7,295 research outputs found

    Methods and tools to evaluate the availability of renewable energy sources

    Get PDF
    The recent statements of both the European Union and the US Presidency pushed in the direction of using renewable forms of energy, in order to act against climate changes induced by the growing concentration of carbon dioxide in the atmosphere. In this paper, a survey regarding methods and tools presently available to determine potential and exploitable energy in the most important renewable sectors (i.e., solar, wind, wave, biomass and geothermal energy) is presented. Moreover, challenges for each renewable resource are highlighted as well as the available tools that can help in evaluating the use of a mix of different sources

    GIS-based approach for assessing the energy potential and the financial feasibility of run-off-river hydro-power in Alpine valleys

    Get PDF
    In the last decade, European attractive policies are favoring the construction of new run-off hydro-power plants. The realization cost of these plants is quite low in mountain areas thanks to small water discharges and high gross heads. For this reason, small rivers have been strongly exploited without considering an optimal use of the resource. Nowadays, available sites are often in areas with low accessibility and a greater specific cost of civil engineering works. However, during the planning of new small hydro-power plants, the dependency of physical, technical, legal and financial variable on space is often not assessed. The tool presented in this paper addresses this gap to support the planning of run-off-river plants. The method improves on previous approaches by (1) integrating all the legal, technical and financial analysis in a GIS tool, and (2) trying to validate the site-specific model with local knowledge. The tool is applied to the Gesso and Vermenagna valleys in the Alps. Information and data were collected and discussed with local stakeholders in order to improve the model results

    Toward Renewable Eenergy Geo-information Infrastructures: Applications of GIScience and Remote Sensing that Build Institutional Capacity

    Get PDF
    Sustained policy support is necessary in order to drive a transition toward renewable energy (RE). The ability to realize RE policy objectives is constrained by a range of geographic factors related to resource potential, the distribution of resources, land availability/suitability, the absorptive capacity of proximal infrastructure, and local socio-political acceptance. With this in mind, this paper provides a systematic review of how geographic information science and remote sensing techniques have been applied to reduce uncertainties surrounding renewable energy development, with emphasis on policy and planning needs. The concept of a ‘geo-information infrastructure’ is used to bring coherence and direction to this growing body of literature. The review highlights four underdeveloped research areas, including: Resolving issues of scalar discordance through comprehensive analysis at local and regional scales; mapping interactions in space of multiple supply options to deliver more accurate and sophisticated estimates of RE potential in an area and to identify competitive and symbiotic land-use situations; using energy resource maps as primary inputs into the development of technology road-maps; and developing geographically explicit indicators which can signal priority areas for RE recovery based on social and environmental returns on investments. In each case, suggestions moving forward are provided. The paper identifies knowledge-based institutional networking as a pathway through which local and regional public authorities can be equipped with the resources necessary to build and mobilize a geo-information infrastructure

    Land use planning for utilizing biomass residues in Tuscia Romana (central Italy) : preliminary results of a multi criteria analysis to create an agro-energy district

    Get PDF
    This study provides a preliminary agro-environmental, economic and energetic analysis to critically evaluate the biomass potential of an area of central Italy (Tuscia Romana). This area is selected as representative for agro-forestry from its orographic characteristics, climatic conditions, land use and potential energy sources. Accordingly, the model we have obtained could be used for other similar areas of central Italy. We have assessed the potential agro-forestry biomass availability, energy po-tential and transport infrastructure using multi criteria analysis and geographic information system approaches. Finally, optimum locations to develop an energy plant were identified. This model could be applied at a local level to help deliver environmental policy

    A method to assess the economic impacts of forest biomass use on ecosystem services in a National Park

    Get PDF
    The aim of the paper is to develop a method to assess the effect of forest biomass use for energy on ecosystem services (ES). Such method has been in the GRASS GIS environment, by creating an Decision Support System (DSS) called r.green.biomassfor. The method has been tested in the Triglav National Park in Slovenia. The potential forest biomass was estimated with r.green.biomassfor DSS taking into account the effects of forest biomass harvesting on ES in terms of economic value. The economic value of each ecosystem service to society has been estimated using different economic evaluation methods and were spatially located with a Geographical Information System (GIS) application. Then, a semi-structured questionnaire was administered face-to-face to the experts in order to understand the effects of forest biomass harvesting on the ES at local level. Finally, the results of the questionnaire survey were elaborated to obtain indicators useful to assess the economic gain or loss on the benefits provided by ES based on the results of r.green.biomassfor DSS. © 2017 Elsevier Ltd. All rights reserve

    Municipal transitions: The social, energy, and spatial dynamics of sociotechnical change in South Tyrol, Italy

    Get PDF
    With the aim of proposing recommendations on how to use social and territorial specificities as levers for wider achievement of climate and energy targets at local level, this research analyses territories as sociotechnical systems. Defining the territory as a sociotechnical system allows us to underline the interrelations between space, energy and society. Groups of municipalities in a region can be identified with respect to their potential production of renewable energy by means of well-known data-mining approaches. Similar municipalities linking together can share ideas and promote collaborations, supporting clever social planning in the transition towards a new energy system. The methodology is applied to the South Tyrol case study (Italy). Results show eight different spatially-based sociotechnical systems within the coherent cultural and institutional context of South Tyrol. In particular, this paper observes eight different systems in terms of (1) different renewable energy source preferences in semi-urban and rural contexts; (2) different links with other local planning, management, and policy needs; (3) different socio-demographic specificities of individuals and families; (4) presence of different kinds of stakeholders or of (5) different socio-spatial organizations based on land cover. Each energy system has its own specificities and potentialities, including social and spatial dimensions, that can address a more balanced, inclusive, equal, and accelerated energy transition at the local and translocal scale
    • …
    corecore