +M)N × (N +
M)N . Indeed, there are N persons (active targets), and N +
M+1 targets (one "no" target, N active targets and M passive
targets) and the case of a person that looks to him/herself is
excluded. For example, if N = 2 and M = 4, matrix (13)
has (2 + 4)2×2 = 1296 entries. The estimation of this matrix
would require, in principle, a large amount of training data, in
particular in the presence of many symmetries. We show that,
in practice, only 15 different transitions are possible. This can
be seen on the following grounds.

We start by assuming conditional independence between the
VFOAs at t:

P (Vt|Vt−1) =
∏
i

P (Vi
t|Vt−1). (14)

Let’s consider V it , the VFOA of person i at t, given Vt−1,
the VFOAs at t− 1. One can distinguish two cases:
• V it−1 = k where k is either a passive target, N < k ≤
N + M , or it is none of the targets, k = 0; in this case
V it depends only on V it−1, and

• V it−1 = k, where k 6= i is a person 1 ≤ k ≤ N ; in this
case V it depends on the both V it−1 and V kt−1.

To summarize, we can write that:

P (Vi
t = j|Vt−1) ={
P (Vi

t = j|Vi
t−1 = k,Vk

t−1 = l) if 1 ≤ k ≤ N,
P (Vi

t = j|Vi
t−1 = k) otherwise.

(15)

Based on this it is now possible to count the total number
of possible VFOA transitions. With the same notations as in
(15), we have the following possibilities:
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• k = 0 (no target): there are two possible transitions, j = 0
and j 6= 0.

• N < k ≤ N+M (passive target): there are three possible
transitions, j = 0, j = k, and j 6= k.

• 1 ≤ k ≤ N, l = 0 (active target k looks at no target):
there are three possible transitions, j = 0, j = k, and
j 6= k.

• 1 ≤ k ≤ N, l = i (active target k looks at person i): there
are three possible transitions, j = 0, j = k, and j 6= k.

• 1 ≤ k ≤ N, l 6= 0, i (active target k looks at active target l
different than i): there are four possible transitions, j = 0,
j = k, j = l and j 6= k, l.

Therefore, there are 15 different possibilities for P (Vi
t =

j|Vt−1), i.e. appendix A. Moreover, by assuming that the
VFOA transitions don’t depend on i, we conclude that the
transition matrix may have up to 15 different entries. More-
over, the number of possible transitions is even smaller if there
is no passive target (M = 0), or if the number of active targets
is small, e.g. N < 3. This considerably simplifies the task of
estimating this matrix and makes the task of learning tractable.

IV. INFERENCE

We start by simplifying the notation, namely Lt =
[Gt; Ġt; Rt; Ṙt] where [·; ·] denotes vertical concatenation.
The emission probabilities (9) become:

P (Ht|Lt) =
∏
i

N (Hi
t;µ

i
H,t,ΣH), (16)

with µiH,t = CLit, (17)

where matrix C is obtained from the definition of Lt above
and from (3):

C =

(
α1 0 0 0 1− α1 0 0 0
0 α2 0 0 0 1− α2 0 0

)
.

The transition probabilities can be obtained by combin-
ing (10) and (11) with (5) and (8):

P (Lt|Vt,Lt−1,Xt) =
∏
i

∏
j

N (Lit;µ
ij
L,t,ΓL)δj(V

i
t), (18)

with µijL,t = Aij
t Lit−1 + bijt (19)

and ΓL =


ΓG

ΓĠ

ΓR

ΓṘ

 , (20)

where Aij
t is an 8 × 8 matrix and bijt is an 8 × 1 vector.

The indices i,j and t cannot be dropped since the transitions
depend on Xij

t from (6).
The MAP problem (1) can now be derived in a Bayesian

framework for the VFOA variables:

P (Vt|H1:t,X1:t) =

∫
P (Vt,Lt|H1:t,X1:t)dLt. (21)

We propose to study the filtering distribution of the joint latent
variables, namely P (Vt,Lt|H1:t,X1:t). Indeed, Bayes rule
yields:

P (Vt,Lt|H1:t,X1:t) =
1

c
P (Ht|Lt)P (Lt,Vt|H1:t−1,X1:t).

(22)

where c is the normalization evidence. Now we can introduce
Vt−1 and Lt−1 using the sum rule:

P (Lt,Vt|H1:t−1,X1:t)

=
∑
Vt−1

∫
P (Lt,Vt,Lt−1,Vt−1|H1:t−1,X1:t)dLt−1

=
∑
Vt−1

∫
P (Lt|Vt,Lt−1,Xt)P (Vt|Vt−1)

× P (Lt−1,Vt−1|H1:t−1,X1:t−1)dLt−1, (23)

where unnecessary dependencies were removed. Combin-
ing (22) and (23) we obtain a recursive formulation in
P (Vt,Lt|H1:t,X1:t). However, this model is still intractable
without further assumptions. The main approximation used
in this work consists of assuming local independence for the
posteriors:

P (Lt,Vt|H1:t,X1:t) '
∏
i

P (Lit,V
i
t|H1:t,X1:t). (24)

A. Switching Kalman Filter Approximation

Several strategies are possible, depending upon the struc-
ture of P (Lt,Vt|H1:t,X1:t). Commonly used strategies to
evaluate this distribution include variational Bayes or Monte-
Carlo. Alternatively, we propose to cast the problem into the
framework of switching Kalman filters (SKF) [33]. We assume
the filtering distribution to be Gaussian,

P (Lt,Vt|H1:t,X1:t) ∝ N (Lt;µt,Σt). (25)

From (24) and (25) we obtain the following factorization:

P (Lt,Vt|H1:t,X1:t) ∝
∏
i

∏
j

N (Lit;µ
ij
t ,Σ

ij
t )δj(V

i
t). (26)

Thus, (23) can be split into N components, one for each active
target i:

P (Lit,V
i
t = j|H1:t,X1:t) ∝ P (Hi

t|Lit)

×
∑
Vt−1

∫
N (Lit;A

ij
t Lit−1 + bijt )P (Vi

t|Vt−1)

×
∏
k

N (Lit−1;µikt−1,Σ
ik
t−1)δk(V

i
t−1)dLit−1, (27)

or, after several algebraic manipulations:

P (Lit,V
i
t = j|H1:t,X1:t) ∝

∑
k

wijkt−1,tN (Lit;µ
ijk
t ,Σijk

t ).

(28)

In this expression, µijkt and Σijk
t are obtained by performing

constrained Kalman filtering on µikt−1, Σik
t−1 with transition

dynamics defined by Aij
t and bijt , emission dynamics defined

by C, and observation Hi
t, i.e. [34]. The weights wijkt−1,t are

defined as P (Vi
t−1 = k | Vi

t = j,H1:t,X1:t). The constraint
comes from the fact that ||Gi

t −Hi
t|| < 35° and is achieved

by projecting the mean (refer to [34] for more details).
This can be rephrased as follows: from the filtering dis-

tribution at time t − 1, there are N + M possible dynamics
for Lit. The normal distribution at time t − 1 then becomes
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a mixture of N + M normal distributions at time t as
shown in (28). However, we expect a single Gaussian such
as P (Lit,V

i
t = j|H1:t,X1:t) ∝ N (Lit;µ

ij
t ,Σ

ij
t ). This can be

done by moment matching:

µijt =
∑
k

wijkt−1,tµ
ijk
t (29)

Σij
t =

∑
k

wijkt−1,t(Σ
ijk
t + (µijkt − µijt )(µijkt − µijt )>) (30)

Finally, it is necessary to evaluate wijkt−1,t. Let’s introduce
the following notations:

cijkt−1,t = P (Vi
t = j,Vi

t−1 = k|H1:t,X1:t), (31)

cijt = P (Vi
t = j|H1:t,X1:t). (32)

It follows that

cijt =
∑
k

cijkt−1,t and wijkt−1,t =
cijkt−1,t

cijt
.

By applying Bayes formula to cijkt−1,t, yields:

cijkt−1,t ∝ P (Ht|Vi
t = j,Vi

t−1 = k,H1:t−1,X1:t)

×cikt−1P (Vi
t = j|Vi

t−1 = k,H1:t−1,X1:t−1) (33)

Then, cikt−1 is obtained from cijkt−2,t−1 calculated at pre-
vious time step. The last factor in (33) is either equal
to
∑
l c
kl
t−1P (Vi

t = j|Vi
t−1 = k,Vk

t−1 = l) if k is
an active target, or P (Vi

t = j|Vi
t−1 = k) otherwise.

Both cases are straightforward to compute. Finally, the
first factor in (33), the observation component, can be
factorized as P (Hi

t|Vi
t = j,Vi

t−1 = k,H1:t−1,X1:t) ×∏
n 6=i

∑
m

∑
p P (Hn

t |Vn
t = m,Vn

t−1 = p,H1:t−1,X1:t). By
introducing the latent variable L, we obtain:

P (Hn
t |Vn

t = m,Vn
t−1 = p,H1:t−1,X1:t)

=

∫
P (Hn

t |Lnt ) P (Lnt |Lnt−1,Vn
t = m,Xt)

× P (Lnt−1|Vn
t−1 = p,H1:t−1,X1:t−1)dLnt−1dL

n
t . (34)

All the factors (34) are normal distributions, hence it inte-
grates in closed-form. In summary, we devised a procedure
to estimate an online approximation of the joint filtering
distribution of the VFOAs, Vt, and of the gaze and head
reference directions, Lt.

V. LEARNING

The proposed model has two sets of parameters that must
be estimated: the transition probabilities associated with the
discrete VFOA variables, and the parameters associated with
the Gaussian distributions. Learning is carried out using Q
recordings with annotated VFOAs. Each recording is com-
posed of Tq frames, 1 ≤ q ≤ Q and contains Nq active
targets (the robot is the active target 1 and the persons are
indexed from 2 to Nq) and Mq passive targets. In addition to
target locations and head poses, it is worth noticing that the
learning algorithm requires VFOA ground-truth annotations,
while gaze directions are still treated as latent variables.

A. Learning the VFOA Transition Probabilities

The VFOA transitions are drawn from the generalized
Bernoulli distribution. Therefore, the transition probabilities
can be estimated with P (Vi

t = j|Vt−1) = Et−1[δj(V
i
t)],

where δj(i) is the Kronecker delta function. In Section III-C
we showed that there are up to 15 different possibilities for
the VFOA transition probability. This enables us to derive an
explicit formula for each case, see appendix B. Consider for
example one of these cases, namely p14 = P (Vi

t = l|Vi
t−1 =

k,Vk
t−1 = l), which is the conditional probability that at t

person i looks at target l, given that at t−1 person i looked at
person k and that person k looked at target l. This probability
can be estimated with the following formula:

p̂14 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δl(V
q,i
t )δk(Vq,i

t−1)δl(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t−1)δl(V

q,k
t−1)

B. Learning the Gaussian Parameters

In Section IV we described the derivation of the proposed
model that is based on SKF. This model requires the param-
eters (means and covariances) of the Gaussian distributions
defined in (16) and (18). Notice however that the mean (17) of
(16) is parameterized by α. Similarly, the mean (19) of (18) is
parameterized by β. Consequently, the model parameters are:

θ = (α,β,ΓL,ΣH), (35)

and we remind that α and β are 2× 2 diagonal matrices, ΓL

is a 8× 8 covariance and and ΣH is a 2× 2 covariance, and
that we assumed that these matrices are common to all the
active targets. Hence the total number of parameters is equal
to 2 + 2 + 36 + 3 = 43.

In the general case of SKF models, the discrete variables
are unobserved both for learning and for inference. Here
we propose a learning algorithm that takes advantage of the
fact that the discrete variables, i.e. VFOAs, are observed
during the learning process, namely the VFOAs are annotated.
We propose an EM algorithm adapted from [35]. In the
case of a standard Kalman filter, an EM iteration alternates
between a forward-backward pass to compute the expected
latent variables (E-step), and between the maximization of the
expected complete-data log-likelihood (M-step).

We start by describing the M-step. The complete-data log-
likelihood is:

lnP (L1,H1, . . . ,LQ,HQ|θ)

=

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

lnP (Lq,it |L
q,i
t−1,β,ΓL)

+

Q∑
q=1

Nq∑
i=2

Tq∑
t=1

lnP (Hq,i
t |L

q,i
t ,α,ΣH). (36)
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By taking the expectation w.r.t. the posterior distribution
P (L1, . . . ,LQ|H1, . . . ,HQ,θ), we obtain:

Q(θ,θold) = EL1,...,LK |θold

[
lnP (L1,H1, . . . ,LQ,HQ|θ)

]
,

(37)

which can be maximized w.r.t. to the parameters θ, which
yields closed-form expressions for the covariance matrices:

ΓL =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

E[(Lq,it − µq,ijL,t )(Lit − µq,ijL,t )>]

Q∑
q=1

(Nq − 1)(Tq − 1)

(38)

where µq,ijL,t = Aq,ij
t Lq,it−1 + bq,ijt , i.e. (19), and:

ΣH =

Q∑
q=1

Nq∑
i=2

Tq∑
t=1

E[(Hq,i
t − µq,iH,t)(H

q,i
t − µq,iH,t)

>]

Q∑
q=1

(Nq − 1)Tq

, (39)

where µq,iH,t = CLq,it , i.e. (17).
The estimation of α and of β is carried out in the following

way. ∂Q(θ,θold)/∂β1 = 0 and ∂Q(θ,θold)/∂β2 = 0 yield a
set of two linear equations in the two unknowns:

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

E
[
(Lq,it − µq,ijL,t )>Γ−1L

∂

∂β1
(Lq,it − µq,ijL,t )

]
= 0,

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

E
[
(Lq,it − µq,ijL,t )>Γ−1L

∂

∂β2
(Lq,it − µq,ijL,t )

]
= 0,

(40)

and similarly:

Q∑
q=1

Nq∑
i=2

Tq∑
t=1

E
[
(Hq,i

t − µq,iH,t)
>Σ−1H

∂

∂α1
(Hq,i

t − µq,iH,t)

]
= 0,

Q∑
q=1

Nq∑
i=2

Tq∑
t=1

E
[
(Hq,i

t − µq,iH,t)
>Σ−1H

∂

∂α2
(Hq,i

t − µq,iH,t)

]
= 0,

(41)

where as above, the expectation is taken w.r.t. to the posterior
distribution. Once the formulas above are expanded and once
the means µq,ijL,t and µq,iH,t are substituted with their expres-
sions, the following terms remain to be estimated: E[Lq,it ],
E[Lq,it Lq,it

>
] and E[Lq,it Lq,it−1

>
].

The E-step provides estimates of these expectations via
a forward-backward algorithm. For the sake of clarity, we
drop the superscripts i (active target index) and q (recording
index) up to equation (48) below. Introducing the notation
P (Lt|H1, . . . ,Ht) = N (Lt;µt,Pt), the forward-pass equa-
tions are:

µt = Atµt−1 + bt + Kt(Ht −C(Atµt−1 + bt)) (42)
Pt = (I−KtC)Pt,t−1, (43)

where:

Pt,t−1 = AtPt−1A
>
t + ΓL, (44)

Kt = Pt,t−1C
>(CPt,t−1C

> + ΣH)−1. (45)

The backward pass estimates P (Lt|H1, . . . ,HT ) =
N (Lt; µ̂t, P̂t) and leads to

µ̂t = µt + Jt(µ̂t+1 − (At+1µt + bt+1)), (46)

P̂t = Pt + Jt(P̂t+1 −Pt+1,t)J
>
t , (47)

where:

Jt = PtA
>
t+1(Pt+1,t)

−1. (48)

The expectations are estimated by performing a forward-
backward pass over all the persons and all the recordings of
the training data. This yields the following formulas:

E[Lq,it ] = µ̂q,it (49)

E[Lq,it Lq,it
>

] = P̂q,i
t + µ̂q,it µ̂q,it

>
(50)

E[Lq,it Lq,it−1
>

] = P̂q,i
t Jq,it−1

>
+ µ̂q,it µ̂q,it−1

>
(51)

VI. IMPLEMENTATION DETAILS

The proposed method was evaluated on the Vernissage
dataset [3] and on the Looking At Each Other (LAEO)
dataset [4]. We describe in detail these datasets and their an-
notations. We provide implementation details and we analyse
the complexity of the proposed algorithm.

A. The Vernissage Dataset

The Vernissage scenario can be briefly described as follows,
e.g. Fig. 3: there are three wall paintings, namely the passive
targets denoted with o1, o2, and o3 (M = 3); two persons,
denoted left person (left-p) and right person (right-p), interact
with the robot, hence N = 3. The robot plays the role of
an art guide, describing the paintings and asking questions
to the two persons in front of him. Each recording is split
into two roughly equal parts. The first part is dedicated to
painting explanation, with a one-way interaction. The second
part consists of a quiz, thus illustrating a dialog between the
two participants and the robot, most of the time concerning
the paintings.

Figure 3. The Vernissage setup. Left: Global view of an “exhibition" showing
wall paintings, two participants, i.e. left-p and right-p, and the NAO robot.
Right: Top view of the room showing the Vernissage layout.

The scene was recorded with a camera embedded into
the robot head and with a VICON motion capture system
consisting of a network of infrared cameras, placed onto the
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walls, and of optical markers, placed onto the robot and people
heads. Both were recorded at 25 frames per second (fps).
There is a total of ten recordings, each lasting ten minutes. The
VICON system provided accurate estimates of head positions,
X1:T and head orientations, H1:T . Head positions and head
orientations were also estimated using from the RGB images
gathered with the camera embedded into the robot head. The
RGB images are processed as follows. We use the OpenCV
version of [36] to detect faces and their bounding boxes which
are then tracked over time using [37]. Next, we extract HOG
descriptors from each bounding box and apply a head-pose
estimator, e.g. [38]. This yields H̃1:T . The 3D head positions,
X̃1:T , can be estimated using the line of sight through the
face center and the bounding-box size, which provides a rough
estimate of the depth along the line of sight.

In the remaining of this paper, X1:T and H1:T are referred
to as Vicon Data; X̃1:T and H̃1:T as RGB Data. Because the
whole setup was carefully calibrated, both Vicon and RGB
Data are represented in the same coordinate frame.

In all our experiments we assumed that the passive targets
are static and their positions are provided in advance. The
position of the robot itself is also known in advance and one
can easily estimate the orientation of the robot head from
motor readings. Finally, the VFOAs of the participants were
manually annotated in all the frames of all the recordings.

B. The LAEO Dataset

The LAEO dataset [4] is an extension of the TVHID (TV
Human Interaction Dataset) [39]. It consists of 300 videos
extracted from TV shows. At least two actors appear in each
video engaged in four human-human interactions: handshake,
highfive, hug, and kiss. There are 50 videos for each interac-
tion and 100 videos with no interaction. The videos have been
grabbed at 25 fps and each video lasts from five seconds to
twenty-five seconds. LAEO is further annotated, namely some
of these videos are split into shots which are separated by cuts.
There are 443 shots in total which are manually annotated
whenever two persons look at each other, [4].

While there is no passive target in this dataset (M = 0),
the number of active targets (N ) corresponds to the number
of persons in each shot. In practice N varies from one to
eight persons. All the faces in the dataset are annotated with
a bounding box and with a coarse head-orientation label:
frontal-right, frontal-left, profile-right, profile-left, backward.
As with Vernissage, we use the bounding-box center and size
to estimate the 3D coordinates of the heads, X1:T . We also
assigned a yaw value to each one of the five coarse head
orientations, H1:T . We also computed finer head orientations,
H̃1:T , using [38].

C. Algorithmic Details

The inference procedure is summarized in Algorithm 1.
This is basically an iterative filtering procedure. The update
step consists of applying the recursive relationship, derived in
Section IV, to µijt , Σij

t and cijt , using µijkt , Σijk
t and cijkt−1,t as

intermediate variables. The VFOA is chosen using MAP, given
observations up to the current frame, and the gaze direction is

the mean of the filtered distribution (the first two components
of µijt are indeed the mean for the pan and tilt gaze angles).

Algorithm 1 Inference
1: procedure GAZEANDVFOA
2: X1,H1 ← GETOBSERVATIONS(time = 1)
3: c1,µ1,Σ1 ← INITIALIZATION(H1,X1)
4: Vi

1 ← argmaxj c
ij
1

5: Gi
1 ← µij1 [1..2]

6: for t = 2..T do
7: Xt,Ht ← GETOBSERVATIONS(time = t)
8: ct,µt,Σt ← UPDATE(Ht,Xt, ct−1,µt−1,Σt−1)

9: Vi
t ← argmaxj c

ij
t

10: Gi
t ← µijt [1..2]

11: return V1:T ,G1:T

Let’s now describe the initialization procedure used by
Algorithm 2. In a probabilistic framework, parameter intial-
ization is generally addressed by defining an initial distri-
bution, e.g. P (L1|V1). Here, we did not explicitly define
such a distribution. Initialization is based on the fact that,
with repeated similar observation inputs, the algorithm reaches
a steady-state. The initialization algorithm uses a repeated
update method with initial observation to provide an estimate
of gaze and of reference directions. Consequently, the initial
filtering distribution P (L1,V1|H1,X1) is implicitly defined
as the expected stationary state.

Algorithm 2 Initialization
1: procedure INITIALIZATION(H1,X1)
2: µin ← [H1; 0; H1; 0]
3: Σin ← I
4: cin ← 1

N+M (Uniform)
5: while Not Convergence do
6: cin,µin,Σin ← UPDATE(H1,X1, cin,µin,Σin)

7: return cin,µin,Σin

D. Algorithm Complexity

The computational complexity of Algorithm 1 is

C = T (CO + CU ) + TICU , (52)

where T is the number of frames in a test video, TI is the
number of iterations needed by the Algorithm 2 (initializa-
tion) to converge, CO is the computational complexity of
GETOBSERVATION and CU is the computational complexity
of UPDATE. The complexity of one iteration of Algorithm 1
is CO + CU . CO depends on face detection and head pose
estimation algorithms. Hence we concentrate on CU . From
Section IV one sees that the following values need to be
computed: P (Hi

t|Vi
t = j,Vi

t−1 = k,H1:t−1,X1:t−1), cijkt−1,t,
µijkt , Σijk

t , and then cijt , µijt and Σij
t , for each active target

i, and for each combination of targets j and k different from
i. There are N possible values for i and (N + M) possible
values for j and k. Then,

CU = K ×N(N +M)2, (53)
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where K is a factor whose complexity can be estimated as
follows. The most time-consuming part is the Kalman Filter
algorithm used to estimate µijkt and Σijk

t from µikt and Σik
t .

These calculations are dominated by several 8×8 and 2×8
matrix inversions and multiplications. By neglecting scalar
multiplications and matrix additions, and by denoting with
CKF the complexity of the Kalman filter, we obtain that
K ≈ CKF and hence CU ≈ CKF ×N(N +M)2.

VII. EXPERIMENTAL RESULTS

A. Vernissage Dataset

We applied the same experimental protocol to the Vicon and
RGB data. We used a leave-one-video-out strategy for training.
The test is performed on the left out video. We used the frame
recognition rate (FRR) metrics to quantitatively evaluate the
methods. FRR computes the percentage of frames for which
the VFOA is correctly estimated. One should note however
that the ground-truth VFOAs were obtained by manually
annotating each frame in the data. This is subject to errors
since the annotator has to associate a target with each person.

The VFOA transition probabilities and the model parameters
were estimated using the learning method described in Sec-
tion V. Appendix B provides the formulas used for estimating
the VFOA transition probabilities given the annotated data.
Notice that the fifteen transitions probabilities thus estimated
are identical for both data, Vicon and RGB.

The Gaussian parameters, i.e. (35), were estimated using
the EM algorithm of Section V-B. This learning procedure
requires head-pose estimates as well as the targets locations,
estimated as just explained. Since these estimates are different
for the two kinds of data (Vicon and RGB) we carried out
the learning process twice, with the Vicon data and with the
RGB data. The EM algorithm needs initialization. The initial
parameter values for α and β are α0 = β0 = Diag (0.5, 0.5).
Matrices ΣH and ΓL defined in (20) are initialized with
isotropic covariances: Σ0

H = σI2, Γ0
G = Γ0

Ġ
= γI2, and

Γ0
R = Γ0

Ṙ
= ηI2 with σ = 15, γ = 5, and η = 0.5. In

particular, this initialization is consistent with (12). In practice
we noticed that the covariances estimated by training remain
consistent with (12).

B. Results with Vicon Data

The FRR of the estimated VFOAs for the Vicon data are
summarized in Table I. A few examples are shown in Figure 5.
The FRR score varies between 28.3% and 74.4% for [26]
and between 43.1% and 79.8% for the proposed method.
Notice that high scores are obtained by both methods for
recording #27. Similarly, low scores are obtained for recording
#26. Since both methods assume that head motions and gaze
shifts occur synchronously, an explanation could be that this
hypothesis is only valid for some of the participants. The
confusion matrices for VFOA classification using Vicon data
are given in Figure 4. There are a few similarities between
the results obtained with the two methods. In particular, wall
painting #o2 stands just behind Nao and both methods don’t
always discriminate between these two targets. In addition,
the head of one of the persons is often aligned with painting

Table I
FRR SCORES OF THE ESTIMATED VFOAS FOR THE VICON DATA FOR THE

LEFT AND RIGHT PERSONS (LEFT-P AND RIGHT-P).

Recording Ba & Odobez [26] Proposed
left-p right-p left-p right-p

09 51.6 65.1 59.8 61.4
10 64.3 74.4 76.5 65.0
12 53.5 67.6 61.6 63.2
15 67.1 46.2 64.8 67.6
18 37.5 28.3 62.0 53.7
19 56.7 45.4 54.5 60.4
24 44.9 49.0 59.7 54.7
26 40.3 32.9 43.6 43.1
27 65.8 72.0 79.8 78.3
30 69.1 49.1 72.0 63.9

Mean 54.5 62.6

Figure 4. Confusion matrices for the Vicon data. Left: [26]. Right: Proposed
algorithm. Row-wise: ground-truth VFOAs. Column-wise: estimated VFOAs.
Diagonal terms represent the recall.

#o1 from the viewpoint of the other person. A similar remark
holds for painting #o3. As a consequence both methods often
confuse the VFOA in these cases. This can be seen in the third
image of Figure 5. Indeed, it is difficult to estimate whether
the left person (left-p) looks at #o1 or at right-p.

Finally, both methods have problems with recognizing the
VFOA “nothing” or gaze aversion (Vi

t = 0). We propose
the following explanation: the targets are widespread in the
scene, hence it is likely that an acceptable target lies in most
of the gaze directions. Moreover, Nao is centrally positioned,
therefore the head orientation used to look at Nao is similar to
the resting head orientation used for gaze aversion. However,
in [26] the reference head orientation is fixed and poorly suited
for dynamic head-to-gaze mapping, hence the high error rate
on painting #o3. Our method favors the selection of a target,
either active or passive, over the no target (nothing) case.

C. Results with RGB Data

The RGB images were processed as described in sec-
tion VI-A above in order to obtain head orientations, H̃1:T ,
and 3D head positions, X̃1:T . Table II shows the accuracy
of these measurements (in degrees and in centimeters), when
compared with the ground truth provided by the Vicon motion
capture system. As it can be seen, while the head orientation
estimates are quite accurate, the error in estimating the head
positions can be as large as 0.8 m for participants lying in
between 1.5 m and 2.5 m in front of a robot, e.g. recordings
#19 and #24. In particular this error increases as a participant
is farther away from the robot. In these cases, the bounding
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Figure 5. Results obtained with the proposed method on Vicon data. Gaze directions are shown with green arrows, head reference directions with dark-grey
arrows and observed head directions with red arrows. The ground-truth VFOA is shown with a black circle. The top row displays the image of the robot-head
camera. Top views of the room show results obtained for the left-p (middle row) and for the right-p (bottom row). In the last example the left-p gazes at
“nothing".

box is larger than it should be and hence the head position is,
on an average, one meter closer than the true position. These
relatively large errors in 3D head position affect the overall
behavior of the algorithm.

The FRR scores obtained with the RGB data are shown in
Table III. As expected the loss in accuracy is correlated with
the head position error: the results obtained with recordings
#09 and #30 are close to the ones obtained with the Vicon
data, whereas there is a significant loss in accuracy for the
other recordings. The loss is notable for [26] in the case of
the right person (right-p) for the recordings #12, #18 and #27.
The confusion matrices obtained with the RGB data are shown

Table II
MEAN ERROR FOR HEAD POSE ESTIMATIONS FROM RGB DATA, FOR THE
LEFT PERSON (LEFT-P) AND THE RIGHT PERSON (RIGHT-P). THE ERRORS
IN HEAD POSITION (CENTIMETERS) AND ORIENTATION (DEGREES) ARE

COMPUTED WITH RESPECT TO VALUES PROVIDED BY THE MOTION
CAPTURE SYSTEM.

Video Position error (cm) Pan error Tilt error
left-p right-p left-p right-p left-p right-p

09 18.1 20.8 4.4° 4.8° 3.7° 3.2°
12 35.7 41.5 4.8° 5.5° 2.6° 3.8°
18 36.9 12.8 6.8° 3.7° 5.8° 2.5°
19 86.0 87.4 4.0° 5.8° 2.7° 3.7°
24 86.5 73.9 3.3° 3.5° 2.8° 2.7°
26 50.2 56.9 7.4° 9.0° 4.1° 5.2°
27 64.5 58.3 4.1° 5.8° 3.2° 4.4°
30 16.7 13.3 2.8° 2.9° 1.8° 2.7°

Mean 46.4 5.0° 3.3°

on Fig. 6.
In the case of RGB data, the comparison between our

method and the method of [31] is biased by the use of different
head orientation and 3D head position estimators. Indeed,
the RGB data results reported in [31] were obtained with
unpublished methods for estimating head orientations and 3D
head positions, and for head tracking. Moreover, [31] uses
cross-modal information, namely the speaker identity based
on the audio track (one of the participants or the robot) as
well as the identity of the object of interest. We also note
that [31] reports mean FRR values obtained over all the
test recordings, instead of an FRR value for each recording.
Table IV summarizes a comparison between the average FRR
obtained with our method, with [26], and with [31]. Our
method yields a similar FRR score as [31] using the Vicon
data (first row) in which case the same head pose inputs are

Table III
FRR SCORES OF THE ESTIMATED VFOAS OBTAINED WITH [26] AND
WITH THE PROPOSED METHOD FOR THE RGB DATA. THE LAST TWO

COLUMNS SHOW THE 3D HEAD POSITION ERRORS OF TABLE II.

Video Ba & Odobez [26] Proposed Head pos. error
left-p right-p left-p right-p left-p right-p

09 50.3 59.8 58.1 55.9 18.1 20.8
12 54.2 14.8 59.0 46.5 35.7 41.5
18 39.0 16.1 64.2 33.1 36.9 12.8
27 38.2 17.1 53.3 55.1 64.5 58.3
30 61.6 44.6 54.7 66.6 16.7 13.3

Mean 39.0 54.7
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Figure 7. Results obtained with the proposed method on RGB data. Gaze directions are shown with green arrows, head reference directions with dark-grey
arrows and observed head directions with red arrows. The ground-truth VFOA is shown with a black circle. The top row displays the image of the robot-head
camera. Top views of the room show results obtained for the left person (left-p, middle row) and the right person (right-p, bottom row).

Figure 6. Confusion matrices for the RGB data. Left: [26]. Right: Proposed
algorithm. Row-wise: ground-truth VFOAs. Column-wise: estimated VFOAs.
Diagonal terms represent the recall.

Table IV
MEAN FRR SCORES OBTAINED WITH [26], WITH [31] AND WITH THE

PROPOSED METHOD. RECORDING #26 WAS EXCLUDED FROM THE FRR
MEANS AS REPORTED IN [31]. MOREOVER, [31] USES ADDITIONAL

CONTEXTUAL INFORMATION.

Ba & Odobez [26] Sheikhi [31] Proposed
Vicon data 56.5 66.6 64.7
RGB data 39.0 62.4 54.7

used.

D. LAEO Dataset

As already mentioned in Section VI-B above, the LAEO
annotations are incomplete to estimate the person-wise VFOA
at each frame. Indeed, the only VFOA-related annotation is

whether two people are looking at each other during the shot.
This is not sufficient to know in which frames they are actually
looking at each other. Moreover, when more than two people
appear in a shot, the annotations don’t specify who are the
people that look at each other. For these reasons, we decided
to estimate the parameters using Vicon data of the whole
Vernissage dataset, i.e. cross-validation.

We used the same pipeline as with the Vernissage RGB
data to estimate 3D head positions, X̃1:T , from the face
bounding boxes. Concerning head orientation, there are two
cases: coarse head orientations (manually annotated) and fine
head orientations (estimated). Coarse head orientations were
obtained in the following way: pan and tilt values were
associated with each head orientation label, namely the pan
angles −20°, 20°, −80°, 80°, and 180° were assigned to
labels frontal-left, frontal-right, profile-left, profile-right, and
backwards respectively, while a tilt anble of 0° was assigned
to all five labels. Fine head orientations were estimated using
the same procedure as in the case of the Vernissage RGB
data, namely face detection, face tracking, and head orientation
estimation using [38]. Algorithm 1 was used to compute the
VFOA for each frame and for each person thus allowing to
determine who looks at whom, e.g. Fig. 8.

We used two shot-wise, not frame-wise, metrics since the
LAEO annotations are for each shot: the shot recognition rate
(SRR), e.g. Table V, and the average precision (AP), e.g.
Table VI. We note that [4] only provides AP scores. It is
interesting to note that the proposed method yields results
comparable with those of [4] on this dataset. This is quite
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Figure 8. This figure shows some results obtained with the LAEO dataset. The top row shows results obtained with coarse head orientation and the bottom
row shows results obtained with fine head orientation. Head orientations are shown with red arrows. The algorithm infers gaze directions (green arrows) and
VFOAs (blue circles). People looking at each others are shown with a dashed blue line.

remarkable knowing that we estimated the model parameters
with the Vernissage training data.

Table V
AVERAGE SHOT RECOGNITION RATE (SRR) OBTAINED WITH [26] AND

WITH THE PROPOSED METHOD.

Ba & Odobez [26] Proposed
Coarse head orientation 0.535 0.727
Fine head orientation 0.363 0.479

Table VI
AVERAGE PRECISION (AP) OBTAINED WITH [4], WITH BA & ODOBEZ

[26] AND WITH THE PROPOSED METHOD.

Marin-Jimenez et al. [4] [26] Proposed
Coarse head orientation 0.925 0.916 0.923
Fine head orientation 0.896 0.838 0.890

VIII. CONCLUSIONS

In this paper we addressed the problem of estimating and
tracking gaze and visual focus of attention of a group of partic-
ipants involved in social interaction. We proposed a Bayesian
state-space model that exploits the correlation between head
movements and eye gaze on one side, and between visual focus
of attention and eye gaze on the other side. We described
in detail the proposed formulation. In particular we showed
that the entries of the large-sized matrix of VFOA transition
probabilities have a very small number of different possibilities
for which we provided closed-form formulae. The immediate
consequence of this simplified transition matrix is that the
associated learning doesn’t require a large training dataset. We
showed that the problem of simultaneously inferring VFOAs
and gaze directions over time can be cast in the framework of
a switching Kalman filter which, in our case, yields tractable
learning and inferring algorithms.

We applied the proposed method to two datasets, Vernissage
and LAEO. Vernissage contains several recordings of a human-
robot interaction scenario. We experimented both with motion
capture data gathered with a Vicon system and with RGB
data gathered with a camera mounted onto a robot head.
We also experimented with the LAEO dataset that contains

several hundreds of video shots extracted from TV shows.
A quite remarkable result is that the parameters obtained
by training the model with the Vernissage data have been
successfully used for testing the method with the LAEO data,
i.e. cross-validation. This can be explained by the fact that
social interactions, even in different contexts, share a lot of
characteristics. We compared our method with three other
methods, based on HMMs [26], on input-output HMMs [31],
and on a geometric model [4]. The interest of these methods
(including ours) resides in the fact that eye detection, unlike
many existing gaze estimation methods, is not needed. This
feature makes the above methods practical and effective in a
very large number of situations, e.g. social interaction.

We note that gaze inference from head orientation is an ill-
posed problem. Indeed, the correlation between gaze and head
movements is person dependent as well as context dependent.
It is however important to infer gaze whenever the eyes
cannot be reliably observed in images and properly analyzed.
We proposed to solve the problem based on the fact that
alignments often occur between gaze directions and several
targets, which is a sensible assumption in practice.

Contextual information could considerably improve the re-
sults. Indeed, additional information such as speaker recogni-
tion (as in [31]), speaker localization [40], speech recognition,
or speech-turn detection [41] may be used to learn VFOA
transitions in multi-party multimodal dialog systems.

In the future we plan to investigate discriminative methods
based on neural network architectures for inferring gaze direc-
tions from head orientations and from contextual information.
For example one could train a deep network from input-output
pairs of head pose and visual focus of attention. For this pur-
pose, one can combine a multiple-camera system, to accurately
detect the eyes of several participants and to estimate their
head poses, with a microphone-array and associated algorithms
in order to infer both speaker and speech information.

APPENDIX A
VFOA TRANSITION PROBABILITIES

Using the notations introduced in Section III-C let i, 1 ≤
i ≤ N , be an active target. In Section III-C we showed that
in practice the entries of the probability transition matrix can
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have up to 15 different expressions. For completeness, these
expressions are listed below.
• The VFOA of i at t−1 is neither an active nor a passive

target (k = 0):

p1 =P (Vi
t = 0|Vi

t−1 = 0)

p2 =P (Vi
t = j|Vi

t−1 = 0)

• The VFOA of i at t − 1 is a passive target (N < k ≤
N +M ):

p3 =P (Vi
t = 0|Vi

t−1 = k)

p4 =P (Vi
t = k|Vi

t−1 = k)

p5 =P (Vi
t = j|Vi

t−1 = k)

• The VFOA of i at t − 1 is an active target (1 ≤ k ≤
N, k 6= i):

p6 =P (Vi
t = 0|Vi

t−1 = k,Vk
t−1 = 0)

p7 =P (Vi
t = k|Vi

t−1 = k,Vk
t−1 = 0)

p8 =P (Vi
t = j|Vi

t−1 = k,Vk
t−1 = 0)

p9 =P (Vi
t = 0|Vi

t−1 = k,Vk
t−1 = i)

p10 =P (Vi
t = k|Vi

t−1 = k,Vk
t−1 = i)

p11 =P (Vi
t = j|Vi

t−1 = k,Vk
t−1 = i)

p12 =P (Vi
t = 0|Vi

t−1 = k,Vk
t−1 = l)

p13 =P (Vi
t = k|Vi

t−1 = k,Vk
t−1 = l)

p14 =P (Vi
t = l|Vi

t−1 = k,Vk
t−1 = l)

p15 =P (Vi
t = j|Vi

t−1 = k,Vk
t−1 = l)

APPENDIX B
VFOA LEARNING

This appendix provides the formulae allowing to estimate
the 15 transitions probabilities as explained in Section V-A.

p̂1 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t )δ0(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t−1)

p̂2 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

∑
j 6=i

δj(V
q,i
t )δ0(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

δ0(Vq,i
t−1)

p̂3 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δ0(Vq,i
t )δk(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk(Vq,i
t−1)

p̂4 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk(Vq,i
t )δk(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk(Vq,i
t−1)

p̂5 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

∑
j 6=i,k

δj(V
q,i
t )δk(Vq,i

t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq+Mq∑
k=Nq+1

δk(Vq,i
t−1)

p̂6 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δ0(Vq,i
t )δk(Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δ0(Vq,k

t−1)

p̂7 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t )δk(Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δ0(Vq,k

t−1)

p̂8 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
j 6=i,k

δj(V
q,i
t )δk(Vq,i

t−1)δ0(Vq,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δ0(Vq,k

t−1)

p̂9 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δ0(Vq,i
t )δk(Vq,i

t−1)δi(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δi(V

q,k
t−1)

p̂10 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t )δk(Vq,i

t−1)δi(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δi(V

q,k
t−1)



14 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. YY, MONTH 2017

p̂11 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
j 6=i,k

δj(V
q,i
t )δk(Vq,i

t−1)δi(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

δk(Vq,i
t−1)δi(V

q,k
t−1)

p̂12 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δ0(Vq,i
t )δk(Vq,i

t−1)δl(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t−1)δl(V

q,k
t−1)

p̂13 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t )δk(Vq,i

t−1)δl(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t−1)δl(V

q,k
t−1)

p̂14 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δl(V
q,i
t )δk(Vq,i

t−1)δl(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t−1)δl(V

q,k
t−1)

p̂15 =

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

∑
j 6=i,k,l

δj(V
q,i
t )δk(Vq,i

t−1)δl(V
q,k
t−1)

Q∑
q=1

Nq∑
i=2

Tq∑
t=2

Nq∑
k=1
k 6=i

∑
l 6=i,k

δk(Vq,i
t−1)δl(V

q,k
t−1)
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