6,576 research outputs found

    A heuristic-based approach to code-smell detection

    Get PDF
    Encapsulation and data hiding are central tenets of the object oriented paradigm. Deciding what data and behaviour to form into a class and where to draw the line between its public and private details can make the difference between a class that is an understandable, flexible and reusable abstraction and one which is not. This decision is a difficult one and may easily result in poor encapsulation which can then have serious implications for a number of system qualities. It is often hard to identify such encapsulation problems within large software systems until they cause a maintenance problem (which is usually too late) and attempting to perform such analysis manually can also be tedious and error prone. Two of the common encapsulation problems that can arise as a consequence of this decomposition process are data classes and god classes. Typically, these two problems occur together – data classes are lacking in functionality that has typically been sucked into an over-complicated and domineering god class. This paper describes the architecture of a tool which automatically detects data and god classes that has been developed as a plug-in for the Eclipse IDE. The technique has been evaluated in a controlled study on two large open source systems which compare the tool results to similar work by Marinescu, who employs a metrics-based approach to detecting such features. The study provides some valuable insights into the strengths and weaknesses of the two approache

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Mungo and StMungo: tools for typechecking protocols in Java

    Get PDF
    We present two tools that support static typechecking of communica- tion protocols in Java. Mungo associates Java classes with typestate specifications, which are state machines defining permitted sequences of method calls. StMungo translates a communication protocol specified in the Scribble protocol description language into a typestate specification for each role in the protocol by following the message sequence. Role implementations can be typechecked by Mungo to ensure that they satisfy their protocols, and then compiled as usual with javac. We demonstrate the Scribble, StMungo and Mungo toolchain via a typechecked POP3 client that can communicate with a real-world POP3 server

    The C++0x "Concepts" Effort

    Full text link
    C++0x is the working title for the revision of the ISO standard of the C++ programming language that was originally planned for release in 2009 but that was delayed to 2011. The largest language extension in C++0x was "concepts", that is, a collection of features for constraining template parameters. In September of 2008, the C++ standards committee voted the concepts extension into C++0x, but then in July of 2009, the committee voted the concepts extension back out of C++0x. This article is my account of the technical challenges and debates within the "concepts" effort in the years 2003 to 2009. To provide some background, the article also describes the design space for constrained parametric polymorphism, or what is colloquially know as constrained generics. While this article is meant to be generally accessible, the writing is aimed toward readers with background in functional programming and programming language theory. This article grew out of a lecture at the Spring School on Generic and Indexed Programming at the University of Oxford, March 2010

    statically checking structural constraints on Java programs

    Get PDF
    It is generally desirable to detect program errors as early as possible during software development. Statically typed languages allow many errors to be detected at compile-time. However, many errors that could be detected statically cannot be expressed using today’s type systems. In this paper, we describe a meta-programming framework for Java which allows for static checking of structural constraints. In particular, we address how design principles and coding rules can be captured

    XRound : A reversible template language and its application in model-based security analysis

    Get PDF
    Successful analysis of the models used in Model-Driven Development requires the ability to synthesise the results of analysis and automatically integrate these results with the models themselves. This paper presents a reversible template language called XRound which supports round-trip transformations between models and the logic used to encode system properties. A template processor that supports the language is described, and the use of the template language is illustrated by its application in an analysis workbench, designed to support analysis of security properties of UML and MOF-based models. As a result of using reversible templates, it is possible to seamlessly and automatically integrate the results of a security analysis with a model. (C) 2008 Elsevier B.V. All rights reserved

    A framework for deadlock detection in core ABS

    Get PDF
    We present a framework for statically detecting deadlocks in a concurrent object-oriented language with asynchronous method calls and cooperative scheduling of method activations. Since this language features recursion and dynamic resource creation, deadlock detection is extremely complex and state-of-the-art solutions either give imprecise answers or do not scale. In order to augment precision and scalability we propose a modular framework that allows several techniques to be combined. The basic component of the framework is a front-end inference algorithm that extracts abstract behavioural descriptions of methods, called contracts, which retain resource dependency information. This component is integrated with a number of possible different back-ends that analyse contracts and derive deadlock information. As a proof-of-concept, we discuss two such back-ends: (i) an evaluator that computes a fixpoint semantics and (ii) an evaluator using abstract model checking.Comment: Software and Systems Modeling, Springer Verlag, 201
    • …
    corecore