

A Historical Perspective on
Runtime Assertion Checking

in Software Development

Lori A. Clarke
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

USA
clarke@cs.umass.edu

David S. Rosenblum
Department of Computer Science

University College London
London WC1E 6BT

United Kingdom
d.rosenblum@cs.ucl.ac.uk

Abstract
This report presents initial results in the area of
software testing and analysis produced as part of the
Software Engineering Impact Project. The report
describes the historical development of runtime
assertion checking, including a description of the
origins of and significant features associated with
assertion checking mechanisms, and initial findings
about current industrial use. A future report will
provide a more comprehensive assessment of
development practice, for which we invite readers of
this report to contribute information.

1 Introduction

The Software Engineering Impact Project is
documenting the impact that software engineering
research has had on computer science research and
on software development practice. The authors of
this paper are responsible for documenting the impact
of research in software testing and analysis for the
Impact Project. One aspect of testing and analysis
that has clearly had an impact is the widespread use
of assertions, particularly for use in automated
runtime detection of faults. This report documents
the results of our initial assessment of assertions and
narrates the history of software engineering research
as it relates to the evolution and maturation of
runtime assertion checking capabilities in
programming languages and software development
support tools.

Despite decades of research into powerful
software engineering technologies, and despite the
continual discovery of tenets of good software
engineering practice, software development remains
an exceedingly complex endeavor. No matter how

thoroughly a software system’s requirements are
documented, and no matter how carefully and
elegantly the system’s design has been constructed,
inevitably latent faults, or incorrect program
statements, are introduced in the system’s
implementation. These faults may be revealed during
various levels of testing, or they may make a more
inopportune appearance during field use by end-
users. In such situations the faults are typically
manifested externally as program failures, such as
unexpected outputs, or other undesirable outcomes
such as a program crash. Such failures provide
developers with precious little information for
initiating the task of correlating the simple external
evidence of failure with the complexity of searching
numerous possible locations for the faults that caused
them.

Assertions are one of the most useful automated
techniques available for detecting faults and
providing information about their locations, even for
faults that are traversed during execution but do not
lead to failures. As described in this report,
assertions have a long and distinguished history in
the annals of software engineering and programming
language design. Initially developed as a means of
stating expected or desired program properties as a
necessary step in constructing formal, deductive
proofs of program correctness, assertions have found
many other applications in software engineering over
the years, albeit primarily in the later stages of
development (particularly in the development and
execution of source code). They are an important
element of model checking, an alternative and
actively studied approach to program verification, in
which the state space resulting from a program’s
execution is checked against logical assertions
expressing temporal safety and liveness properties

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/1673306?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(e.g., SPIN [38]). They are embedded in the type
systems of many programming languages that
support strong typing of data and objects (e.g., Ada
[3, 30]). And they are frequently used in an informal
fashion by developers to describe module interfaces
more precisely in order to assist understanding by
other developers. Yet the application of assertions
having the greatest impact on development practice,
and the one on which we focus in this report, is their
use for automated runtime fault detection, in which
formal assertion checks are instrumented into a
program for execution along with the program’s
application logic.

Assertions may be applied for automated fault
detection during any activity in which a program is
executed, including debugging, testing, and
production use. Assertions may be used for
secondary purposes, such as documentation or to
support static analysis of a program. For the
purposes of our assessment, an assertion capability
comprises at a minimum the following features:

• a high-level language for representing logical
expressions (typically Boolean-valued
expressions) to characterize invalid program
execution states;

• a syntax for associating the logical expressions
with a program and applying them to well-
defined states of the program;

• a means for automatic translation of the logical
expressions into executable statements that
evaluate the expressions on the appropriate state
or states of the associated program; and

• a predefined or user-defined runtime response
that is invoked if the logical expression is
violated upon evaluation.

This combination of features has been shown to
provide a powerful, flexible, high-level facility for
automated fault detection during program execution.
Note that according to this description, the time-
honored tradition of using “print” statements as
debugging instrumentation does not qualify as an
assertion capability, since it represents a manual,
low-level, and typically ad hoc implementation of
assertion-like checks. Note also that exceptions are
similar to the above description. Exceptions,
however, are often intended to describe how the
program execution is to behave when an exceptional,
but valid, event occurs [29]. It is often a matter of
taste as to how exceptional the events that trigger an
exception really are. When execution leads to
signaling an exception, corrective actions are defined
in an exception handler. The semantics of exception

handling, including the continuation semantics, may
alter the flow of control in the program considerably.
Assertions, on the other hand, describe program
invariants that are by definition expected always to
hold. When the logical expression in an assertion is
found to be false, a fault has occurred. This fault is
reported and execution continues or terminates,
depending on the severity of the fault. As discussed
below, assertion capabilities often have expressive
notations for representing an assertion and for
indicating the scope or states in which it applies.
Exceptions have often been used as a mechanism to
implement assertions, as noted below.

Although evidence of institutionalized use of
assertions in software development projects is hard to
come by, it is well-known that assertions have long
been used by seasoned software developers, who
eventually come to learn the value of seeding their
code with automated defensive checks at the outset of
development, thereby avoiding the pain of belated,
trial-and-error insertion of print statements during
debugging [36]. Indirect evidence for more recent
growth in the popularity of assertions among
developers is to be found in the proliferation of
assertion capabilities for widely-used programming
languages, especially C++, Java, and C#. Thus,
assertions have had a significant impact on software
development for the past two to three decades, and
one can quite easily trace the research forbears of the
various assertion capabilities developers have used
over the years.

The next section of this report presents a brief
history of the research ideas that have contributed to
the assertion capabilities that are available for use in
current development practice. Section 3 summarizes
the characteristics of the most widely-used assertion
capabilities, and Section 4 describes experimental
evaluations about how the use of assertions impacts
the software development process. Section 5
concludes with a discussion of future plans for
further assessments of assertion capabilities, which
will be undertaken after receiving feedback from
readers of this report and from the community of
researchers and practitioners.

2 A History of the Technology

This section presents a concise history of assertions.
The history is organized around the key ideas that
arose in the development of assertions.

2.1 Logical Assertions as Characterizations of
Behavior

While the use of program instrumentation
mechanisms for dumping low-level execution and
memory traces is probably as old as computing itself
(e.g., Evans and Darley [22]), the origins of formal,
logical assertions about program behavior predates
computers [27, 90]. Goldstine’s and von Neumann’s
work on reasoning about programs used the term
“assertion” for documenting invariants in algorithms.
Turing also advocated that assertions be used to
document the states that can be associated with
various points in a routine and that this information
subsequently be useful in determining the correctness
of the whole program:

“In order that the man who checks may not
have too difficult a task the programmer
should make a number of definite assertions
which can be checked individually, and
from which the correctness of the whole
program easily follows.” [90]

It is interesting that Goldstine and von Neumann as
well as Turing used the word “assertion,” although
there is some speculation that this was not merely
happenstance, but that Turing was aware of this
earlier work [42]. In 1963, McCarthy’s notion of a
“mathematical science of computation” [58] also
advocated the use of assertions, and in 1966, Naur
introduced a similar, but less formal concept, of a
“general snapshot” [65]. While McCarthy’s ideas
enjoyed some early linguistic expression in Algol W
[92], it was really the pioneering work of Floyd in
1967 [25] and Hoare in 1969 [35] that served to
widely indoctrinate computer scientists in the use of
assertions expressed in first-order logic as a means of
stating formal constraints on program states in order
to support formal reasoning about the correctness of
programs.

Floyd used loop invariants in flowchart
representations of programs to represent invariant
conditions over the iterations of loops [25]. Hoare
generalized the use of assertions to make formal
statements about the behavior of individual program
statements and compositions of statements, including
whole programs [35]. In particular, Hoare defined
the famous proof schema {P} S {Q} (originally
written by Hoare as P {S} Q), where S is a
(composition of) statements, P is the precondition of
S, and Q is the postcondition of S. The meaning of
this proof schema is that if the environment of S
establishes the truth of P in the state immediately
preceding the execution of S, and if S executes and
terminates, then the execution of S is required to

establish the truth of Q in the state immediately
following its execution. Hoare defined axiom
schemas for primitive program statements (such as
assignment statements) and inference rules for
compound statements (such as conditionals and
loops) and compositions of statements. Hoare then
sketched a proof method whereby a programmer
would supply a precondition P and postcondition Q
for a program S and then apply the system of proof
rules to establish the validity of the statement {P} S
{Q}.

Several mechanical program verification efforts
arose based on the proof of simple assertions, called
verification conditions, which are generated as a by-
product of applying Hoare-style proof rules [16, 28,
40, 43, 50, 91].

2.2 Specification and Documentation with
Assertions

While Floyd and Hoare’s primary goal in using
assertions was to support formal reasoning about the
correctness of programs, programmers soon realized
the utility of assertions as a way of documenting
programmer intent. This idea, proposed before
computers as mentioned above, was articulated
nicely by Parnas in a paper on principles for
succinctly specifying program elements, where the
main goal of specification is aiding the work of
human designers rather than supporting mechanical
proofs of correctness [70]. Thus began the tradition
of using the first-order predicate calculus as a
language for stating declarative preconditions,
postconditions, loop conditions and other constraints
on program states during formal specification and
design.

Formal specification languages that were
designed to support specification, verification,
refinement and analysis of programs at early stages
of development and at a high level of abstraction
often introduced assertion capabilities. For example,
AFFIRM [64] and Euclid [72] included a notation for
representing non-executable assertions. The SPARK
language, which is based on Ada, includes assertions
but expects these to be discharged either through the
use of static analysis techniques or, when such
analysis is inadequate, through the use of theorem
provers [5]. Gypsy [4] included support for
assertions (e.g., assert, entry, and exit) that were
intended to be verified but, if not verified, could be
checked during execution. Alphard [93] described
support for specifications that indicated the invariants
and preconditions and postconditions of each class
(called a “form”) that were intended to support
verification. Even early versions of the currently

popular specification languages Z [1, 83] and VDM
[10, 41] included support for preconditions and
postconditions and continue to do so.

In addition to defining and experimenting with
formal specification languages, a number of authors
articulated comprehensive philosophies of formalized
software development. Two of the most influential
of these were A Discipline of Programming, by [17],
and The Science of Programming, by Gries [31].
Many developers who have been exposed to these
ideas opt for a purely informal use of assertions, in
which module pre- and post-conditions are
documented strictly for human consumption inside
stylized comment regions with varying degrees of
formality in the assertion expressions. For instance,
the Unified Modeling Language (UML) [67] supports
specification of pre- and post-conditions on classes
and interfaces through its Object Constraint
Language (OCL) [66]. While such constraints
conceivably can be exploited at various stages of
development for verification or runtime checking,
tool support for OCL pre- and post-conditions is still
rather limited, and thus it remains primarily a
language of informal documentation with assertions.

2.3 Adding Assertions to Programming
Languages via Preprocessors

By the mid 70’s researchers realized that monitoring
assertions during execution offered a simpler and
more practical alternative to formal proofs of
correctness. Such monitoring was typically achieved
by deriving runtime checks from assertions expressed
as comment annotations or macros in the program
text. In general, assertions have been supported in
programming languages in one of two ways—either
by using a special preprocessor or by incorporating
assertion constructs into the design of a language.

Some of the first preprocessor systems were
reported in papers at early conferences on reliable
software [85, 86, 94]. These papers described
systems for deriving runtime consistency checks
from simple assertions. The main goal of these
approaches was to evaluate an assertion at runtime
whenever the state associated with the assertion was
reached during execution. Violation of the assertion
triggered some appropriate diagnostic response,
either predefined (as with the assert macro described
below) or programmer-defined (as proposed by
Parnas [70]). Hence, this use of assertions involved
checking individual program executions rather than
proving (or disproving) the correctness of all
program executions.

In Stucki’s and Foshee's approach [85, 86],
assertions were written as annotations of FORTRAN
source code, and an extended version of the
FORTRAN validation tool PET (Program Evaluator
and Tester) was then used to convert the annotations
to embedded runtime checks that were invoked at
appropriate times during the execution of the
program [86]. Yau and Cheung used the term self-
checking programs to characterize programs having
embedded runtime assertion checks, and they
attempted to define a systematic framework for
identifying, incorporating and using self-checks on
all elements of a software design. They
recommended specifying self-checks to check the
function, control sequence, and data of a program,
and they recommended using self-checks for
detecting faults, locating and stopping the
propagation of errors, and assisting in the recovery
from errors [94]. Yau and Cheung also noted the
widespread, albeit ad hoc, use of defensive checking
mechanisms in systems of that period (particularly
operating systems), as well as their more extensive
and systematic use in high-reliability systems such as
the AT&T Electronic Switching Systems (ESS).
While the notion of self-checking programs remains
popular, it has also been used in another context by
Blum and others who have studied some of the
theoretical aspects of programs that probabilistically
check the correctness of their own execution behavior
[11].

The Anna annotation system, developed to
augment the Ada programming language, is
interesting because of the extensive kinds of
assertions that it supported [49, 53]. These included:

• subtype annotations, for specifying a logical
constraint on the set of values belonging to an
Ada subtype;

• object annotations, for specifying a logical
constraint on the values a variable may hold;

• statement annotations, for specifying point
assertions on the states following statement
executions;

• subprogram annotations, for specifying pre- and
postconditions on subprograms;

• axiomatic annotations, for axiomatic or algebraic
specification of package behaviors [78];

• context annotations, for specifying constraints on
the items a compilation unit uses from the other
compilation units it imports; and

• propagation annotations, for specifying
constraints on the way exceptions are propagated
within a program.

In addition to these seven kinds of assertions,
Anna augmented the Ada expression language with
quantifiers, state references, expressions over the
heap collections associated with access types (Ada
pointer types), and other such features. Nearly all the
features of Anna were supported by tools that
transformed Anna annotations into corresponding
Ada checking functions that would be invoked at
appropriate states in the program execution [75, 79,
80]. In addition, Sankar developed a method for
runtime checking of algebraic specifications in
axiomatic annotations that was supported by
incremental theorem proving [78].

The preprocessor category also includes a
substantial variety of enhancements to the popular
programming languages C and C++. The earliest and
still most widely-used of these enhancements is the
assert macro, which made its first appearance in the
C programming language [89].1 The usual definition
of the assert macro expands to an if-statement on the
negation of the asserted condition, with an abort and
core dump of the program resulting if the condition
evaluates to false at runtime. Despite the limited
expressive power and flexibility of the assert macro,
it remains the assertion construct of choice for many
C and C++ developers, and constructs of similar
capability have been added recently to the languages
Java [87] and C# [6].

More powerful assertion capabilities for C were
provided by APP [74], C-Patrol [95] and Robust C
[24]. Cline and Lea proposed an Anna-like assertion
language for C++ called A++ [13], and Maker
developed a macro-based assertion capability for
C++ called Gnu Nana, as part of the GNU free
software project [55]. Assertions via preprocessors
have even been added to the popular scripting
language Tcl [14].

2.4 Assertions in Programming Languages

The second way of supporting assertions in
programming languages is to incorporate assertions
directly in the language definition itself, with the

1 Some sources state that the assert macro first appeared

in the UNIX Sixth Edition, May 1975. However, a
search of the UNIX Sixth Edition source tree
(downloaded July 26, 2003, from
http://minnie.tuhs.org/UnixTree/V6/) revealed no assert
macro definition.

concomitant expectation that these constructs will be
recognized and supported by compilers and other
development tools for the language. As noted above,
experimental programming languages that
emphasized verification adopted this approach in the
1970s, including Gypsy [4], Euclid [72], and Alphard
[93].2 The Turing Language [37], developed in the
80’s, combined the interactive aspects of Basic with
the simplicity of Pascal and the flexibility of C, but,
consistent with its goal of supporting beginning
programmers, also included assertion constructs.

The most influential commercial language to
support and strongly advocate the use of assertions,
and the first object-oriented programming language
to do so, is Eiffel, developed by Bertrand Meyer [60,
61]. Meyer ultimately gave the popular
characterization design-by-contract to the use of
assertions in the context of object-oriented programs
and argued for the use of assertions as permanent
defensive mechanisms for fault detection in programs
(including production versions) [59]. The design of
Eiffel was influenced strongly by much of the early
work described above on formalized program
development, including the early work of Floyd and
Hoare, as well as Dijkstra’s paper on guarded
commands [18] and the book A Discipline of
Programming [17]. Meyer was also aware of many
of the languages with assertion constructs (e.g.,
Alphard [93], Euclid [72], Anna [53]) and the
specification approach advocated by Liskov and
Guttag [47], and was himself one of the originators of
the Z notation [82-84]. Eiffel incorporated assertion
constructs into the programming language, including
support for preconditions and postconditions, initial
values (in postconditions only), loop invariants, class
invariants, and a general assert statement. In addition,
it defined subtyping rules for assertions within a class
hierarchy (including rules for precondition
weakening and postcondition strengthening for the
methods of a subtype) and provided compiler support
for three different levels of assertions [60]. As
discussed below, Eiffel was one of the first
programming languages to support the use of
assertions in object-oriented languages.

2 Also notable in this category is Zuse’s Plankalkül, a

visionary proposal for a programming notation
developed in the mid-1940s that included support for
assertions among its many novel ideas 96. Zuse, K.
Der Plankalkül, Gesellschaft für Mathematik und
Datenverarbeitung, 1972..

2.5 Incorporating Implicit Assertions into
Strong Typing

While the languages mentioned above support
explicit specification of logical assertions in
programs, it is worth noting that the use of strong
typing in modern programming languages can be
viewed as an attempt to support limited forms of
assertion specification via type declarations. For
instance, a simple assertion in a FORTRAN program
that requires the range of indices for an array to be
between 1 and 100 can be easily specified and
enforced using an appropriate array type declaration
in a modern language such as Ada or Java.

Early tools that automatically checked such
“type” information were employed via a separate
phase in the software development process, via a
preprocessor or a special compiler [76]. The idea of
trying to first verify or evaluate assertions statically
and then only leaving in runtime checks when such
static analysis failed was evident in the programming
language Gypsy [4] and in flow analysis tools [68].
This notion was supported in the Ada programming
language for such features as array bound violations,
which are sometimes but not always statically
checkable [3].

2.6 Assertions in Hardware Design Languages

Inspired by the use of assertions in software, there
also have been attempts to define assertion
capabilities for hardware designs. Mahmood and
McCluskey explored the notion of a watchdog
processor, a coprocessor that monitors hardware
instruction execution in order to detect control-flow
and memory access errors [54]. And the language
VAL (VHDL Annotation Language) used assertion
constructs to support the formal specification of
VHDL hardware designs [7].

3 Assertion Language Features

Assertion capabilities are available for most common
programming languages, including Java, C, C++, C#,
Ada, Eiffel, Fortran, Cobol, Basic, and even scripting
languages such as TCL. This section describes the
most common features associated with these
capabilities. Error! Reference source not found.
presents a general summary of the features of a
number of available assertion capabilities, focusing
on support for Java and C++. This discussion
illustrates how the ideas that originated in software
engineering research have become incorporated into
programming practice.

3.1 The Scope of Assertions

An assertion includes a Boolean expression, or
constraint, that is to be evaluated at an individual
program state (i.e., a steady state between the
execution of two consecutive program statements or
the state immediately preceding or following a
program state). It is often useful, however, to
associate assertions with higher-level program
constructs, which may implicitly require the assertion
to be associated with or applied to multiple program
states. Usually an assertion’s location in the program
or a keyword indicates where the constraint will be
evaluated. Commonly used keywords are
precondition, pre, or require for preconditions;
postcondition, post, or ensure for postconditions;
and assert or invariant for intermediate assertions. A
precondition assertion is associated with a method, or
procedure, but is meant to be checked before the
method is called. Thus, instead of having to state the
assertion explicitly at all the locations where a
method is called, the assertion capability will make
this determination and assure that the constraint is
checked whenever one of these locations is
encountered during execution. Similarly, a
postcondition is also associated with a method and
checked at each place the method returns control to
the caller.

Another common feature is to allow an assertion
for a method to reference a variable’s value
immediately before execution of that method. This is
frequently used in postconditions, which are often
conveniently expressed in terms of values that existed
in the state associated with a corresponding (perhaps
implicit) precondition. For instance, the
postcondition of a swap routine that takes two
parameters x and y by reference requires that the post
value of x equal the pre value of y and vice versa.
Turing’s early paper about reasoning about programs
differentiated between the initial and final value of a
program’s variable [90]. Early papers on verification
introduced various notations for distinguishing
between the value of a variable at the current state
and the value of that variable at the precondition
state. For example, Manna’s early work [56], based
on his thesis, introduced an indexed superscript for
each different value, Hantler and King [32] marked
the initial value with a superscript prime, and Linger,
Mills, and Witt [46] used the subscript naught. These
notational conventions found their way into
specification languages, where for example VDM
[41] incorporated the use of a “hat” to indicate the
precondition state and the Z Calculus [84] used
primed variable names. Assertion capabilities
incorporate similar conventions. Usually the initial
values of a variable are denoted by a keyword, such

as pre, in, or old. Some assertion capabilities allow
initial values to be referenced only in postconditions.
By default, precondition assertions can only reference
initial values, so usually no keyword is required.

Several assertion capabilities provide support for
global invariants, which must be valid throughout
execution. Programming languages that support data
abstraction or classes provide an opportunity to
describe assertions that are intended to hold at
multiple states throughout an execution of a data type
or class. For example, Anna supported the
specification of subtype annotations, each of which
applied to all states in which a value is assigned to a
variable of the constrained subtype [49]. For object-
oriented languages, invariants are usually associated
with a class and checked after execution of any
method in the class that could change the value of a
variable referenced in the assertion’s constraint. For
such languages, no assertion violation is reported if a
class method invalidates a class invariant’s constraint
temporarily, as long as the constraint’s validity is
reestablished before the method returns. Eiffel, for
example, supports class invariants that should hold
after any invoked method in a class returns.

3.2 Boolean Expressions

The Boolean expression that represents the constraint
of an assertion is usually written in a notation that is
consistent with the programming language where the
assertion capability is being employed. Thus, an
assertion capability for C will use C syntax to express
the constraint. There are two common exceptions to
this restriction, quantification and hidden functions.

Quantification is syntactic sugar that makes it
easy to indicate that an assertion is intended to hold
for all (i.e., universal quantification) or at least one
(i.e., existential quantification) of the elements in
some collection. Some languages such as Eiffel were
deliberately designed not to include such language
support in the interest of keeping the language
simple. However, Meyer feels that the lack of
quantification has meant that Eiffel programmers
rarely use Eiffel’s loop invariants [62]. In Eiffel,
quantification can be explicitly encoded in methods
that could be invoked in the Boolean expression.
Most other assertion capabilities provide direct
support for quantification using keywords such as
forall, all, exists, and some.

Usually the Boolean expression can reference
any variable or method that is visible in the scope
where the assertion appears. Thus, a precondition can
usually reference any of the variables or methods that
can be referenced at the start of a method. Similarly,

a postcondition can reference any variable or method
that is visible right before the method returns,
although as noted above, postcondition assertions can
typically reference the values of variables at the onset
of the call.

To express an assertion, sometimes the
programmer needs to “break” the abstraction
associated with an object and reference information
about the state that is not readily available via the
object’s access methods. To support this, some
assertion capabilities allow “hidden” functions to be
defined for a class and then used in assertions about
that class. With such assertion capabilities, usually
the hidden functions can only be referenced in
assertions within the scope of the class where the
hidden function is defined. Support for hidden
functions is reminiscent of similar capabilities
provided in specification languages such as OBJ [88].

3.3 Inheritance

Most of the assertion capabilities for C++ and Java
support the inheritance of assertions associated with a
class. Assertion checking, however, becomes quite
complex in the presence of inheritance [48]. The
most common approach is for each method to form
the disjunction of the preconditions of each of the
parent classes and the conjunction of the
postconditions of the parent classes for that method.
Eiffel provides more options but requires that
preconditions remain the same or be weaker than
subclass preconditions and that postconditions remain
the same or be stronger than the subclass
postconditions. Findler and Felleisen document
many of the problems underlying support for
inheritance in several current assertion capabilities
[23].

3.4 Automatic Suppression of Assertions

A key concern with the use of runtime checking of
assertions is the extent to which they interfere with
the performance, and even semantics, of the
programs they check. In particular, assertion checks
consume object code space and execution time, both
of which could be significant for large numbers of
assertions or highly complex assertion checks. In
industrial practice, assertion checking is frequently
suppressed in production versions of software. For
instance, in C programming environments the
availability of checks for the assert macro are often
made conditional on the absence of a non-debug
indicator (such as the macro NDEBUG). Some
industrial development organizations, however, retain
assertion checking in their production code and

request users to forward assertion violations back to
the organization.

Assertion capabilities tend to provide support for
enabling or disabling assertions, although often this
support is rather limited. All of the assertion
preprocessors allow either all the assertions in a
source file to be enabled or all to be disabled.
Typically, the user either compiles the unprocessed
source file, which treats all the assertions as
comments and thus as disabled, or compiles the
output file produced by the assertion preprocessor,
which has enabled all the assertions by translating
them into executable source statements.

Some assertion capabilities provide static
mechanisms for selecting the classes or packages that
should have their assertions enabled. For
preprocessor systems, these directives indicate which
classes or packages are (or are not) to be
preprocessed. Similarly, many of the language-based
assertion capabilities for C, C++, and Java allow the
user to provide command line directives to indicate
the classes, files, or packages that should have their
assertions enabled or disabled.

Instead of relying on an indication of which
components to enable for assertion checking, an
alternative approach is to enable or disable assertions
based on a specified severity level. For instance, the
tool APP allows the association of programmer-
specified severity levels with individual assertions
[74]. For a particular program execution, the
maximum severity level to be checked can be set via
a runtime parameter, so that assertion checks can be
completely included, completely suppressed, or
selectively included up to a certain level of severity.
Eiffel offers an alternative approach where different
types of assertions can be selected, including
preconditions only (the default), no assertions, or all
assertions [59].

3.5 Assertion Violation Processing

During execution, if the Boolean expression that
forms the constraint is found to be false, then the
assertion violation must be signaled. When this
occurs, some assertion capabilities abort
immediately, some report the violation and then
continue execution, and some either abort or continue
based on the type of the assertion. In programming
languages that support both an exception mechanism
and assertions, exceptions are the favored mechanism
for signaling a runtime violation of an assertion (such
as the use of the exception ANNA_ERROR in Anna,
the exception AssertionError in Java, and Gautron’s
assertion capability for C++ [26]). Many of the

assertion capabilities rely on the programming
environment’s runtime debugging capabilities for
displaying the call stack at the time of an assertion
violation.

It is worth noting that the original designers of
Ada chose not to incorporate assertion facilities into
the language because it was felt that Ada’s exception
constructs would provide sufficient support for
constraint checking and handling. In contrast, Meyer
saw the need for both explicit contracts and
exceptions in the design of Eiffel, feeling that the
latter strongly impacts programming style and thus
should be viewed as a tool of last resort for constraint
checking [60, 61].

3.6 Assertions Based on Formalisms Other
Than First-Order Logic

Given the power and convenience of first-order logic
assertions as a tool for runtime checking of programs,
people were quick to try to adapt forms of
specifications developed originally for program
verification. Notable examples of this are the ways
in which temporal logic specifications have been
adapted for runtime checking.

Temporal logics were introduced to provide a
means for specifying and verifying concurrent
programs and programs that exhibit a high degree of
non-determinism [57, 71]. A temporal logic formula
typically constrains multiple program states at
different points in time, requiring or disallowing the
existence of one state before the occurrence of a later
stated.

While temporal logic formulas typically express
constraints over all infinite futures of a program, a
refinement of temporal logic called interval logic was
introduced to allow for the specification of temporal
constraints over bounded intervals of time [19, 81].
The finite bounding produced by interval logic made
them ideal for a posteriori checking of runtime
behaviors, and hence people began exploiting interval
logic as an alternative or complementary form of
assertion to be checked in concurrent programs.
When used for runtime checking, the interval logic
expressions are typically formulated in terms of
program events, rather than the state predicates that
are the basis of temporal logic. Bates and Wileden
carried out some of the earliest work along these
lines, with their use of event-based behavioral
abstraction (EBBA) for debugging concurrent Ada
programs [8]. Luckham and others built on the
approach of Bates and Wileden with the definition of
TSL (Task Sequencing Language) for explicit
specification of event-based behavioral constraints on

concurrent Ada programs [34, 51]. This work
formed the basis for their software architectural
description language and simulation system Rapide
[52].

These alternative forms of assertion checking
provide a great deal of expressive power and fault-
detection power. To date their primary application
has been for stating properties to be checked in model
checking approaches to verification (e.g., [9, 38, 39]).

3.7 Comparison Table

As summarized in Figure 1, many language-based
assertion capabilities, for example Gnu Nana for C
and C++ and the assertion capability found in Java
1.4, seem to rely on the language’s native
capabilities, and thus the programmer’s ability to use
those capabilities, to provide many of the features
provided in preprocessor-based assertion capabilities.
In particular, language-based assertion systems tend
not to provide support for quantification, initial
values, or class invariants. For instance, the assertion
systems for C and C++ often rely on library macro
capabilities for saving the values of variables and
then referencing those values.

In contrast, the commercial system Jcontract
[69], provided by Parasoft, augments Java with
assertion capabilities and seems to be one of the more
sophisticated systems available. It provides support
for preconditions, postconditions, and class invariant
assertions as well as quantification. In Jcontract, the
assertion statement is nicely integrated with the
language’s inheritance, exception, and debugging
capabilities. When integrated with the Parasoft test
management system, Jtest, it provides a supportive
environment for selecting and deselecting assertions,
for reviewing the results from single and multiple
executions, for reporting assertion execution
coverage, and even for test data generation to
exercise the assertions.

4 Empirical Evaluation of Assertion
Capabilities

On the whole, practitioners in industry seem to regard
assertions as a useful component in their arsenal of
debugging tools. However, there have been only a
few empirical studies of the effectiveness of
assertions at detecting or preventing program faults.

Leveson and others performed an empirical
comparison between assertion checks and voting
mechanisms in programs [44]. While the results of
the study demonstrated a high degree of effectiveness

of assertions, the study has been criticized for its
exclusive use of student programmers and small
program subjects.

Rosenblum carried out a case study on a more
significant C program subject that had been written
by him and another researcher [74]. The assertions
that were written for the program detected a high
percentage of the discovered faults in the program,
and additionally Rosenblum categorized the
assertions into a number of general categories that
can be used by future developers who want to reap
the benefits of this experience in their own
development efforts.

Typke and colleagues performed an experimental
comparison of two assertion preprocessor, APP and
Jcontract, in terms of their ability to aid software
maintenance and extension tasks [63]. They found
that the use of assertions both reduced the effort
needed for the tasks and made the effort more
predictable.

5 Runtime Assertions in Current Practice

Assertions seem to have widely infiltrated common
programming practice. Although not universally
used, there are assertion capabilities for most current
programming languages, and there exists evidence
that the use of assertions is a supported practice for
many companies and projects. Furthermore, as
discussed in Section 2.2, there have been a number of
influential works advocating formalized program
development, a by-product of which is the use of
assertions in an informal fashion in module interface
documentation developed for human consumption.

Although the extent of use is hard to quantify,
assertions are indeed widely used in practice. For
instance, Cusumano and Selby report on the
widespread use of assertions in debugging and testing
at Microsoft, where assertions are used primarily to
check developers’ assumptions about global program
state ([15] pp. 300–301, 334). Hoare reports further
anecdotal data that about 250,000 lines of the source
code of Microsoft Office is assertions, representing
roughly 1% of the source code [36]. Chalin surveyed
a number of software projects to determine the
density of assertion statements in source lines and
reported an average assertion density of 3.27% in the
surveyed proprietary projects, 5.10% in the surveyed
open source projects, and 6.42% in the surveyed
Eiffel projects [12]. Papers and presentations at
practitioner-oriented venues, such as Quality
Week[73], provide additional anecdotal testimonials
on the benefits of using assertions in practice.

Figure 1. Comparison of Current Assertion Capabilities.

One of the most notable systematic uses of
assertions in a large software development project is
the use of craft asserts as defensive checks for
invalid data values in AT&T’s 5ESS Switching
Systems software [2]. These asserts complement the
extensive use of audits in 5ESS, which periodically
check the system state associated with call processing
and invoke a variety of responses upon detecting an
invalid state, such as generating a fault message on
an administrator console or terminating a phone call
in progress.

Meyer reports a number of interesting insights
gained through well over a decade of successful
commercial promulgation of Eiffel [62]. Eiffel has
on the order 10,000 users, with a few hundred
companies using the language on a large scale. The
language is used primarily for large-scale mission-
critical financial applications, with defense,
aerospace and health-care being important additional
sectors for mission-critical use. Many of these
systems use Eiffel in conjunction with other
programming languages, with Eiffel used for
programming the application core and to provide an
architectural framework for system development.
Eiffel was initially conceived as a component library
project rather than a programming language project.
Thus, Eiffel programmers who write no assertions of
their own are still able to benefit greatly from Eiffel’s
contract features when they use Eiffel’s extensively
contracted component libraries.

The success of Eiffel’s contract features in
commercial development practice has led Meyer to
feel that, contrary to accepted wisdom, programmers
do not shy away from formalism in software
development. Instead, he feels that the main barriers
to the use of assertions in development practice are
the lack of assertion features in the definition of
many commonly used programming languages (with
third-party language add-ons such as Jcontract not
able to ensure the same level of semantic consistency
and continuity), and to excessive schedule pressures
from managers who are unwilling to let their
engineers develop software with the care that
effective use of assertions requires. Companies that
do use contracts heavily quickly learn to appreciate
their value and view the contracts as corporate assets.

Roman Salvador, vice president of research and
development at Parasoft, reported that it was difficult
to sell Jcontract, the assertion support system, as a
stand-alone tool and that in the future Jcontact
capabilities would be included with the popular Jtest
tool, which has thousands of users. Jtest provides test
coverage information as well as test generation
capabilities. When Jcontract assertion capabilities are

combined with the Jtest test generation capabilities,
the system tries to find test cases to violate
postconditions and invariants. He reported that
another significant benefit of this combination of
capabilities is that the preconditions are useful in
restricting the generated test cases to values in the
developer’s domain of interest [77].

6 Future Work

The study and promulgation of assertions remains an
active endeavor for researchers and practitioners
alike. One of the most promising recent
developments in research with assertions is the
automatic discovery of likely program
invariants [21], and the related technique of
correlating failure data with execution history data
from field installations of software systems to help
isolate program faults [20, 33, 45]. While the
automated reporting of failure data from the field is
already a staple of many commercial software
systems, albeit in rudimentary form (as evidenced by
periodic requests to the user for consent to report data
from Microsoft Windows XP, Apple Mac OS X, and
other systems), it remains to be seen how well some
of the more sophisticated approaches will be able to
scale for sufficient impact on development practice.

While the focus of this report has been on the
origins of assertion capabilities found in modern
programming languages and development tools, we
are also working on a comprehensive assessment of
the use of assertions in development practice. We
invite and strongly encourage readers of this report
and others in the software engineering research and
software development communities to contact the
authors and to contribute information for this
assessment. Such information might include
anecdotes about ad hoc use of assertions by
individual developers, systematic use of assertions in
large-scale development projects, documentation of
assertion use as organizational best practices or
within organizational development process
definitions, and historical events in which assertion
violations played an important role in revealing faults
in critical software systems. Much of this
information is difficult to come by since it is to be
found primarily in the undocumented lore of software
development practice rather than well-documented in
the research literature.

Acknowledgments

This article has been developed under the auspices of
the Impact Project. The aim of the project is to

provide a scholarly study of the impact that software
engineering research—both academic and
industrial—has had upon practice. The principal
output of the project is a series of individual papers
covering the impact upon practice of research in
several selected major areas of software engineering.
Each of these papers is being published in ACM
TOSEM. Additional information about the project
can be found at http://www.acm.org/sigsoft/impact/.

This article is based upon work supported by the
U.S. National Science Foundation (NSF) under
award number CCF-0137766, the Association of
Computing Machinery Special Interest Group on
Software Engineering (ACM SIGSOFT), the
Institution of Electrical Engineers (IEE), and the
Japan Electronics and Information Technology
Association (JEITA). Any opinions, findings and
conclusions or recommendations, expressed in this
publication are those of the authors and do not
necessarily reflect, of the NSF, ACM SIGSOFT, the
IEE, or JEITA.

We are grateful to Bertrand Meyer for taking the
time to discuss the influences on his notion of design-
by-contract, the early development of Eiffel, and the
impact of Eiffel on development practice. We thank
Patrice Chalin for pointing out several useful
references and providing us with data on industrial
use of assertions. We thank Roman Salvador from
Parasoft for sharing information about the industrial
uses of Jcontract and Jtest. We also thank the
members of the Software Engineering Impact Project,
and particularly the project historian, Prof. Michael
S. Mahoney of Princeton University, for the many
insights they have provided us in the writing of this
report.

References

1. Abrial, J.-R., Schuman, S.A. and Meyer, B.
Specification Language. in McKeag, R.M. and
MacNaghtam, A.M. eds. On the Construction of
Programs, Cambridge University Press, New
York, 1980, 343-410.

2. Allers, J.A., Huizinga, A.H., Kukla, J.A., Sipes,
J.D. and Yeh, R.T., No. 5 ESS-strategies for
Reliability in a Distributed Processing
Environment. in 13th International Symposium
on Fault-Tolerant Computing, (Milan, Italy,
1983), 388-391.

3. ALRM83. Reference Manual for the Ada
Programming Language, United States
Department of Defense, Washington DC, 1983.

4. Ambler, A.L., Good, D.I., Browne, J.C., Burger,
W.F., Cohen, R.M., Hoch, C.G. and Wells, R.E.,
Gypsy: A Language for Specification and
Implementation of Verifiable Programs. in ACM
Conference on Language Design for Reliable
Software, (Raleigh, North Carolina, 1977), 1-10.

5. Amey, P. and Chapman, R., Industrial Strength
Exception Freedom. in Proceedings of the ACM
SIGAda International Conference on Ada,
(Houston, Texas, 2002), ACM, 1-9.

6. Archer, T. and Whitechapel, A. Inside C#.
Microsoft Press, Redmond, WA, 2002.

7. Augustin, L.M., Gennart, B.A., Huh, Y.,
Luckham, D.C. and Stanculescu, A., VAL: An
Annotation Language for VHDL. in
International Conference on Computer-Aided
Design, (1987), IEEE Computer Society, 418–
421.

8. Bates, P.C. and Wileden, J.C. High-Level
Debugging of Distributed Systems: The
Behavioral Abstraction Approach. Journal of
Systems and Software, 3. 255-264.

9. Beyer, D., Chlipala, A.J., Henzinger, T.A., Jhala,
R. and Majumdar, R., The Blast Query Language
for Software Verification. in Proceedings of the
11th International Static Analysis Symposium
(2004), Springer-Verlag, 2-18.

10. Bjørner, D. and Jones, C.B. The Vienna
Development Method: The Meta-Language.
Springer-Verlag, 1978.

11. Blum, M. and Kannan, S. Designing Programs
that Check Their Work. Journal of the ACM, 42
(1). 269-291.

12. Chalin, P. Ensuring Continued Mainstream Use
of Formal Methods: An Assessment, Roadmap
and Issues. Group, D.S.R. ed., Concordia
University, 2005.

13. Cline, M.P. and Lea, D., Using Annotated C++.
in C++ at Work Conference, (1990).

14. Cook, J., Assertions for the Tcl Language. in
Fifth Tcl Workshop, (Boston, MA, 1997), 73-80.

15. Cusumano, M.A. and Selby, R.W. Microsoft
Secrets: How the World's Most Powerful
Software Company Creates Technology, Shapes
Markets, and Manages People. Free Press, New
York, NY, 1995.

16. Deutsch, L.P. An Interactive Program Verifier,
University of California, Berkeley, Berkeley,
CA, 1973.

17. Dijkstra, E.W. A Discipline of Programming.
Prentice-Hall, Englewood Cliffs, NJ, 1976.

18. Dijkstra, E.W. Guarded Commands,
Nondeterminacy and Formal Derivation of
Programs. Communications of the ACM, 18 (8).
453–457.

19. Dillon, L.K., Kutty, G., Moser, L.E., Melliar-
Smith, P.M. and Ramakrishna, Y.S. A Graphical
Interval Logic for Specifying Concurrent
Systems. ACM Transactions on Software
Engineering and Methodology, 3 (2). 131-165.

20. Elbaum, S. and Diep, M. Profiling Deployed
Software: Assessing Strategies and Testing
Opportunities. Transactions on Software
Engineering, 31 (4). 312-327.

21. Ernst, M.D., Cockrell, J., Griswold, W.G. and
Notkin, D. Dynamically Discovering Likely
Program Invariants to Support Program
Evolution. IEEE Transactions on Software
Engineering, 27 (2). 1-25.

22. Evans, T.G. and Darley, D.L., On-Line
Debugging Techniques: A Survey. in AFIPS Fall
Joint Computer Conference, (1966), 37-50.

23. Findler, R.B., Latendresse, M. and Felleisen, M.,
Behavioral Contracts and Behavioral Subtyping.
in Joint 8th European Software Engineering
Conference and 9th ACM SIGSOFT Symposium
on the Foundations of Software Engineering,
(Vienna, Austria, 2001), 229-236.

24. Flater, D.W., Yesha, Y. and Park, E.K.
Extensions to the C Programming Language for
Enhanced Fault Detection. Software-Practice
and Experience, 23 (6). 617-628.

25. Floyd, R.W., Assigning Meaning to Programs. in
Symposium on Applied Mathematics, (New
York, 1967), American Mathematical Society,
19-32.

26. Gautron, P., An Assertion Mechanism Based on
Exceptions. in Fourth C++ Technical
Conference, (1992), USENIX Association, 245-
262.

27. Goldstine, H.H. and Von Neumann, J. Planning
and Coding Problems for an Electronic
Computing Instrument. in Taub, A.H. ed. Jon
von Neumann, Collected Works, Pergamon
Press, London, England, 1963, 80-235.

28. Good, D.I., London, R.L. and Bledsoe, W.W. An
Interactive Program Verification System. IEEE
Transactions on Software Engineering, SE-1. 59-
67.

29. Goodenough, J.B. Exception Handling: Issues
and a Proposed Notation. Communications of the
ACM, 18 (12). 683–696.

30. Gosling, J., Joy, B. and Steele, G. The Java(TM)
Language Specification. Addison-Wesley, 1996.

31. Gries, D. The Science of Programming.
Springer-Verlag, New York, 1981.

32. Hantler, S. and King, J. An Introduction to
Proving the Correctness of Programs. ACM
Computing Surveys, 8 (3). 331-353.

33. Haran, M., Karr, A., Orso, A., Porter, A. and
Sanali, A., Applying Classification Techniques
to Remotely-collected Program Execution Data.
in Proceedings of the 10th European Software
Engineering Conference held jointly with 13th
ACM SIGSOFT International Symposium on
Foundations of Software Engineering, (Lisbon,
Portugal, 2005), ACM SIGSOFT, 146 - 155

34. Helmbold, D.P. and Luckham, D.C. Debugging
Ada Tasking Programs. IEEE Software, 2 (2).
47-57.

35. Hoare, C.A.R. An Axiomatic Basis of Computer
Programming. Communications of the ACM, 12
(10). 576-580.

36. Hoare, C.A.R. Assertions: A Personal
Perspective. IEEE Annals of the History of
Computing, 25 (2). 14 - 25.

37. Holt, R.C. and Cordy, J.R. The Touring
Programming Language. Communications of the
ACM, 31 (12). 1410-1423.

38. Holzmann, G.J. The Model Checker SPIN. IEEE
Transactions on Software Engineering, 23 (5).
279-294.

39. Holzmann, G.J. The SPIN Model Checker.
Addison-Wesley, 2004.

40. Igarashi, S., London, R.L. and Luckham, D.C.
Automatic Program Verification I: A Logical
Basis and its Implementation. Acta Informatica,
4. 145–182.

41. Jones, C.B. Systematic Software Development
Using VDM. Prentice-Hall International, 1990.

42. Jones, C.B. The Early Search for Tractable Ways
of Reasoning about Programs. IEEE Annals of
the History of Computing, 25 (2). 26-49.

43. King, J.C. A Program Verifier, Carnegie Mellon
University, Pittsburgh, PA, 1969.

44. Leveson, N.G., Cha, S.S., Knight, J.C. and
Shimeall, T.J. The Use of Self Checks and
Voting in Software Error Detection: An
Empirical Study. IEEE Transactions on Software
Engineering, SE-16 (4). 432–443.

45. Liblit, B., Aiken, A., Zheng, A. and Jordan, M.,
Bug Isolation via Remote Program Sampling. in
Programming Language Design and
Implementation, (San Diego, CA, 2003), ACM
SIGPLAN, 141-154

46. Linger, R.C., Mills, H.D. and Witt, B.I.
Structured Programming: Theory and Practice.
Addison-Wesley, 1979.

47. Liskov, B. and Guttag, J. Abstraction and
Specification in Program Development. MIT
Press, 1986.

48. Liskov, B.H. and Wing, J.M. A Behavioral
Notion of Subtyping. ACM Transactions on
Programming Languages and Systems, 16 (6).
1811–1841.

49. Luckham, D.C. Programming with
Specifications: An Introduction to Anna, a
Language for Specifying Ada Programs.
Springer-Verlag, 1990.

50. Luckham, D.C., German, S.M., vonHenke, F.W.,
Karp, R.A., Milne, P.W., Oppen, D.C., Polak,
W. and Scherlis, W.L. Stanford Pascal Verifier
User Manual, Department of Computer Science,
Stanford University, 1979.

51. Luckham, D.C., Helmbold, D.P., Bryan, D.L.
and Haberler, M.A., Task Sequencing Language
for Specifying Distributed Ada Systems (TSL-1).
in PARLE—The Conference on Parallel
Architectures and Languages Europe, Volume II:
Parallel Languages, (1987), Springer-Verlag,
444–463.

52. Luckham, D.C., Kenney, J.J., Augustin, L.M.,
Vera, J., Bryan, D. and Mann, W. Specification
and Analysis of System Architecture Using
Rapide. IEEE Transactions on Software
Engineering, 21 (4). 336-355.

53. Luckham, D.C. and vonHenke, F.W. An
Overview of Anna: a Specification Language for
Ada. IEEE Software, 2 (2). 9-24.

54. Mahmood, A. and McCluskey, E.J. Concurrent
Error Detection Using Watchdog Processors—A
Survey, Computer Systems Laboratory, Stanford
University, 1985.

55. Maker, P.J. GNU Nana User's Guide, Version
2.4, School of Information Technology, Northern
Territory University, 1998.

56. Manna, Z. Properties of Programs and the First-
Order Predicate Calculus. Journal of the ACM 16
(2). 244-255.

57. Manna, Z. and Pnueli, A. Verification of
Concurrent Programs: The Temporal
Framework. in Boyer, R.S. and J. S. Moore eds.
The Correctness Problem in Computer Science,
Academic Press, London, 1981, 215-273.

58. McCarthy, J., Towards a Mathematical Science
of Computation. in IFIP Congress 62, (1963),
North-Holland.

59. Meyer, B. Applying `Design by Contract'. IEEE
Computer, 25 (10). 40–51.

60. Meyer, B. Eiffel: A Language and Environment
for Software Engineering. Journal of Systems
and Software, 8 (3). 199-246.

61. Meyer, B. Eiffel: The Language. Prentice Hall,
1991.

62. Meyer, B. Personal communication. Clarke, L.
and Rosenblum, D. eds., 2005.

63. Müller, M.M., Typke, R. and Hagner, O., Two
Controlled Experiments Concerning the
Usefulness of Assertions as a Means for
Programming. in International Conference on
Software Maintenance, (Montreal, Canada,
2002), 84–92.

64. Musser, D.R., Abstract Data Type Specification
in the Affirm System. in Specifications of
Reliable Software, (Cambridge, MA, 1979),
IEEE Computer Society, 47-57.

65. Naur, P. Proof of Algorithms by General
Snapshots. BIT, 6. 310–316.

66. OMG. OCL 2.0 Specification, Version 2.0,
Object Management Group, Framingham, MA,
2005.

67. OMG. Unified Modeling Language (UML)
Version 1.4.2, Object Management Group,
Framingham, MA, 2001.

68. Osterweil, L.J. Using Data Flow Tools in
Software Engineering. in Muchnick and Jones
eds. Progarm Flow Analysis: Theory and
Application, Prentice-Hall, Englewood Cliff, N.
J., 1981.

69. Parasoft. Jcontract, 2004.

70. Parnas, D.L. A Technique for Software Module
Specification with Examples. Communications
of the ACM, 15 (5). 330-336.

71. Pnueli, A., The Temporal Logic of Programs. in
Eighteenth Symposium on Foundations of
Computer Science, (Providence, RI, 1977), 46-
57.

72. Popek, G.J., Horning, J.J., Lampson, B.W.,
Mitchell, J.G. and London, R.L., Notes on the
Design of Euclid. in ACM Conference on
Language Design for Reliable Software,
(Raleigh, North Carolina, 1977), 11-18.

73. QualityWeek, in International Quality Week,
(San Francisco, CA, 1987 - 2006), Software
Research Institute.

74. Rosenblum, D.S. A Practical Approach to
Programming with Assertions. IEEE
Transactions on Software Engineering, 21 (1).
19-31.

75. Rosenblum, D.S., Sankar, S. and Luckham, D.C.,
Concurrent Runtime Checking of Annotated Ada
Programs. in Sixth Conference on Foundations
of Software Technology and Theoretical
Computer Science, (New Delhi, India, 1986),
Springer-Verlag, 10–35.

76. Ryder, B.G. The PFORT Verifier. Software ---
Practice and Experience, 4. 359-378.

77. Salvador, R. Personal communication with VP
of Research and Development at Parasoft.
Clarke, L. and Rosenblum, D. eds., 2006.

78. Sankar, S., Run-Time Consistency Checking of
Algebraic Specifications. in The 4th Software
Testing, Analysis and Verification Symposium,
(1991), ACM SIGSOFT, 123–129.

79. Sankar, S. and Rosenblum, D.S. Runtime
Checking and Debugging of Formally Specified
Programs. ACM Computing Surveys, 23 (1).
125–127.

80. Sankar, S., Rosenblum, D.S. and Neff, R.B., An
Implementation of Anna. in Ada in Use: The Ada
International Conference, (1985), Cambridge
University Press, 285–296.

81. Schwartz, R.L., Melliar-Smith, P.M. and Vogt,
F.H., An Interval Logic for Higher-Level
Temporal Reasoning. in 2nd Symposium on
Principles of Distributed Computing, (1983),
ACM SIGOPS, 173–186.

82. Spivey, J.M. Introducing Z: A Specification
Language and its Formal Semantics. Cambridge
University Press, Cambridge, MA, 1988.

83. Spivey, J.M. The Z Notation A Reference
Manual. Prentice Hall International Series in
Computer Science, Englewood Cliffs, NJ, 1992.

84. Spivey, J.M. The Z Notation: A Reference
Manual. Prentice Hall International, Englewood
Cliffs, NJ, 1989.

85. Stucki, L.G., Automatic Generation of Self-
Metric Software. in IEEE Symposium on
Software Reliability, (1973), IEEE Computer
Society, 94-100.

86. Stucki, L.G. and Foshee, G.L., New Assertion
Concepts in Self-metric Software Validation. in
1975 International Conference on Reliable
Software, (1975), 59-71.

87. Sun Microsystems, I. Programming with
Assertions, 2002.

88. Tardo, J. and Goguen, J.A., An Introduction to
OBJ: a Language for Writing and Testing
Algebraic Specifications. in Specifications of
Reliable Software, (Cambridge, MA, 1979), 170-
189.

89. Thompson, K. and Ritchie, D.M. UNIX
Programmer’s Manual. Murray Hill, NJ, 1979.

90. Turing, A., Checking a Large Routine. in
Conference on High Speed Automatic
Calculating Machines, (Cambridge, UK, 1949),
67-69.

91. Wegbreit, B. Constructive Methods in Program
Verification. IEEE Transactions on Software
Engineering, SE- 3. 193-209.

92. Wirth, N. and Hoare, C.A.R. A Contribution to
the Development of Algol. Communications of
the ACM, 9 (6). 413--431.

93. Wulf, W.A., London, R.L. and Shaw, M. An
Introduction to the Construction and Verification
of Alphard Programs. IEEE Transactions on
Software Engineering, SE-2 (4). 253-265.

94. Yau, S.S. and Cheung, R.C., Design of Self-
Checking Software. in International Conference
on Reliable Software, (1975), ACM and IEEE
Computer Society, 450–457.

95. Yin, H. and Bieman, J.M., Improving Software
Testability with Assertion Insertion. in
International Test Conference, (1994), 831-839.

96. Zuse, K. Der Plankalkül, Gesellschaft für
Mathematik und Datenverarbeitung, 1972.

