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Abstract

Object tracking is one of the fundamental tasks in various applications such as surveil-
lance, sports, video conferencing and activity recognition. Factors such as occlusions,
illumination changes and limited field of observance of the sensor make tracking a chal-
lenging task. To overcome these challenges the focus of this thesis is on using multiple
modalities such as audio and video for multi-target, multi-modal tracking. Particularly,
this thesis presents contributions to four related research topics, namely, pre-processing of
input signals to reduce noise, multi-modal tracking, simultaneous detection and tracking,
and interaction recognition.

To improve the performance of detection algorithms, especially in the presence
of noise, this thesis investigate filtering of the input data through spatio-temporal feature
analysis as well as through frequency band analysis. The pre-processed data from multiple
modalities is then fused within Particle filtering (PF). To further minimise the discrepancy
between the real and the estimated positions, we propose a strategy that associates the
hypotheses and the measurements with a real target, using a Weighted Probabilistic Data
Association (WPDA). Since the filtering involved in the detection process reduces the
available information and is inapplicable on low signal-to-noise ratio data, we investigate
simultaneous detection and tracking approaches and propose a multi-target track-before-
detect Particle filtering (MT-TBD-PF). The proposed MT-TBD-PF algorithm bypasses
the detection step and performs tracking in the raw signal. Finally, we apply the proposed
multi-modal tracking to recognise interactions between targets in regions within, as well
as outside the cameras’ fields of view.

The efficiency of the proposed approaches are demonstrated on large uni-modal,
multi-modal and multi-sensor scenarios from real world detections, tracking and event

recognition datasets and through participation in evaluation campaigns.
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Chapter 1

Introduction

1.1 Motivation

In the last decades video cameras have been increasingly used in applications such
as surveillance, health care monitoring and entertainment. However, until recently, most
video processing was done manually, for example by an operator observing a CCTV camera
or by a technician observing a medical video. The ever increasing amount of captured video
has created the need for automatic processing to enable an effective utilisation of the data.

Although commercial applications exist that address the issue of automatic video
processing (e.g., obstacle detection [1], flaw detection [2] and arbitrary view point gener-
ation [3]), most applications work in constrained or well defined scenarios. In fact, these
applications rely mainly on detection and tracking modules that are affected by environ-
mental conditions such as reflections, illumination changes and occlusions.

The limitations of current automatic video processing are due to the complexity
of real scenes as well as to the limited capability of cameras themselves, such as for example
their fields of view. Although multiple cameras can be used to increase the observed area,
in many cases even multiple cameras cannot cover the entire scene. A possible solution
is to use multi-modal sensors, combining cameras with other sensors with a wider field of
observation. An example of such sensors is microphones.

The use of multiple sensors introduces new challenges related to the synchro-
nisation and to the fusion of the data streams. In this thesis, we investigate the use of
multi-modal sensors composed of a camera coupled with a microphone pair, here referred
to as Stereo Audio and Cycloptic Vision (STAC) sensor. Compared to large microphone
arrays used in conventional settings [4], a STAC sensor is viable in realistic scenarios.

However, the use of fewer sensors increases the uncertainty in the acquired data thus
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creating the need for an effective signal filtering and manipulation. This thesis will try
and answer the following questions: (i) How can we extract multiple targets in realistic
scenarios? (ii) How can we track these targets with single and multiple (heterogeneous)
sensors? (iii) How can the resulting trajectories be used to detect activities performed by

the targets either individually or while interacting with each other?

1.2 Main contributions

The main contributions of this thesis are as follows:

e We propose the first multi-target multi-sensor track-before-detect Particle filter (MT-
TBD-PF) algorithm for visual applications [C1]. Unlike conventional tracking algo-
rithms that incorporate measurement at the likelihood level [5] to track multiple ob-
jects, track-before-detect uses signal intensity in the state representation. The proposed
algorithm, unlike conventional techniques, does not hard threshold the input signal.
To enable multiple target tracking we have introduced a cluster step and performed
distributed updating and resampling. The proposed approach does not require manual
initialisation of the targets nor prior knowledge of the number of clusters, as we use

mean-shift on the particles [C1].

e We propose a multi-modal tracking algorithm by fusion of audio and video to track
targets consistently under visual occlusions. We reduce the uncertainty in the estima-
tion of the angle of arrival through reverberation filtering based on precedence effects
and multi-band analysis [C8]. This estimation is then refined by applying weighted
probabilistic data association (WPDA) (which is a joint contribution with Dr. Zhou) to
increase robustness against reverberation and noise [C6,J2]. The modalities are finally

fused at the likelihood level within particle filtering.

e We propose an interaction event recognition framework which is the first to perform
recognition of interactions in regions uncovered by the cameras by using audio [C2].
The activities are modelled as either interactions between dynamic and static ob-
jects (dynamic-static interactions) or as interactions between multiple dynamic objects
(dynamic-dynamic interactions) [Chl]. To this extent, we propose scene-centric and
object-centric models for dynamic-static interaction recognition incorporating duration
distribution in the state estimation using HMM Viterbi decoding [C7]. The use of

Viterbi decoding eliminates the limitation of recognising only known state sequence
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templates. For dynamic-dynamic interaction we modelled full coupling between the

interacting processes based on the Coupled Hidden Markov Model.

e We have performed an extensive evaluation of the proposed image-based localisation,
tracking and event recognition algorithm by participating in the CLEAR and the ETISEO
evaluations. The performance of various blocks of the algorithm using different parame-
ter values is demonstrated on the evaluation dataset consisting of over 1 hour 20 minutes

of annotated sequences.

1.3 Outline of the thesis

The focus of this thesis is on multi-target, multi-modal tracking and interaction
recognition particularly using audio and visual modalities. Part I of the thesis is about
tracking in multi-modal sensors, whereas interaction recognition is discussed in Part II.
The first three contributions are mentioned in Chapter 3, Chapter 4 and Chapter 6 respec-
tively followed by conclusions and future work. The results from CLEAR and ETISEO
evaluation are in experimental section of Chapter 3 and Chapter 6. The state of the art,
of uni-modal and multi-modal tracking approaches is discussed in Chapter 2 whereas that
of interaction recognition is reviewed in Chapter 5.

Chapter 2 discusses the related work on tracking using multiple sensors of dif-
ferent types (heterogeneous sensors). Information fusion is an important step towards
robust multi-sensor tracking, and we presented the problem as either based on the track-
before-fuse or fuse-before-detect strategies. The track-before-fuse strategy performs fusion
of estimated trajectories that can be from uni-modal sensors for which image based target
localisation and tracking techniques are presented for both single and multiple sensors.
The fuse-before-track strategy on the other hand is more applicable in the case of multiple
modalities. To this extent we introduce localisation using an audio signal as a comple-
mentary modality and discuss tracking using heterogeneous sensors. In the case of low
signal-to-noise ratio signals the detection step is not favourable. To cater for these types of
scenarios, we discuss simultaneous detection and tracking approaches and introduce tech-
niques based on the track-before-detect strategy. We also discuss how these approaches
can bypass the localisation step and are more applicable in fuse-before-track strategy.

Chapter 3 answers the first question presented in Sec. 1.1. In this chapter
we firstly propose post-processing techniques to improve the image-based localisation and
then extend an established graph-based multi-target tracking strategy by employing colour

histograms for better modelling of target appearance. We then extend the tracking from a
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single camera to multiple cameras and present two algorithms for tracking on the top-view
containing fused information from all cameras. To this extent we propose a multi-camera
track-before-detect algorithm based on novel multi-target particle filtering (MT-TBD-PF).

Chapter 4 is based on multi-modal tracking and answers the second question
presented in Sec. 1.1. It also contributes towards answering the first question. To this
extent we present pre-processing for increasing the accuracy of the estimation of the angle
of arrival. Next we apply Weighted Probabilistic Data Association to further increase
the robustness of multi-modal tracking. Then we introduce our particle filtering based
multi-modal fusion strategy where fusion of multiple cues is performed at the likelihood
level. In the second half of the chapter we extend this to multiple multi-modal sensors for
extended tracking in regions uncovered by cameras.

Chapter 5 reviews the literature on interaction recognition using trajectories.
In this context we introduce interactions as either between dynamic and static objects
(dynamic-static interactions) or between multiple dynamic objects (dynamic-dynamic in-
teractions). We introduce algorithms based on dynamic graphical models for recognising
both these types of interactions.

Chapter 6 answers the third question presented in Sec. 1.1 and presents the pro-
posed interaction recognition framework which takes as input the trajectories generated
using the work presented in previous two chapters. To this extent we model interaction be-
tween dynamic objects with other static objects and interaction between multiple dynamic
objects.

Chapter 7 summarises the achievements of this thesis and its possible future

directions.
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Chapter 2

State of the Art

2.1 Introduction

Object tracking is a fundamental task in various applications such as surveillance,
sports, video conferencing and activity recognition. Object tracking can either be (i) in-
teractive or (ii) automatic. In interactive tracking, track initialisation is formed manually
when the target appears in the scene [6,7] (tag-and-track). The frame-to-frame linking
is then performed using appearance based features such as colour histograms [6, 8], or
shape-based features such as contours [9]. More autonomous approaches employ a detec-
tion mechanism for track initialisation [10-12]. These detection algorithms can be based
on estimation of direction of arrival of the signal [13], image-based segmentation [14] or
model-based classifiers [15-17]. In this chapter we will focus our discussion on the latter
approach that does not require manual track initialisation.

Factors such as occlusions, bad lighting and limited field of observance of the
sensor make tracking a challenging task. To overcome these challenges, multiple sensors of
multiple modalities, such as a network of cameras and microphones, can be used. With the
advancement of technology and the use of these sensors at mass level, it is now affordable
to employ such sensors. Tracking in such heterogeneous sensor networks reduces the
uncertainty of tracks due to redundancy of information, as well as allowing extended
tracking over wider areas by utilising complementary data [18]. We will limit our discussion
to two complementary modalities, namely video and audio. However, many techniques
may be readily applicable to other modalities such as radar and radio frequency signals.

Data fusion is desired for effective utilisation of the information in sensor net-
works. The information fusion can be performed using two strategies (i) track-before-fuse,

and (ii) fuse-before-track. In track-before-fuse the tracks generated on each camera-view
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Detection

Tracking

Projection t

(a)

Figure 2.1: Sample track-before-fuse and intermediate results on the top-view. (a) Illus-
tration of the track-before-fuse approach. (b) Projection of tracks from multiple-views for
fusion of corresponding tracks. (Cj: camera 1; Cy: camera 2 and Cj5: camera 3).

are fused together, whereas in the fuse-before-track, tracking is performed once on the
fused data only. Literature review on track-before-fuse algorithms is discussed in Sec. 2.2
whereas on fuse-before-detect strategies is given in Sec. 2.3.

Both these strategies require a detection step either before or after fusion of
information. A third category is track-before-detect where tracking can be performed
without going through any additional detection phases [19,20]. The related work on

track-before-detect algorithms is discussed in Sec. 2.4.

2.2 Track-before-fuse

In track-before-fuse first objects are localised on each camera-view followed by
single camera tracking [21-31]. These short tracks from individual sensors are then fused
to improve tracking accuracy and to obtain extended tracks. Figure 2.1 shows the typical
intermediate result of track-before-fuse algorithms where tracks from multiple-views are
projected onto the top-view. The problem to be solved here is how to fuse the multiple
tracks belonging to the corresponding targets.

In this section we will limit our discussion to uni-modal track-before-fuse tech-
niques using the video only modality. We will first introduce the state of the art of
image-based localisation techniques, followed by that of single camera tracking. Finally,

we will review the literature on multi-camera track-before-fuse. Figure 2.2(a-b) shows a
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Video —»| Detection > Tracking —> tracks
(a)
Video —»{ Detection > Tracking
A
Video —| Detection » Tracking » Fusion [— tracks
Video —| Detection > Tracking

(b)

Figure 2.2: Generic block diagram of detection and tracking algorithms using uni-modal
sensor(s). (a) Single sensor detection and tracking algorithms. (b) Multi-sensor fuse-after-
track detection and tracking algorithms.

generic block diagram of track-before-fuse detection and tracking systems based on single

and multiple video sensors only.

2.2.1 Image-based localisation

Object detectors can be based on an object model or a background model. The first
class of detectors initially learns a model for objects of interest and then use a classifier that
is generally applied to each frame of the sequence [32]. Object model based techniques [16,
32| learn local representative features of the object appearance and perform detection by
searching for similar features in each frame. Edgelets [33] or Haar wavelets [17] are used in
Adaboost algorithms as weak object classifiers that combined in a cascade form a strong
classifier [34]. Approaches based on learned classifiers are also used after background
subtraction to categorise the detections (i.e. to differentiate pedestrians from vehicles) [35].
Similarly, Support Vector Machines using simple object features, such as object size and
width-height ratio, can be used [36]. Although these approaches are also appropriate in
applications with non-static cameras, they can only detect object classes belonging to the
training dataset.

In the second class the detection is performed by learning a model of the back-
ground and then by classifying pixels as either foreground or background [37-39]. These
approaches all have a mathematical formulation equivalent to the following. Let I be the

frame at time k; a simple foreground segmentation technique is to perform image difference
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T es-02-85 13:53:36 .
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e, | Ry R )

Figure 2.3: Comparison of background subtraction results with and without update of
the background model. (a) Reference frame, (b) frame 585, (c) sample result without
background update and (d) sample result with background update.

between current and reference frame [ ,; followed by binarisation using thresholding

1

I,;—Ik’>h

1= (2.1)

0 otherwise

where A is the threshold and I ,{ is the extracted foreground image at time k. There are
two constraints associated with this method. First, the reference background I ,; needs to
be computed and second the presence of additive noise makes it difficult to adjust the
threshold /. The reference background can be obtained by taking the average or median
of previous frames as I,; = % f;kI_T Iy, where T is the length of the time window. An
alternative is to take an exponentially decaying weighted average of the previous frames

as

I =wh 1+ (1 —w)_q, (2.2)

where w is the mixing weight and serves as a learning rate. The choice of w depends
on a trade-off between the update capabilities and the resilience to assimilating stopped
or slow foreground objects in the background model. Figure 2.3 shows the comparison
between the static and the adaptive background, indicating significant reduction in false
positives with adaptive modelling. The drawback of these approaches is that the objects
that become stationary may become part of the background resulting in missed detections.

Equation 2.2 can be modified to address this problem as

Iy(i,5) = whi—1 (6, §) + (1 — )Ly (i,9), ¥ (i) ¢ I, (2.3)

where [ ]{_1 is the set of pixels belonging to the foreground only at time k — 1. This solves

the problem with foreground objects that become stationary; however the errors due to
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false foreground detections (such as due to sensor noise and rapid illumination changes)
will not be rectified. Assuming that the colour value at each pixel follows a Gaussian
distribution A (u, o) with mean y and variance o2, the statistics of the visible pixels can

be recursively updated, in each frame, using an adaptive filter [40]
Mk(za]) = wjk—l(iaj) + (1 _w)uk—l(iaj) (24&)

o2(i,§) = w(Ip—1(5,5) — pr—1(3,5))* + (1 — w)o_1 (3, ). (2.4b)

In the above, recursive updating has to be applied for each detected object as well as for the
background. Computation of the support map is also required for each object, indicating
its occupancy [40]. Alternatively, assuming that the additive noise affecting each image
of the sequence respects a Gaussian distribution with mean py and variance o} [38], the
value of o7 is computed by analysing image differences d(i, j) = I,;(i, j) — Ix(i,5)|. Here
d(i,j) # 0 only because of camera noise and not because of other factors like scene changes
due to moving object or illumination change. Based on this hypothesis, which we call Hy,

the conditional probability density function p(d(i,7)|Hp) is defined as

- 1 (i, j
p(d(i, j)|Ho) = exp <— 2( 5 )). (2.5)
2ro? Ok

This approach can only be applied to uni-modal backgrounds. In the case of the back-
ground distribution being multi-modal, a mixture of multiple Gaussians is used [37]. In

this approach, each Gaussian is weighted according to the proportion of data it models

and the probability of observing a current pixel value is computed as

N9

Pk, 5)) = wieN (I3, §), e, ouk).- (2.6)

=1

where the distribution A is a Gaussian distribution defined as

o 1 I1(3,5) — p) T (I(3,5) —
NG, 3, g o) = g exp (_( (i,7) Mle)UZQi( J) Hlk)) (2.7)

and NNY is the number of Gaussians. The mean p and variance o are updated at each
time k, for each Gaussian, using running average and weights w are recomputed. These
parameters are updated to cope with slow changes in natural light conditions. However,

when an object becomes static it is gradually assimilated into the background model.
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The update speed for the parametric model is usually a trade-off between a fast update
required to cope with sudden illumination changes and a slow update necessary to allow
the detection of slow or stopping objects. A possible solution is to modify the learning
rate in the region around a moving object depending on its speed [41]. Edge information
can also help in detecting objects when they become static [42]. Once the edge structure
of the background is learned, a pixel is classified as foreground by comparing its gradient
vector with the gradient distribution of the background model. A generalisation of the
Gaussian Mixture model based background learning is to use Kernel density estimator

K [43]

p(Ix(i, 7))

kz: (Ik i, j) . It(i,j)>’ (2.8)

where I is some kernel and h is a smoothing parameter called the bandwidth. The func-
tion K can be assumed to be Gaussian with zero mean and unit variance and thus the
variance is controlled indirectly through the bandwidth h. Although being general and
non-parametric, it’s impractical due to its memory requirements. The recursive density
approximation can be done efficiently by employing Mean-Shift (MS) [44] to detect density
modes (at which the probability density function attains its maximum value) and propa-
gating them over time. This makes the approach memory efficient as well as maintaining
the flexibility of being non-parametric. However, heuristic methods are used for mode
merging. In another approach [45], neurons are used instead of Gaussians to calculate the
probability of a pixel belonging to background or foreground. In this technique a General
Regression Neural Network (GRNN) is employed which can model the underlying fore-
ground /background density. The weights of the connections between the neurons in the

network are updated for each pixel of each frame Iy (i, j) recursively as

w,if =(1- a)w,ijil (2.9a)
Wil = (1 - )i’ | +a (2.9b)
or
Wl =1 -a)w? +a (2.10a)
Wi = (1 - )i, (2.10b)

depending upon which type of neuron has the maximum response, where w is the weight

of the connection between i*" pattern neuron and the background summation neuron and

w,if is the weight of the connection between i** pattern neuron and the foreground sum-
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mation neuron and « is the mixing weight. This approach is also limited in its capability
to consistently detect objects when they become static.

The aforementioned foreground segmentation methods cannot deal with sudden
changes such as on/off of the light. A way to solve such a situation is to consider the
pixel intensity variations as discrete states corresponding to certain events. This involves
training Hidden Markov Models (HMM) [46] and then selecting the model corresponding
to a certain event [47]. The advantage of this is that different states of the system, which
the unsupervised background modelling approaches cannot handle, can be learned during
training. Another method that requires prior training is based on eigenvalue decompo-
sition [48]. Principal component analysis (PCA) is applied to the sequence of images
to compute the eigenbackgrounds. At each time k the image I is projected onto the
eigenvector sub-space and then reconstructed. The reconstructed image serves as the
background image at time k. The foreground subtraction is then performed as in Eq. 2.1.
A similar approach can be to sample background values at each pixel into a codebook [39]
which represents a compressed form of the background model for long sequences. This
approach can encode variations in the background model without having huge memory
constraints. However, its performance is highly dependent on the codebook generation
during the training phase. In [49,50] incremental PCA decomposition over a sequence of
non-overlapping spatio-temporal blocks is performed to detect motion. In this method the
image is segmented into patches of dimension 8 x 8 x w where w is the temporal window
size. These patches are disjoint in space but overlap in time and are concatenated and
reshaped to form a 2D background map. The Haar wavelet transform is then applied at
each location (i,4) on the background map I, (i, ) over windows of size 3 x 3 to obtain L
corresponding wavelet coefficients, ¢,(l),l = 1,---, L. The dissimilarity between wavelet

coefficients of each patch p(i, 7, m) and p(i, j,n) is computed as

L
C(p(i, ,m), pli, §,m)) = | O (em(l) = en(1))?). (2.11)

I=1
Finally, a threshold is applied to this dissimilarity matrix to classify changed and un-

changed blocks [51].

These solutions are mainly used to detect moving objects in the scene. A major
problem with background-based detection algorithms is the difficulty of dealing with object
interactions, such as object proximity and occlusions. In such cases, multiple objects that

are close are likely to generate a merged foreground region that produces a single detection
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Figure 2.4: Sample background-based and model-based detection results. (a) Outdoor
test sequence and (b) corresponding background-based motion segmentation result.

only, instead of multiple detections. Furthermore, rapid illumination changes result in a
large number of false detections as well as affecting the segmentation of actual objects,
which can result in track loss. Projection histograms can be used to split the merged
objects [41], thus allowing a single blob to represent two objects [36]. However, they
cannot resolve merging when an object is completely overlapping with another object. In
Sec 3.2 we will propose some techniques to overcome some of these problems, particularly
rapid illumination changes and object merging. A survey on image-based segmentation
algorithms can be found in [52]. Figure 2.4 shows typical output from a background-based
detection algorithm [10].

2.2.2 Single camera tracking

Once objects are detected, the second step aims at linking different instances of
the same object over time (i.e., data association). A typical problem for data associa-
tion is to disambiguate objects with similar appearance and motion. For this reason data
association for object tracking can be considered as a motion correspondence problem.
Several statistical and graph-based algorithms for tracking have been proposed in the lit-
erature. A significant amount of work has been reported on detecting and tracking single
or multiple moving objects using Kalman filters (KF) [53,54], particle filters (PF) [5,55,56]
and variants of Probabilistic Data Association (PDA) [57,58]. Smoothing or target state
estimation can be performed by initialising a Kalman filter for each target [53] and by
assuming that the posterior density at every time step follows a Gaussian distribution.
This limiting assumption can be alleviated by using particle filters. Tracking can be based
on adaptive multi-feature tracking [5] using colour and orientation information under a
particle filtering framework. Similarly, colour and edge features are used in [59] to track
single targets, such as faces and hands, using a trust-region method. Multi-target tracking

algorithms include Mixture particle filters (MPF) [55], where individual interacting PF's
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perform distributed resampling to avoid track loss due to sample depletion. Similarly,
Boosted particle filtering (BPF) [11] uses proposal distributions with a mixture model
that contains contributions from a detector and the target dynamic model. In [19], the
target state is augmented with an existence variable to model the number of targets in
the Bayesian estimation. This leads to a hybrid estimation problem solved using a jump
Markov model [60], as one component of the state vector is discrete valued, while the
rest are continuous valued. Two methods based on statistics are the Joint Probabilis-
tic Data-Association Filter [61] and Multiple Hypotheses Tracking [62]. Smoothing and
clutter filtering can also be performed prior to data association using a Probability Hy-
pothesis Density (PHD) filter [63], a Bayesian recursive method with linear complexity
(with respect to the number of targets). The PHD filter approximates the multi-target
statistics by propagating only the first order moments of the posterior probability. The
major drawbacks of these methods are the large number of parameters that need to be
tuned and the assumptions that are needed to model the state space [64].

An alternative to probabilistic methods is mean-shift (MS), a non-parametric
kernel-based method used for target localisation [36]. Another alternative is to model
the problem with a graph where the nodes are associated with the detections and the
edges represent the likelihood that two detections in consecutive frames are generated by
the same object. An example of graph-based method is Greedy Optimal Assignment [65],
which requires a batch processing to deal with occlusions and detection errors, and assumes
that the number of objects is constant over time. A variable number of objects is allowed
when dummy nodes are introduced in the graph in order to obtain a constant number
of nodes per frame [66]. A more elegant solution [64] has also been proposed where the
best motion tracks are evaluated across multiple frames based on a simple motion model.
Next, node linking is performed after pruning unlikely motions [64]. Data association can
also be performed by matching blob contours using the Kullback-Leibler distance [67].
However, this method needs large targets to compute blob contours accurately, and the
correspondence is limited to two consecutive frames. Finally two-frame bipartite graph
matching can be used to track objects in aerial videos based on grey level templates and
centroid positions [68]. A more comprehensive survey on tracking algorithms can be found

in [69].

2.2.3 Multi camera tracking

In multi-camera track-before-fuse algorithms, firstly tracking is performed on each

camera-view. The short tracks from each camera-view are then projected onto a common
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space for fusion. The algorithms for multi-camera tracking can be categorised based
on type of calibration and tracking employed. We divide the algorithms into (i) single
target tracker with manual calibration, (ii) multi-target tracker with manual calibration,
(iii) automatic calibration and tracking (iv) and without calibration. In this section we
will separately discuss the algorithms belonging to each of these categories.

Several approaches performed multi-target tracking using manually calibrated
cameras with a single target tracker in each camera. In [29] tracking is performed in each
camera-view using a Bayes classifier to locate the most likely match of the target in the
next frame. The likelihood is computed by finding the minimum sum of the corresponding
Mahalanobis distances of the features given the estimated feature vector. The features
used are 2D location, height and intensity. The target’s features are projected from the
current view, from where the target visibility decreases, to the view which gives maximum
visibility, by applying camera-to-camera homography. The features are fused between mul-
tiple views by matching epipoles. However, selection of next best view is not a trivial task
and requires analysis of content in each view [70]. Moreover, applying camera-to-camera
homography requires the computation of all possible combinations of homographies and
assumes overlap between views. Several approaches eliminate this limitation by computing
the projection to and from a reference-view [27] or top-view [22,28]. In [22], the targets are
first tracked using a particle filter in each view and then the particles are projected onto
the top-view generated using manually calibrated homography. To compute the precise
location of the target in the top-view, the principle axis of the target is defined in each
view as the vertical line from the bottom (feet in case of person) to the top (head in case
of person) of the target. These principle axes are then projected on the common-view
and their intersection is used as the target feet location. The closeness of the particle to
the principle axis is used as the likelihood criterion in the particle filter applied on the
top-view. To improve the results on individual camera-views using top-view tracking, the
particles in each view are sampled both from camera-view particles and top-view particles
using homography. Similarly, in [28], multiple independent regular particle filters (MIPF's)
are used to track each target in camera-view. The posterior in the other camera is com-
puted by using measurements from all the cameras. The correspondence between two
views is done using epipolar geometry. It also uses a repulsion model to resolve merging
of interacting targets.

The above approaches employ single target trackers on each camera-view which
makes them computationally expensive. In [21] as compared to other approaches the

tracks in each view are generated using a multi-target tracker based on graph theory. In
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Table 2.1: Multi-camera track-before-fuse tracking algorithms. (Key: GMPHD = Gaus-
sian Mixture Probability Hypothesis Density; MTT = Multi-target tracker)

Refs. | Features Tracking algo. Calib. | MTT
[29] 2D position, height and intensity Bayes tracker Manual | No
[27] 2D position, size, velocity Kalman filter Manual | No
[28] 5D state space using ellipses Particle filter Manual | No
[22] 2D position, size Particle filter Manual | No
[21] 2D position, size, velocity Graph matching Manual | Yes
[26] position, size and colour histogram | GMPHD filter Manual | Yes
[23] position, velocity, size and colour | not mentioned/any | Auto NA
features
[30] field of view lines not mentioned/any | Auto NA
[25] pixels, manifold learning Caratheodory-Fejer | No Yes
interpolation

this approach, the fusion is applied on the top-view. The fusion of the multiple tracks,
belonging to the corresponding objects, is first performed on the top-view using feature
clustering. In the case when more than one candidate track has been selected to be fused
with the selected track, all the candidate tracks are projected on the image-view for vali-
dation. Similarly, in [26], a multi-target tracker is used. This approach uses a Probability
Hypothesis Density (PHD) filter for target tracking in each view as well as in the top-
view. The complexity of the PHD filter increases linearly with the number of targets in
comparison to other approaches. Furthermore, this approach used a Gaussian mixture
based PHD (GMPHD) implementation which is faster than particle implementation as it
does not requires particles for state estimation. The features used are position, size and a
colour histogram. The 2D estimates of target state from each camera-view are projected
onto the top-view and are used as observations for the GMPHD filter for 3D tracking in
the common-view. The track labelling is performed by assigning a label to each Gaussian
component. However, it is assumed that the projection from camera-view to the top-
view (3D view) is available. This method also assumes that cameras are calibrated and
overlapping.

The limitation of the above approaches is that they require manual computation
of correspondence between multiple views. This limitation is addressed in [23] by using a
trajectory correspondence model (TCM). This approach assumes that reliable tracks are
pre-computed in each camera-view using one or more trackers. This tracking information
from each view is used to establish correspondence between tracks, belonging to the same
object in different camera-views, using position, velocity, size and colour features. The

points from corresponding tracks are then used to automatically compute the homography
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matrix. In [27], a least mean square search is applied to identify corresponding trajectory
points in multiple views to compute the homographic mapping. This method uses 2D
and 3D Kalman filters to perform tracking in the camera-view and reference-view respec-
tively. This method also performs 3D trajectory prediction to track targets in unobserved
regions between adjacent views and during occlusion. In [30] field of view (FOV) lines are
estimated to disambiguate between multiple possibilities for correspondence and also to
recover homography. These FOV lines are recovered automatically by observing motion
in the environments. The single camera tracking is performed by two different trackers
to show independence from tracking algorithm. This approach assumes that each camera
should overlap with at least one other camera. The correspondence between objects in
multiple views is done as they enter or exit the scene because at that moment they appear
on FOV lines in other overlapping views. However, such approaches fail when the object
appears from the middle of the scene, such as a person getting out of a car. Such situations
are handled using the homography computed through FOV lines.

In case camera calibration information is not available, or cannot be computed
efficiently, or the assumption that the world is planar is not applicable, most of the previous
approaches are difficult to apply. In [25] manifold learning using Locally Linear Embedding
of the data is applied to solve the multi-camera tracking problem under such conditions.
The view correspondence is done by computing the embedding of the views. The tracking
is performed by employing Caratheodory-Fejer (CF) interpolation theory to identify the
dynamic evolution of the data on the manifolds. The limitation of this approach is that it
requires prior training and assumes that multiple views are highly overlapping. A summary
of the state of the art of multi-camera tracking approaches is shown in Table 2.1.

The track-before-fuse approaches are computationally expensive as they require
frame-to-frame correspondence at each camera-view and on the common-view (reference-
view, top-view). In most of these approaches not all the available information is used
effectively. The alternative approach is to use fuse-before-track in which there is no need

to apply tracking in each sensor and is discussed next.

2.3 Fuse-before-track

Tracking in individual sensors may result in error-prone tracks because uncer-
tainty and fusion of this noisy data may not yield optimal results. Fuse-before-track is an
alternative in which the tracking step is deferred until all the information has been accu-

mulated on a reference-view [71-74]. In this case, instead of tracks, the object localisation
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Detection

Projection

Figure 2.5: Sample fuse-before-track intermediate results on the top-view. (a) Illustration
of the fuse-before-track approach. (b) Detection volume obtained by projection and fusion
from multiple camera-views. (C}: camera 1; Co: camera 2 and Cs: camera 3).

information is fused and tracking is applied afterwards. This approach is particularly
useful in case of multi-modal sensor networks where availability of complementary infor-
mation can significantly improve the results. Figure 2.5 shows the typical intermediate
result of fuse-before-track, where detections from multiple cameras are projected and fused
on the top-view to perform tracking.

In this section, we will first introduce the multi-camera fuse-before-track algo-
rithm. Since fusion preceded by tracking is more effective in the case of multiple modalities,
we will also introduce the audio localisation in this section. Finally, we discuss the state

of the art on audiovisual multi-modal tracking approaches.

2.3.1 Multi camera tracking

In recent years a new paradigm for multi-camera tracking has been proposed in
which, firstly, information from all cameras is fused and then tracking in performed [71-74]
(Fig. 2.7). In [74], similar to [22], the vertical axes of the target across views are mapped
on the top-view plane and their intersection point on the ground is computed to obtain
the feet location of the target (Fig 2.6). The vertical axis in each view is obtained by least
mean squares fitting, minimising the perpendicular distances between the pixels and the
axis. The projection from each view to top-view is performed using pre-computed planar
homography matrices. These top-view feet locations are then tracked using a particle

filter. Projecting only feet locations make this approach very sensitive to detection errors
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Figure 2.6: Illustration showing intersection of vertical axis of target on top-view.
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Figure 2.7: Generic block diagram of video only fuse-before-track detection and tracking
algorithms.

in camera-views and inapplicable in crowded scenarios where feet locations may not be
visible. To avoid this problem, most approaches project and fuse information from entire
segmented foreground regions. In [72] the foreground mask from each camera-view is
projected onto the top-view to obtain an occupancy map. This occupancy map uses colour
and motion information in a generative model which explicitly handles complex occlusions
and interactions between individuals. The tracking of each object is performed using the
Viterbi algorithm. The Greedy approach, that makes the locally optimal choice at each
stage with the hope of finding the global optimum, is used to avoid the combinatorial
explosion due to joint posteriors. Contrary to most of the other tracking methods that
perform state estimation using frame-to-frame correspondence only, this method computes
global optima of scores summed over many frames. This makes it more robust against
persistent and prolonged occlusion. However, this approach can only process a batch of NV
frames at a time and hence the results are delayed which make it unsuitable for real-time

applications.
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Figure 2.8: Illustration showing projection of detections from camera-views to 3 parallel
planes on top-view. (a,d) Projection to a ground plane. (b,e) Projection to a mid-level
plane. (c,f) Projection to a head-level plane.

To further improve the effectiveness of tracking in the fused domain, multi-level
homography is proposed in [75]. In [73] three homography planes are used, one at feet
level, one at head level while the third plane is in between these two planes (Fig 2.8). The
homography for these planes are computed using manually selected control points. This
method also assumes that cameras are highly overlapping. The fusion between multiple-
views is performed by projecting the intensities in the foreground regions of each view
(obtained through background subtraction) and computing the variance of these intensities
at each point in the top-view. The low-variance indicates higher probability of the presence
of target heads. Firstly, head detection is performed by thresholding the variance map and
by employing floor level homographic projections. Finally the candidate head-top positions
are estimated by clustering using double threshold hysteresis. K-means clustering is than
applied for splitting of merged blobs. Tracking is performed by applying prediction on
the candidate head locations. This approach requires the person to be fully inside the
camera-view, calibration information to be available, and the cameras used to be mounted
at a significant height from where full heads are easily visible. The detection and tracking
procedure also depends upon various thresholds. Although this method was shown to work
well on the sequences on which it was demonstrated, its application in various other camera

configurations may not be possible. The multi-level homography approach proposed in [75]
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Table 2.2: Multi-camera fuse-before-track tracking algorithms

Refs. | Features Tracking algo.
[74] person vertical axis, ground position | Particle filter

[73] head position Bayes tracker

[72] colour and motion Viterbi algorithm
[71] multiple planes occupancy map Minimum graph cut

is further extended in [71]. The correspondence between multiple views is performed
automatically using SIFT features followed by RANSAC to reject outliers. This procedure
gives a planar homography which is then used to compute multi-level homographies by
moving along the vertical vanishing points to have projection planes parallel to the planar
top-view. The foreground likelihood probabilities from each plane of each view at each
time are projected onto the corresponding plane of the common-view to obtain a 4D spatio-
temporal occupancy map. Graph-cut trajectory segmentation is then applied on this 4D
spatio temporal data to estimate tracks for each individual target using the minimum
cut algorithm. Although this approach shows promising results, it is computationally
expensive and cannot work in real-time as it requires a 4D occupancy map to be created
before applying the minimum cut procedure. The summary of the state of the art multi-
camera tracking approaches is shown in Table 2.2.

The drawback of most of the fuse-before-track approaches is that projection of
complete segmentation information from each view to common-view requires more com-
putation as compared to projection of particles or tracks only. Furthermore, they perform
detection at two steps: first in each view and then in the common-view. This makes
them computationally expensive. The computation complexity due to projections can
be reduced by only projecting foreground pixels [76] rather then projecting entire binary
mask images. To reduce the complexity due to the additional detection step, a track-
before-detect approach that does not require a detection step can be used. The state of
the art on track-before-detect approaches is discussed in Sec. 2.4 whereas the details of
the proposed Multi-target track-before-detect particle filtering (MT-TBD-PF) approach
is discussed in Sec. 3.5.

The fusion mechanisms employed may differ from modality to modality as they
generate data of different dimensions. The aforementioned fuse-before-track category of
multi-sensor tracking can thus be extended by simply adding a fusion step per modality
(Fig 2.11). The next section (Sec. 2.3.2) introduces the audio modality and discusses audio
source localisation techniques. Literature on multi-modal fuse-before-track algorithms is

reviewed in Sec. 2.3.3.
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2.3.2 Audio source localisation

Localisation of a source emitting waves has been an active area of research for
more than half a century [77]. It has its application in vast areas including under-water
surveillance, wireless communication and border security. Recently it has been used in ap-
plications such as speaker localisation for teleconferencing, video coding and surveillance.
These waves can either be electromagnetic or sound waves; however both have similar
characteristics and follow the same propagation model which is the key factor in their
localisation.

There are three propagation models [13] that are considered: (i) single-path
model, (ii) multi-path model and (iii) reverberation model. These are explained as follows:
let each target generate a sound which is received at an array of microphones. The ideal
propagation model [13] assumes that the original signal undergoes attenuation and delay
before reaching each microphone. Let yj be a sound wave generated by the source at time

k. The signals y, received at the i*" microphone can be expressed as
Vit = LiVk—n—y,(r) + Nik, (2.12)

where, for each i*" microphone, I'; is the attenuation factor, n is the propagation time for
the signal to reach the first microphone, 7 is the relative delay between two consecutive
microphones; f;(7) is the delay between the first and the ¥ microphone in the array
of N” microphones and N is the process noise at microphone 7 which is assumed to be
uncorrelated between the sensors.

In case of multi-path propagation models [78-81], the direct path signal as well
as reflected versions of the signal are considered. This is based on the fact that real world
environments are composed of various obstacles such as walls and furniture. In this case

the recorded signal can be expressed as

N
Vit = Y Tij¥h-nr, + Nk, (2.13)
j=1
where N is the total number of paths.

The problem with the multi-path model is that it is impractical if N is large and
is used in ocean surveillance where there are only three possible paths (the direct path and
two reflections from surface and bottom respectively). In case of indoor scenarios each
microphone receives a large number of echoes and hence N is large. A reverberation model

is used in such scenarios. The reverberation model also considers the fact that there will
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be reflections due to surroundings and can be expressed as
Vik = hi * yir + Nik, (2.14)

where h; is the channel impulse response between the source and the i*" sensor and =
indicates convolution. It should be noted that in Eq. 2.14 there is no time delay 7, hence
there is no plain solution to the problem with the reverberation model. The reverberation
model requires prior knowledge about the source signal and then the impulse response
for each microphone needs to be computed for which there is a closed-form solution only
in the case of an indoor room environment [82]. In case of an outdoor environment,
it is difficult to compute the impulse response [13]. In cases where the original source
signal is not available, this method is used by approximating h; using domain knowledge.
However, it is a very challenging problem [13]. In this model, the time delay is computed
by identifying the two direct paths of the sound signal to the microphone pair. However,
identifying the two direct paths is a blind channel identification problem which is a hard
problem particularly in indoor environments [13].

Due to the computational difficulty of multi-path propagation models and the
challenging nature of reverberation models, the aforementioned ideal propagation model
is widely used for source localisation. The basic method of source localisation via time
difference of arrival estimation (TDOA) is cross-correlation (CC). Considering a single-
path model and only 2 microphones (Fig 2.9), receiving signals y1; and yoi respectively,

which satisfy

Vit = Yi-n + Nik, (2.15a)
Yor = U¥k—n—r + Nog, (2.15b)

the cross-correlation function between these two signals can be written as

Ry15,(7) = B[y 1y 2e—r]; (2.16)

where Fj denotes expectation across a suitable range of k values. The delay is found
by maximising the cross-correlation function. However, the cross-correlation function is
not enough to obtain a valid delay estimation using real audio data. In order to improve
the accuracy of the delay estimation 7, it is desirable to pre-filter y1x and yo prior to
integration in Eq. 2.16. The CC method suffers from the noise present in the signal and

pre-filtering is needed. The improvement over CC, referred to as the generalised cross-
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Figure 2.9: Source-receiver geometry for a STAC sensor in the far field. The distance
between the microphones M;; and M;y is denoted by L and the arrival angle by 6. The
sound wave has to travel an additional distance of L sin# to reach microphone M;,.

correlation function (GCC), which includes pre-filtering, is defined as

Rosa(r) = [ (1) G5, () exp(2m S, (2.17)

—0o0

where Gy, 5, = E[Y1(f)Y5(f)] is the cross-power spectrum, * indicates the complex con-
jugate operator, Y;(f) is the Fourier transform of y; and ®(f) is a pre-filter that serves
as a weighting function. In practice only an estimate éylyz(f) of Gy,4,(f) can be ob-
tained from finite observations. To improve the delay estimation, a general frequency
weighting/pre-filtering transform ®(f) has to be defined. Commonly used weighting func-
tions ®(f) include the constant weighting (in this case, the GCC becomes the frequency
domain implementation of the cross-correlation defined in Eq. 2.16), the smoothed co-
herence transform (SCOT) [83], the Roth processor [83], the Echart filter [83], the Phase
transform (PHAT) [83], and the Maximum-likelihood processor (ML) [83]. In the Roth

processor the weighting function ®g(f) is defined as

1
Pr(f) = m (2.18)
and
IR AU I
Ry 5, (7) —/_Oo oo (F) exp(j2m f7)df. (2.19)

If N; # 0, as is generally the case for Eq. 2.15, then

~ ~

G195 (F) = Gyrys (F) + Grans (f) (2.20)
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and
Ry . e Féywz(f)
RE S (1) = (ks )/Oo Gyrys () + Gauns (f)

where kg is the range of time shifts until a peak is obtained. The Roth processor has

exp(j2m fr)df, (2.21)

the desirable effect of suppressing those frequency regions where G NN, (f) s large and

Gy,g,(f) is likely to be in error. In SCOT, the weighting function ®g(f) is defined as

1
\/@ylyl(f)@ygyg(f)'

Ps(f) = (2.22)

SCOT can be considered as a pre-whitening filter and is equivalent to Roth if éyﬁq (f)=
GyQyQ (f). In Eckart the weighting function ®g(f) is defined as

A~

LGy, (f)
P = = Y1Y: :
E(f) GN1N1 (f)GN2N2 (f)

(2.23)

Eckart, similar to SCOT, suppresses frequency bands with high amount of noise. The
PHAT transform has the same weighting function ®p(f) as in the case of Roth; however,

when noise is uncorrelated, ®p(f) becomes

1
®p(f) = m (2.24)
Ideally, when Gy, y,(f) = Gy,y,(f),
Go o
wgp;' — exp(jo()) = exp(j2rf7) (2.25)
has unit magnitude and
RE S (1) =0d(k—1), (2.26)

where ¢(f) is the signal phase. Hence only phase is preserved which is described in
exp(j2mf7). The phase transform (PHAT) is an ad-hoc technique to pre-whiten the
signals before computing the cross-correlations in order to get a sharp peak. The time
delay information is present in the phases of the various frequencies and these are not
modified by the weighting function ®(f). The weighting function tends to enhance the true
delay and suppresses all spurious delays. In a real situation, this property demonstrates a
low sensitivity with respect to drawbacks due to reverberation and multi-path distortion.

To further improve the time delay 7 estimation, generalisation of the cross-

correlation function is introduced in [84]. This approach models the reverberation com-
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ponent as additive noise and tries to filter it. The reverberation as additive noise can be

expressed by extending Eq. 2.15 as

Yik = Yitn + b1 * Yirn + Nk, (2.27a)

Vo = U'¥Vktntr + Ry * Yiin + Nog, (2.27b)

where h] is representative of the environment and describes the additive effect of rever-
beration. For example, h} can be considered as a sum of shifted Dirac deltas describing the

time delays between the reverberation components and the original signal. Assuming the

two reverberation transfer functions in Eq. 2.27 have the same power spectrum |H"(f)|?,
the overall noise power spectrum component [N (f)|? can be represented as
NN = HT(HPIY (P + NI (2.28)

Taking into account this additive noise component, the optimum cross-correlation estima-

tor from Eq. 2.19 can be written as

i S o |
Rouss) = [ e |(2fl (R SPUEI T (2.29)

Assuming that the reverberant energy is proportional to the direct signal energy; the

following approximations can be obtained

HT(N)PIY (NP < (Gyrya (F) = IN(HP), (2.30)

where the parameter «y satisfies 0 < v < 1. Then, Eq. 2.28 can be re-written as

/

NV (NP = 7G5, (f) + (L= NIV ()P (2.31)

and the optimum cross-correlation estimator can be expressed in terms of «y as

; >0 Gy, (f) .
Ro. o (T) = _ exp(j27 fr)df. 2.32
= [ o) + (LN SRR (252

And the estimated value of time delay 7 is given as

T = arg H}Cax(RylyQ(ks)), (2.33)

which indicates that the time shift &, that maximises the cross-correlation is the estimated
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Figure 2.10: Examples of sensor configurations for audiovisual object detection and
tracking (filled circles indicate microphones; empty circles indicate cameras): (a) single
microphone-camera pair; (b-c) Stereo Audio and Cycloptic Vision (STAC) sensors; (d-e)
circular microphone array with single camera; (f) triangular microphone array with single
camera; (g) linear microphone array with single camera.

9)]

delay. Then the arrival angle, 6; is estimated as Ly, Sinf = v.7 i.e., §; = arcsin(v.7/Ly;,),
where v, is the speed of sound in air and L)y, is the distance between the two microphones.

Despite the robustness of generalised cross-correlation phase transform (GCC-
PHAT) against reverberation, a significant amount of noise is still present in the signal
which can deteriorate the localisation estimate from the true target location. In Sec 4.2
we will discuss our solution to reduce the effect of noise and reverberation. The next sub-

section discusses the multi-modal tracking algorithms using audio and video modalities.

2.3.3 Multi-modal tracking

Localisation and object tracking using audiovisual measurements is an important
module in applications such as surveillance and human-computer interaction. The effec-
tiveness of fusing video and audio features for tracking was demonstrated in [85-87]. The
success of the fusion strategy is mainly because each modality may compensate for the
weaknesses of the other or can provide additional information [88], [89]. For example, a
speaker identified via audio detection may trigger the camera zooming in a teleconference.
The main challenges for audiovisual localisation are reverberations and background noise.
Therefore, the audiovisual sensor networks (with camera and microphone arrays) have
been used to address these problems using a variety of sensor configurations. Figure 2.10
shows a summary of these configurations, which range from a single microphone-camera
pair to single or stereo cameras with stereo, circular arrays or linear arrays of microphones.
Camera-microphone pairs are used for speaker detection in environments with limited re-
verberation under the assumption that the speakers face the microphone [88]; single or

stereo cameras with multiple microphones are used in meeting rooms and teleconferenc-
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Table 2.3: Multi-modal tracking algorithms. (Key: PF=Particle filter, KF=Kalman filter,
DKF=Decentralised KF, LDA=Linear discriminant analysis, TDNN=Time delay neural
networks, GPM= Graphical models, BT = Bayes tracker, MFA=Multi-feature analysis,

HCI=Human computer interaction)

Refs. Sensor types Algo. | Applications
[91] Stereo camera and circular microphone PF Multi-modal
array user interface

[93] 2 cameras and 4 microphone arrays PF Indoor multiple
person tracking

[87] Camera and 10 microphone circular array PF Outdoor surveillance

[90] Panoramic camera and 4 omni-microphones | MFA Face detection

[89] Wide-angle camera and a microphone array | I-PF Meeting rooms

[94] PTZ camera and 2 microphones PF Teleconferencing

[88] Camera and microphone TDNN | Lip reading, HCI

[95] GPM | Indoor environment

[96] BT Indoor environment

[97] Camera and 2 microphones TDNN | Surveillance

[85,98] PF Surveillance and
teleconferencing

[99,100] KF, Smart rooms

[101] DKF

[102] Multiple cameras and microphone arrays LDA Smart rooms

[92,103] PF Meeting rooms

[104,105]

ing [90,91]. Gatica-Perez et al. use cameras and eight microphones to capture interactions
in meeting scenarios [92]. A significant amount of work has been reported on detecting
and tracking single or multiple moving objects using Kalman filters (KF) [99, 100], par-
ticle filters (PF) [87,106] and variants of probabilistic data association (PDA) [57, 58].
Multi-modal multi-sensor configurations are used for object tracking [18,69, 106, 107] to
compensate for failure of each modality. Tracking can be performed using the video
modality only [6,64,108-110], the audio modality only [111-114] or using audio and video
simultaneously [85,87,90,92,93,104-106]. Many approaches address audiovisual tracking
for smart multi-modal meeting rooms [91,92,94,103-105] where the speakers are multi-

ple interacting meeting participants. Tracking of multiple non-simultaneous speakers is

described in [93] whereas in [94,104] the authors track a single speaker using variants
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Figure 2.11: Generic block diagram of fuse-before-track multi-modal detection and
tracking.

of the classical particle filter in smart rooms. In meeting scenarios, interaction of multi-
ple speakers is modelled using mixed-state dynamical graph models [92,103]. Similarly,
non-simultaneous speakers can be recognised by semantic analysis of the scene using tra-
jectories generated via an audiovisual particle filter [105]. Moving speakers can be tracked
using Bayesian hidden variable sequence estimation [91]. This approach is equivalent to
extending the Bayesian network to a dynamic Bayesian network in order to account for
the dynamics of the state of the sound sources [91]. Face and upper body parts can be
detected using contour extraction by performing edge and motion analysis and then com-
bining with audio detection in a particle filter framework [85,98,115]. Gehrig et al. [99]
apply audio detection to generate face positions that could also be observed by multiple
cameras.

Unlike meeting rooms, more challenging scenarios are uncontrolled environments
(e.g., indoor and outdoor surveillance) where it is not practical to use complex microphone
configurations requiring sophisticated hardware for installation and synchronisation. Re-
cently, simple configurations (e.g., one camera and two microphones) were adapted using
Time-Delay Neural Networks (TDNN) and Bayesian Networks (BN) [97]. Audio features
are detected by computing the spectrogram coefficients of foot-step sounds via the Short-
Time Fourier Transform (STFT). TDNN is then used to fuse the audio and visual features,

where the latter is generated using a modified background subtraction scheme. However, it
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is unclear how object detection is achieved when visual features are unavailable. Moreover,
this algorithm relies on a pre-training stage that leads to intensive processing. Further-
more, like other approaches [91,92,94,103-105] this work also focuses on optimal fusion
of modalities. Multi-modal localisation and tracking can be improved by accounting for
both integration as well as segregation of modalities through Bayesian modelling [96].
Probabilistic reasoning for multi-modal data association can then be used to segment,
associate and track multiple targets in audiovisual sequences obtained through similar
sensor configurations consisting of a camera mounted between two microphones. Sen-
sors similar to Stereo Audio and Cycloptic Vision (STAC) sensors, with a pan, tilt and
zoom (PTZ) camera are used to detect speakers in the near field with unscented particle
filter for data fusion [94]. When the target dynamics and measurements are linear and
Gaussian, a closed-form solution can be uniquely determined. Such target dynamics can
be modelled using the Kalman filter to fuse the audio and video modalities [100]. The
Kalman filter cannot effectively handle non-linear and non-Gaussian models [58,100,106],
although an extended Kalman filter can linearise models with weak non-linearities around
the state estimate [58,116]. The particle filter is a popular choice to model non-linear and
non-Gaussian systems [85,94,98,115]. Cevher et al. [87] use a particle filter to combine
acoustic and video information in a single state space. They adapt the Kullback-Leibler
divergence measure to decrease the probability of divergence of the individual modalities.
Vermaak et al. [85] combine particle filter based head tracking with the acoustic time
difference of arrival (TDOA) measurements to track speakers in a room. Bregonzio et
al. [117] use colour-based change detection and TDOA for generic object tracking. In
most approaches, the detection mechanism uses TDOA or beamforming [87,111,118-120)]
for audio detection. Speakers can also be detected using a recognition mechanism. In
this case, Mel-Frequency Cepstral Coefficients are used for speech recognition, and video
recognition can be done using linear subspace projection methods [102]. A summary of
multi-modal tracking algorithms is presented in Table 2.3.

Large arrays of microphones are difficult to use in many real world scenarios
such as wide-area surveillance. In this area, this thesis presents a method for performing
detection and tracking of targets using a STAC sensor (Chapter 4). A STAC sensor,
composed of a single camera mounted between two microphones (Fig. 2.10(b-c)), makes
the designed system simpler, cheaper and portable. STAC sensors are used to perform
audiovisual tracking with a probabilistic graph model and fusion by linear mapping [95]
or with particle filtering [98]. The cost of using such a simple sensor against an array of

microphones is its sensitivity to noise and reverberations. Since STAC sensors are sensitive
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Figure 2.12: Generic block diagram of multi-sensor fuse-before-track with track-before-
detect (Note: there is no detection/clustering step after fusion).

to reverberations, the proposed approach applies multi-band analysis and precedence effect
to filter the signal (Sec. 4.2). This thesis also proposes a fusion strategy based on the
Weighted Probabilistic Data Association filter (WPDA), which associates the hypotheses

and the measurements with a real target (Sec. 4.3 and Sec. 4.4).

2.4 Track-before-detect

The drawback of the aforementioned detection and tracking algorithms (Sec. 2.2.1
and Sec. 2.2.2) is the thresholding of data, this makes them inapplicable for tracking targets
with low observability. In many single and multi-sensor applications the Signal-to-Noise
Ratio (SNR) of the input or pre-processed signal is relatively low. Examples of such signals
are the far-field of infrared (IR) images, bearing frequency distributions (sonar) and range-
Doppler maps (radar). Examples of sensors whose signals are fused include cameras [75],
microphones [121] and radars [122]. Fusion involves triangulation of noisy information
that can result in much larger number of solutions than desired. To address this type
of data, simultaneous detection and tracking can be performed via the track-before-detect
(TBD) approach. In TBD the entire input signal is considered as a measurement. This
measurement is a highly non-linear function of the target state and can be solved either
by discretisation of the state [123] or by employing non-linear state estimation techniques
such as particle filtering [56], which are computationally less expensive.

A recursive Bayesian single target TBD is proposed in [124] using particle fil-
tering. This method assumes a point target and extends the target state with the signal
intensity based on the assumption that the return intensity from the target is unknown.
Similar to multi-target PF, multi-target TBD-PF approaches are also based on extending

the target state with an existence variable and solved with a jump Markov model [125]. An
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approach based on dynamic programming is used in [126] to track aircraft through TBD.
In this context, conventional change-based detection cannot be applied because targets are
very small and the presence of clouds makes them dimmer. In [121] multiple microphones
were used to track multiple speakers using TBD on steered beamforming results. In this
approach a conditional probability density is used that characterises uncertainty in both
target state and target number, given the measurements. The polar Hough transform is
used in the fusion between multiple radar signals [122]. As the co-ordinate measurement
errors (range, azimuth) degrade the accumulation of a signal in each cell of the Hough
space (i.e., reduce the output SNR and the output signal peak, while increasing the output
side lobes peak), TBD is applied for target tracking.

Most TBD algorithms have been demonstrated on simulated data [122,124,125,
127]. Two exceptions are [121,126]: [121] is a multi-target multi-sensor tracking algorithm
applied on audio sensors and [126] is applied to IR sequences from a single sensor only. To
the best of our knowledge, work proposed in Sec. 3.5 of this thesis is the first adaptation

of the TBD concepts to multi-camera tracking.

2.5 Summary

This chapter has reviewed the literature on autonomous multi-target, multi-
modal detection and tracking. The algorithms can be categorised as simply detection
and tracking techniques in the case of a single sensor; detection, tracking and fusion in
the case of multiple sensors (track-before-fuse); and detection, fusion and tracking also in
the case of multiple sensors (fuse-before-track and track-before-detect) where there is the
same number of fusion blocks as modalities.

The chapter has provided a literature review of all these categories of algorithms
for two modalities, namely video (Sec. 2.2.1) and audio (Sec. 2.3.2). The detection in
the case of the video modality can be classifier-based or based on the background model
used. The classifier-based approaches are appropriate when the only prior knowledge is
the class of objects that need to be detected (such as faces or pedestrians). On the other
hand, background model based techniques can segment all kinds of objects. However,
they are highly sensitive to deviation in the background model, such as due to rapid
illumination changes, moving vegetation and various environmental effects. These can
result in a significant amount of noise and clutter in the detections. They are also sensitive
to shadows and object merging. Despite these limitations, they are preferred as they can

be applied without any prior training to detect any class of object, as long as the object
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is not part of the background model. Section 3.2 will discuss the proposed methodology
to overcome some of these limitations.

Similarly, information obtained from audio modality is also highly affected by
the presence of noise such as due to reverberation and background noise. The noise in the
case of the audio modality is highly related to signal propagation characteristics (such as
absorption, reflection, superposition and attenuation). Three models, namely the ideal-
propagation modal, the multi-path propagation model and the reverberation model, have
been discussed in this chapter, and the multi-path model was rejected due to its impractical
nature in finding the solution. A literature review on approaches related to time-difference
of arrival using cross-correlation techniques has been presented. To reduce the effect of
noise and reverberation we will extend these techniques in Sec. 4.2.

Next, tracking algorithms based on these detections were discussed. These al-
gorithms were discussed separately for a single camera (Sec. 2.2.2), multiple cameras
(Sec. 2.2.3 and Sec. 2.3.1) and multiple modalities (Sec. 2.3.3), as these techniques differ
significantly based on how fusion is applied. In the case of single camera tracking, discus-
sion on approaches based on Markov models and those based on graph theory have been
presented in this chapter. The multi-camera tracking state of the art on the other hand
has been categorised based on the fusion step within the algorithms. Tracking strategies
can be based on detections only or the approach of simultaneous detection and tracking
(track-before-detect). The drawback of the detection-based algorithms is the thresholding
of information at the initial stage, which results in data loss and computational load due to
the detection phase. Track-before-detect approaches are inherently immune to these issues
as they perform simultaneous detection and tracking by totally bypassing the detection
phase. The track-before-detect approaches do not rely on detections; instead they tend
to track only the targets that follow a certain motion model. This makes them useful for
tracking targets in the presence of noise. To track targets with different motion models
a bank of track-before-detect filters can be used. Section 3.5 discusses a proposed ex-
tension for multi-target, multi-sensor track-before-detect algorithms. Finally, the state of
the art on audiovisual detection and tracking algorithms has been discussed in Sec. 2.3.3.

Section 4.3 and Sec. 4.4 will present a proposed approach for this problem.
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Uni-modal tracking

3.1 Introduction

As discussed in Chapter 2, tracking strategies can be based on detections only or
on simultaneous detection and tracking approaches. In this chapter we discuss both these
categories of tracking algorithms and apply them in various scenarios, for multi-target
tracking. We will limit our discussion to the single modality only, namely video.

The organisation of the chapter is as follows: in Sec. 3.2 we discuss the im-
provements to overcome some of the limitations of image-based localisation of targets.
Multi-target tracking on these detections is discussed in Sec. 3.3. Multi-target multi-
sensor fusion is discussed in Sec. 3.4. Multi-target multi-camera track-before-detect is
then explained in Sec. 3.5 followed by the results and evaluation in Sec. 3.6. Finally, the

chapter is summarised in Sec. 3.7.

3.2 Image-based localisation

Let X, = {x,lﬁ,x%, e ,kax} be the set of N* detected targets at time k. Ideally
Xj should only contain the position of each target in the scene. In practice, however
depending upon the type of detection mechanism employed, it may contain anomalies such
as: (i) false detections; (ii) x} may represent the position of more than one object (due to
object merging); and (iii) some targets may not be present in X, at all (missed detections).
These anomalies are due to the type of sensor, the nature of the detection algorithm and
several environmental and physical conditions. In this section we discuss the localisation
strategy employed in this work for the vision sensor and the proposed improvements in

pre-processing and post-processing steps to improve the results. Particularly, we improve

34
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Figure 3.1: Block diagram of image-based localisation algorithm.

background estimation (Sec. 3.2.1) to segment temporarily stopped objects. We also
improve motion-based segmentation (Sec. 3.2.2) by filtering false detections due to rapid
illumination changes and splitting merged objects. Figure 3.1 shows the high-level block

diagram of the proposed localisation algorithm.

3.2.1 Background estimation

We employ a background modelling based on a foreground extraction approach,
where each frame [ is subtracted from a reference background model I,;_l to obtain
foreground pixels I, - |1 ,;_1 — I|. For background modelling, we perform the adaptive
update of the reference frame using Eq. 2.2. One of the problems associated with the
change-based object extraction modules is that it segments overlapping objects as one sin-
gle object (Fig. 3.2(a-c)). We use a multiple layer background subtraction approach [128]
to segment moving objects that are overlapping with stopped objects. Unlike [128], we de-
tect stopped objects (using tracking information) as a whole rather than detecting stopped
pixels. The motivation behind object-level (high-level) processing as opposed to pixel-level
(low-level) processing is to avoid the introduction of noise and the segmentation of partial
objects. The pixels belonging to the stopped objects are copied onto the background frame
at the corresponding locations. This process allows us to create an additional reference
frame that contains stopped objects as part of the background (Fig. 3.2(d)). The fore-
ground extraction is then performed with both background frames at each time k until
all the stopped objects start moving again. Figure 3.2 shows the sample result, with and
without layered background.

The adaptive background update helps in reducing false detection due to slow
illumination changes. However, rapid illumination changes can still generate a large num-
ber of false detections. In the next section we will address this problem together with

other pre-processing and post-processing steps to improve the results.
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()

Figure 3.2: Comparison of object extraction results with and without layered background
subtraction. (a) Reference background; (b) current frame; (c) segmentation without lay-
ered background (box on image); (d) layered background; (e) mask (colour-coded in green)
using background frame and mask (colour-coded in blue) using layered background frame;
(f) segmentation with layered background.

3.2.2 Motion-based segmentation

The frame-differencing-based foreground segmentation poses several challenges
for a correct segmentation of objects. These include global and local illumination changes
and object merging and need to be addressed separately. Rapidly changing illumination
conditions can lead to a situation where most of the pixels are classified as foreground
pixels. This results in large number of false positive detections, especially in regions in
the shade of buildings or trees. Results from the frame-differencing shows that these illu-
mination changes generate positive values. Although these differences, belonging to false
detections, are of low magnitude as compared to actual foreground objects (Fig. 3.3(c)),
they may not be filtered during the pixel classification process depending upon the classi-
fication parameters.

We propose the adjustment of pixel differences such that the lower values are
further minimised whereas high difference values are further increased. We assume that
there is no illumination change between the initial reference background I(l) and first frame
Iy of the sequence.

The difference image not suffering from rapid illumination changes will have a
higher variance whereas those suffering from rapid illumination changes will have gradual
changes in pixel values resulting in lower variance. The variance of such difference images

is thus increased by adjusting the brightness and contrast values (contrast enhancement).
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Figure 3.3: Contrast enhancement for improving object detection. (a) Reference frame;
(b) current frame; (c) image difference before contrast enhancement; (d) image difference
after contrast enhancement.

Let 8 = 100 and (p = 100 be the empirically defined brightness and the initial contrast,
respectively; and let 07 = o2(| I, — I, |). The contrast of the current difference image is
modified at each iteration 7 using (; = (;_1 &= n until the condition a?k > 08 is satisfied,
where n is a fixed step size and o3 is variance of Ig =| Iy — Iy |, i.e., the difference
between the reference and the first frame. The pixel values ,fz(x, y) in each channel of

the difference image are modified, for an 8-bit image, according to

0 if a; x I (z,y) + b; < 0
If'(x,y) = { 255 if a; x I (@, y) + b > 255 (3.1)
a; X I]{i(a:, y) +b; otherwise

bi = a; X (,B—Az), w = 2/255

and A; = wiiCo' Figure 3.3(d) shows a sample frame with increased contrast.

where I,{i(a;,y) € [1,255] is the pixel value, a; = ﬁ,

The disadvantage of using the contrast adjustment is that it further reduces the
chances of segmenting objects with appearances similar to the background. Furthermore,
slow moving objects can be erroneously classified into the background whereas sudden local
illumination changes in specific regions of the scene can still generate false detections. To
address these problems, we perform Edge Analysis (EA), which enhances the difference
image obtained after background subtraction using an edge detector. An edge-based post-
processing is performed using selective morphology that filters out misclassified foreground
regions by dilating strong foreground edges and eroding weak foreground edges. The
dilation of strong foreground edges enables detection of stopped edges whereas erosion
of weak foreground edges helps in eliminating pixels that are segmented due to local
illuminations such as due to vehicle headlights. In our implementation we compute the
edges by taking the difference between consecutive frames. To further reduce the effect on

the object detector of short-term illumination variations we use a spatio-temporal filtering
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Figure 3.4: Sample results with and without change detection enhanced by edge analysis
(EA). (Row 1) Change detection mask (Row 2) Detection and tracking result. (a) Without
edge analysis; (b) with edge analysis.

(STF) on the result of the frame differences between consecutive frames. In STF, for each
pixel value an n-frame temporal window is used, centred at the current frame. The median
value within each of these temporal windows is selected to smooth the output using past
and future information. These edges are then added into the difference image by taking the
weighted average using equal weights. Figure 3.4 shows an example of a correct detection
of a vehicle despite it having stopped moving, by applying EA and STF. The price to
pay for these correct detections is an artificial enlargement of the blobs produced by fast
moving objects (Fig. 3.5).

The foreground-background pizel classification is performed by classifying pixels
that are unchanged or that have changed only due to sensor noise as background and
classifying the remaining pixels as foreground. This method checks the hypothesis Hy
that [ ,{ (z,y) # 0 because of the camera noise as opposed to other factors like moving
object or illumination changes. Based on this hypothesis, Hy, the conditional probability
density function f(I ,{ (z,y)|Hyp) is obtained using Eq. 2.5. The noise amplitude is experi-
mentally estimated for each colour channel which is then applied to the entire sequence.
To account for camera perspective and to preserve small blobs associated with objects in
regions far from the camera (top of the frame), we empirically adapt o according to the
spatial location. Figure 3.6 shows sample detection results: the high values of o do not

allow the detection of the small pedestrians on similar background, whereas with o = 0.8
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Figure 3.5: Comparison of background subtraction results obtained with and without edge
analysis. (a) Without edge analysis the results contain a large number of spurious blobs.
(b) With edge analysis the spurious blobs are partially removed; however this generates
holes in the pedestrian and an enlarged mask for the vehicle. (c) Superimposed result
showing the extra pixels (halo) around the vehicle.

the classification of most of the pixels belonging to the object is correct. Next, morpho-
logical operations, namely erosion and dilation, are performed to further eliminate any
isolated noise [129]. First the entire binary image is dilated twice using a 3 x 3 rectangular
structuring element. This allows merging of multiple blobs belonging to a single target.
Erosion is then applied twice, again using 3 x 3 rectangular structuring element. The
erosion eliminates or reduces the size of blobs that are generated due to noise, some of
which may be filtered later by applying a threshold on the minimum allowed blob size.
The erosion does not nullify the effect of dilation as it is applied only on the boundary of
the blobs, hence multiple blobs belonging to the same target that are merged into a single
blob remain merged. Finally, 8-neighbour connected components analysis is performed to
extract the foreground objects.

Multiple objects in proximity to each other may be grouped into one blob by
background subtraction based detection algorithms. In order to maintain a separate iden-
tity for these objects, a possible solution is to analyse the histograms of the pixels of a blob
projected onto one of the two Cartesian co-ordinates [130]. We analysed the histogram
along the horizontal axis that is computed, at each time k, as H, = Zle I (z,y),z =
{1,--- , W}, where H, is the 2" bin of the W-bin projection histogram . This solution
assumes that the peaks of the histogram correspond to the different pedestrians, and these
can be split by separating the modes. The modes were identified using mean-shift [131]
with a kernel bandwidth of 7 pixels. An example of tracks obtained with and without
splitting is shown in Fig. 3.7. The merged blobs associated to the two pedestrians on the
right are constantly split by analysing the projection histograms. Figure 3.8 shows the

block diagram of the proposed localisation algorithm.
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Figure 3.6: Comparison of background masks of pedestrians by changing the model of the
sensor noise. (a) o = 1.2, (b) 0 = 1.0, (c) 0 = 0.8. (d) Sample results. (All objects are
correctly detected except the white van which is part of the background frame).
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Figure 3.7: Sample results obtained with and without blob spitting using projection hi-
stograms. (Row 1) without blob splitting. (Row 2) with blob splitting.

3.3 Single camera tracking

Data association is a challenging problem due to track management issues such
as appearance and disappearance of objects, occlusion, false detection due to clutter and
noisy measurement. Furthermore, data association has to be verified throughout several

frames to validate the correctness of the tracks.
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Figure 3.8: Detailed block diagram of image-based localisation algorithm showing pre-
and post-processing steps.

Let us define the state of each object as
X = (x,j:,y,y,h,w,’H)? (32)

where (z,y) is the centre of mass of the object, (&,7) are the vertical and horizontal
velocity components, (h,w) are the height and width of the bounding box, and H is the
colour histogram. Let {Xi,---, Xk} be K sets of target detections, and v(x?) € V; the
set of vertices representing the detected targets at time i. Each v(x{) belongs to D, a
bi-partitioned digraph (i.e., a directional graph), such as the one shown in Fig. 3.9 (a).
The candidate correspondences at different observation times are described by the gain g
associated with each edge e(v(x?),v(x?)) € E that links vertices v(x{) and v(x?) where
E is the set of edges. To obtain a bi-partitioned graph, a split of the graph D = (V, E)
is performed and two sets, V* and V~, are created as copies of V. After splitting, each
vertex becomes either a source (V1) or a sink (V7). Each detection x¢ € X is therefore
represented by twin nodes vt (x¢) € VT and v~ (x¢) € V~ (Fig. 3.9 (c¢)). The graph is
formed by iteratively creating new edges from the vertices v (x%) € V' to the sink nodes
v~ (x%) associated with the new object observations Xy of the last frame.

Edges represent all possible track hypotheses, including missed detections and
occlusions (i.e., edges between two vertices v(x¢) and v(xg’-), with j —¢ > 1). The best set
of tracks is computed by finding the maximum weight path cover of D, as illustrated in
Fig. 3.9 (b). This step can be performed using the algorithm by Hopcroft and Karp [132]
with complexity O((NV)?%), where N is the number of vertices in D. After the maximi-

sation procedure, a vertex without backward correspondence models a new target, and a
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Figure 3.9: Example of digraph D for 3-frame motion correspondence. (a) The full graph.
(b) A possible maximum path cover. (c) Bi-partition of some nodes of the graph.

vertex without forward correspondence models a disappeared target. The depth of the
graph determines the maximum number of consecutive misdetected or occluded frames
during which an object track can still be recovered. Note that despite larger values of
depth allow dealing with longer term occlusions, the larger the value of depth, the higher
is the probability of wrongly associating different targets.

The gain g between two vertices is computed using the information in X;, where
the elements of the set X; are the vectors x{ defining x, the state of the object. The
velocity is computed based on the backward correspondences of the nodes. If a node has
no backward correspondence (i.e., object appearance), then & and g are set to 0. The gain
for each pair of nodes x?,x? is computed based on the position, direction, appearance
and size of a candidate target. The position gain g1 based on the predicted and observed

position of the point, is computed as

o) =1 \/ 2 — (o + 2 — )P + [y — (f + 326 — )P

W2 4 H? ’ (3:3)

where W and H are the height and width of the image, respectively. Since the gain
function is dependent on the backward correspondences (i.e. the speed at the previous
step), the greedy suboptimal version of the graph matching algorithm is used [64]. The
direction gain g, aimed at penalising large deviations in the direction of motion (Fig. 3.10),
iS b . . . b . . .
0 by 1 (25 — )P (G —4) + (vj — v (G — @)

g2 xj) = 1 = W2+ H?

. (3.4)

The appearance gain g3 is the distance between colour histograms of objects using the
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Figure 3.10: Gain g2 computed at time k = 100 with target represented by node x{ has

candidate positions between (1,1) to (W, H) between time 1 to 100, i.e., along the diagonal
of the image, and the target represented by node X? is at position (W, H) at time k = 100.

correlation method [133]:

sy — T (i) ()
DV ) EX 0 0)

; (3.5)

here H'(n) = — —— L and N* i ber of hist bins.
where H (n) = H(n) RS ERY an is number of histogram bins

Finally, the size gain g4 is the gain computed as the absolute difference between

the width and height of the objects represented by the nodes, as follows:

b a
1 ‘wj - w;
g4(x§‘,x?) =1-=

b b
2 \ max(w?,wf)  max(h}, hf)

b a
nh — hg

(3.6)

The owverall gain g is a weighted linear combination of the position, direction, size and

appearance gain, defined as

g(x3, X?) = w1-g1(x7, X?)—I—wg-gg(xff, x?)—l—w;:,-gg(x?, X?)+w4-g4(x?, X?)—(j—i—l)-w (3.7)
where j > 1, Z?Zl w; = 1 and w is a constant that penalises the choice of shorter tracks.
Since graph matching links nodes based on the highest weights, two trajectory points far
from each other can be connected. To overcome this problem, gating is used and an edge
is created only if g > 0.

In the next section we will apply this tracking algorithm to the detections from

the multi-camera fusion mask (detection volume) to perform extended tracking.
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3.4 Multiple camera fusion

Let a wide-area be monitored by a set C' = {C,---,Cn} of N cameras. To
perform multi-camera tracking, the foreground from each ¢! camera is projected onto
the hypothetical top-view 7 (Fig. 3.11(a)). Such a projection can be performed through a
projection matrix computed using corresponding points [134]. Let H., be the homographic

th

matrix that performs projection from ¢ camera-view to the top-view 7 as

Il =H,I/, (3.8)

where L{[ represents the foreground pixels in the ¢ camera and Icf7r is the plane obtained
by projections from the ¢! camera to the top-view 7. In the case of partially overlapping
cameras, pixels from more than one camera can be projected onto the same pixel posi-
tion on the top-view, thus on the top-view the occupancy map of foreground objects is

computed as

N
if=>"1l. (3.9)
c=1

Each point in I,J: is then normalised with the number of overlapping cameras in that
region. The homographic matrix H., projects pixels from the ground plane in each view
to the top-view. Homography from multiple planes parallel to the ground planes can be
computed to perform projection on planes parallel to the top-view (Fig. 3.11(b)). Let Her,

th

be the homographic matrices that project pixels from the i*" plane in ¢! camera-view (I £)

to the i*" top-view plane (7;) defined as

N
I =>"H.I (3.10)
c=1

These projections onto multiple planes can be treated separately to obtain information
about object shape [71] or can be collapsed to obtain a detection volume (consisting of
an accumulated amount of change created by objects from each camera-view) with less
noise. Figure 3.13 shows the configuration of 5 overlapping cameras, a sample view for
each camera and their detection volumes on the top-view using single and multiple plane
homographies.

The detection volumes shown in Fig. 3.13(g) show the objects’ occupancy on
the top-view. However, a segmentation mechanism needs to be employed to extract the

position information for each object. The object detection can be formed by thresholding
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(a) (b)

Figure 3.11: Schematic diagram showing projection of detections from multiple camera-
views to top-view. (a) Projection from multiple views to a single plane. (b) Projection to
multiple parallel planes.

Figure 3.12: Example showing parallax error. (a) Top-view showing 3 targets. (b) De-
tection volume showing 3 high intensity regions due to targets and several others due to
parallax error.

the detection volume to obtain a binary image followed by connected-component analysis
(as in the case of a single camera) to obtain position and size for each object. This may
result in multiple objects being detected as a single merged object due to their physical
closeness in the scene as well as due to camera parallax (Fig. 3.12). Contrary to the binary
mask on image plane, the occupancy of objects in the detection volume is not the same at
each pixel position. Instead, there are more overlapping pixels at object centres and this
overlap decreases as parallax increases. Hence each object may have a distinguished peak.

Clustering techniques such as mean-shift [131] and fuzzy clustering [135] can be applied
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Figure 3.13: Camera views and projection of motion segmentation mask. (a) Configura-
tion of cameras in basket ball court (excluding two top-mounted cameras with fish eye
lenses). (b) Camera 1. (c¢) Camera 2. (d) Camera 4. (e) Camera 6. (f) Camera 7. (g)
Sample projection of detection mask from multiple cameras to a top-view using multi-level
homography.

to segment targets in such data.

Once the detections are obtained, the graph matching tracker, discussed in
Sec. 3.3, can be applied for multiple target tracking. In this case only target positions
represented by cluster centres are tracked. In the case of unknown numbers of targets,
clustering may miss objects that have low observability. To address this issue, we propose
to apply the track-before-detect approach which also eliminates the computational load

due to detection step and is discussed next.



Chapter 3: Uni-modal tracking 47

3.5 Multiple camera track-before-detect

In this section, we consider the multi-sensor detection volume as a meta-sensor.
In this context we propose an algorithm that given the meta-sensor as input can perform
simultaneous detection and tracking of multiple targets. In this section we first introduce
the single target track-before-detect formulation based on particle filtering [124]. Next,
we discuss the proposed multi-target track-before-detect particle filtering (MT-TBD-PF).
Finally, we describe the mean-shift clustering and identity propagation approach within

MT-TBD-PF.
3.5.1 Single target track-before-detect

Let x; be the target state vector at time k, using a discrete time model with a
fixed sampling period 7. The state can be defined as

Xk = (kaikvykvyk)lk)T’ (311)

where (2, y) are the position components, (2, yi) are the velocity components and I, is
the value of the target signal strength (intensity) at time k at position (x, yx). The state
evolution can be modelled as

X = f(Xk_l,Nkp), (3.12)

where f(.) is the state transition function and N} is the process noise. For a linear

stochastic process, the state evolution can be expressed as
X = Axp_1 + N’?, (313)
where F is the state transition matrix, defined as

B 02x2 0O2x1 .
-
F=|0a0x2 B 02x1|.B= 01 (3.14)
O1x2 O1x2 1

where 0,,,x, denotes an m X n matrix of zeros and 7 is the sampling interval. The process

noise N} models the disturbances affecting the target state and is generally modelled as



Chapter 3: Uni-modal tracking 48

a zero mean Gaussian random variable [60] with covariance Q, defined as

D 0O2x2 0O2x1

Q=022 D 02a|,.D= a2 , (3.15)
77’ q1T

O1x2 Oix2 @oT

where ¢ and g9 are the process noise in target motion and intensity.

Let zj, = {z(i,j) : i = 1,--- W,j = 1,--- | H} be the measurement, at each
time k, encoded in a W x H resolution image. At each pixel position, the measurement
intensity zx(,7) is either due to the presence of the target or due to measurement noise

N™: that is

hy(i,7)(xk) + N (4,7) if target is present
aling) = | PO FAED BNCRt
N (3,7) if target is not present

where the measurement noise A" models the disturbances affecting the measurement.
N is modelled as a zero mean Gaussian sequence which is assumed to be mutually
independent from the process noise. hy(i,7)(.) is the contribution of the target intensity
at pixel position (4, 7). In the case of a point target, the distribution of the target intensity
over the surrounding pixels will be only due to the sensor point spread function and can

be approximated as [60]

hi(i,7)(xk) ~ (3.17)

A;BAyIk ox B (ZA$ — xk)Q + (]Ay — yk)2
2m A2 2A2 ’

where A models the amount of blurring introduced by the sensor and A, x A, is the size
in pixels of the segment centred at (1A, jA,). This indicates that each target occupies
multiple pixels in the measurement zy, instead of being a point target (Fig. 3.19(a-b)).
Given the set of measurements Zp = {z,|m = 1,--- ,k} up to time k, the
objective is to recursively quantify some degree of belief in the state x; taking different
values, i.e., to estimate the posterior pdf p(xi|Zx). Using the Bayesian recursion, the
posterior pdf p(xi|Zx) can be computed in two steps: prediction and update. In the
prediction step, the prior density of the state at time k is obtained using the Chapman-

Kolmogorov equation:

p(xe|Zp1) = / P(<k %01 )Xt Zo1 )1, (3.18)
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where p(xg|x;_1) is the transition density defined by the target model (Eq. 3.12) and
p(Xk—1|Zk—1) is the posterior at time k — 1. The update step is carried out using the

measurement at time k by applying Bayes’ rule:

_ p(lxk)p(xk] Zk—1)
p(xx|Zy) = T p(an<e)p (<n| Z 1) de (3.19)

where p(zy|x) is the likelihood function.

The above algorithm is implemented using a Sampling Importance Resampling
(SIR) particle filter [56] where a posterior density is represented by a set of particles each
with associated weight {w},x}}.

In the prediction step, we draw two sets of particles to estimate the predicted
density, namely new-born particles and surviving particles. The new-born particles are the
set of Ji particles for which the target state is drawn as a sample from a proposal distribu-
tion p(xx|Zy). The proposal distribution p(xx|Zx) could be any appropriate distribution
such as an uniform distribution where at each position (x,yx) in the measurement zy,
equal number of particles are drawn. Such a distribution is appropriate when signal-to-
noise ratio (SNR) is very low. In case of moderate or high SNR the proposal distribution
p(xk|Zy) can be the measurement zj itself, normalised between zero and 1 such that at
each position (zy, yx) in the measurement z;, the number of particles drawn is proportional
to the signal intensity I (zk, yx) (Fig. 3.19(c)). The surviving particles are the set of Lj_;
particles that continue to stay alive. These particles are generated from the proposal
density gx(xi|xk—1, Zr) based on the target dynamic model such that the current state of
each of the surviving particles is estimated by applying Eq. 3.13 (Fig. 3.19(d)).

Particle filtering approximates the densities p(xx|Z;) with a sum of Ly + Ji

Dirac functions centred in {xj} _, , ., as

Ly_1+Jk
Pkl Zk) = Y wpd (xk —x}), (3.20)
n=1
where w}! are the weights associated with the particles. The weights are calculated in [56]

as
n o PlEelxp)p(xglxg_y)
Wp X We_1 e
q(xk‘xk_pzk)

(3.21)

q(.) is the importance density function. When ¢(.) = p(xg|x}_,) (i.e., the transitional

prior), then
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W o Wy plzlxE_y ). (3.22)

In the update step, for each pixel (7,7), the likelihood p(zx(7,7)[x}), for the
combined set of Li_1 + Jp particles is computed. Given the sensor model defined in

Eq. 3.16, the likelihood function can be expressed as [124]

[Loq 1oy psan(zi(d, 5)|x)) if target is present
p(zk|xK) = ! J , (3.23)

pn(zk (i, 7)) if target is not present

where par(2zi (4, j)) is the pdf of the background noise in pixel (4, j) and psy (i (7, 7)|x}) is
the likelihood of the target signal affected by noise in pixel (7, 7). The product between the
pdf values computed for each pixel (4, 7) is based on the assumption that the measurement
noise N*(i, j) is independent from pixel to pixel.

The final likelihood is obtained by taking the likelihood ratio in pixel (i, j) for a

target in state xj! as

pSJrN(Zk(Z’ |X )

p(ali f)Ix}) = ))
J

pN(Zk(Z,

)
- oxp (D000 28T (g

Since the pixels are assumed to be conditionally independent, the likelihood of the whole
image is computed by taking the product over the pixels; thus, the updated particle weights
are computed as
- = 11 IT ol xR, (3.25)
i=wi (X ) I=w; ()
where w;(.) and w;(.) indicates that only the pixels affected by the target are used in the

likelihood computation which are selected by using a fixed size window. The weights are
Ly 1+Jk

finally normalised with the sum of all weights Qj = > "] k| o1 a8
n Wilk—1

The variance of these importance weights wy;_; can only increase over time [136].
This means that after certain number of particle filtering steps, all but one particle will

have negligible normalised weights (Fig. 3.14(a)) and this phenomenon is called the de-
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Figure 3.14: Sample cumulative of particle weights. (a) Degeneracy problem showing all
but one particle having negligible normalised weights. (b) The n'* particle x}. has higher
chances of being selected due to having high weight w;!.

generacy problem [60]. To avoid the degeneracy of particles, resampling in applied which
eliminates samples with low importance weights and multiplies samples with high im-
portance weights by using the cumulative sum of particle weights (Fig. 3.14(b)). The
combined set of Ly_1 + Ji particles are resampled to reduce the number to Lj only by
selecting particles for which wj > A, where A, is the minimum allowed particle weight.
If wi > Ay, Vn then Ly, = Ly_1 + Jj, — Jp41 where Jy 1 = N™" and N™" is the minimum
number of new-born particles at each time k. This process involves generating L; random
variable from the uniform distribution on the interval [0 1]. For each of the Lj values,
a particle whose weight correspond to that value is propagated. The resampled particles
weights are set to wjl | = 1/(Ly—1 + Ji) Vn. This means there is no need to pass on the

importance weights from one time step to the next and Eq. 3.22 can be simplified to
wi o p(zglx; ). (3.27)

That is, the weights are proportional to the likelihood function.

Figure 3.15 shows an example of our single target track-before-detect particle
filter using three different SNR values of synthetic data. The synthetic data is generated
by computing a target track using a motion model. This track is then converted into
an input image of resolution WxH where the position of the target is represented by a
Gaussian with standard deviation of 2 pixels (Fig 3.15 (Row 1)). White Gaussian noise
is then added on this image multiple times to achieve a signal with different SNR, values
(Fig 3.15 (Row 2)). Although with SNR= 8.6969dB and SNR= 6.2613dB the target
cannot be observed visually due the noise (Fig 3.15 (Row 2)(b,c)), it was correctly tracked
(Fig. 3.15(Row 3)(b,c)). When SNR= 6.2613dB, the algorithm had some difficulties in
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Figure 3.15: Sample single target track-before-detect results with varying SNR values:
(Row 1) sample frames from input data without noise indicating a target with hotter
values. (Row 2) sample frames from input data with noise illustrating that target is
difficult to detect by visual inspection at low SNR. (Row 3) Tracking results (mean particle
position for every k). (Row 4) Euclidean distance between ground truth and estimated
target position; (a) SNR = 18.3422dB, (b) SNR = 8.6969dB and (c¢) SNR = 6.2613dB.
(Blue dots: estimated positions; green dashes: ground truth).

identifying the target location; however, once enough particles were drawn around the
target, it was tracked consistently. Note that here we use only one particle per pixel as

compared to other approaches [137], where 4 times more particles were used.
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Figure 3.16: Example showing that the measurement at each pixel can have a contribution
from other targets. (a-b) 2D and 3D visualization of all the targets showing each target
intensity has contribution from other targets.

3.5.2 Multi-sensor, multi-target track-before-detect

In the case of multiple targets, the measurement at each pixel (i,7) can have a

contribution from all the targets (Fig. 3.16) and Eq. 3.16 can be modified to

O
o ;N:’H hi(i, 5)(xL) + Ni(i,j)  if NP targets present at time k
zk(i,5) = , (3.28)
Ny (i, 7) if no target present

The approximation shown in Eq. 3.17 is based on a point target assumption and is a
truncated 2D Gaussian density with circular symmetry. Similar approximation can be
used in the case of multiple targets in the projected domain by tuning the values for A,,
A, and A, respectively. This enables the filtering out of noise that is due to parallax error.

The particle filter may perform poorly when the posterior is multi-modal as
the result of multiple-targets [55]. To solve this problem, instead of using the existence
variable and the jump Markov model [19,125], we employ clustering of the particles. The
prediction step remains the same as in the case of single targets. If all targets follow the
same motion model, this prediction step is correct as each particle contains the velocity
components (Zx, y) of the target it represents. Tracking targets with a different dynamic
model can be performed by incorporating Interacting Multiple Models (IMM) [138].

As different targets may have different intensity levels and in TBD the weight
update is a function of the target intensity, this results in lower weight assignment to
weaker targets. To address this issue we consider each target individually in the update

step and Eq. 3.25 can be re-written for multiple targets TBD as

o= |1 || L ERIL ) (3.29)

i€wi (X _ 1) jew; (XZf;i,l)



Chapter 3: Uni-modal tracking 54

200

Figure 3.17: Example of particle weights and positions. (a) Without the proposed update
strategy (one target has very small weights and another one is missing); (b) with the
proposed update strategy. As the weights for weak targets are very low without the
proposed update, this results in track losses.

where letk_l is the n'* particle at time k belonging to the t** target. The weights are

normalised with the sum of all weights associated to t*" target Qfg = et w};‘tk_l as

~nt
nt wk|k—1

w = ——. 3.30
Ki=1 = 000 (3.30)

Here the component € is used to further normalise the weights so that they lie between 0
and 1. This is used instead of the number of targets as there are some particles generated
using another proposal density p(xi|Zx). Figure 3.17 shows a comparison between the
evolutions of particle weights with and without the proposed update strategy. It can
be seen that without the proposed update strategy (Fig. 3.17(a)), one of the targets is
completely missed while the other one has very low weight and is lost in the next frame.
Following the update step, the particles are clustered using mean-shift for the association
of an identity with each particle. Mean-shift clustering climbs the gradient of a probability
distribution to find the nearest dominant mode or peak [131]. Mean-shift is preferred here
as it is a non-parametric clustering technique that does not require prior knowledge of the
number of clusters, and does not constrain the shape of the clusters.

Given Ly_1 + Jj, particles {x}},n =1,--- ,Ly_1 + Ji} on a 2-dimensional space
R? using (xx,yx) only, the multivariate kernel density estimate obtained with kernel K(x)

and bandwidth A is

1 X —xP
f(xz) = (PEEwATS nz:: K <h’f> (3.31)

The bandwidth & is set as h = 2¢; based on the target covariance @ (see Eq. 3.15). The
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Figure 3.18: Block diagram of the proposed approach.

mean-shift algorithm tends to maximise the density whose modes are located at the zeros
of the gradient <7 f(xy).

After clustering, a cluster merging process is performed to fuse similar clusters.
The fusion is based on proximity ., < A, and B, < A4, where A\, and A4 are the mean
and covariance thresholds, v, is the Euclidean distance between centre of clusters o and
p, and [, is the covariance of the merged clusters. Finally, an identity is assigned to each
particle based on its cluster membership. If all the particles in a cluster are new-born, then
a new identity is issued; otherwise all cluster members are assigned the identity with the
highest population within the cluster. Figure 3.19(e) shows the particles before clustering,
whereas the clustered particles are shown in Fig. 3.19(f-h). In Fig. 3.19(f-h) each colour
indicates a unique cluster and particles coloured in dark blue in Fig. 3.19(f) are the pruned
particles.

To avoid the degeneracy problem [56], we resample the particles. Resampling
is performed according to the particle weights. Here again the single target resampling
strategy based on the cumulative distribution function cpdf of particle weights will not
work as it is insensitive to the particle location. Particles with lower weights (such as
those associated to new-born targets) will not be able to have enough representation in
the mixture distribution. As shown in Fig. 3.20, wgl, w,’f and w,’f’ are the weights for a
particle representing the state of target 1, 2 and 3 respectively. The particle for target 1
having higher weight w?! will be multiplied more times that of particle for target 2 which
will be multiplied more times that of target 3. This will result in an unfair resampling
where more particles will be used to represent the state of a particular target than another
depending upon their weights. This will create a hindrance in initialising new tracks in
the presence of existing targets. To this extent, the resampling is performed individually
for each cluster. For each cluster the weights of only those particles that are associated

with the cluster are used to create a cumulative distribution function cpdf. The resampling
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Figure 3.19: Sample input and output at intermediate steps of the algorithm. (a-b) 2D and
3D view of multi-camera detection volume (meta-sensor). (c-d) Output at prediction step
showing new-born and propagated particles. (e) Weight assignment at update step. (f)
Uniquely colour-coded clusters of particles corresponding to targets and pruned particles
(dark blue colour). (g-h) Uniquely colour-coded clusters of particles.

is then performed for each cluster individually in the same way as done for single target
(Fig 3.14(b)).

The block diagram of the proposed approach is shown in Fig. 3.18 and sample

outputs at intermediate steps of the algorithm are shown in Fig. 3.19.
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Figure 3.20: Sample cumulative of particle weights showing weights associated with par-
ticles belonging to different targets (w,’gl, w,’f and wg?’ represents weights for a particle
representing state of target 1, 2 and 3 respectively).

3.6 Results

3.6.1 Evaluation metrics

The single camera detection and tracking performance is measured by partic-
ipating in evaluation challenges, namely CLEAR [139] and ETISEO [140]. These two
evaluations define two different set of scores. The evaluation measures defined in CLEAR
evaluation are Multi-Object Detection Precision (MODP), Detection Accuracy (MODA),
Tracking Precision (MOTP) and Tracking Accuracy (MOTA). These scores give a weighted
summary of the detection and tracking performance in terms of False Positives (FP), False
Negatives (FN) and object identity switches. They are defined as follows. First the detec-
tion scores with T
i=1 |GT;UAD!|

MODP, = i ,

(3.32)

where the term in numerator is a measurement of the overlap between the i*" ground truth
object GT,i (bounding box) and corresponding automatic detection AD}; in frame k, N'™

is the number of targets mapped and

FN FP
CFNNk —l-CFka
NFT ’

MODA, =1-— (3.33)
where cpy and cpp are the costs associated with the false negatives and false positives
and N ,f N and N, ,f P are the number of false negatives and false positives in frame k and
NkGT is the number of objects in the ground truth. The values used for cpy and cpp

for the evaluation of the proposed algorithm is 1. Then the tracking scores are computed
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similarly as

1=1 k=1 ] ]

GTiUAD:
MOTP = NA f i | (3.34)

Nm
k=1""k
and ;
NIT FN FP id
N N loge(N

MOTA = 1 — 2= (erN Ny~ + cppNy ) + loge(N™) (3.35)

i NET
where N@ is the number of false identity switches for all objects during the sequence and
N/7 is the number of frames. Note that the range of precision is [0 1] whereas that of
accuracy is (—oo 1]. The accuracy becomes negative when the score deductions due to
false and missed detections exceed the score obtained through true positives. The log
of N*@ is used in the calculation of MOTA, hence in case of fewer identity switches both
MODA and MOTA will have similar values. Similarly, given each detected object has been
tracked consistently without multiple large number of identity switches, the MODP and
MOTP will also have similar values. The CLEAR data annotations are done separately
for person and vehicles. In order to use the CLEAR evaluation tool and the available
ground truth, a simple pedestrian/vehicle classifier is added to the system, whose decision
is based on the ratio between the width and height of the bounding box, followed by a
temporal voting mechanism. These four matrix were used for the evaluation of results on
the CLEAR dataset only (Fig. 3.21(a-c)).

The ETISEO evaluation defines 2 scores for detection, 5 for localisation and 5
for tracking evaluation [140]. These scores measure the precision and sensitivity of the
algorithm. Let F'P be the number of false positive detections, T'P the number of true

positive detections, and F'N the number of false negative detections. The precision is

defined as

TP
P=—— .
TP+ FP (3.36)
and the sensitivity is defined as
gL (3.37)
TP+ FN' ‘

The precision and sensitivity is computed per pixel as well as per object and details can
be found in [140]. The ETISEO evaluation also defines scores to measure splitting and
merging of blobs. The object area fragmentation or splitting score measures the number

of detected objects associated with each object in the ground truth at each time k and is
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Figure 3.21: The evaluation surveillance datasets. (a-c) CLEAR Surveillance scenario
(BC, QW and BR respectively) (d-e) ETISEO airport scenario (AP-11 C4 and C7) (f)
ETISEO road scenario (RD-6 C7) (g) ETISEO building entrance scenario (BE-19 C1 and
C4).

(d)

Figure 3.22: Examples of challenging situations for the pedestrian and vehicle detection
and tracking task in the CLEAR dataset (the ground-truth detection are shown in green).
(a) Objects in low visibility regions. (b) Objects in close proximity. (¢) Objects with low
contrast compared to the background. (d) Occluded objects.
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Table 3.1: Summary of the datasets used in the experiments

Dataset Seq. | Cameras Resol. No. of Frame
name frames | rate (Hz)
CLEAR BC C1 720x480 72750 25
QW C1 720x480 51309 25
BR C1 720x 480 15542 25
ETISEO | AP-11 C4, C7 720576 | 805, 805 12.5
BE-19 Cl1, C4 768x576 | 1025 , 950 25
RD-6 Ccr 720x576 1201 25
IISA IISA C1, C2 | 19201088 5996 25
C3-C6 | 1920x1080 11992 25
APIDIS AP C1-C7 | 1600x1200 8931 25
Total number of frames 171306 -
defined as
NGT
splity, = GT Z AD\GT” (3.38)
=1 N
AD|GT? . . .
where N, is the number of automatically detected objects AD that overlaps with

the " object in the ground truth GT" at time k . Similarly the score measuring the

merging of blobs is defined as

NAD

merger = NAD Z NGT\AD“ (3-39)
i=1

where NAP is the number of detected objects at time k and N GTIAD" ig the number of
ground truth objects GT that overlap with the i** detected object AD. The value of 1.0
for split and merge indicates that each object in the ground truth corresponds with only
one of the detected objects and and vice versa. Further details about the ETISEO metrics
can be found in [140].

The evaluation of multi-camera tracking algorithms is also performed by com-

puting precision and sensitivity.

3.6.2 Experimental set-up

The proposed single camera detection and tracking has been evaluated on the
CLEAR [139], ETISEO [140] and IISA [141] datasets (Table 3.1). The CLEAR evaluation
dataset consists of 50 sequences with ground truth annotation, for interval of 139601 frames
(i.e., approximately 1 hour 22 minutes of recorded video). To reduce the computational

time, the sequences were processed at a half the original resolution (i.e., 360 x 240 pixels).
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The dataset consists of outdoor surveillance sequences of urban areas (Fig. 3.21(a-c)).
The ETISEO dataset consists of 5 sequences from 3 different scenarios, namely Airport,
Building entrance and Road with ground truth annotation, for a total of 4786 frames (i.e.,
approximately 4 minutes 44 seconds of recorded video). The ETISEO dataset consists of
both indoor and outdoor surveillance scenarios sequences (Fig. 3.21(d-h)). The annota-
tions from both these datasets provide the bounding boxes of pedestrians and vehicles in
the scene and have been used for quantitative evaluation of the proposed algorithm.

The evaluation of detection and tracking algorithms requires a large amount
of (annotated) data from real word scenarios because performance varies depending on
different environmental conditions. The CLEAR dataset provides a large test bed, making
it easier to evaluate how different features impact on the final detection and tracking
results. The complexity of the CLEAR dataset is particularly related to the challenges
discussed earlier in this chapter. Examples illustrating the following difficult situations in
the CLEAR dataset are shown in Fig. 3.22: objects with low visibility located in the shade
generated by a building (Fig. 3.22 (a)); merged detections (Fig. 3.22 (b)) due either to
physical closeness or to the camera perspective view; objects with little contrast compared
to the background (Fig. 3.22 (c)); partial and total occlusions (Fig. 3.22 (d)).

The IISA dataset depicts a soccer match observed by 6 cameras with partial over-
lap (Fig. 3.23(a-f)). The dataset consists of 6 sequences (one per camera) without ground
truth annotation and is used for qualitative analysis of both single and multi-camera track-
ing algorithms. The algorithm has also been qualitatively evaluated on CAVIAR [142],
PETS 2006 [143] and MediaPro [144] datasets. The evaluation using these datasets will
be discussed together with the interaction recognition in Chapter 6.

We have evaluated the multi-camera detection and tracking algorithm on syn-
thetic and real datasets. The synthetic data consisted of 12 simulated targets moving with
moderate speed with some manoeuvring. The real data is from APIDIS [145] and IISA
datasets. The APIDIS dataset consists of a basketball match scenario captured using five
partially overlapping cameras (Fig. 3.23(j-k)) and two top-mounted with fish eye lenses
(Fig. 3.23(I-m)). There are in total 12 targets in the video (10 players and 2 referees).
The players have similar appearances and are difficult to distinguish from the background
colour. The algorithm has been quantitatively evaluated on the APIDIS dataset and qual-
itatively evaluated on both the APIDIS and the IISA datasets. The IISA dataset consists
of 22 targets in the video (20 players and 2 referees).
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Figure 3.23: The evaluation sports datasets. (a-f) IISA football scenario (C1-C6) (g-m)
APIDIS basket ball scenario (C1-C7).

3.6.3 Single camera detection and tracking

In this section we will first analyse the results from CLEAR evaluation and discuss
the effect on performance with and without various modules of the detection algorithm
as well as by changing parameter values. The discussion on CLEAR evaluation will be
followed by analysis of scores obtained from ETISEO evaluation. Finally we show some
qualitative results on CLEAR, ETISEO and IISA datasets followed by discussion on failure

modes.
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Figure 3.24: Comparison of tracking results with different update factors (0.005, 0.0005,
0.00005) for the background model. (a) Pedestrian tracking. (b) Vehicle tracking.

Evaluation using CLEAR dataset and metrics

Using the CLEAR dataset, the performance of different modules of the proposed
algorithm has been evaluated and the performance comparison with and without them
has been performed. Particularly, in order to quantify the performance of the proposed
detection and localisation algorithm, this subsection discusses the effect of: (i) changing
background update factor (Sec. 3.2.1), (ii) including and excluding spatio-temporal filter-
ing (Sec. 3.2.2), (iii) changing o of the noise in the pixel classification (Sec. 3.2.2) and
(iv) including and excluding blob splitting (Sec. 3.2.2). In each of these experiments, the
evaluation has been performed on the entire CLEAR dataset. The tracker performance is
evaluated by using different combinations of the aforementioned features.

Figure 3.24 shows a comparison of the effect on performance of varying the update
factor, over the range [0.00005,0.005]. Increasing update factor from 0.00005 to 0.0005
improves precision and accuracy (false positives are reduced without a significant increase
of false negatives). However, when increasing update factor to 0.005, the accuracy improves
significantly for vehicle tracking with slight decrease for pedestrian tracking. A value of
a = 0.005 is therefore a good compromise between accuracy and precision. Figure 3.25
shows how the model update manages to reduce false positives; however, the car that
stopped on the road becomes part of the background model thus producing a false negative.

Once the background is estimated using an adaptive update factor, this back-

ground is used in the next frame to perform frame differencing. The frame differencing
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Figure 3.25: Sample tracking results with different update factors for the background
model. (Row 1) Change detection mask. (Row 2) Detection and tracking results. A
reduction of false positives is observed by increasing update factor (from left to right).
When update factor is set to 0.005 no false positives are returned at the cost of one false
negative which is a parked vehicle.
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Figure 3.26: Comparison of tracking results with and without spatio-temporal filtering
(STF). (a) Pedestrian tracking, (b) vehicle tracking. The scores show a significant im-
provement especially in terms of accuracy.

results are enhanced using spatio-temporal filtering (STF). Figure 3.26 shows the com-
parative results using pixel wise temporal filtering. The accuracy and precision improved

due to STF by 2.13 and 0.04, respectively, for vehicle detection and by 0.07 and 0.04,
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Figure 3.27: Comparison of tracking results by changing the model parameter of the sensor
noise (0.6,0.8,1.0,1.2). (a) Pedestrian tracking. (b) Vehicle tracking.

respectively, for pedestrian tracking. This improvement in accuracy indicates that STF
has helped reducing the flickering objects generated due to noise as well as reinforcing the
change produced due to weak and small objects.

The frame differencing result, after being improved through pre-processing (Fig. 3.8)
including STF, is then passed through a classification process to obtain a binary image.
The classification depends upon the ¢ of the sensor noise. The higher the value of o the
more the pixels are classified as noise. Figure 3.27 shows the impact of ¢ on vehicle and
pedestrian tracking. The value o = 1.0 produces better results for pedestrians but also an
important performance decrease in terms of accuracy for vehicle tracking. Note here that
we empirically divide the image into three horizontal regions and apply three different
multipliers to o, namely 0.75, 1.0 and 1.25. The actual value of ¢ is used in the vertical
centre of the scene whereas the multiples 0.75 and 1.25 are used on the top and bottom
regions of the scene respectively. The top region tends to contains targets in far field hence
lower o values and vice versa.

The binary mask obtained may contain merged objects for which the proposed
approach applies blob splitting using projection histograms. Figure 3.28 shows the tracking
performance comparison with and without the use of the projection histogram based blob
splitting. The impact of this procedure on the scores is biased by the vehicle-pedestrian
classification. As the classification depends on the width-height ratio of the bounding

boxes, the splitting allows assignment of the correct label to groups of pedestrians and
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Figure 3.28: Comparison of tracking results obtained by splitting the blobs associated to
more than one target using projection histograms. (a) Pedestrian tracking: small decrease
in the scores. (b) Vehicle tracking: large accuracy improvement.
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Figure 3.29: Example of over splitting of pedestrian. (a) Without splitting. (b) With
splitting.

therefore the accuracy of vehicle tracking (MOTA) increases by 0.16 (Fig 3.7). However,
some of the pedestrians that had elongated shadows were also split into multiple detec-
tions resulting in an increase in the number of false positives (Fig 3.29). This resulted in
a reduction in detection and tracking accuracies for pedestrians. To evaluate the benefits
introduced by different features in graph based tracking and the improvements introduced
particularly by colour histograms, four configurations have been compared: C-T, the base-
line system with centre of mass only; CB-T the system with centre of mass and bounding
box; CBD-T, the system with centre of mass, bounding box and direction; and CBDH-T,
the proposed system with all the previous features and the appearance model based on

colour histograms (Sec. 3.3).
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Figure 3.30: Comparison of objective results using different sets of features for detection
and tracking on the Broadway/Church scenario, from the CLEAR dataset (C-T: centre
of mass only; CB-T: centre of mass and bounding box; CBD-T: centre of mass, bounding
box and direction; CBDH-T, the proposed system with all the previous features and
the appearance model based on colour histograms). (a) Score for person detection and
tracking. (b) Score for vehicle detection and tracking.

The parameters used in the simulations were the same for all scenarios. For
colour features, a 32-bin histogram is used for each colour channel. The weights used
for graph matching (set empirically) were: w; = 0.40 (position), we = 0.30 (direction),
ws = 0.15 (histogram), wy = 0.15 (size), and w = 0.043.

Scores obtained with the different combinations of features are shown in Fig. 3.30.
The results on the 4 scores show that the proposed algorithm (CBDH-T) produces a
consistent improvement, especially in the case of vehicle tracking. This performance is
not surprising as vehicles tend to have more distinctive colours than pedestrians. The use
of direction as a feature improves detection and tracking precision more than detection
and tracking accuracy (Fig. 3.30 CBD-T vs. CB-T). The higher values of detection and
tracking accuracy (MODA and MOTA) in case of Fig. 3.30 (b), as compared to precision
values is having only 2-3 annotated vehicles in the interval of the scene used for evaluation.
These vehicles were detected in most of the frames resulting in very low number of missed
detections. Furthermore, the illumination conditions also remained unchanged during the

selected interval, hence resulting in very few false detections. Having both low FP and
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Figure 3.31: CLEAR evaluation scores for detection and tracking, showing the overall
performance on the entire dataset. (a) Person detection and tracking. (b) Vehicle detection
and tracking. (NDX: index number corresponding to the sequence name and frame span).

FN resulted in higher accuracy. The lower precision on the other hand could be due to
slightly enlarged detections from the actual objects as a result of pre- and post-processing
(Fig. 3.8).

The final evaluation scores on the CLEAR dataset for vehicle and person de-
tection and tracking are shown in Fig 3.31(a-b). The accuracy of all except 2 out of 50
sequences for person detection and tracking have positive scores whereas 6 out of 50 se-
quences for vehicle detection and tracking have positive scores and indicates the successful
detection and tracking over a major portion of the evaluation dataset. These failures in
person detection and tracking are due to the large number of missed detections (Fig. 3.32),

whereas those in vehicle detection and tracking are due to the large numbers of false de-
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Figure 3.32: Sample person detection and tracking failure modes on the CLEAR Broad-
way/Church (BC) and Queensway (QW) scenarios showing failures due to missed detec-
tions. (a,c) Ground truth and Detection and tracking result of sequence id 30. (b,d)
Ground truth and Detection and tracking result of sequence id 41.

Table 3.2: Average evaluation scores for QW and BC sequences
MODP | MODA | MOTP | MOTA
Without | QW | Person 0.2929 | -0.8612 0.2946 | -0.8673
Post- Vehicle 0.5187 | -0.1102 0.5265 | -0.1243
Processing | BC | Person 0.4979 0.1918 0.5006 0.1875
Vehicle 0.6092 | -0.2967 0.6108 | -0.3033

With | QW | Person 0.5885 0.1063 0.5852 0.1051
Post- Vehicle 0.5946 0.4289 0.6005 0.4252
Processing | BC | Person 0.6210 0.2659 0.6208 0.2649
Vehicle 0.6342 0.2505 0.6356 0.2480

tections that are generated due to missclassification of groups of pedestrians as vehicles
(Fig. 3.33). Figure 3.33 shows sample failure modes for each of these sequences with
negative accuracy.

Table 3.2 shows the comparison between average scores for the Queensway (QW)
and Broadway /Church (BC) scenarios obtained with and without post-processing (Fig. 3.2.2).
Improvement in both precision and accuracy can be seen particularly in accuracy, which
has gone from negative values to much higher positive scores. In general there is an im-
provement of approximately 0.20 to 0.50 precision and accuracy scores. The comparison
of the evaluation scores with [32] which is among the highest-scoring algorithms in the
CLEAR evaluation is shown in Table 3.3. In [32] a classifier for person detection is used
and hence it is less prone to errors due to classification. The MODA and MOTA of the

proposed approach has suffered due to classification error, which has resulted in several
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Figure 3.33: Sample vehicle detection and tracking failure modes on the CLEAR Broad-
way/Church (BC) and Queensway (QW) scenarios showing failures due to missclassifica-
tion of pedestrians as vehicles. (a,d) Ground truth and Detection and tracking result of
sequence id 1. (b,e) Ground truth and Detection and tracking result of sequence id 9. (c,f)
Ground truth and Detection and tracking result of sequence id 16. (g,j) Ground truth and
Detection and tracking result of sequence id 19. (h,k) Ground truth and Detection and
tracking result of sequence id 44. (i,]) Ground truth and Detection and tracking result of
sequence id 46.

consistent tracks being misclassified resulting in decreasing the scores (Fig 3.33(hk)).
Note each misclassification generates false positive for one class and missed detections in
another and hence has double effects on the scores. Despite this, the result shows that the
approach proposed in this work has better detection and tracking precision in the case of

vehicles, whereas the precision for person detection and tracking is comparable with [32].
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Table 3.3: Comparison of proposed approach with another highest ranking submission in
the CLEAR evaluation

MODP | MODA | MOTP | MOTA
Proposed | Person 0.6103 0.2076 0.6085 0.2064
Vehicle 0.6200 0.3147 | 0.6230 | 0.3118
[32] | Person | 0.6194 0.5148 | 0.6230 | 0.4988
Vehicle 0.6020 0.6790 0.6160 | 0.6400

Evaluation using ETISEO dataset and metrics

The ETISEO evaluation consisted of 5 tasks, namely detection, localisation,
tracking, classification and event recognition. The evaluation on the first three tasks
is discussed here whereas, the classification task is out of the scope of this work. The
evaluation of event recognition is discussed in Chapter 6 where we extend our detection
and tracking framework for interaction recognition.

Table 3.4 compares the scores of the proposed approach with the mean, variance,
minimum and maximum scores of the ETISEO evaluation. These scores are computed by
the evaluation organisers without disclosing the information about the other algorithms,
hence only a high-level analysis is performed here. The proposed approach has obtained
maximum scores in case of the airport (AP-11) sequence, whereas for the road (RD-
6) sequence the scores are above the mean scores. The reason for not having highest
scores is that several objects that never move in the scene such as parked vehicles and
contextual objects like door and door control are also part of the annotated ground truth.
This is because in this work we do not address the problem of segmenting contextual
objects hence the scores are affected. This has significantly affected the performance
in the case of the BE-19 scenarios. Figure 3.34 shows the frame by frame evaluation
for BE-19 scenario using all 4 metrics. The decrease in precision during frames 188 to
291 in Fig. 3.34(a) is due to false detection caused by the reflections of the car on the
glass door. The lower sensitivity after frame 291 is due to missed detection of building
and car doors (Fig. 3.34(g)). However, the total area detected is similar to that in the
ground truth annotations as indicated by the higher precision and sensitivity scores in
Fig. 3.34(c). This can be seen in Fig. 3.34(e) which shows that several objects in the
ground truth are detected as merged objects by the algorithm. Although the layered
background subtraction is successful in segmenting the person coming out of the car and
the car door (Fig. 3.34(h)), however they are segmented as one object and hence the merge
score is reduced. The BE-19 C4 sequence is an indoor scenario and is mostly covered by

contextual objects (Fig. 3.34(i)), such as the building door, and hence the scores are
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Table 3.4: Comparison of proposed approach with other submission in ETISEO evaluation

Task Mean | Var | Min | Max | Proposed
3 | Detection 0.59 | 0.16 | 0.34 | 0.95 0.95
:‘ Localisation 0.74 | 0.10 | 0.61 | 0.97 0.97
o, | Tracking 0.69 | 0.14 | 0.44 | 0.89 0.89
<
5 Detection 0.63 | 0.16 | 0.40 | 0.99 0.97
:‘ Localisation 0.78 | 0.80 | 0.70 | 0.97 0.94
a., | Tracking 0.73 1 0.15 | 0.39 | 0.92 0.86
<
5 Detection 0.71 | 0.10 | 0.45 | 0.84 0.79
3' Localisation 0.86 | 0.50 | 0.77 | 0.92 0.89
oy | Tracking 0.51 | 0.90 | 0.38 | 0.66 0.48
a8
3 | Detection 0.34 | 0.12 | 0.18 | 0.56 0.31
2‘ Localisation | 0.66 | 0.70 | 0.56 | 0.78 0.69
| Tracking 0.41 | 0.90 | 0.26 | 0.51 0.42
M
5 Detection 0.63 | 0.10 | 0.45 | 0.86 0.70
& | Localisation | 0.79 | 0.5 | 0.73 | 0.96 0.81
g Tracking 0.68 | 0.10 | 0.52 | 0.86 0.73

Table 3.5: Average merge and split score on ETISEO evaluation dataset

AP-11-C4 | AP-11-C7 | BE-19-C1 | BE-19-C4 | RD-06-C7
Split 1.00 1.00 0.92 1.00 1.00
Merge 0.98 1.00 0.79 0.49 0.89

significantly lowered due to missed detections (Fig. 3.34(b,d,f)). The doors are initially
detected by change segmentation as the person steps out of the building (Fig. 3.34(j)),
during frames 188 to 291, resulting in higher precision and sensitivity values but a lower
merge score. However, as the person walks away from the building, the doors are again
misdetected until frame 820, after which the person coming out of the car tries to enter
the building. Table 3.5 shows the average merge and split scores for all the 5 sequences
of the ETISEO evaluation dataset. The split score is 1 (the maximum possible) in four
sequences, which indicates that the approach consistently detects each object as a single

blob, instead of multiple splitted blobs. The merge score is also above 0.89 in all except

the BE-19 sequences, where there are missed detections due to contextual objects.

Qualitative analysis and failure modes

The qualitative analysis of tracking results on the CLEAR dataset using the
CBDH-T features is shown in Fig. 3.35. Detected objects are identified by a colour-coded
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Figure 3.34: Precision, sensitivity, merge and split scores of ETISEO metrics on BE-19
scenario. (Left) BE-19 C1; (right) BE-19 C4. (a-b) Precision and sensitivity of the number
of detected objects. (c-d) Precision and sensitivity of the area of detected objects. (e-f)
Merge and split scores. (g,i) Ground truth annotations on frame 450 of C1 and 240 of C4.
(h,j) Result of proposed approach on frame 450 of C1 and 240 of C4.

bounding box, their respective trajectories and an object ID (top left of the bounding
box). The results of the classification into one of the two classes, namely pedestrian (P)
and vehicles (V), are shown on the top of the bounding box. The results are shown
for all three scenarios of the CLEAR dataset, namely QW, BC and BR under different
illumination conditions. The quantitative analysis of detection and tracking results on the
ETISEO data can be seen in Fig. 3.34(h,j), in Table 3.5 and in Chapter 6, along with
results on other standard datasets, whereas Fig. 3.36 shows the qualitative results on all
6 cameras of the IISA dataset.

Figure 3.37 shows three failure modes of the proposed tracker. In Fig. 3.37 (a-b)
two objects are merged and the use of the projection histogram based splitting does not

help as the objects are not merged along the horizontal axis. A possible solution could be
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Figure 3.35: Sample tracking results using the proposed detection and tracking algorithm
(CBDH-T) on the CLEAR dataset. (Row 1) Broadway/Church (BC), (row 2) Queensway
(QW) and (row 3) Brannigans (BR).

the use of a body part detector to estimate the number of targets in a blob. Figure 3.37 (a-
b) shows missed detections caused by object merging. Figure 3.37(c-d) shows a failure due
to small object size and partial occlusion. To overcome this problem, information from

multiple cameras could help disambiguating the occlusion.



Chapter 3: Uni-modal tracking 75

B AN = L BHE AL ALTRANS - - <
Dot O Lotto 8 lottc 0 lotins © Lot © Lotts @ lotess = CVlledan T

Figure 3.36: Sample single camera tracking results in the IISA dataset showing 6 camera-
views of the soccer field. (a) Frame 160. (b) Frame 1275.
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Figure 3.37: Sample failure modes on the CLEAR Broadway /Church (BC) and Queensway
(QW) scenarios (red boxes indicate the areas of the frame where the failures occurred).
(a-b) Merged objects. (c-d) Missed detections caused by small objects size and partial
occlusion.

Computational cost

The computational cost of each pre- and post-processing block in image based-
localization (Fig 3.8) and graph-based tracking is shown in Fig 3.38. The figure shows the
cost of a C/C++ implementation for the main algorithmic steps, namely absolute frame
differencing, spatio-temporal filtering, edge analysis, contrast adjustment, pixel classifi-
cation, background learning, morphology and connected component analysis and graph-
based tracking. The computational cost is computed per frame in milliseconds using an
input video of resolution 960 x 544 on a Intel Core 2 Quad CPU having speed of 2.39
GHz and 3.25GB RAM. It can be seen that pixel classification takes 363.98 milliseconds
(68.15%) for each colour image. The processing time for all the other modules is less then
53 milliseconds with tracking using graph-matching only taking 18.38 milliseconds (3.4%
of the time) with approximately 20 objects per frame. This shows that the complete al-

gorithms is working at 2 frames per second (fps). The tracking alone can go up to 55 fps.
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Figure 3.38: Average per frame computation cost in milliseconds for various steps in
image-based localisation and graph-based tracking on colour video of resolution 960 x 544.

3.6.4 Multi-camera tracking

The quantitative evaluation of the proposed multi-target track-before-detect par-
ticle filter (MT-TBD-PF) is performed on APIDIS dataset by using two types of detection
volume (meta-sensor): (i) using 5 camera fusion and (ii) using 7 camera fusion. The goal
of this experiment is to show that similar performance can be achieved without using the
top mounted cameras with fish eye lenses, as these types of cameras are generally not
available in most real surveillance and sport scenarios. Experiments on each of the two
detection volumes were performed using five different sampling periods. This makes a
total of 10 experiments, each of which is performed three times and from where a mean
precision (Eq. 3.36) and sensitivity (Eq. 3.37) is calculated.

The parameter values used in the experiments were as follows: process noise in
target motion and intensity (Eq.(3.15)) were set to be g1 = 2.5 and g2 = 0.001 respectively.
These values allow tracking of targets under low SNR values. In this dataset several targets
start very close together and cross each other after some interval. To obtain individual non-
merged tracks without false detections, the value chosen for the minimum target weight
was A, = 107° whereas the thresholds for mean distance and variance, for cluster merging
(Sec. 3.5.2) were A\, = 1 and A4 = 2. The bandwidth chosen for mean-shift (Eq.(3.31))
was h = 5, which is appropriate for clustering particles generated around a target that is
affected by a blurring (Eq.(3.17)) with A = 0.3733 and (A;,Ay) = (1,1). The o value
for the likelihood computation was set to 0.3. The tracking was done using 3000 particles
per target. The same parameters were used for all the experiments on both APIDIS and
IISA datasets. The only exception was that for the IISA dataset we set ¢go = 0.1 because
in this dataset, there is much less overlap between the cameras hence increase uncertainty

in target intensity.
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Figure 3.39: Precision and sensitivity scores for cameras C1-C7 of APIDIS dataset. (a-
b) Precision and sensitivity of tracking results generated using detection volume obtain
from 5 cameras (without 2 top mounted fish eye lenses). (c-d) Precision and sensitivity of
tracking results generated using detection volume obtain from 7 cameras including the 2
with fish-eye lens. (7: sampling interval indicating frame distance).

The evaluation of the proposed approach on the APIDIS dataset is shown in
Fig. 3.39. The tracks generated on the top-view are first reprojected onto each camera-
view and then evaluated against the ground truth. Precision and sensitivity are computed
for results obtained from both 5 camera detection (without 2 top mounted cameras with
fish eye lenses) volume and 7 camera detection volume at 5 different sampling intervals
(7). These scores were computed after projecting tracks on each camera-view. It can be
seen that both precision and sensitivity have similar values at different sampling intervals.
This indicates the stability of the proposed algorithm under lower frame rates, which
is due to Eq. 3.15 where the process noise in target motion is defined as a function of
sampling interval. The sensitivity is increased by 1.69% for tracking results on 7 camera
detection volumes (Fig. 3.39). The slight increase in sensitivity could be due to an increase
in information through 2 additional cameras as these cameras are top-mounted and has
less perspective distortion. However, this slight increase indicates that similar tracking
results can be obtained in cases where the top-view is not available as in most of the real

multi-camera setups. The shift in precision and sensitivity for different cameras is due to
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Figure 3.40: Sample fusion and multi-target tracking results on the top view for frames
500, 590 and 765 of the APIDIS dataset. (Row 1) Detection volume on the top-view.
(Row 2) Tracking results obtained with the proposed approach.

(a) (b)

Figure 3.41: Example tracks of high manoeuvring targets. (a) 5 manoeuvres
(b) 3 manoeuvres.

difference in error in reprojection on the image plane.

A visualisation of results from the proposed approach on APIDIS data is given in
Fig. 3.40 on a schematic of a basket ball court for clarity. The projection of the detection
mask on the top-view using multi-layer homography is shown in Fig. 3.40(a-c). Several
issues regarding the data can be observed from these results. First, all the targets are not
represented by the same level and spread of intensity values (Fig. 3.19(b)). Some targets
have very low visibility without a significant amount of spread among neighbouring pixels,
whereas others have high intensity values which vary over time. The parallax error can also
be easily observed due to which targets have different amount of noisy spread of intensity
values in different regions. The shift in intensity values, primarily due to an increase in
camera’s overlap, is also clearly visible in these projections. These issues make the less
visible targets challenging to track.

Furthermore, most of these targets manoeuvre highly as these are players who

rapidly change their paths based on the location of the ball and flow of the game (Fig 3.41).
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Although we used a constant velocity model, the proposed tracker can still handle ma-
noeuvring targets as we model acceleration with a higher value than in the synthetic
experiments. Furthermore, the distribution p(xx|Z;) generates a number of new-born
particles proportional to the measurement and also helps coping with manoeuvring tar-
gets. The high value of ¢ also allows the tracker to quickly concentrate around new-born
targets which usually do not start with initial zero velocity. However, this also increases
the spread of particles around the target and results in target merging. This merging was
minimised by using the kernel bandwidth A = 5 for mean-shift as in the case of synthetic
targets. The remaining parameters were the same as for the synthetic data. These pa-
rameters are valid for the sub-sampled version of the data having resolution of 388 x 225.
The generated tracks appear smooth due to using 3000 particles per target. Using fewer
particles can result in jerky tracks.

The tracking results obtained through the proposed multi-target particle filtering
track-before-detect (MT-PF-TBD) technique on the IISA dataset are shown in Fig. 3.42(d-
f). It can be seen that most of the targets are tracked over the entire field. The exception
being the goal keeper on the left corner of the field. This goal keeper is not tracked
initially (Fig. 3.42(d)) despite there being significant information in the detection volume
(Fig. 3.42(a)). The reason is that initially this goal keeper is static and hence does not
follow the expected motion model. The particle prediction resulted in moving all particles
away from the target and hence low weights during the update step, followed by removal
of these particles during the resampling step. The track of this target is generated as it
starts moving during the attack on the goal (Fig. 3.42(e-f)).

The computational cost of meta-sensor creation and multi-target track-before-
detect particle filter (MT-TBD-PF) tracking is shown in Fig 3.43. The figure shows the
cost of a C/C++ implementation for image-based localisation and Matlab implementation
of projection and fusion and MT-TBD-PF. The computational cost is computed per frame
in milliseconds using an 6 colour input video of resolution 960 x 544 and meta-sensor
of resolution 492 x 288 on a Intel Core 2 Quad CPU having speed of 2.39 GHz and
3.25GB RAM. It can be seen that generation of meta-sensor takes approximately 85%
of the processing time whereas MT-TBD-PF takes remaining 15% of the time which is
approximately 19 seconds per frame with 20 targets and 3000 particles per target. The
major bottle neck in MT-TBD-PF is the update step which takes approximately 17 seconds
per frame. This large computation time can be greatly reduced by having an efficient

C/C++ implementation on Graphical Processing Units (GPU’s) [71].
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Figure 3.42: Sample fusion and multi-target tracking results on top view for frames 150,
240 and 350 of IISA dataset. (a-c) Detection volume on the top-view. (d-f) Tracking
results obtained with the proposed approach.
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