
Strathprints Institutional Repository

Kirk, D. and Roper, M. and Wood, M. (2007) A heuristic-based approach to code-smell detection.
[Proceedings Paper]

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

 ii

Table of Contents

WRT’07 Organization …………………………………………………….v

Proceedings ………………………………………………………………….

• KABA: Automated Refactoring for Improved Cohesion ……………………..1
G. Snelting, M. Streckenbach (Universitat Passau)

• Automation of Refactoring and Refactoring Suggestions for TTCN-3 Test
Suites. The TRex TTCN-3 Refactoring and Metrics Tool ……………..…………3
H. Neukirchen, B. Zeiss (University of Gottingen)

• A visual interface for type-related refactorings ……………………………….5
P. Mayer (Ludwig-Maximilians-Universität),
A. Meißner (Fernuniversität in Hagen),
F. Steimann (Fernuniversität in Hagen)

• ITCORE: A Type Inference Package for Refactoring Tools …………………7
H. Kegel (ej-technologies GmbH), F. Steimann (Fernuniversität in Hagen)

• Flexible Transformation Language …………………………………………….9
A. A. Santos, L. Menezes, and M. Cornélio (UPE)

• A Refactoring Discovering Tool based on Graph Transformation …………11
J. Perez, Y. Crespo (Universidad de Valladolid)

• Refactoring with Contracts ……………………………………………………13
Y. A. Feldman, M. Goldstein (IBM Haifa Research Lab),
S. Tyszberowicz (The Academic College of Tel-Aviv Yaffo)

• Synchronizing Refactored UML Class Diagrams
and OCL Constraints ……………………………………………………………...15
S. Markovic, T. Baar (Ecole Polytechnique Federale de Lausanne)

• Code Analyses for Refactoring by Source Code
Patterns and Logical Queries ……………………………………………………...17
D. Speicher, M. Appeltauer, G. Kniesel (University of Bonn)

• Reuse Based Refactoring Tools ………………………………………………..21
R. Marticorena, C. Lopez (University of Burgos),

 Y. Crespo, J. Perez (University of Valladolid)

 iii

• SORMASA: A tool for Suggesting Model Refactoring Actions
by Metrics-led Genetic Algorithm ………………………………………….……..23
T. Bodhuin, G. Canfora, L. Troiano (University of Sannio)

• Model-driven Software Refactoring …………………………………………..25
T. Mens (Université de Mons-Hainaut),G. Taentzer (Philipps-Universität Marburg)

• The “Extract Refactoring” Refactoring ………………………………………28
R. Robbes, M. Lanza (University of Lugano)

• Advanced Refactoring in the Eclipse JDT:
Past, Present, and Future ………………………………………………………….30
R. M. Fuhrer (IBM Research), M. Keller (IBM Zurich), A. Kieżun (MIT)

• Product Line Variability Refactoring Tool ………………………………..…32
F. Calheiros, V. Nepomuceno (Meantime Mobile Creations),
P. Borba , S. Soares (UPFE),
V. Alves (Lancaster University)

• AJaTS: AspectJ Transformation System …………………………………….34
R. Arcoverde, S. Soares, P. Lustosa, P. Borba (UFPE)

• Towards a Change Specification Language for API Evolution ……………..36
J. Reuter, F. Padberg (Universitat Karlsruhe)

• Holistic Semi-Automated Software Refactoring ……………………………..38
E. Mealy (University of Queensland)

• Engineering Usability for Software Refactoring Tools ……………………...40
E. Mealy (University of Queensland)

• Automated Testing of Eclipse and NetBeans Refactoring Tools ……………42
B. Daniel, D. Dig, K. Garcia, D. Marinov (University of Illinois at Urbana-Champaign)

• Refactoring in Erlang, a Dynamic Functional Language ……………...……44
L. Lovei, Z. Horvath, T. Kozsik, R. Kiraly, A. Vıg, T. Nagy (Eotvos Lorand University)

• Operation-based Merging of Development Histories ………………………..46
T. Freese (University of Oldenburg)

• Improving Method Extraction: A Novel Approach to Data Flow
Analysis Using Boolean Flags and Expressions ………………………………….48
N. Juillerat, B. Hirsbrunner (University of Fribourg)

 iv

• Refactoring-Based Support for Binary Compatibility in
Evolving Frameworks ……………………………………………………………...50
I. Savga, M. Rudolf (Technische Universitat Dresden)

• The LAN-simulation: A Refactoring Lab Session ………………………...…52
S. Demeyer, B. Du Bois, M. Rieger, B. Van Rompaey (University Of Antwerp)

• A Heuristic-Based Approach to Code-Smell Detection ……………………...54
D. Kirk, M. Roper, M. Wood (University of Strathclyde)

• Using Java 6 Compiler as a Refactoring and an Analysis Engine …………..56
J. Bečička, P. Zajac, P. Hřebejk (Sun Microsystems, Inc.)

• Making Programmers Aware Of Refactorings ………………………………58
P. Weißgerber, B. Biegel, S. Diehl (University of Trier)

• Why Don’t People Use Refactoring Tools? …………………………………..60
E. Murphy-Hill, A. P. Black (Portland State University)

• Automating Feature-Oriented Refactoring of Legacy Applications ……..…62
C. Kastner, M. Kuhlemann (University of Magdeburg),
D. Batory (University of Texas at Austin)

• An Adaptation Browser for MOF …………………………………………….64
G. Wachsmuth (Universitat zu Berlin)

• Refactoring Functional Programs at the University of Kent ………………66
S. Thompson, C. Brown, H. Li, C. Reinke, N. Sultana (University of Kent)

 v

1st Workshop on Refactoring Tools (WRT’07)
Organization

Chair and Organizer: Danny Dig (University of Illinois at Urbana-Champaign)

Program Committee: Jan Becicka (NetBeans Refactoring Engine, Sun Microsystems)
Danny Dig (University of Illinois at Urbana-Champaign)
William G. Griswold (University of California, San Diego)
Ralph Johnson (University of Illinois at Urbana-Champaign)
Markus Keller (Eclipse Refactoring Engine, IBM)
Oege de Moor (Oxford University Computing Laboratory)
Frank Tip (IBM T.J. Watson Research Center)

KABA: Automated Refactoring for Improved Cohesion

G. Snelting, M. Streckenbach
Universität Passau

1 Overview

Cohesion is one of the most important software en-
gineering principles. Cohesion demands in partic-
ular that data and function operating on these data
are defined together in one class definition. But not
all existing Java class hierarchies define a cohesive
software architecture.

KABA analyses a class hierarchy together with
a set of client programs. It refactors the hierarchy
such that data members (fields) and methods oper-
ating on the data are always grouped together, and
that any class in the refactored hierarchy contains
only fields and methods which are indeed needed by
some client code using the class. Every class-typed
variable is given a new type (namely a class from
the refactored hierarchy), while the program state-
ments remain essentially unchanged. In contrast to
some other refactoring tools, KABA guarantees that
program behaviour is unchanged after refactoring.

KABA is based on fine-grained (static or dy-
namic) program analysis, namely points-to analysis,
type constraints, and mathematical concept lattices.
Typically, an original class is split if different clients
use different subsets of a class’s functionality. In
order to avoid too fine-grained refactorings, the ini-
tial refactoring is usually simplified by automatic or
manual semantics-preserving transformations.

Thus KABA provides fine-grained insight into the
true usage patterns of classes in a program, can serve
to evaluate cohesion of existing systems, and will
automatically generate semantics-preserving refac-
torings which improve cohesion. KABA is imple-
mented in form of a refactoring browser.

2 Examples and Experiences

KABA reacts to usage patterns of a class by client
code. In figure 1, client objects A1, A2, B1, B2
access different subsets of class A and B:

object A1 accesses only x from class A, while
A2 also accesses f() and thus y; therefore
class A is split into two subclasses

class A {
int x, y, z;
void f() {

y = x;
}

}

class B extends A {
void f() {

y++;
}
void g() {

x++;
f();

}
void h() {

f();
x--;

}
}

class Client {
public static void
main(String[] args) {

A a1 = new A(); // A1
A a2 = new A(); // A2
B b1 = new B(); // B1
B b2 = new B(); // B2

a1.x = 17;
a2.x = 42;
if (...) { a2 = b2; }
a2.f();
b1.g();
b2.h();

}
}

Figure 1: A small program and its KABA refactor-
ing

B1 calls g() while B2 calls h(), hence two
new subclasses for B are introduced.

The new subclasses give fine-grained insight into
what objects really do, and maximise cohesion as
in the new hierarchy members are grouped together
iff they are used together. A nice by-product is that
objects are minimized and dead members are elim-
inated. But since the refactored hierarchy may be
quite fine-grained, the engineer may remerge classes
(eg the two top classes in figure 1). In any case,
KABA guarantees preservation of semantics. For
the complex technical details, see [1].

The resulting refactored hierarchy, as well as
cross references between new and old classes, as
displayed by the KABA refactoring browser, are

1st Workshop on Refactoring Tools (WRT'07)

1

Figure 2: KABA screenshot for figure 1

Figure 3: Browser for original types (top); Browser
for class content (bottom).

shown in figures 2 and 3. The user may remerge
splitted classes, which can reduce cohesion again
but may improve other software quality factors.
More details about the KABA refactoring browser
and semantics-preserving class merging and elimi-
nation of multiple inheritance can be found in [3].

A more realistic case study was the antlr parser
generator. KABA discovered problems with cohe-
sion in the original design and generated an im-
proved class hierarchy (figure 4). For example,
KABA discovered that the original classes Gram-
marElement and AlternativeElement can
be merged, while preserving semantics and improv-
ing cohesion. On the other hand, some original
classes were split to 5, 6 or 9 new classes. Thus
the hierarchy structure was changed quite a bit. But
note that the number of classes remained about the
same.

As a third example, we mention javac, where
KABA reproduced the original class hierarchy al-
most exactly. This proved that the original javac
design was good. More details about refactoring
antlr and javac can be found in [2].

Object ...GrammarElement ...AlternativeElement

...AlternativeBlock

...RuleRefElement

...BlockEndElement

...ActionElement

...GrammarAtom

...CharRangeElement

...TokenRangeElement

...RuleBlock

...TreeElement

...BlockWithImpliedExitPath

...SynPredBlock

...RuleEndElement

...OneOrMoreBlock

...ZeroOrMoreBlock

...TokenRefElement

...CharLiteralElement

...StringLiteralElement

...WildcardElement

Object 1
...GrammarElement

...AlternativeElement
...AlternativeBlock

2 ...RuleRefElement
3

3 ...AlternativeElement

6
...AlternativeElement
...AlternativeBlock

8 ...GrammarAtom

4 ...BlockEndElement
2

11 ...AlternativeBlock

16 ...ActionElement
1

22 ...CharRangeElement
1

5 ...GrammarElement
1

14 ...RuleEndElement
2

7 ...AlternativeBlock
2

24 ...TreeElement
1

9
...GrammarAtom

...TokenRefElement 1

15 ...WildcardElement
1

18 ...StringLiteralElement
1

23 ...CharLiteralElement
1

10 ...AlternativeBlock
1

12 ...BlockWithImpliedExitPath

19
...AlternativeBlock

...SynPredBlock 1

20
...AlternativeBlock

...RuleBlock 1

13 ...ZeroOrMoreBlock
1

17 ...OneOrMoreBlock
1

21
...AlternativeBlock

...RuleBlock 1

Figure 4: KABA refactoring (lower) for a part of
antlr (upper)

KABA is a research prototype. It can handle full
Java (without reflection). KABA has been applied to
several small and medium-scale example systems,
and generated useful refactorings. For large sys-
tems, the refactorings may be quite fine-grained,
thus we are exploring even more agressive simpli-
fications of the original refactoring which still im-
prove cohesion and guarantee behaviour preserva-
tion.

References. Technical details and more experi-
ence with KABA can be found in

1. G. Snelting, F. Tip: Reengineering Class Hier-
archies Using Concept Analysis. ACM Trans-
actions on Programming Languages and Sys-
tems (TOPLAS), May 2000, pp. 540-582.

2. M. Streckenbach, G. Snelting: Refactoring
Class Hierarchies with KABA. Proc. OOPSLA
2004, Vancouver, British Columbia, Canada,
October 2004, pp. 315-330.

3. Mirko Streckenbach: KABA - A System for
Refactoring Java Programs. PhD thesis, Uni-
versität Passau, April 2005.

1st Workshop on Refactoring Tools (WRT'07)

2

Automation of Refactoring and Refactoring Suggestions

for TTCN-3 Test Suites
The TRex TTCN-3 Refactoring and Metrics Tool

Helmut Neukirchen and Benjamin Zeiss
Software Engineering for Distributed Systems Group,

Institute for Informatics, University of Göttingen,
Lotzestr. 16–18, 37083 Göttingen, Germany

{neukirchen|zeiss}@cs.uni-goettingen.de

Abstract Refactoring is not only useful for
source code of implementations, but as well for
test specifications. The open source TRex tool
automates the application of refactorings and
the detection of refactoring opportunities for test
suites that are specified using the standardised
Testing and Test Control Notation (TTCN-3).
Depending on the refactoring, the behaviour pre-
serving transformations may include syntax tree
transformations and direct modification of the
source code; for suggesting refactorings, metrics
are calculated and code smell patterns are de-
tected.

Introduction. The Testing and Test Control
Notation (TTCN-3) [1] is a mature standard
from the telecommunication and data commu-
nication domain that is widely used in indus-
try and standardisation to specify and execute
test suites. Just like any other software artifact,
tests suffer from quality problems [2]. To remove
such quality problems from TTCN-3 test suites,
we use refactoring [3]. For suggesting refactor-
ings, we use a combination of metrics and code
smell detection.

In the following, we first present our approach
for the quality assessment and improvement of
TTCN-3 test suites. Subsequently, the TTCN-3
Refactoring and Metrics Tool TRex and its
implementation are described. Finally, future
work is discussed in the outlook.

Refactoring, Metrics, and Code Smell De-
tection for TTCN-3 Test Suites. Refactor-
ing of test suites has so far only been studied
in the context of JUnit [2]. Thus, we have de-
veloped a refactoring catalogue for TTCN-3 [4,
5] which includes 23 refactorings using language
specific concepts of TTCN-3. Furthermore, we
found 28 refactorings from Fowler’s Java refac-
toring catalogue [3] to be applicable to TTCN-3.

For being able to automatically identify loca-
tions in source code where a refactoring is worth-
while, we investigated corresponding TTCN-3
metrics and TTCN-3 code smells. For example,
a Number of References metric is used to iden-
tify definitions that are never referenced and can
thus be removed or that are referenced only once
and can thus be inlined using a corresponding
refactoring. Even though we experienced that
metrics are able to detect various issues, they
are not sophisticated enough to detect more ad-
vanced problems. Therefore, we investigated
pattern-analysis of source code and as a result,
we have developed a catalogue of TTCN-3 code
smells [6]. So far 38 TTCN-3 code smells have
been identified.

TRex Implementation. To automate refac-
toring for TTCN-3 test specifications, we have
implemented the open source TTCN-3 Refac-
toring and Metrics tool TRex [4]. The ini-
tial version has been developed in collaboration
with Motorola Labs, UK [7]. TRex implements
state-of-the-art editing capabilities, assessment
and improvement techniques for TTCN-3 test
suites based on the calculation of metrics, au-
tomated smell detection, and refactoring. TRex
is based on the Eclipse Platform [8] and thus
makes use of the infrastructure offered, e.g. the
Language Toolkit (LTK) or the Eclipse Test
& Performance Tools Platform (TPTP) static
analysis framework. The analysis infrastruc-
ture including lexer, parser, symbol table, pretty
printer, etc. for TTCN-3 have been implemented
using ANother Tool for Language Recognition
(ANTLR) [9].

The automated refactorings we currently pro-
vide concentrate mostly on the improvement
of test data descriptions (TTCN-3 templates).
The refactoring implementations can be applied
in two different ways: either the test developer
invokes the refactoring from the code location

1st Workshop on Refactoring Tools (WRT'07)

3

(2) Quality Assessment (3) Automated Refactorings

(1) Static Analysis

Eclipse Platform
User

Interface
Text Editor TPTP

Language

Toolkit
...

TTCN-3

Source Code

ANTLR

Lexing,

Parsing

Refactoring

Processor

Refactored

TTCN-3

Source Code

Transformed

Subtree of the

Syntax Tree

Pretty Printer

Change

Weaver

Syntax Tree /

Symbol Table

Metrics / Code Smell Detection

Rule-Based Refactoring Suggestions

Figure 1: The TRex Toolchain

which should be subject to the refactoring or
the refactoring is invoked directly by a quick-fix
which is provided by the analysis results of the
automated quality assessment.

For the assessment, a considerable number of
size metrics (such as counting the number of
references to a definition) and structural met-
rics (using control-flow graphs and call graphs)
are calculated. Furthermore, a total number
of 11 TTCN-3 code smell detection rules have
been implemented that partially allow the use
of quick-fixes to invoke automated refactorings.

The overall toolchain of TRex is depicted in
Fig. 1. Based on the syntax tree and symbol
table, the automated refactorings can either be
applied directly or invoked through the refac-
toring suggestions obtained by means of met-
rics and code smell detection. The refactorings
are applied directly to the source code using a
programmatic text editor and may as well in-
volve syntax tree transformations. The corre-
sponding text representation from transformed
subtrees is reobtained by a pretty printer com-
ponent and weaved back into the surrounding
TTCN-3 source code.

The implementations of metric calculation,
code smell detection, and refactoring are tested
using Plug-in Development Environment (PDE)
JUnit tests, e.g. by comparing source code snip-
pets before and after the refactoring.

Outlook. A remaining issue open for research
is the validation of test refactorings: Unlike Java
refactorings, for example, there are no unit tests
available for tests and simply running a test
suite against an implementation is not enough
if the test behaviour consists of more than one
path. We are thus investigating bisimulation
to validate that the observable behaviour of a
refactored test suite has not changed. In addi-
tion, we are extending TRex by implementing

further TTCN-3 refactorings and more sophis-
ticated code smell detection techniques.

References

[1] ETSI: ETSI Standard (ES) 201 873 V3.2.1:
The Testing and Test Control Notation ver-
sion 3; Parts 1-8. European Telecommuni-
cations Standards Institute (ETSI), Sophia-
Antipolis, France (2007)

[2] van Deursen, A., Moonen, L., van den
Bergh, A., Kok, G.: Refactoring Test Code.
In: XP2001. (2001)

[3] Fowler, M.: Refactoring – Improving the
Design of Existing Code. Addison-Wesley,
Boston (1999)

[4] TRex Team: TRex Website. http://www.
trex.informatik.uni-goettingen.de
(2007)

[5] Zeiss, B.: A Refactoring Tool for TTCN-
3. Master’s thesis, Institute for Informatics,
University of Göttingen, Germany, ZFI-BM-
2006-05 (2006)

[6] Bisanz, M.: Pattern-based Smell Detec-
tion in TTCN-3 Test Suites. Master’s
thesis, Institute for Informatics, University
of Göttingen, Germany, ZFI-BM-2006-44
(2006)

[7] Baker, P., Evans, D., Grabowski, J.,
Neukirchen, H., Zeiss, B.: TRex – The
Refactoring and Metrics Tool for TTCN-3
Test Specifications. In: TAIC PART 2006,
IEEE Computer Society (2006) 90–94

[8] Eclipse Foundation: Eclipse. http://www.
eclipse.org (2007)

[9] Parr, T.: ANTLR parser generator v2.
http://www.antlr2.org (2007)

1st Workshop on Refactoring Tools (WRT'07)

4

A visual interface for type-related refactorings

Philip Mayer
Institut für Informatik

Ludwig-Maximilians-Universität
D-80538 München

 plmayer@acm.org

Andreas Meißner
Lehrgebiet Programmiersysteme

Fernuniversität in Hagen
D-58084 Hagen

meissner@acm.org

Friedrich Steimann
Lehrgebiet Programmiersysteme

Fernuniversität in Hagen
D-58084 Hagen

steimann@acm.org

ABSTRACT
In this paper, we present our approach to a visual refactoring
tool, the Type Access Analyzer (TAA), which uses program
analysis to detect code smells and for suggesting and
performing refactorings related to typing. In particular, the
TAA is intended to help the developers with consistently
programming to interfaces.

1. INTRODUCTION
When looking at currently available type-related refactoring
tools, a noticeable gap shows between simple refactorings like
Extract Interface and more complex, “heavyweight” ones like
Use Supertype Where Possible and Infer Type [2]: While the
former do not provide any analysis-based help to the user, the
latter perform complex program analyses, but due to their
autonomous workings – without interacting further with the
user except for preview functionality – it is not always clear
when to apply them, what result to expect, and just how far the
changes of the refactorings will reach. For example,

• Extract Interface keeps programmers in the dark about
which methods to choose,

• Use Supertype Where Possible replaces all declaration
elements found without a proper way of restricting it,

• Infer Type creates new types guaranteeing a type-correct
program, but often lacking a conceptual justification.

As a remedy, we propose a new approach to refactoring. The
contributions of this approach consist of:
• moving precondition checking and parameterization from

refactorings to a dedicated program analysis component,
• presenting the analysis results visually in such a way that

they suggest refactorings, and
• breaking down existing refactorings into simpler tools

which perform predictable changes immediately visible
and controllable by the visual refactoring view.

This approach is prototypically realized in our Type Access
Analyser (TAA) tool for type-related refactorings.

2. THE TYPE ACCESS ANALYZER
A loosely coupled and extensible software design can be
reached by consistently programming to interfaces [1],
specifically to what we have called context-specific interfaces
[3]. An interface is considered to be context-specific if it
contains exactly – or, in a more relaxed interpretation, not
much more than – the set of members of a type required in a
certain area of code (which is comprised of variables and
methods declared with the interface as their types and their
transitive assignment closure).

Refactoring to the use of such interfaces requires an analysis of
what is really needed in contexts by analyzing the code to find
used or unused members. With this information, the code can
be refactored in an informed way by:
• creating, adapting, or removing interfaces, and
• retrofitting existing variable types to the newly introduced,

or adapted, interfaces.
The TAA follows the approach discussed in the introduction by
analyzing the code using the type inference algorithm we have
introduced in [2], presenting the results in a visual form, and
providing access to and feedback from simplified versions of
refactorings such as Extract Interface or Infer Type.
To give the programmer a comprehensive and concise view of
the program that is tailored to the specific problems of
interface-based programming, we have developed the supertype
lattice view described in [4]. In this view, the supertype
hierarchy of the type under consideration is enhanced by
displaying a bounded lattice of the set of members of the type,
each node being enriched with various kinds of information.
Figure 1 shows a screenshot of the TAA in action on a four-
method class (due to space limitations, only a part is shown).

Figure 1: TAA Visual View

Four types of information are immediately visible from the
graph:

• Possible types – each node is a possible supertype of the
class (which is situated at the bottom; not shown).

• Available types are shown in the types section on a node.
Subtyping relations between types are indicated by UML-
style subtyping arrows.

1st Workshop on Refactoring Tools (WRT'07)

5

• Variables and methods. Each variable or method typed
with one of the type(s) under consideration is included in
the graph. Assignments between these elements are shown
with red arrows.

• Declared placement. A variable or method is shown in
the declared placement section of the node containing
the declared type of the variable or method.

• Ideal placement. If different from the declared
placement, a variable or method is shown in the ideal
placement section of the node which corresponds to the
set of members (transitively) invoked on this variable or
method.

The quality of the variable and method declarations (i.e. the
matching between types and their usage contexts) is shown by
the colours of the background of the node. A green colour
represents the use of context specific types, while a red colour
signals a mismatch between types and usage contexts.
Selecting variables or methods in the graph further enriches the
display:

• A line is drawn connecting the ideal and declared
placements of an element (if different).

• Additional lines are drawn connecting all elements which
the current element is being assigned to (transitively).

This data may be used to detect smells in the code and take
appropriate action. The following section will detail this.

3. VISUAL REFACTORINGS
By analyzing a type in the TAA view, the developer has
complete overview of the usages of this type. The annotations
on the supertype lattice suggest a number of ways of improving
the typing situation; specifically, the arrangements of types and
variables/methods visualize code smells which can be removed
by applying refactorings.
The following table associates design problems in the code, the
way these problems show up in the visual view (as smells), and
the actions to be taken by the developer to deal with those
problems. Later on, we will present refactorings for executing
these actions.

Problem Smell Action
No interfaces
available for a
context

Nodes in the graph with
ideal placement of
variables/methods, but
without interfaces

Extract interface
and redeclare
variables/
methods with
new interface

Poorly
designed
interface

Ideal placement of
variables/methods
swarming around
existing interfaces

Move existing
interface up or
down in
hierarchy

Two
interfaces for
the same
purpose

Two interfaces share
the same/ neighbouring
nodes, each with ideally
placed variables/
methods

Merge
interfaces

Superfluous
interface

Interface present in a
node without declared
placements; no ideal
placements in vicinity

Remove
interface from
hierarchy

Interface is
not (yet) used

Interface is present in a
node with ideally but no
declared placements

Redeclare
variables /
methods with
existing
interface

Table 1: Code Smells

As can be seen from the table above, the TAA suggests a
number of actions to be taken as a result of identified smells.
These actions are implemented as refactorings. In line with our
approach of putting the developer in charge, these refactorings
may be selected as (semantically) appropriate by the user.
Contrary to existing refactorings, the ones invoked from the
TAA in general do not require further dialog-based
parameterization – all information required for a refactoring is
already available in the graph and the way the user invokes the
refactoring in a visual way. These visual start procedures are
shown in Table 2:

Refactoring Visual start procedure
Extract interface Alt + Drag an interface to

another, higher node in the graph
Move interface in
hierarchy

Drag an interface to another node
in the graph (up or down)

Remove interface from
hierarchy

Select an interface, select delete

Merge interfaces Select two interfaces, select
merge

Redeclare declaration
elements (transitively,
i.e. following
assignments)

Select a variable or method,
select redeclare

Table 2: Refactorings

While the Extract Interface refactoring is already available as-
is in many tools, the others have been either adapted or
specifically written for the TAA.

4. SUMMARY
In this paper, we have described our approach to visual
refactoring. The TAA tool aids the developer by providing
valuable information about the typing situation in the code – in
itself suitable for program understanding – and thereby suggests
refactorings whose effect is more predictable and which can be
executed directly from the visual view. The results of the
refactorings are likewise directly shown in the graph.

In the future, we will investigate ways of further improving the
user interface and add more refactorings to the TAA.

5. REFERENCES
[1] E Gamma, R Helm, R Johnson, J Vlissides Design

Patterns - Elements of Reusable Software (Addison-
Wesley, 1995).

[2] F Steimann “The Infer Type refactoring and its use for
interface-based programming” JOT 6:2 (2007) 67–89.

[3] F Steimann, P Mayer “Patterns of interface-based
programming” JOT 4:5 (2005) 75–94.

[4] F Steimann, P Mayer “Type Access Analysis: Towards
informed interface design” in: TOOLS (2007) to appear

This work has been partially sponsored by the project
SENSORIA, IST-2005-016004.

1st Workshop on Refactoring Tools (WRT'07)

6

ITCORE: A Type Inference Package for Refactoring Tools

Hannes Kegel
ej-technologies GmbH

Claude-Lorrain-Straße 7
D-81543 München

hannes.kegel@ej-technologies.com

Friedrich Steimann
Lehrgebiet Programmiersysteme

Fernuniversität in Hagen
D-58084 Hagen

steimann@acm.org

1. Introduction
ECLIPSE’s current distribution comes with various type-related
refactoring tools, some of which rely on a built-in framework for
solving a set of type constraints derived from the declarations and
expressions of a type-correct program. We have adapted this
framework to embody the type inference underlying our INFER
TYPE refactoring tool for JAVA [6], which extracts the maximally
general type for a declaration element (variable or method) based
on the use of that element in a program. The new implementation
surpasses the original one by greater memory efficiency; it also
fully embodies the language extensions of JAVA 5, most notably
generics. It has been extensively tested by automatically applying
it to all declaration elements of several large code bases.

Experimenting with INFER TYPE, it soon became clear that its
type inference procedure can be used for several other refactor-
ings and also for program analysis tools such as the TAA [5]. We
therefore decided to develop the type inference part as a package
in its own right. However, with several uses of this package still
under development, its API has not yet settled; therefore, we will
only provide an overview of its inner workings here, and of the
refactorings that it enables.

2. Type inference with ITCORE
Type inference computes type annotations for program elements.
It is most useful in languages in which type annotations for these
elements are not mandatory (“untyped” languages). In typed lan-
guages such as JAVA, type inference can compute the difference
between a declared and a derived (inferred) type.

In the context of refactoring statically type-checked, type-
correct object-oriented programs, type inference can be used to
change the declared types of program elements in one of two di-
rections: to the more specific, or to the more general. The former
is of interest for instance when Object or a raw type is used
where all objects are known to be of a more concrete class or pa-
rameterized type; such type inference is, e.g., the basis for the
refactoring tool INFER GENERIC TYPE ARGUMENTS described in
[3]. The latter is useful for decoupling designs, for instance when
turning a monolithic application into a framework; it is the basis
of our INFER TYPE refactoring described in [6]. It is this latter
variant of type inference that ITCORE performs and that we are
looking at here.

The type inference algorithm of ITCORE computes for a given
declaration element its maximally general type (interface or ab-
stract class), i.e., that type that contains only the members ac-
cessed through the declaration element and the ones it gets as-
signed to. It does so by performing a static program analysis,
(class hierarchy analysis, specifically), which is perfectly ade-
quate in our setting, since the static type checking of JAVA would
reject any additional precision offered by a dynamic analysis. The
inferred type is “minimal” in the sense that if a declaration ele-

ment is typed with its inferred type, no member can be removed
from the type without introducing a typing error.

The constraints generated by ITCORE are similar to that of IN-
FER GENERIC TYPE ARGUMENTS in that parameterized types are
decomposed and separate constraint variables for all type argu-
ments are created. For assignments, individual constraints are
generated for the main types and all type arguments. If the re-
ceiver of a method invocation is a parameterized type, method
and type arguments are also connected through constraints.

 ITCORE differs from the engines of its predecessors in various
respects:
1. The constraints generated by ITCORE cover the complete type

system of JAVA 5. This lets ITCORE change type arguments in-
cluding those of nested parametric types, as e.g. Test in
class MyComparator implements Comparator<Test>.
(Only type bounds are currently not considered for change.)

2. ITCORE attaches to each constraint variable (representing a
declaration element) the required protocol (the access set [7])
of that element, which is the basis for the creation of new
types during the solution of the constraint set.

3. The constraint solution procedure works constructively, by
visiting the nodes of the constraint graph reachable from the
start element(s) in depth-first order and collecting the (transi-
tively determined) access sets in the nodes. After the traversal,
the new type for the start element has been determined and is
created. A second traversal then satisfies all type constraints,
by introducing the new type (and possibly others [6]) where
necessary.

3. Refactoring tools building on ITCORE

3.1 Existing refactoring tools

A number of existing type-inference based refactoring tools can
profit from being migrated to ITCORE:

GENERALIZE DECLARED TYPE The purpose of GENERALIZE DE-
CLARED TYPE is to replace the declared type of a variable or
method with a supertype, if that is possible. However, in its cur-
rent form GENERALIZE DECLARED TYPE can only change the type
of the selected declaration element; if this element gets assigned
to others of the same type or some other subtype of the general-
ized type, the refactoring is impossible. This restricts its practical
applicability considerably.

ITCORE can serve as the basis for the implementation of a new
GENERALIZE DECLARED TYPE, since any existing (structural) sub-
type of a declaration element’s inferred type that is also a (nomi-
nal) supertype of the declared type can be used in the declaration
of this element and others of the same type in the assignment
chain (subject to some very rare exceptions described in [6]). In
addition, it would extend GENERALIZE DECLARED TYPE to cover
generics, significantly increasing its applicability.

1st Workshop on Refactoring Tools (WRT'07)

7

USE SUPERTYPE WHERE POSSIBLE In a similar vein, ITCORE can
serve as the basis for USE SUPERTYPE WHERE POSSIBLE: by com-
puting the inferred types for all declaration elements of a certain
type, it can be checked for a selected supertype where this super-
type could be used instead. Again, using ITCORE would make full
coverage of generics available to this refactoring.

EXTRACT INTERFACE Current implementations of EXTRACT IN-
TERFACE let the developer choose the members of the interface.
By naming the declaration elements for which this interface is to
be used, ITCORE can be used to preselect the members that are
needed, allowing the developer to add (but not delete!) members
if deemed appropriate. It is then guaranteed that the new interface
can be used where it is intended to be.

INFER TYPE INFER TYPE is a relatively new refactoring de-
scribed in some detail elsewhere [6]. It is currently the only one
that has already been migrated to ITCORE; see
http://www.fernuni-hagen.de/ps/prjs/InferType3/.

3.2 Refactorings awaiting tool support

Many useful refactorings still lack automation. Some of them can
be implemented using ITCORE, as the following list suggests.

REPLACE INHERITANCE WITH FORWARDING Suppose a class in-
herits many members but needs only few of them, so that its inter-
face is needlessly bloated; in this case, it may be better to define a
new class with just the required interface, and have it hold an in-
stance of its former superclass to which it forwards all service re-
quests. The protocol of the new class can be computed using IT-
CORE, simply by inferring the types of all declaration elements
typed with the class.

In case instances of the new class need to substitute for in-
stances of its former superclass (which is often the case in frame-
works), subtyping cannot be avoided. However, in these cases ei-
ther an existing or an inferred interface of the new class and its
former superclass can be used in the places where the substitution
occurs (the plug points of the framework). Both can be derived
using ITCORE. In fact, as has been pointed out in [7], even the
question of whether such a substitution is possible (and corre-
sponding subtyping, i.e., interface implementation, is therefore
necessary) can be computed by means of ITCORE; all that needs to
be done is search for assignment chains from (declaration ele-
ments of) the new class to (declaration elements of) its former su-
perclass [7].

REPLACE INHERITANCE WITH DELEGATION A simple, but easily
overlooked, twist to the previous refactoring is that a superclass
may contain calls to its own, non-final methods. In this case, and
if any of the called methods are overridden in the subclass to be
refactored, replacing inheritance with forwarding changes pro-
gram semantics, because the formerly overriding methods in the
subclass no longer override (the extends is removed; the new
class is no longer a subclass of its former superclass) so that dy-
namic binding of these methods does not apply. In these cases,
forwarding must be replaced by delegation [9].

In class-based languages such as JAVA, delegation must be
mimicked by subclassing. IDEA’s REPLACE INHERITANCE WITH
DELEGATION refactoring tool does exactly this [4]; combining it
with REPLACE INHERITANCE WITH FORWARDING as described
above would further automate this refactoring.

INJECT DEPENDENCY DEPENDENCY INJECTION is an increasingly
popular design pattern that lets components to be assembled into

applications remain independent of each other [1]. Components
are independent (decoupled) only if they do not reference each
other directly, neither through declarations nor through instance
creation (constructor calls). One prerequisite to successful de-
pendency injection is therefore that all such references are re-
moved. As has been outlined above, this can easily be done by
ITCORE, namely by inferring the common type of all references to
the class depended upon. The rest, removing constructor calls (as
for instance described in [8]) and instrumenting the assembly of
components, is independent of ITCORE; it can be done with the
standard means of AST manipulation. We are currently working
on an implementation for SPRING and EJB3.

CREATE MOCK OBJECT Unit testing requires that each unit is
tested independently of others. In practice, however, units depend
on others that have not been sufficiently tested to be assumed cor-
rect, or whose behaviour cannot be controlled by a test case. In
these cases, units depended upon are replaced by mock objects
(really: mock classes). These objects exhibit the same provided
interface as those they replace; their implementation, though, is
different (“mocked”).

Mocking complete classes with many methods may be more
than is actually needed. To avoid this, ITCORE can compute from
a test case (or test suite) the interface actually required from a
mock class, which may be less than what is offered by the class it
mocks. This computed interface can drive the creation of the
mock class, or the necessary overriding of methods if the mock is
derived from the original class. Also, it can serve as a common
abstraction of the original and the mock class in the context of the
test (suite). Cf. also [2].

4. Conclusion
There seems to be a whole class of refactorings that rely on the
determination of the minimal protocol, or the maximally general
type, of a program element. The reasons for this may vary: de-
creasing coupling and increasing variability as for GENERALIZE
DECLARED TYPE, USE SUPERTYPE WHERE POSSIBLE, INJECT DE-
PENDENCY, or INFER TYPE; cleaning up the interface as for RE-
PLACE INHERITANCE WITH FORWARDING/DELEGATION; or simply
reducing the amount of necessary work, as in CREATE MOCK OB-
JECT. All have in common that they can be built on the type infer-
ence procedure offered by ITCORE.

References
[1] http://www.martinfowler.com/articles/injection.html

[2] S Freeman, T Mackinnon, N Pryce, J Walnes “Mock roles, not ob-
jects” in: OOPSLA Companion (2004) 236–246.

[3] RM Fuhrer, F Tip, A Kiezun, J Dolby, M Keller “Efficiently refac-
toring Java applications to use generic libraries” in: ECOOP (2005)
71–96.

[4] http://www.jetbrains.com/idea/docs/help/refactoring/
replaceinheritwithdelegat.html

[5] P Mayer, A Meißner, F Steimann “A visual interface for type-related
refactorings” submitted to: 1st Workshop on Refactoring Tools.

[6] F Steimann “The Infer Type refactoring and its use for interface-
based programming” JOT 6:2 (2007) 67–89.

[7] F Steimann, P Mayer “Type Access Analysis: Towards informed in-
terface design” in: TOOLS (2007) to appear.

[8] http://www.fernuni-hagen.de/ps/prjs/InferType/
ReducingDependencyWithInferType.html

[9] LA Stein “Delegation is inheritance” in: OOPSLA (1987) 138–146.

1st Workshop on Refactoring Tools (WRT'07)

8

Flexible Transformation Language

Alexandre A. Santos1, Luis Menezes

1
, and Márcio Cornélio

1

1 Departamento de Sistemas Computacionais

Rua Benfica, 455, 50720-001, Brazil.

{aasj, lcsm, mlc}@dsc.upe.br

1. Introduction

The use of automatic refactoring [1] in large scale

projects has increased in the last few years.

Unfortunately the available tools provide a fixed set of

program transformations. Thus, if a user needs a

refactoring that is not supplied by a development

environment, it is necessary to know deeply the

environment architecture in order to implement it,

which takes a lot of time and usually is not in

accordance with project constraints.

This paper presents the Flexible Transformation

System, which can be easily extended with language and

refactoring descriptions.

2. The Flexible Transformation System

The transformation system is composed by a set of

tools that process a refactoring description and produces

a refactoring environment according to the description.

The refactoring description makes use of the abstract

and concrete syntax of the target language, and its static

semantics description, which are written using

traditional notations such as BNF and attribute

grammars.

During the transformation execution, a validation is

performed in order to capture errors like ill-term usage,

invalid semantic production, etc. Any error found makes

the system abort and return to the initial state with the

purpose of avoiding inconsistencies.

The Flexible Transformation System is being

developed using Java [2] as programming language and

JavaCC [3] as the parser generator. However, the most

relevant contribution of our system is a language for

describing refactorings.

3. Transformation Language Operators

The transformation language contains operators

designed to ease operations against the decorated

abstract syntax tree such as tree searching, pattern

matching and term rewriting that are useful in

refactorings.

In order to demonstrate the applicability of those

operators, a sample program wrote in a pseudo-

language is used and analyzed focusing on what is going

to be affected by the transformations; afterwards the

transformation code is explained in detail.

3.1. The Sample Program

Our sample program, written in a pseudo-language,

has an attribute x and a get method to return it, called

getName. After the transformation, it is going to have

the attribute name and all its usage renamed from x to

name for a better legibility. This transformation is

shown in Figure 1.

1 Program temp;

2 string x;

3 string getName()

4 {

5 Return x;

6 }

7 End temp;

1 Program temp;

2 string name;

3 string getName()

4 {

5 Return name;

6 }

7 End temp;

Figure 1 – A Sample Program Transformation.

3.2. The Transformation Code

In this Section, a transformation code written using

the Flexible Transformation Language is described to

demonstrate how easy are the usage of the operators of

this language along with their purposes. Figure 2

presents the code that will be detailed later during this

Section.

 Basically, it looks for an identifier declaration node

which has x as name and string as type. If found, it

verifies if does not exist an identifier declaration node

with any type called name. If not, it replaces each usage

of x with name and also renames the node declaration

from x to name.

01 start {

02 foreach(W in IdDecl("string", "x")) {

03 if (not exist(IdDecl(A, “name”))) {

04 foreach(R in IdUsage("x")) {

05 R=>IdUsage("name");

06 };

07 W=>IdDecl("string", "name");

09 };

10 };

11 }

Figure 2 – The Transformation Code.

1st Workshop on Refactoring Tools (WRT'07)

9

The lines 01 and 11 delimit the program scope called

the program start point. Each line inside this block will

be executed. However, the start point is not mandatory

and someone might implement just procedures to be

imported and used by others program transformations.

In this case, the program start point will not exist.

Before explaining the foreach statement, it is

necessary to elucidate the node function as the

foreach uses it. Node function is an expression in the

language, responsible for looking in the AST to find a

specific node or a set of nodes based on the arguments

passed which are filter criteria. Besides searching, the

node function could also be used in pattern matching

expressions to verify if some variable matches the

specified format. In the above example, IdDecl and

IdUsage are node functions defined in the abstract

syntax of the pseudo-language.

The lines 02,10 and 04,06 delimit the scope of the

first and second foreach statement, respectively

shown in Figure 2. The command foreach is iterative

and uses the node function structure to bring back all

tree nodes that matches a format defined. This

command iterate over the result list making possible the

execution of operations over each node. The node

function used in the example was the IdDecl and

IdUsage as said before. The first one returns all

identifier declarations that have x as name and string

as type and the second one returns all identifier usages

that have x as name.

The If-Else command could be used to verify the

existence of a specific node using the exist clause, or

to verify if the current node matches a specific format

using the is clause. Both are flexible validations

available on the language. The lines 03 and 09 delimit

its scope. In this case, it checks if it does not exist an

identifier declaration with any type called “name”.

Finally, the term rewriting operation, described by

the symbol “=>”, which is used in the lines 05 and 07,

responsible for transforming a node in a new one. In the

first case, it renames the identifier usage from x to

name; in the other case, it renames the identifier

declaration from x to name, preserving the same type.

It is important to mention that the language has other

features that were not shown here, such as procedures

definitions and string operations since they are standard

for the existent languages.

4. Future Plans

In the short term, we are going to have a flexible

transformation system based on a generic

transformation language, tested against different

programming languages. This system will help both

refactoring community and developers, in which anyone

will be able to define his own transformations and

automate the application of complex refactoring as the

transformation language defined is easy to understand

and to use.

5. References

1. W. Opdyke: Refactoring Object-Oriented

Frameworks. PhD thesis, University of Illinois at

Urbana-Champaign, 1992.

2. Sun Microsystems. Retrieved 07-2007, from Java

SE: http://java.sun.com/javase/.

3. CollabNet. Retrieved 07-2007, from JavaCC

Home: https://javacc.dev.java.net/.

1st Workshop on Refactoring Tools (WRT'07)

10

http://java.sun.com/javase/
https://javacc.dev.java.net/

A Refactoring Discovering Tool based on Graph Transformation

Javier Pérez, Yania Crespo
Departamento de Informática

Universidad de Valladolid
{jperez,yania}@infor.uva.es

Abstract

One of the problems of documenting software evo-
lution arises with the extensive use of refactorings.
Finding and documenting refactorings is usually harder
than other changes performed to an evolving system.
We introduce a tool prototype, based on graph trans-
formation, to discover refactoring sequences between
two versions of a software system. When a refactor-
ing sequence exists, our tool can also help reveal the
functional equivalence between the two versions of the
system, at least, as far as refactorings can assure be-
haviour preservation.

1 Introduction

Efforts to include refactorings as a regular tech-
nique in software development have led refactoring
support to be commonly integrated into development
environments (i.e. Eclipse Development Platform,
IntelliJ R© Idea, NetBeans, etc.). Finding refactorings,
now they are extensively used, is one of the problems
of software evolution [2, 3]. For version management
tools, for example, refactorings are modifications more
difficult to deal with than any other kind of changes.

Our tool prototype implements a method, based on
graph transformation [5, 8], to discover refactoring se-
quences between two versions of a software system. In
case a refactoring sequence exists, our tool can also
help reveal the functional equivalence between the two
versions of the system, at least, as far as refactorings
can assure behaviour preservation.

2 Graph parsing approach

To search refactorings we use graph transforma-
tion as an underlying formalism to represent Object-
Oriented software and refactorings themselves. Refac-
torings involve modification of the system structure,

so we believe that graph transformation, which focuses
on description and manipulation of structural informa-
tion, is a quite appropriate formalism.

In [4, 7] the graph transformation approach is shown
to be valid for refactoring formalisation. In these
works, programs and refactorings are represented with
graphs, in a language independent way, using a kind
of abstract syntax trees with an adequate expressive-
ness level for the problem. This representation format
is claimed to be language independent and very sim-
ple, with the purpose of making it easy to use and as
flexible as possible. Therefore, as suggested in [7], it
was necessary to extend the graph format to represent
‘real’ programs containing specific elements and con-
structions of a particular language. We have developed
an extension to represent Java programs which we have
named ‘Java program graphs’.

Once programs have been represented with graphs,
and refactoring operations have been described as
graph transformation rules, we apply graph parsing al-
gorithms to find the refactoring sequence between two
different versions of a software system. We address
the problem of finding a transformation sequence from
one version of the system to another as a state space
search problem. With this approach we identify: the
original/old system as a start state, refactoring
operations as state changing operations (edges), the
refactored/new system as the goal state, the prob-
lem of whether a refactoring sequence exists as
a reachability problem, and a refactoring sequence
as the path from the start state to the goal state.

We propose a basic search algorithm to look for
refactoring sequences. In order to allow some kind
of guided search, we base our solution in the use of
refactoring preconditions and postconditions. So our
approach needs refactoring definitions which include
preconditions and postconditions.

The main idea of our algorithm is to iteratively mod-
ify the start state applying refactoring graph transfor-
mation rules. The set of selectable refactorings at each

1st Workshop on Refactoring Tools (WRT'07)

11

iteration is composed just of refactorings whose precon-
ditions are held in the current state and whose post-
conditions are held in the goal state. When no more
refactorings are selectable, the algorithm backtracks to
the last transformation applied. The algorithm ends
up in success when the current state graph is isomor-
phic to the goal state graph. The refactoring sequence
is the path found to the goal state. The algorithm ends
up in fail when no more refactorings can be executed,
and the current and goal states are not isomorphic.

3 Our tool so far

Our refactoring discovering tool consists mainly of a
refactoring searching graph grammar and a plu-
gin for the Eclipse Development Platform (see
Fig. 1), which has a strong refactoring support.

We have developed a sample implementation of some
searching rules to test the validity of our approach.
Up to date, the refactoring searching graph grammar
searchs for pullUpMethod, renameMethod and useSu-
perType, supported by the Eclipse refactoring engine,
removeMethod and removeClass. Using graph repre-
sentation for source code enables to adjust the detail
level by adding or removing elements from the graph
model. The set of searchable refactorings can be easily
extended by adding more searching rules to the gram-
mar.

We use the AGG graph transformation tool [1] as
the back-end of our prototype implementation. AGG
is a rule-based tool that supports an algebraic approach
to graph transformation, and allows rapid prototyping
for developing graph transformation systems. We have
chosen AGG mainly because it supports graph parsing.
Graph parsing can be used to perform depth first search
with backtracking, and our algorithm can be partially
implemented that way.

Our initial Eclipse plugin [6] obtains the Java pro-
gram graph representation from the source code of the
two versions of a system, launches the graph transfor-
mation parser and shows a part of the output dumped
by the parser. From this raw information, we are able
to identify the refactoring sequence found, but this
is only valid for the purpose of testing our approach.
There is a clear need to improve the front-end to show
up the search results in a more convenient way.

4 Results and future work

We have developed a tool prototype based on graph
transformation to find whether a refactoring sequence
exists between two versions of a software system or

Figure 1. Outline of our tool

not. Our implementation is a proof of concept that
offers very promising results.

Our innmediate objectives are to improve the vi-
sualisation of results, to implement refactoring search-
ing rules to support more refactoring operations and to
measure the scalability of our technique over industrial-
size systems. This will include improving rule descrip-
tions to take benefit of new features being added in the
newest versions of the AGG tool or even testing other
graph transformation tools for the back-end.

References

[1] Agg home page, graph grammar group, Technische Uni-
versität Berlin. http://tfs.cs.tu-berlin.de/agg.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding
refactorings via change metrics. In OOPSLA, pages
166–177, 2000.

[3] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson.
Automatic detection of refactorings in evolving com-
ponents. In ECOOP 2006 - Object-Oriented Program-
ming; 20th European Conference, Nantes, France, July
2006, Proceedings, pages 404–428, 2006.

[4] N. V. Eetvelde and D. Janssens. Refactorings as graph
transformations. Technical report, Universiteit Antwer-
pen, 2005.

[5] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozen-
berg, editors. Handbook of Graph Grammars and Com-
puting by Graph Transformations, Volume II: Applica-
tions, Languages and Tools, volume 2. World Scientific,
1999.

[6] B. Mart́ın Arranz. Conversor de Java a grafos AGG
para Eclipse. Master’s thesis, Escuela Ténica Superior
de Ingenieŕıa Informática, Universidad de Valladolid,
September 2006.

[7] T. Mens, N. Van Eetvelde, S. Demeyer, and
D. Janssens. Formalizing refactorings with graph trans-
formations. Journal on Software Maintenance and Evo-
lution: Research and Practice, 17(4):247–276, July/Au-
gust 2005.

[8] G. Rozenberg, editor. Handbook of Graph Grammars
and Computing by Graph Transformations, Volume I:
Foundations, volume 1. World Scientific, 1997.

1st Workshop on Refactoring Tools (WRT'07)

12

Refactoring with Contracts

Yishai A. Feldman
IBM Haifa Research Lab

yishai@il.ibm.com

Maayan Goldstein
IBM Haifa Research Lab

maayang@il.ibm.com

Shmuel Tyszberowicz
The Academic College

of Tel-Aviv Yaffo
tyshbe@tau.ac.il

1 Introduction
Design by contract [9] is a practical methodology for
developing object-oriented programs together with their
specifications. It offers immediate benefits in terms of
early error detection as well as long-term process im-
provement. The contract consists of class invariants and
method pre- and postconditions. Method preconditions
must hold on entry to the method; it is the responsi-
bility of the caller to make sure they hold when the
call is made. Method postconditions must hold on exit
from the method, provided that the preconditions held
on entry. Class invariants must hold for every object
of the class on entry to and exit from every non-private
method. The contract is part of the public information
of the class, for use by clients.

The contract has several methodological implications
[9]:

• It clearly specifies the assumptions underlying the
use of existing classes.

• It places constraints on inheritance, according to
the behavioral subtyping principle [8]. A sub-
class must honor the contracts made by its parent
classes. Hence, subclasses can only weaken pre-
conditions, and can only strengthen postconditions
and invariants. (Violations of this principle are
bugs even when contracts are not explicitly spec-
ified; they are more likely to go unnoticed in that
case.)

• The assertions can be used to prove the correctness
of the program at various levels of rigor.

Design by contract is an integral part of the Eiffel pro-
gramming language [9]. There are a number of tools
that instrument Java programs with the contract (e.g.,
[4, 2, 1]).

Design by contract is synergistic with many agile
practices, and can be used to replace unit tests to a sig-
nificant degree [3]. When refactoring the code, any unit
test for affected code must be modified accordingly. If

the assertions in the unit tests are replaced by contract
checks, tests need only exercise the code, and can there-
fore be written at a higher level than a single method or
even class. However, the contracts still need to be refac-
tored with the code. This is easier than refactoring unit
tests, since what programmers have in mind when refac-
toring code is the intended functionality of the modified
code, which is directly expressed by the relevant con-
tracts. Furthermore, it is possible to automate contract
refactoring to a large extent [3, 7].

Automating contract refactoring, in conjunction with
other tools (such as code instrumentation, verification,
and contract discovery), also has the potential to in-
crease acceptance and widespread use of the design-by-
contract methodology.

2 Refactoring Contracts
There are several levels of automation required for
contract refactoring. Typically, the contract for Java
programs is expressed using Javadoc tags such as
@inv, @pre, and @post. Contract assertions are just
boolean-valued expressions, and therefore need to be
treated as code rather than comments in refactorings
such as Rename Method or Inline Method. This is rela-
tively easy to automate.

Some refactorings, such as Introduce Null Object
and Self-Encapsulate Field, introduce new assertions
in fairly obvious ways. Others, such as Push Down
Method and Replace Constructor with Factory Method,
move or transform contracts in simple ways. Refactor-
ings such as Extract Superclass (in its full generality,
when applied to more than one class), require the com-
putation of a contract for the new superclass based on
the contracts of the existing classes, in compliance with
the behavioral subtyping principle. For example, the
class invariant must be weaker than the class invariants
of each of the subclasses; it can therefore be computed
as their disjunction. In general, a theorem prover is nec-
essary to simplify the computed contract, and various
heuristics may be employed in order to obtain the “best”

1st Workshop on Refactoring Tools (WRT'07)

13

contract (which is not always the strongest [7]).
Some refactorings, most notably Extract Method, re-

quire completely new contracts for arbitrary pieces of
code. This is very difficult to do in general, although we
have made some steps in this direction [5].

Because of the behavioral subtyping principle, the ap-
plicability of some refactorings, such as Move Method,
may depend on the contract. If the contract of the
method violates behavioral subtyping in its new posi-
tion, either the contract must be modified appropriately
first, or the refactoring is invalid. Here, too, a theorem
prover is necessary to discover such cases.

According to Feldman’s analysis [3], of the 68 refac-
torings mentioned in Chapters 6–11 of Fowler’s book
[6], 32% do not impact contracts except for treating
assertions as code. The applicability of some 13% of
Fowler’s refactorings are constrained by the contracts.
In 59% of the refactorings (including 4% that overlap
with the previous category), new or modified contracts
need to be computed.

Feldman estimated that 71% of Fowler’s refactorings
can be automated with relative ease, and about 12% re-
quire theorem proving for checking constraints. Some
17% require the computation of completely new con-
tracts, which is an open problem.

3 Crepe
In order to investigate the techniques necessary for con-
tract refactoring, we have implemented Crepe (Contract
REfactoring Plugin for Eclipse) [7]. Crepe implements
a small number of refactorings, including the full form
of Extract Superclass. It demonstrates the treatment of
assertions as code, the computation of new or modified
contracts in the simpler cases, and the use of theorem
prover for checking constraints and simplification. We
estimate that 83% of Fowler’s refactorings can be im-
plemented using the same techniques.

References
[1] D. Bartetzko, C. Fischer, M. Möller, and

H. Wehrheim. Jass—Java with assertions.
Electronic Notes in Theoretical Computer Science,
55(2), 2001.

[2] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry,
G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of JML tools and applications. In T. Arts
and W. Fokkink, editors, Eighth Int’l Workshop
on Formal Methods for Industrial Critical Systems
(FMICS ’03), pages 73–89, June 2003.

[3] Y. A. Feldman. Extreme design by contract. In
Fourth Int’l Conf. Extreme Programming and Ag-
ile Processes in Software Engineering (XP 2003),
pages 261–270, Genova, Italy, 2003.

[4] Y. A. Feldman, O. Barzilay, and S. Tyszberowicz.
Jose: Aspects for design by contract. In Proc.
Fourth IEEE Int’l Conf. Software Engineering and
Formal Methods, pages 80–89, September 2006.

[5] Y. A. Feldman and L. Gendler. DISCERN: Towards
the automatic discovery of software contracts. In
Proc. Fourth IEEE Int’l Conf. Software Engineer-
ing and Formal Methods, pages 90–99, September
2006.

[6] M. Fowler. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 2000.

[7] M. Goldstein, Y. A. Feldman, and S. Tyszberowicz.
Refactoring with contracts. In Proc. Agile 2006 Int’l
Conf., pages 53–64, July 2006.

[8] B. H. Liskov and J. M. Wing. A behavioral notion
of subtyping. ACM Trans. Programming Languages
and Systems, 16(6):1811–1841, 1994.

[9] B. Meyer. Object-Oriented Software Construction.
Prentice Hall, 2nd edition, 1997.

1st Workshop on Refactoring Tools (WRT'07)

14

Synchronizing Refactored UML Class Diagrams
and OCL Constraints

Slaviša Marković and Thomas Baar
École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
Email: {slavisa.markovic, thomas.baar}@epfl.ch

Abstract—UML class diagrams are usually annotated with
OCL expressions that constrain their possible instantiation. In
our work we have investigated how OCL annotations can be
automatically updated each time the underlying diagram is
refactored. All our refactoring rules are formally specified using
a QVT-based graphical formalism and have been implemented
in our tool ROCLET.

I. REFACTORING CLASS DIAGRAMS

In this section we give a motivation for performing UML/
OCL refactorings and show on an example, how OCL con-
straints have to be treated when the underlying UML class
diagram changes. Note that our approach does not aim to
improve the structure of OCL expressions in order to get rid of
OCL smells (see [1]). We are just concerned about smells in
UML class diagrams, how to eliminate these smells by class
diagram refactorings, and how to keep the annotated OCL
constraints in sync with these changes.

Figure 1 shows the application of refactoring MoveAt-
tribute on a class diagram annotated with one OCL invari-
ant. The refactoring moves attribute telephone from class
Person to class Info. In order to preserve the syntacti-
cal correctness of annotated constraints, it is necessary to
rewrite all navigation expressions of form exp.telephone
by exp.info.telephone.

Person
telephone:String

Info11

infoperson

context Person inv:
 self.telephone='222-333'

Person Info
telephone:String

11

infoperson

context Person inv:
 self.info.telephone='222-333'

Fig. 1. MoveAttribute Example

The only preconditions for this refactoring are (1) that the
attribute is moved over an association with multiplicities 1-1
and (2) that in the destination class (Info), or in any of its
descendants and ancestors, there is no attribute with the same
name as the name of the moved attribute (telephone).

There are other refactoring rules, which do not influence
annotated OCL constraints but whose applicability depends on
the absence of OCL expressions of a certain type. One example
is the rule PushDownAttribute; Fig. 2 shows an application
where attribute color is pushed down from class Vehicle

TABLE I
OVERVIEW OF UML/OCL REFACTORING RULES

Refactoring rules Influence on OCL Precondition
RenameClass No* UML
RenameAttribute No* UML
RenameOperation No* UML
RenameAssociationEnd No* UML
PullUpAttribute No UML
PullUpOperation No UML/OCL
PullUpAssociationEnd No UML/OCL
PushDownAttribute No UML/OCL
PushDownOperation No UML/OCL
PushDownAssociationEnd No UML/OCL
ExtractClass No UML
ExtractSuperclass No UML
MoveAttribute Yes UML
MoveOperation Yes UML
MoveAssociationEnd Yes UML

*–Rename refactorings influence textual notation of OCL constraints but not
their metamodel representation

to class Car. This refactoring is only possible if for all
occurring expressions exp.color the type of subexpression
exp conforms to destination class Car.

Vehicle
color:String

context Car inv:
 self.color='blue'

Car

Vehicle

context Car inv:
 self.color='blue'

Car
color:String

Fig. 2. PushDownAttribute Example

In [2], we have investigated and formalized a catalog of
class diagram refactorings together with necessary changes of
OCL constraints. Table I gives an overview of refactorings that
can be applied on a class diagram, together with information
whether the refactoring influences OCL constraints, and which
part of the UML/OCL model is checked by the refactoring’s
application condition.

II. MODEL TRANSFORMATIONS

UML class diagrams and their OCL constraints can be
seen as models (i.e. instances of corresponding metamodels).
The refactoring of UML/OCL models is a special type of
model transformation and can, thus, be specified by the OMG
standard QVT (Query/View/Transformation).

1st Workshop on Refactoring Tools (WRT'07)

15

RenameAttributeUML(a:Attribute, newName:String)

{when}
oldName <> newName and
c.allConflictingNames()->excludes(newName)

a:Attribute

name=newName

c:Class

c:Class
owner

owner
featurea:Attribute

name=oldName

feature

Fig. 3. QVT Formalization of RenameAttribute Refactoring

The formalization of the refactoring (RenameAttribute) is
shown as a QVT rule in Fig. 3. QVT rules consist of basically
two patterns (LHS, RHS). When applying the rule, occurrences
of LHS are searched for in the non-refactored model that we
want to change. If an occurrence is found, it is substituted with
the corresponding instantiation of RHS. Additional constraints
specified in the ”when” clause specify formally the application
conditions for the refactoring rule (ignoring them could result
in syntactically invalid target models). For more information
on the formalization of refactorings, we refer the interested
reader to [2]. The refactoring rule RenameAttribute does
not have an influence on attached OCL constraints. More
complicated rules that have an influence (e.g. MoveAttribute),
are formalized by two QVT rules; one describing the changes
in the class diagram and a second for updating the OCL (see
[2] for details).

III. LESSONS LEARNED

A model refactoring is usually defined as a model trans-
formation for which source and target model are instances of
the same metamodel. During our work on implementing QVT-
specified refactoring rules we have noticed that it is sometimes
useful to relax this definition and to allow source and target
model to have different metamodels.

A. Syntax Preservation

Refactoring rules should be syntax-preserving; i.e. syntacti-
cally correct source models should always be mapped to syn-
tactically correct target models. However, syntax preservation
is sometimes technically difficult to achieve, especially, if the
metamodel contains hundreds of well-formedness rules.

Syntax preservation becomes easier to handle when refac-
toring is seen as a two-step process: (1) the source model is
transformed to an intermediate model, which is an instance of
a different metamodel; (2) from the intermediate model the
final target model is recovered by a second transformation. In
case of UML/OCL refactorings, the intermediate metamodel
could represent OCL constraints as text and the refactoring
rules just have to ”produce” text in order to represent syn-
chronized OCL constraints. The second recovery step would
then parse the produced text as OCL constraints and create
an instance of the original UML/OCL metamodel. Another
possibility for an intermediate metamodel could be to use the
original UML/OCL metamodel, but without any of its derived
model elements. In this case, the only task of the recovery step
would be to complete the intermediate model to an instance

of the original UML/OCL metamodel by adding the (so far
missing) derived model elements.

B. Behavior Preservation

In case of UML class diagram refactorings, the definition
of behavior preservation in traditional program refactoring as
”same inputs lead to the same output” is not applicable because
class diagrams represent only the static structure of a system.

Our criterion for behavior preservation is based on the
evaluation of OCL constraints in a system snapshot. In [3], we
propose to call UML/OCL refactorings behavior preserving
if the evaluation of a non-refactored OCL constraint on a
valid instance of a non-refactored UML class diagram yields
always the same result as the evaluation of the refactored
OCL constraint on the corresponding instance of the refactored
UML class diagram.

Contrary to some authors, like [4], we allow object diagrams
also to be refactored. We believe that our definition of semantic
correctness gives more freedom in performing refactorings and
allows wider spectrum of refactoring rules to be applied on a
UML class diagram.

IV. CONCLUSIONS

In this paper we have presented our approach of refac-
toring UML class diagrams annotated with OCL constraints.
All refactorings that can be applied on class diagrams are
specified as model transformation rules and implemented in
our ROCLET tool [5].

Moreover, an overview of lessons learned during the process
of formalization and implementation is given. We think that the
technique to handle refactorings as a 2-step process can help
to simplify the refactoring of many other software artifacts as
well.

REFERENCES

[1] Alexandre Correa and Cláudia Werner. Applying refactoring techniques
to UML/OCL. In UML 2004, volume 3273 of LNCS, pages 173–187.
Springer, 2004.

[2] Slaviša Marković and Thomas Baar. Refactoring OCL annotated UML
class diagrams. Software and Systems Modeling (SoSym), 2007. In press.
Online available under DOI 10.1007/s10270-007-0056-x.

[3] Thomas Baar and Slaviša Marković. A graphical approach to prove
the semantic preservation of UML/OCL refactoring rules. In PSI 2006,
volume 4378 of LNCS, pages 70–83. Springer, 2007.

[4] Rohit Gheyi, Tiago Massoni, and Paulo Borba. A static semantics
for alloy and its impact in refactorings. Elsevier’s Electronic Notes in
Theoretical Computer Science (To appear), 2006.

[5] RoclET homepage. http: //www.roclet.org, 2007.

1st Workshop on Refactoring Tools (WRT'07)

16

Code Analyses for Refactoring by Source Code
Patterns and Logical Queries

Daniel Speicher, Malte Appeltauer, Günter Kniesel
Dept. of Computer Science III, University of Bonn - Germany
{dsp, appeltauer, gk}@cs.uni-bonn.de - roots.iai.uni-bonn.de

Abstract—Preconditions of refactorings often comprise com-
plex analyses that require a solid formal basis. The bigger the
gap between the level of abstraction of the formalism and the
actual implementation is, the harder the coding and maintenance
of the analysis will be. In this paper we describe a subset
of GenTL, a generic analysis and transformation language. It
balances the need for expressiveness, high abstractness and ease
of use by combining the full power of a logic language with easily
accessible definitions of source code patterns. We demonstrate the
advantages of GenTL by implementing the analyses developed by
Tip, Kiezun and Bäumer for generalizing type constraints [11].
Our implementation needs just a few lines of code that can be
directly traced back to the formal rules.

I. INTRODUCTION

Preconditions for refactorings require thorough analyses
based on a solid formal foundation. In order to reduce the
implementation effort, risk of errors, and cost of evolution
it is desirable to have an implementation language at a
similar abstraction level as the formal foundation. Part of this
problem has been addressed by various approaches to logic
meta-programming [4], [13]. They have demonstrated that
the expressive power of logic meta-programming enables the
implementation of powerful program analyses for refactoring
(e.g. [12]).

Unfortunately, logic meta-programming requires program-
mers to know the meta-level representation of the analysed
language and to think and express their analyses in terms of
this representation. For instance, JTransformer, our own logic
meta-programming tool for Java [8], [5] represents methods
by a predicate with seven parameters. The full Java 1.4 AST
is represented by more than 40 predicates. Mastering these
predicates and the precise meaning of each of their parameters
can be error-prone and forces programmers to think at the
abstraction level of the meta-representation.

In this paper we offer the expressive power of logic meta-
programming but raise the abstraction level by providing
means of expressing constraints on the structure of source code
elements without having to learn a new API. This is achieved
by a predicate that selects source elements based on source
code patterns containing meta-variables as place-holders. Thus
the concept of meta-variables is all that programmers have
to learn in addition to mastering the analysed language. The
corresponding concepts of GenTL are introduced in Section II.
In Section III we introduce the problem of type generalizing
refactorings and the corresponding formal basis elaborated by

Tip, Kiezun and Bäumer in [11]. In Section IV we show how
GenTL can easily express the analyses of [11].

II. GENTL

GenTL is a generic program analysis and transformation
language based on logic and source code patterns. For lack
of space we describe here only its analysis features. We start
by the introduction of meta-variables and code patterns, then
we introduce the selection of program elements based on code
patterns and finally we show how arbitrary predicates can be
easily built on this simple infrastructure.

A. Code Patterns

A code pattern is a snippet of base language code that may
contain meta-variables. A meta-variable (MV) is a placeholder
for any base language element that is not a syntactic delimiter
or a keyword. Thus meta-variables are simply variables that
can range over syntactic elements of the analysed language.
In addition to meta-variables that have a one-to-one corre-
spondence to individual base language elements, list meta-
variables can match an arbitrary sequence of elements, e. g.
arbitrary many call arguments or statements within a block.
Syntactically, meta-variables are denoted by identifiers starting
with a question mark, e. g. ?val. List meta-variables start with
two question marks, e. g. ??args. Here are two examples:

(a) ? c a l l () (b) ?cal led_on . ? c a l l (??args)

The pattern (a) above specifies method calls without ar-
guments. If evaluated on the program shown in Figure 1
it matches the expressions x.a(), m() and y.b(). For each
match of the pattern, the meta-variable ?call is bound to the
corresponding identifier (a, m and b). Pattern (b) only matches
x.a() and y.b() because it requires the calls to have an explicit
receiver. Each match yields a tuple of values (a substitution)
for the MV tuple (?called_on, ?call, ?args). In our example
the substitutions are (x,a,[]) and (y,b,[]), where [] denotes an
empty argument list.

B. Element Selection

The predicate is (written in infix notation) enables selection
of program elements based on their structure expressed using
code patterns:

<metavar iable > is [[< codepattern >]]

1st Workshop on Refactoring Tools (WRT'07)

17

c lass A { vo id a () { } }
c lass B exends A{ vo id b () { } }
c lass C {

B m() {
B x = new B () ; / / [new B ()] <= [x]
x . a () ; / / [x] <= A
r e t u r n x ; / / [x] <= [C.m()]

}
vo id n () {

B y = m() ; / / [C.m()] <= [y]
y . b () ; / / [y] <= B

}
}

Figure 1. Method invocations, assignments, parameter passing and returns
impose constraints on the types [E] of contained expressions E.

The predicate unifies the meta-variable on the left hand side
with a program element matched by the code pattern on the
right hand side. If the pattern matches multiple elements,
each is unified with the corresponding metavariable upon
backtracking.

C. Element Context

For many uses, it is not sufficient to consider only a
syntactic element itself but also its static context. For example,
the declaring type contains important information about a
method or a field declaration. Also the statically resolved
binding between a method call and its called method (or
a variable access and the declared variable) is necessary
for many analyses. This information is available via context
attributes, which can be attached to meta-variables by double
colons. Figure 2 describes the attributes used in this paper.

D. Self-Defined Predicates

The is predicate provides an intuitive way to specify the
assumed structure of program elements. Context attributes
let us concisely express a few often used relations between
elements. However, for complex analyses, these features need
to be complemented by a mechanism for expressing arbitrary
relations between program elements. Therefore, GenTL lets
programmers define their own predicates based on the concepts
introduced so far.

Predicates are defined by rules consisting of a left hand
side and a right-hand-side separated by ‘:-’. Multiple rules
for the same predicate (that is, with the same left-hand-side)
express disjunction. The right-hand-side (the body) of a rule
can contain conjunctions, disjunctions and negations. Predi-
cates can be defined recursively, providing Turing-complete
expressiveness.

For example, the term ‘declaration element’ used in [11] de-
notes the declaration of the static type of methods, parameters,
fields and local variables. The predicate decl_element imple-
ments this rule, associating each element with its declared type
as follows:

?mv::decl The statically resolved declaration of the element
bound to ?mv. Calls reference the called method;
variable accesses the declaration of the accessed field,
local variable or parameter; type expressions reference
a class or interface.

?mv::type The statically resolved Java type of the expression
bound to ?mv.

?mv::encl The enclosing method or class of a statement or
expression bound to ?mv.

Figure 2. Context attributes used in this paper

decl_element (?method , ?type) :−
?method is [[??modif ?type ?name(??par) { ??stmt }]] .

decl_element (?parameter , ?type) :−
?parameter is [[?type ?name]] .

decl_element (? f i e l d_o r_va r , ?type) :−
? f i e l d _ o r _ v a r is [[?type ?name ;]] .

decl_element (?elem , ?type) :−
?elem is [[?type ?name = ?value ;]]

Each rule describes one possible variant of a declaration
element. Each element’s structure is specified by a pattern.
For instance, the first rule states that the declared type of a
method declaration is its return type. The ?method argument
of the element predicate called within the rule represents the
method declaration. The second argument contains a code
pattern describing the structure of method declarations. The
pattern contains several meta-variables: ??modif, matching
an arbitrary number of modifiers, ?type for the return type,
?name for the method name, ??par for possible parameters
and ??stmt for the statements of the method body.

The second clause selects parameter declarations (they are
not terminated by a semicolon). The third clause selects field
and local variable declarations without an initializer. The
fourth one captures initializers. The syntax of code patterns
in GenTL generalized the one described in [10].

III. TYPE GENERALIZATION REFACTORINGS AND TYPE
CONSTRAINTS

In this section we introduce by example the challenge of
type generalization analysis and the solution approach based
on type constraints.

Let us consider the method m in Figure 1. It defines the
local variable x to be of type B although only the method a,
defined in the more general type A is actually invoked on x.
Therefore one might hope to be able to generalize the type of
x to A. This would eliminate an unnecessary dependency on a
too concrete type. The utility of such dependency reduction
becomes obvious if we consider m as a substitute for a
whole subsystem that should be decoupled from the subsystem
containing the type B.

Unfortunately, the intended generalization is not possible in
our example. Method n indirectly enforces the use of B in m:
As b is called on y, y has to be of type B. Because the result
of m is assigned to y, the return type of m must be B,too.

1st Workshop on Refactoring Tools (WRT'07)

18

Finally, x also has to be of type B because it is returned as
the result of m.

The approach described in [11] enables us to deduce this
relation formally from type constraints implied by method in-
vocations and assignments (including the implicit assignments
represented by return statements and parameter passing). The
comments in Figure 1, for example, show the constraints
for the statements on their left-hand-side. For example the
initialization of y with the result of a call to m implies
that the return value of m has to be a subtype of y’s type
([C.m()] ≤ [y]). Combination of the inequalities shown in
Figure 1 yields the inequality [x] ≤ [C.m()] ≤ [y] ≤ B, thus
formally proving the necessity of x being of type B.

Summarizing, our example illustrates that
1) the invocation of the method a on x (resp. b on y) implies

that the receiver type must be at least A (resp. B);
2) assignments and return types propagate these restrictions

to the types of further expressions;
3) based on these constraints we can derive a chain of

inequalities proving x must be typed with B, hence cannot
be generalized.

In the following section we present the related formal
constraints from [11] and our implementation in GenTL1.

IV. ANALYSIS FOR TYPE GENERALIZATION

We first implement predicates that capture the type con-
straints required for our example. Then we show how these
predicates can be used to implement the test for non-
generalizability.

A. Type Constraints

Method calls. The type of an expression that calls method
M must be a subtype of “the most general type containing
a declaration of M”, denoted Encl(RootDef (M))2. This is
expressed in [11] by the following type constraint:

(Call) call E.m() to a virtual method M

⇒ [E] ≤ Encl(RootDef (M))

We can map the rule (Call) directly to the following rule of the
predicate constrained_by_type(?elem,?type), which states
that the type of ?elem is at most ?type:

constra ined_by_type (?elem , ?type) :−
? c a l l is [[?E .?m(??args)]] ,
?elem = ?E : : decl ,
?M_decl = ? c a l l : : decl ,
r o o t _ d e f i n i t i o n (?M_decl , ?rootMethod) ,
?type = ?rootMethod : : enc l .

The first line of the right-hand-side specifies the structure
of method calls which the rule is applicable to. The second

1Due to space limitations we omit some details (definition of root_definition
and handling of multiple subtypes) in the formalism and in our implementa-
tion.

2We slightly adapted the original notation Decl(RootDef (M)) of [11] in
order to avoid confusion with the ‘decl’ context attribute of GenTL.

says that the call constrains the type of the declaration of
the message receiver. Unification of two variables is denoted
with the infix operator ‘=’. The fourth line determines the
root definition of the called method, using the predicate
root_definition, which implements the function RootDef (M).
The last line says that the type of the message receiver is
constrained by the declared type of the root definition. .

Assignment. The type of the right hand side of an assign-
ment must be a subtype of the one of the left hand side:

(Assign) E1 = E2 ⇒ [E2] ≤ [E1]

This is implemented as a rule for the predicate con-
strained_by(?e2,?e1). It represents the restriction of the type
of the element ?e2 by the declaration of the element ?e1:

constra ined_by (?E2_decl , ?E1_decl) :−
?assign is [[?E1 = ?E2]] ,
?E1_decl = ?E1 : : decl ,
?E2_decl = ?E2 : : dec l .

Return. The type of a an expression returned by a method
must be a subtype of the method’s declared type. This is
expressed formally as:

(Ret) return E in method M ⇒ [E] ≤ [M]

In GentTL, this reads:

constra ined_by (?E_decl , ?M_decl) :−
?re tu rn_s tmt is [[r e t u r n ?E ;]] ,
?M_decl = ?re tu rn_s tmt : : encl ,
?E_decl = ?E : : dec l ;

B. Test for Generalizeability

The non-generalizability of declarations in a given program P
is checked on the basis of the inferred type constraints. The
set of non-generalizable elements, Bad(P,C, T), contains all
elements of P whose declared type C cannot be replaced with
the more general type T. This is the case if the type constraints
imply that an element must be typed with a type that is not a
supertype of T (second line below) or that is a subtype of a
non generalizable element (fourth line below):

(Gen) Bad(P,C, T) =
{E |E ∈ All(P,C) ∧ [E] ≤ C ′ ∈ TCfixed(P)

∧ ¬T ≤ C ′} ∪
{E |E ∈ All(P,C) ∧ [E] ≤ [E′] ∈ TCfixed(P)

∧ E′ ∈ Bad(P,C, T)}

In the above definition, E ∈ All(P,C) means that E declares
an element of type C in program P . TCfixed(P) is the set of
type constraints derived for P . The second line corresponds to
the test implemented by the predicate constrained_by_type.
The fourth line corresponds to the test implemented by con-
strained_by.

The rule (Gen) is implemented by the predicate
not_generalizable(?elem,?generalizedType). It succeeds if

1st Workshop on Refactoring Tools (WRT'07)

19

the declaration of ?elem is not generalizable to the type
?type. Each line on the right hand side of the two imple-
menting rules corresponds to a line of the formal rule (Gen).
The two rules express the disjunction in (Gen):

no t_genera l i zab le (?elem , ?general izedType) :−
constra ined_by_type (?elem , ?type) ,
! subtype (?general izedType , ?type) .

no t_genera l i zab le (?elem , ?general izedType) :−
constra ined_by (?elem , ?upper) ,
no t_genera l i zab le (?upper , ?general izedType) .

V. IMPLEMENTATION & APPLICATION

The implementation of GenTL is still work in progress. Pat-
tern predicates are successfully implemented in LogicAJ2 [10],
a fine-grained aspect-oriented language that is a predecessor
of GenTL. GenTL is translated to the logic meta-programming
representation supported by the JTransformer system [5], [8].
This mapping is described in [1].

By now, we provide an implementation of type gener-
alization analysis in JTransformer. This analysis has been
integrated into our Cultivate plugin for Eclipse [3]. It is run
automatically, whenever a source file is saved. Statements
that can be generalized are marked and the usual Eclipse
‘warning’ tooltip indicates the most general types to which
they could be generalized. This is illustrated in Figure 3,
which shows a slight variation of our example. Here, it is
possible to generalize the type of the variable x, the method
m and the variable temp to A because b() is not invoked
on temp but on the wrapper object y. All lines affected by
the possible generalization are highlighted and the ones where
generalizations are possible get an additional warning marker.

VI. CONCLUSION

In this paper we have presented GenTL, an extension of
a logic language by a predicate supporting program element
selection based on source code patterns containing meta-
variables. We have demonstrated that this concept fosters
a direct mapping of formal program analysis specifications
to their logic based implementation. The formal foundations
for GenTL are laid by the theory of logic-based conditional
transformation [6], [7], [9]. The implementation of pattern
predicates is based on JTransformer [5]. Efficiency and scala-
bility of this system in conjunction with the compilation of
logic programs supported by the CTC [2] is demonstrated
in [8]. For instance, the identification of all instances of the
observer pattern in the Eclipse platform implementation (≈
11.500 classes) needs less than 8 seconds. Therefore, we think
that the design of GenTL opens the door for a desirable mix of
high run-time performance and extremely short development
time enabled by the high abstraction level supported.

REFERENCES

[1] Malte Appeltauer and Günter Kniesel. Towards concrete syntax patterns
for logic-based transformation rules. In Eighth International Workshop
on Rule-Based Programming, Paris, France, July 2007.

Figure 3. Tool tips indicating possible type generalizations detected by
automated logic-based analysis.

[2] CTC homepage. http://roots.iai.uni-bonn.de/research/ctc/, 2006.
[3] Cultivate homepage. http://roots.iai.uni-bonn.de/research/cultivate/.
[4] Kris De Volder. Type-Oriented Logic Meta Programming. PhD thesis,

Vrije Universiteit Brussel, Programming Technology Laboratory, June
1998.

[5] JTransformer homepage
http://roots.iai.uni-bonn.de/research/jtransformer/.

[6] Günter Kniesel. A Logic Foundation for Conditional Program Transfor-
mations. Technical report IAI-TR-2006-01, ISSN 0944-8535, CS Dept.
III, University of Bonn, Germany, January 2006.

[7] Günter Kniesel and Uwe Bardey. An analysis of the correctness and
completeness of aspect weaving. In Proceedings of Working Conference
on Reverse Engineering 2006 (WCRE 2006), pages 324–333. IEEE,
October 2006.

[8] Günter Kniesel, Jan Hannemann, and Tobias Rho. A comparison of
logic-based infrastructures for concern detection and extraction. In
Linking Aspect Technology and Evolution, March 12 2007.

[9] Günter Kniesel and Helge Koch. Static composition of
refactorings. Science of Computer Programming (Special
issue on Program Transformation), 52(1-3):9–51, August 2004.
http://dx.doi.org/10.1016/j.scico.2004.03.002.

[10] Tobias Rho, Günter Kniesel, and Malte Appeltauer. Fine-grained
Generic Aspects, Workshop on Foundations of Aspect-Oriented Lan-
guages (FOAL’06), AOSD 2006. Mar 2006.

[11] Frank Tip, Adam Kieżun, and Dirk Bäumer. Refactoring for generaliza-
tion using type constraints. In Object-Oriented Programming Systems,
Languages, and Applications (OOPSLA 2003), pages 13–26, Anaheim,
CA, USA, November 6–8, 2003.

[12] Tom Tourwé and Tom Mens. Identifying refactoring opportunities using
logic meta programming. In 7th European Conference on Software
Maintenance and Reengineering, Proceedings, pages 91–100. IEEE
Computer Society, 2003.

[13] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-
Evolution of Object-Oriented Design and Implementation. PhD thesis,
2001.

1st Workshop on Refactoring Tools (WRT'07)

20

Reuse based refactoring tools

Raúl Marticorena, Carlos López
Area of Languages and Computer Systems

University of Burgos (Spain)
{rmartico, clopezno}@ubu.es

Yania Crespo, Francisco Javier Pérez
Deparment of Computer Science
University of Valladolid (Spain)
{yania, jperez}@infor.uva.es

Abstract

Current refactoring tools work on a particular lan-
guage. Each time it is intended to provide refactoring
support for new languages, the same refactoring opera-
tions are defined and implemented again from scratch.
This approach ignores reuse opportunities in this
matter. It is possible to define a way of collecting code
information suited for several languages (a family of
languages) and define refactoring operations over that
representation. On the other hand, it is also possible
to define and implement each refactoring operation by
composing previously defined and developed elements.
In this paper we show the current implementation of a
reuse oriented refactoring engine and its specialization
for a particular language.

Key Words: refactoring, reuse, composition,
language-independence

1 Introduction

One of the open trends in refactoring [2] is the construc-
tion of language-independent refactoring tools. Lan-
guage independence, or at least certain language inde-
pendence, allows to reuse previous efforts in defining
and implementing refactoring when support for a new
language must be provided. It is also aimed at obtai-
ning a rational solution to provide refactoring opera-
tions for development environments, specially for those
which support several languages.

We present a refactoring tool, using a framework
based on a Minimal Object-Oriented Notation, named
MOON. The use of this minimal notation allows to
abstract the main concepts over a set of object-oriented
languages. Language particularities must be provided
by framework specialization and extension.

A refactoring engine, based on the MOON core and
extensions, is responsible of checking and executing the

refactoring elements on the code. Finally, the refacto-
red code is generated. In order to provide more power-
ful reuse capabilities, refactoring operations are defined
by composition. A refactoring is composed of precon-
ditions, actions and postconditions (following [3], [4]).
On the one hand, conditions allow to check applica-
bility from the point of view of behavior preservation.
On the other hand, actions transform the code, chan-
ging its current state through add, remove and rename
operations. Pre and postconditions are functions and
predicates that query the model and actions are model
transformers. Each pre, postcontion or action is stored
in a repository to be reused when defining new refac-
toring operations. We have built an extension of the
MOON framework core to deal with Java code infor-
mation, in order to manage all the information of the
source code.

1.1 Refactoring Engine

The refactoring engine runs the refactoring definitions
and obtains a new object model with the new state. A
framework definition has been used to allow a simple
scheme of reuse, as can be seen in Fig. 1.

Function
<<abstract>> getValue()
<<abstract>> getCollection()

<<abstract>>

Action

<<abstract>> run()
<<abstract>> undo()

<<abstract>>

Predicate

<<abstract>> isValid()

<<abstract>>

0..*0..*
defined_by

0..*0..*

Refactoring
name : String
description : String
motivation : String

runActions()
undoActions()
validatePreconditions()
validatePostconditions()
addPrecondition()
addPostcondition()
addAction()
run()

<<abstract>>

0..*0..*

perform

{ordered}

0..*

+preconditions

0..*
{ordered}

0..*0..*
+postconditions

Figure 1. Refactoring Engine Framework

Using the Template Method Pattern Design [1], each
refactoring has to be defined with stages, using the
repository content.

1st Workshop on Refactoring Tools (WRT'07)

21

1.2 Refactoring Repository

Refactoring elements are implemented as classes (see
Fig. 2). These classes query or transform the current
model instance. Although the model extension con-
tains the information of real code (i.e. Java), most
of the classes work with the MOON metamodel abs-
tractions. This proposal allows to reuse the same
query or action, when the related concepts are the
same in several languages. For example, the precon-
dition ExistParameterWithName or the action Move-
AttributeAction, stored in the repository, are reusa-
ble for several languages.

MOON CORE

concretepredicate
(from repository)

concreteaction
(from repository)

concretefunction
(from repository)

concreterefactoring
(from repository)

repository
(from engine)

core
(from engine)

Figure 2. Repository Architecture Overview

2 Current State

The current version of the tool implements eleven re-
factoring operations (Fig. 3):
- add, rename and remove parameter.
- rename classes and methods.
- move attributes and methods.
- four refactoring operations, we have defined, on ge-
neric classes.

Figure 3. Refactoring Tool

Each one of these refactorings are implemented as
concrete classes (extending the Refactoring abstract
class as can be seen in Fig. 1). The refactorings are

built from instances of pre and postconditions classes
and action classes, using the corresponding add met-
hods of the template (Fig. 1).

The repository contains the implementation of
these elements, allowing the programmer to compose
the refactoring. If the element is not available, the
programmer should add the new code needed to the
repository. Hence, last refactorings to be added are
implemented with a minor effort, because the complete
set of their elements is already available in the reposi-
tory in order to be reuse.

3 Future Works

We have presented a refactoring tool which intents to
provide some advantages: certain language indepen-
dence, which allows to reuse the same refactoring im-
plementation (or a very similar one) for different lan-
guages and refactoring construction by composition,
which allows to implement new refactorings from pieces
already available from previously introduced refacto-
ring operations. The current version of the tool allows
to run the refactorings over a simple set of toy codes.
The Java parser is being completed to support com-
mercial code, and a C# parser (with its own framework
extension) is under development to validate the solu-
tion.

We are also currently working on a declarative de-
finition of refactorings using XML. This makes easy
to compose refactorings from the repository elements
using a graphical interface. Since specialization could
be necessary, the declarative definition could be also
specialized for different languages with a high degree
of reuse.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Elements of Reu-
sable Object-Oriented Software. Addison Wesley,
1995.

[2] Tom Mens and Tom Tourwé. A survey of software
refactoring. IEEE Trans. Softw. Eng., 30(2):126–
139, 2004.

[3] William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, IL, USA, 1992.

[4] Donald Bradley Roberts. Practical Analysis for
Refactoring. PhD thesis, University of Illinois at
Urbana-Champaign, IL, USA, 1999.

1st Workshop on Refactoring Tools (WRT'07)

22

SORMASA: A tool for suggesting model refactoring
actions by metrics-led genetic algorithm

Thierry Bodhuin Gerardo Canfora Luigi Troiano

RCOST – University of Sannio
Viale Traiano – 82100 Benevento, Italy

{bodhuin,canfora,troiano}@unisannio.it

ABSTRACT
In this paper we introduce SORMASA, SOftware Refactor-
ing using software Metrics And Search Algorithms, a refac-
toring decision support tool based on optimization tech-
niques, in particular Genetic Algorithms.

1. INTRODUCTION
During the development of object oriented software, de-

pendencies (e.g. method call and use of attributes) between
classes emerge that were not identified or specified explic-
itly at design time. This leads to a more complex software
system than one desired having the same functionalities,
hence, design modifications could be done in order to create
a more manageable software in terms of maintenance and
code reuse. Hereby, design decisions should be revised in
the spirit of improving coupling and cohesion [4]. In order
to reach this result, refactoring actions are generally per-
formed aiming to improve the quality of the software archi-
tecture [1]. The ultimate goal is to increase cohesion of code
and reducing coupling, but still keeping the initial idea of
the solution architecture and semantics. Agile programming
emphasized the role of refactoring up to support a process
of continuous refactoring. This resulted into a pressing de-
mand for tools able to automate refactoring tasks, or to
support refactoring decisions [3].

Refactoring is often done by applying a series of transfor-
mations on an existing and often incomplete software sys-
tem. When such transformations are applied, the software
system remains fully compliant to the original requirements,
differing only the implementation. While a single transfor-
mation (e.g. moving a method from a class to another)
may not improve too much the software system, a series of
such transformations may produce significant effect. Obvi-
ously, not all refactoring primitives (more than 80 primitives
are listed at www.refactoring.com) are suitable for keeping
low the software complexity. Among them, we have used
two primitives, namely the MoveField and MoveMethod, that
concerns respectively a field and method movement between
two classes, hence affecting the coupling and cohesion of such
classes. However, even considering few simple primitives,
the effect of combining several transformations at the same
time can lead to hard decisions due to the high number of
possible combinations.

Refactoring can be viewed as an optimization problem,
where each solution represents a set of refactoring actions,
that if applied lead the system to an architecture entail-
ing a different cohesion and coupling. A search based ap-
proach provides an interesting and viable solution to this
problem, as it is able to automatically consider a high num-
ber of refactoring alternatives, then suggesting those that, if
undertaken, can lead to a more cohesive and less coupled ar-
chitecture. In this paper we describe SORMASA, SOftware
Refactoring using software Metrics And Search Algorithms,
developed at our research center with the goal of supporting

decision making in refactoring a software architecture.
The current version of SORMASA makes some simplifying

assumptions, that are (i) only field and method movements
between classes are considered, (ii) transformations are as-
sumed in isolation, ignoring the effect they can produce on
each other, and (iii) all original classifiers are kept, with no
new class or interface introduced or removed. This leads to
transformations that are independent on the order in which
they are applied and without modifications of the overall
architecture. In the context of suggesting redesign actions,
as addressed by SORMASA, these assumptions are not very
limitative. Indeed, the goal is to suggest actions at model
level concerning the best way of allocating class properties
(i.e. methods and attributes), leaving the final decision to
the user. Preliminary experimentation shows encouraging
results.

Figure 1: The role of SORMASA in a process of
continuous refactoring.

Figure 1 depicts the role of SORMASA in the process of
continuous refactoring. The initial class model is coded in
software artifacts (i.e. .java source files, .class bytecode),
generally using a Java IDE such as Eclipse or NetBeans.
SORMASA analyzes them (in particular bytecode) in or-
der to identify and make explicit structural dependencies.
The optimization process of SORMASA is aimed to iden-
tify refactoring opportunities that could improve the model
quality in terms of high cohesion and low coupling. Op-
portunities are presented to the user that can decide which
refactoring actions to undertake. The modifications will lead
to a new revised software model from which the refactoring
process may start again.

1st Workshop on Refactoring Tools (WRT'07)

23

2. SEARCH ALGORITHM
SORMASA’s architecture is designed to work with dif-

ferent quality measurements (e.g. fitness function based on
cohesion, coupling, complexity, etc.) and search algorithms.
The current release supports Cohesion, Coupling [4], and
Distance (that is the number of changes applied to the ini-
tial model) metrics for quality measurements and Genetic
Algorithms (GA) as search algorithm. A set of refactor-
ing primitives that are under consideration are coded like in
Figure 2.

Figure 2: The chromosome structure and usage.

Refactoring suggestions can be obtained by comparing the
solution to the initial model, then identifying the relocation
of properties. SORMASA uses a Simple GA as described in
[2], and that be outlined as follows:

1. An initial population of model candidates is randomly
chosen.

2. The fitness of each candidate is evaluated.

3. (a) Select individuals for mating, according to their
fitness

(b) Perform crossover of selected individuals

(c) Perform mutation

(d) Replace individuals on population with offsprings

4. Until the maximum number of generations is reached
repeat from 4.

Key aspects in the algorithm are (i) the fitness function,
(ii) the genetic operators and (iii) the replacement policy.
SORMASA allows to specify each of these aspects.

The effectiveness (fitness) of refactoring actions fit can be
obtained using a function based on structural metrics such
as cohesion ch and coupling cp, as they respectively repre-
sent the relatedness of class functionalities and the degree
of dependency of a class on other classes. Moreover, we also
consider the distance d from the initial model as we pre-
fer solutions that do not disrupt the original architecture.
These variables are combined by weighted product, as

fit = chwch · (1− cp)wcp · (1− d)wd (1)

All metrics are within the unary interval [0, 1]. This is the
function we used in our experimentation, but other fitness
functions may be specified, also including additional metrics.

The available genetic operators are selection (Tournament,
Roulette Wheel), crossover (One-point, Two-points) and mu-
tation (Simple) [2]. The replacement policies supported by
SORMASA are (i) replacement of worst individual, that is
slower but facilitating the algorithm convergence, and (ii)
random replacement of individuals, that is faster [2].

3. AN EXAMPLE OF APPLICATION
Considering the example depicted in Figure 3, we can no-

tice a set of dependencies between ClassA and ClassB, re-
sulting into structure coupling. Moreover the structure is
not cohesive, as methods can be partitioned according to
the usage of class attributes. Moving method3 to ClassA

and method1 to ClassB provides a structure that is mini-
mally coupled and maximally cohesive.

Figure 3: An example of refactoring aimed at mini-
mizing coupling and at maximizing cohesion.

We notice that, these dependencies can emerge and be-
come explicit mostly during the coding phase, as they de-
pend on the actual use of class members. Hereby the need for
refactoring. Obviously, the decision in undertaking refactor-
ing actions depends also on the semantics of code, and this
is a task left to the user. SORMASA only provides support
in exploiting refactoring opportunities that can lead to code
that is more cohesive and less coupled. SORMASA is able to
deal with situation more complex than the one depicted in
Figure 3, including inheritance of properties along with class
generalization/specialization, and interface implementation.

4. CONCLUSIONS AND FUTURE WORK
SORMASA is a tool for supporting refactoring decisions

aiming at optimizing the quality of software system (e.g.
maximizing the cohesion and minimizing the coupling). This
is obtained by implementing a search-based approach that
is able to identify refactoring opportunities and to propose
them to the user. SORMASA is at an early stage of de-
velopment, and we plan to expand the feature set in order
to:

1. Include more optimization techniques. In particular
genetic programming looks a promising approach for
searching a structured set of refactoring primitives that
optimizes a quality function (i.e. fitness function).
This would make possible to consider refactoring pro-
cedures, instead of simple primitives, such as the move
of properties among classes.

2. Integrate SORMASA with Eclipse and NetBeans IDE.
This can lead to have online refactoring suggestions
during the coding of software solutions, thus enabling
a continuous refactoring process.

3. Consider explicit refactoring and semantic constraints,
able to better preserve software requirements.

5. REFERENCES
[1] M. Fowler. Refactoring: Improving the Design of

Existing Code. Addison-Wesley, 1st ed edition, 1999.
ISBN 0-201-48567-2.

[2] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional, January 1989.

[3] T. Mens and T. Tourwé. A survey of software
refactoring. IEEE Trans. Softw. Eng., 30(2):126–139,
2004.

[4] W. P. Stevens, G. J. Myers, and L. L. Constantine.
Structured Design. IBM Systems Journal,
13(2):115–139, 1974.

1st Workshop on Refactoring Tools (WRT'07)

24

Model-driven software refactoring
Position paper for the 1st ECOOP Workshop on Refactoring Tools

Tom Mens, Université de Mons-Hainaut, Belgium

Gabriele Taentzer, Philipps-Universität Marburg, Germany

Abstract. In the current state of the
practice on software development,
there are two very important lines of
research for which tool support is
becoming widely available. The first
one is program refactoring, the
second one is model-driven software
engineering. To this date, however,
the links and potential synergies
between these two lines of research
have not been sufficiently explored.
Therefore, we claim that more
research on model-driven software
refactoring is needed, and we explore
the obstacles that need to be overcome
to make this happen.

Introduction

In the emerging domain of model-
driven software engineering (MDE),
we are witnessing an increasing
momentum towards the use of models
for developing software systems. By
raising the level of abstraction, the
uniform use of models promises to
cope with the intrinsic complexity of
software systems, and thus opens up
new possibilities for creating,
analyzing, manipulating and formally
reasoning about these systems. To reap
all the benefits of MDE, it is essential
to develop languages, formalisms,
techniques and tools that support
model transformation. They will
enable a wide range of different
automated activities such as translation
of models, generating code from
models, model refinement, model
synthesis or model extraction, and
model refactoring. The latter activity
can be considered as the model-level
equivalent of program refactoring

(Fowler, 1999), a well-known
technique to improve the quality of
software. A detailed survey of this
very active research domain can be
found in (Mens and Tourwé, 2004). In
this position paper, we discuss how the
ideas of model transformation and
program refactoring may be combined,
and we explore the research challenges
associated to this combination.

One of the straightforward ways to
address refactoring in a model-driven
context is by raising refactorings to the
level of models, thereby introducing
the notion of model refactoring, which
is a specific kind of model
transformation that allows us to
improve the structure of the model
while preserving its quality
characteristics. Dealing with model
refactorings, however, is far from
trivial. Consider the scenario depicted
on the left of Figure 1. It clearly
illustrates the potentially high impact a
simple refactoring may have on the
software system. We assume that a
model is built up from many different
views (e.g., class diagrams, state
diagrams, use case diagrams,
interaction diagrams, activity
diagrams). We also assume that the
model is used to generate code, while
certain fragments of the code still need
to be implemented manually.
Whenever we restructure a single
model view (step 1 in Figure 1), it is
likely that we need to synchronise all
related views, in order to avoid them
becoming inconsistent (step 2 in
Figure 1). Next, since the model has
been changed, part of the code will

1st Workshop on Refactoring Tools (WRT'07)

25

need to be regenerated (step 3 in
Figure 1). Finally, the manually
written code that depends on this
generated code will need to be adapted
as well (step 4 in Figure 1). This need
for synchronisation between different
model views and between the model
and the code, respectively, upon model
refactoring has not been addressed in
detail in research literature. If a model
is being refactored, how should the
corresponding source code be modified
accordingly? Vice versa, if source code
is being refactored, how will the
models be affected?

Figure 1: Scenarios for model-driven

software refactoring.

From a technical point of view, the
Eclipse Modeling Framework (EMF)
defines an up-to-date standard for
specifying models. In this context,
model refactorings can be considered
as model transformations within one
and the same language. This kind of
rule-based model transformation is
performed “in place”, i.e., the current
model is directly changed and not
copied. An EMF model transformation
framework supporting these properties
has been presented in (Biermann et.al.
2006). It consists of a visual editor, an
interpreter and a compiler to Java.
We are currently carrying out a case
study to get more insight in model-

driven software refactoring. From a
theoretical point of view, we rely on
the theory of graph transformation
(Mens, 2006, Ehrig et.al 2006) to
reason about refactoring in a formal
way. For example, one can reason
about properties such as termination,
composition, parallel dependencies,
and sequential dependencies. From a
technical point of view, we rely on
AndroMDA, a state-of-the-art
generator for web applications from
UML models. AndroMDA drives code
generation heavily by stereotypes and
tagged values. Therefore, refactoring
methods need to be adapted to
AndroMDA models and extended with
more domain-specific information.
Furthermore, also entirely new
“decidated” refactorings for
AndroMDA models need to be
discussed. Due to comprehensive code
generation, model refactoring can
affect the actual
behaviour/functionality of the
application, even those are considered
as standard ones.

Challenges

Based on our experiences, we hope to
shed more light on the following
challenges:
- How can we formally define model
quality, and how can we assess the
(positive or negative) effect of
refactoring on this quality?
- How can we deal with model
synchronisation in an incremental way,
when part of the model (or its
corresponding source code) has been
refactored?
- How can we ensure that a model
refactoring preserves the behaviour?
This requires a formal definition of
(different notions of) “behaviour” in
general, and for models in particular. A
formalism could be used to verify
which behavioural aspects are
preserved by which model refactoring.

1st Workshop on Refactoring Tools (WRT'07)

26

A more pragmatic approach would be
to resort to model testing techniques:
before and after each refactoring step,
tests are executed to ensure that the
behaviour remains unaltered. Even
more challenging is to test or verify the
model transformations directly.
- How can we provide refactorings for
domain-specific modelling languages
in a generic way? Given the large
number of very diverse domain-
specific languages, it is not feasible,
nor desirable, to develop dedicated
tools for all of them from scratch. A
generic model transformation engine
could be the basis to specify and
maybe also analyse refactorings for
domain-specific models. Model
transformation engines based on
different kinds of models have been
developed by e.g. Zhang et al. (2004)
and Biermann et.al. (2006).
- A final challenge is that all of the
above should be implemented in
model-driven development
environments in an as efficient and
scalable way as possible, otherwise it
will never be adopted by practitioners
(Egyed 2006).

References
Biermann, E., Ehrig, K., Köhler, C.,
Taentzer, G., & Weiss, E. (2006).
Graphical Definition of In-Place
Transformations in the Eclipse
Modeling Framework. Proceedings of
International Conference on Model
Driven Engineering Languages and
Systems, O. Nierstrasz (Ed.), Lecture
Notes in Computer Science, 4199,
425-439, Springer
Egyed, A. (2006), Instant consistency
checking for the UML. In: Proc.
International Conference on Software
Engineering (pp. 31-390), ACM
Ehrig, H., Ehrig, K., Prange, U. &
Taentzer, G. (2006), Fundamental
Approach to Graph Transformation,
EATCS Monographs, Springer

Fowler, M. (1999) Refactoring:
Improving the Design of Existing
Code. Addison-Wesley.
Mens, T., & Tourwé, T. (2004). A
Survey of Software Refactoring. IEEE
Transactions on Software Engineering,
30(2), 126-162.
Mens, T. (2006). On the use of graph
transformations for model refactoring.
In Generative and Transformational
Techniques in Software Engineering,
Lecture Notes in Computer Science,
4143, 219-257, Springer.
Mens, T., Taentzer, G., & Runge, O.
(2007). Analyzing Refactoring
Dependencies Using Graph
Transformation. Journal on Software
and Systems Modeling 2007. Springer.
To appear.
Zhang, J., Lin, Y., & Gray, J. (2005).
Generic and Domain-Specific Model
Refactoring using a Model
Transformation Engine, In Model-
driven Software Development -
Research and Practice in Software
Engineering, Springer.

1st Workshop on Refactoring Tools (WRT'07)

27

The “Extract Refactoring” Refactoring

Romain Robbes and Michele Lanza
Faculty of Informatics, University of Lugano - Switzerland

Abstract

There is a gap between refactoring tools and general-
purpose program transformation tools that has yet to
be filled. Refactoring tools are easy to use and well-
established, but provide only a limited number of options.
On the other hand, program transformation tools are pow-
erful but are viable only for large transformation tasks. We
propose an approach in which a developer specifies trans-
formations to a program by example, using an IDE plu-
gin recording the programmer’s actions as changes. These
changes could be generalized to specify a more abstract
transformation, without the need of a dedicated syntax.
Defining refactorings and transformations from concrete
cases would enable more frequent uses of medium scale
transformations.

1 Introduction

Refactoring [1], [2] has become a well-established pro-
gram restructuring technique. Indeed, several major Inte-
grated Development Environments feature a refactoring en-
gine which automates the most common refactoring opera-
tions [3]. However, the refactorings supported by a refac-
toring engine are often limited in number and extent: only
a fixed number of transformations are implemented. If a
more complex change to a program is needed, it must either
be done manually, or with the help of a generic program
transformation tool.

Such program transformation tools [4], [5] are very pow-
erful and allow large scale transformations to be performed
with a much lower cost than if done manually. However,
these tools still have a rather high barrier to entry, making
them only suitable for large-scale transformations: They re-
quire the user to learn a transformation syntax and to have a
high capacity in abstracting and reasoning at the meta level
in order to define the transformation. [5] describes how a
tool named DMS was used to migrate an application from
one component style to another. They mention that such an
approach is not wortwhile for small applications.

2 Restructuring a Program by Example

To fill the gap between refactorings and program trans-
formations we propose an approach based on change
recording and generalization. In such an approach a pro-
grammer provides concrete instances of a transformation
manually and generalizes them to fully specify a transfor-
mation. This approach relies on a framework which records
a programmer’s actions in an IDE and model them as pro-
gram transformations or changes. Each of these changes
takes as input an abstract syntax tree (AST) of the system
being monitored and returns a modified AST of the pro-
gram.

Transformations recorded this way operate on specific
entities of the AST (e.g. add method setConcreteBar to
class AbstractBar). To define a generic transformation, a
programmer takes this concrete transformation and progres-
sively abstracts it until his goal is reached (e.g. add method
setConcreteX to class abstractX).

These transformations would then be instantiated: The
programmer would fix set the variables of the transforma-
tion (telling which class is X), before executing it. He would
then evaluate the results and modify the transformation be-
fore retrying, should the result be incorrect.

3 Example

A programmer, Bob, discovers that class Bar from the
system he is working on has too many responsibilities. Bar
should be split in two classes: each instance of Bar should
hold an instance of class Baz. The behavior encoded in Baz
could thus vary if a subclass of Baz is given. This change
is not trivial: Several methods in Bar need to move in Baz,
and be replaced by delegation stubs. In addition, some ac-
cesses to instance variables of Bar need to be replaced by
accessors.

To implement this change, Bob performs it first con-
cretely, by delegating method foo from Bar to Baz and
changing a direct access to variable bag to an accessor. Bob
then examines his actions in his change history to generalize
his change. He ends up with a generic change affecting two
classes A and B, a variable v and a set of methods SM. The

1st Workshop on Refactoring Tools (WRT'07)

28

transformation moves the implementation of the methods in
SM from A to B, defines delegation stubs in A (forwarding
the call to instance variable v, an instance of Baz), and re-
places accesses of variables belonging to Baz by accessors.

Bob then applies the change to the method foo he first
modified to verify that the results are the same. He then
applies it to all necessary methods in class Bar, and can
store the transformation should he need to move behavior
across classes in the future.

4 Related Work

Apart from program transformation tools, our work is
close to the field of programming by example [6], [7]. Pro-
gramming by example consists in recording user actions
and generalize them in a program. Our approach is based
on the same principle, but is restricted to defining transfor-
mations.

Boshernitsan and Graham defined a visual language
aimed at easing program transformations [8]. The trans-
formation task is simplified, but programmers still have to
specify the transformation: They can not provide a concrete
instance of it.

5 Conclusion

We proposed an approach in which programmers can
specify program transformations by giving concrete exam-
ples of them. Transformations should be expressed more
easily and hence used more often than with current ap-
proaches.

The ideas described in this paper are partially imple-
mented. Recording developer actions and converting them
to change operations is provided by our prototype, Spyware
[9]. Spyware has been previously used for software evolu-
tion analysis. Change generalization and application need
to be implemented, and a suitable user interface should be
built.

References

[1] Opdyke, W.F.: Refactoring Object-Oriented Frame-
works. Ph.D. thesis, University of Illinois (1992)

[2] Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts,
D.: Refactoring: Improving the Design of Existing
Code. Addison Wesley (1999)

[3] Roberts, D., Brant, J., Johnson, R.E., Opdyke, B.: An
automated refactoring tool. In: Proceedings of ICAST
’96, Chicago, IL. (1996)

[4] Roberts, D., Brant, J.: Tools for making impossi-
ble changes - experiences with a tool for transforming
large smalltalk programs. IEE Proceedings - Software
152 (2004) 49–56

[5] Akers, R.L., Baxter, I.D., Mehlich, M., Ellis, B.J.,
Luecke, K.R.: Reengineering c++ component mod-
els via automatic program transformation. In: WCRE,
IEEE Computer Society (2005) 13–22

[6] Halbert, D.C.: Programming by Example. Ph.D.
thesis, Dept. of EE and CS, University of California,
Berkeley CA (1984) Also OSD-T8402, XEROX Of-
fice Systems Division.

[7] Lieberman, H.: Your Wish Is My Command — Pro-
gramming by Example. Morgan Kaufmann (2001)

[8] Boshernitsan, M., Graham, S.L.: Interactive transfor-
mation of java programs in eclipse. In: ICSE. (2006)
791–794

[9] Robbes, R., Lanza, M.: A change-based approach to
software evolution. In: ENTCS volume 166, issue 1.
(2007) 93–109

[10] Rubin, R.: Language constructs for pogramming by
example. 3rd ACM-SIGOIS Conf on Office Informa-
tion Systems, also SIGOIS Bulletin 7 (1986) 92–103

1st Workshop on Refactoring Tools (WRT'07)

29

Abstract: In this position paper, we present the
history, the present and our view of the future of
refactoring support in Eclipse.

Eclipse was among the first IDEs to help bring
refactoring to the mainstream developer. Eclipse
version 1.0 included several highly useful Java
refactorings, which are nowadays staple tools in
most Java developers' toolbox. These included
Rename, Move, and Extract Method. Eclipse 2.0
added a lot of statement-level refactorings such as
Extract and Inline Local Variable, Change Method
Signature, and Encapsulate Field. Some
refactorings, such as Rename, offer great leverage
because of the potential scale of the changes they
perform automatically. Others, like Extract Method,
are more local in scope, but relieve the developer
from performing the analysis required to ensure that
program behavior is unaffected. In both cases, the
developer benefits from reduction of a complex and
numerous changes to a single operation. This helps
to maintain his focus on the big picture. Moreover,
the ability to roll back the changes with a single
gesture enables exploration of structural possibilities
more easily, and without fear of irreparable damage
to the code base.

Eclipse 2.1 included several type-oriented
refactorings such as Extract Interface and
Generalize Type, whose benefits derive from
addressing the problems of both scale and analytic
complexity. These used a common analysis
framework [1] based on theoretical work from
Palsberg et al. [2] for expressing the system of
constraints that ensure the type-correctness of the
resulting program. Such frameworks are important
because they speed the development of entire
families of refactorings, and help ensure their
correctness (e.g., Steimann et al. proposed Infer
Interface refactoring based on the type-constraint
framework [8]). Our belief is that the incorporation
of reusable and extensible frameworks for the
various classical static analyses (type, pointer, data
flow) into Eclipse will be critical to the expansion of
our suite of refactorings.

Eclipse 3.0 saw the beginnings of the capability to
deal with refactoring over multiple artifact types,
which in part dealt with a problem well-known to
Eclipse plug-in developers: the Rename refactoring
had been previously oblivious to references located
in plug-in meta-data, so that renaming an extension
implementation class would break the reference,
leaving the extension class unreachable by the

extension point framework. Since extension points
are the sole mechanism for providing functionality
in Eclipse, this was a serious problem. As a
generalization, the Eclipse Language ToolKit (LTK)
provided a “participant” mechanism, allowing
additional entities to register interest in a given type
of refactoring, and participate in both checking pre-
conditions and contributing to the set of changes
required to effect the refactoring. Using this
mechanism, breakpoints, launch configurations, and
other artifacts outside the source itself can be kept in
sync with source changes. As applications are
increasingly built using multiple languages, this
ability becomes critical to the applicability of
automated refactoring to the mainstream developer.

Eclipse 3.1 included Infer Type Arguments [3], a
migration refactoring that helps Java 5 developers
migrate client code of libraries to which type
parameters have been added. The migration is
important because it can greatly increase static type
safety. The necessary analysis, however, is subtle
and pervasive enough that many developers might
hesitate to perform the migration manually. Of
particular interest was the Java 5 Collections library,
which had been retrofitted with type parameters. In
particular, the Infer Type Arguments refactoring
infers the types of objects that actually flow into and
out of the instances of these parametric types, and
inserts the appropriate type arguments into the
corresponding variable declarations as needed. In
some sense, the underlying analysis reconstructs an
enhanced model of the original application,
recovering lost or implicit information that may be
critical to maintenance or further development. As
such, this kind of refactoring offers great benefits in
maintaining or even "revitalizing" legacy code.

Before Infer Type Arguments can be applied,
however, the library itself must be parameterized.
Java 5 Collections were parameterized manually,
but many other existing libraries would benefit from
added type-safety and expressiveness, if they were
converted to use generics. A recently described
refactoring, Introduce Type Parameter [4], addresses
this complex issue. With the addition of such a
refactoring, the Eclipse JDT would support
developers in a wide spectrum of generics-related
maintenance tasks.

Eclipse 3.2 introduced a team-oriented innovation:
storing API refactorings with the API library itself,
along with a “playback” mechanism to
automatically perform the necessary transformations
on API client code when the new library is imported

Advanced Refactoring in the Eclipse JDT:
Past, Present, and Future

 Robert M. Fuhrer Markus Keller Adam Kieżun
 IBM Research IBM Zurich MIT CSAIL

rfuhrer@watson.ibm.com markus_keller@ch.ibm.com akiezun@csail.mit.edu

1st Workshop on Refactoring Tools (WRT'07)

30

mailto:rfuhrer@watson.ibm.com
mailto:markus_keller@ch.ibm.com

[6,7]. Such tools help smooth the interactions
amongst team members or even amongst teams, by
automatically propagating the effects of changes
from one component to another, or perhaps by
automatically making the necessary changes implied
by another. As software development becomes more
and more distributed, we believe this sort of tooling
will become increasingly vital.

Eclipse 3.3 offers an Introduce Parameter Object
refactoring. Additionally, a great number of
CleanUps that can also be applied to source files on
save, for example Organize Imports, Format, or
adding missing J2SE-5-style annotations.

With all of the functionality now in Eclipse, we are
still a long way from achieving the benchmark of
complete coverage of Martin Fowler's refactoring
catalog [5]. Moreover, this is only a start; many
more transformations are possible. The future
promises more emphasis on parallelism in the form
of multi-core platforms, clusters and massive
machines consisting of thousands or even millions
of processors. Concurrency-aware and concurrency-
targeted refactorings will be important tools to
speed the development of such highly parallel
software. Additionally, most current refactorings
effect changes on relatively fine-grained structures
such as methods, fields, expressions, statements, and
individual types; refactorings that manipulate
coarser-grained structures (e.g., packages, entire
type hierarchies, components etc.) could enable
refining software at nearly the architectural level.

What do we need to deliver on the promise of such a
rich suite of transformations? In Eclipse, a
refactoring consists of several phases: precondition
checking, detailed analysis, and source rewriting.
We make three recommendations that, in our
opinion, would ease the development of
refactorings.

First, we need a simpler source rewriting
mechanism to avoid writing painful imperative code
that creates AST nodes one-by-one. Such a
mechanism would be especially helpful if it
provided assurances of correctness of the generated
constructs, or at least performed run-time checks to
help check correctness. The AST and import
rewriters already shield refactoring implementers
from low-level formatting issues, but higher level
APIs would foster more reuse of "refactoring
components".

Second, we need a better means of specifying the
underlying analyses, which maps onto efficient and
scalable implementations that permit the application
of refactorings to large code bases. Third, much
research is needed in understanding the semantics of

and manipulating the increasingly prevalent
mixtures of languages.

Additional avenues to pursue that would greatly
expand the reach of our tooling include that of the
Holy Grail of developer-specified refactorings, and
that of more general (non-behavior-preserving)
developer-specified transformations. The latter
tooling could replace the dangerous and yet still
prevalent language-oblivious macro processors like
cpp or m4, giving developers static safety combined
with the power to greatly reduce the difficulty of
creating regular code structures.

With the combination of these meta-tools at our
disposal, both Fowler's catalog and an even richer
space of transformations could be within reach;
without them, they are likely to take years to attain.

References
[1] F. Tip, A. Kiezun, and D. Baeumer. Refactoring
for generalization using type constraints. In
OOPSLA, pp. 13–26, Nov. 2003.
[2] J. Palsberg, and M. Schwartzbach, Object-
Oriented Type Systems. John Wiley & Sons, 1993.
[3] R. M. Fuhrer, F. Tip, A. Kiezun, J. Dolby, and
M. Keller. Efficiently refactoring Java applications
to use generic libraries. ECOOP, pp. 71–96, July
2005.
[4] M. Fowler, Refactoring. Improving the Design
of Existing Code. Addison-Wesley, 1999.
[5] A. Kiezun, M. D. Ernst, F. Tip and R. M. Fuhrer.
Refactoring for parameterizing Java classes. In
ICSE, May 2007
[6] J. Henkel, A. Diwan. CatchUp!: capturing and
replaying refactorings to support API evolution, In
ICSE, pp. 274--283, 2005
[7] D. Dig. Using refactorings to automatically
update component-based applications, In OOPSLA
Companion, 2005
[8] F. Steimann, P. Mayer and A. Meissner.
Decoupling classes with inferred interfaces, In SAC,
pp.1404--1408, 2006

1st Workshop on Refactoring Tools (WRT'07)

31

Product Line Variability Refactoring Tool
Fernando Calheiros

Meantime Mobile Creations
fernando.calheiros@cesar.org.br

Paulo Borba
Informatics Center - UFPE

phmb@cin.ufpe.br

Sérgio Soares
Computing Systems Department - UPE

sergio@dsc.upe.br

Vilmar Nepomuceno
Meantime Mobile Creations

vilmar.nepomuceno@cesar.org.br

Vander Alves
Lancaster University - UK
v.alves@comp.lancs.ac.uk

Abstract
With the growing academic and industrial interest in Software
Product Lines (SPL), one area demanding special attention is tool
support development, which is a pre-requisite for widespread SPL
practices adoption. In this paper, we present FLiPEx, a code re-
factoring tool that can be used for extraction of product variations
in the context of developing mobile game SPLs.

Keywords Refactoring, Software Product Lines

1. Introduction
The extractive and the reactive Software Product Line (SPL) [1]
adoption strategies [4] involve, respectively, bootstrapping exist-
ing products into a SPL and extending an existing SPL to encom-
pass another product. In both cases, product line refactorings
[2][3] are useful to guide the SPL derivation process by extracting
product variations and appropriately structuring them. They also
help to assure the safety of the whole process by preserving SPL
configurability [2] the resulting SPL has at least the same in-
stances than the initial set of independent products being boot-
strapped or the initial SPL being extended.

In single system refactoring, ensuring safety and effectiveness of a
refactoring process already requires automation, in practice, In the
SPL context, where complexity increases due to the need to man-
age a high number of variants, such support becomes even more
indispensable. In this context, we describe FLiPEx, a refactoring
tool that implements code transformations [3] for extracting prod-
uct variations from Java classes to AspectJ aspects. Aspects are
used since we need a better modularization technique. The tool is
built on top of Eclipse and interacts with the FLiPG tool, which
integrates with Feature Model (FM) [5] tools for updating a SPL
FM accordingly to code transformations, which, for example,
might turn mandatory into optional features. FLiPEx has been
designed and tested in the context of mobile game SPLs.

The main contribution of this paper is to describe our experience
on designing and developing FLiPEx, its supported refactorings,
and the associated user-centric view of the SPL refactoring
process (Section 2). We also present and discuss FLiPEx’s archi-
tecture (Section 3).

2. FLiPEx
FLiPEx is based on the Eclipse plugin platform and uses the Ec-
lipse infrastructure to perform source code refactorings that ex-
tract product variations. The tool extracts code related to an
application feature and modularizes it using AspectJ aspects. Be-
sides refactoring source code, FLiPEx, interacting with FLiPG,
also updates the SPL feature model and the configuration know-
ledge, for example by including new extracted features into the
model and adding the aspect to the configuration knowledge so

that when the feature is selected, the corresponding aspect will
appear in the product.

We will illustrate the entire refactoring process with one of the
implemented refactorings: Move Extends Declaration to Aspect,
Consider the following example. MainCanvas is a class respon-
sible for managing the graphical part of the application, the graph-
ics depend on the API provided by each device. Depending on the
API available at the devices, the extends clause will change.

import com.nokia.mid.ui.FullCanvas;
public class MainCanvas extends FullCanvas
{…}

or,
import javax.microedition.lcdui.Canvas;
public class MainCanvas extends Canvas {…}

The code snippet below shows the result of applying this refactor-
ing for the first variation. The refactoring consists of checking the
preconditions of the selected code above, which is represented
with bold text, removing the original code, and generating the
AspectJ code:

//core
public class MainCanvas {...}

//Nokia configuration
import com.nokia.mid.ui.FullCanvas;
public aspect NokiaCanvasAspect {

declare parents: MainCanvas extends
FullCanvas;

}

This aspect will insert the variation at the point from where it was
extracted, preserving the behavior of the original product but of-
fering the possibility of plugging in to the common code alterna-
tive variations of that feature.

The refactoring process is presented to the user in the form of a
wizard that the user interacts with to provide all the information
required to perform the refactoring. The user is presented with a
list of suggested refactorings; after selecting the refactoring, s/he
selects or creates the features to which the code to be extracted
belongs, and then chooses the destination aspects and associates
them with the selected features. In the previous example, all desti-
nation features will be alternative, and each aspect will define a
declare parents clause for the MainCanvas class. The possi-
bility of selecting several destination aspects to which the gener-
ated AspectJ construct is copied helps the user to develop
different implementations of the same variation. When the user
performs the extraction of a single feature spread throughout the
code, FLiPEx provides an option to remember the features and
aspects selection, thus simplifying the process of code extraction,
which is minimized to selecting the desired refactoring.

1st Workshop on Refactoring Tools (WRT'07)

32

The following list summarizes the refactorings provided by the
FLiPEx tool in its current version.

• Extract Before Block
• Move Field to Aspect
• Move Import Declaration to Aspect (this uses an

ABC[7] extension we’ve developed)
• Move Interface Declaration to Aspect
• Move Method to Aspect
• Move Extends Declaration to Aspect

The implementation of six more refactorings is planned, including
a family of Extract After Block (call, execution, initialization and
set) refactorings, and more refined ones such as a refactoring for
extracting context and moving static block to before-initialization.

3. Architecture
FLiPEx is part of the FLiP tool suite, built upon the Eclipse plu-
gin platform. Figure 1 shows the relation between FLiPex, FLiPG,
the Eclipse framework, and a Feature Model tool, currently
Pure::Variants [5].

Fig. 1 Architecture

All parts of the FLiPEx schema are independent plugins, Core is
the main plugin and gives support to the Extractors and Valida-
tors. It is responsible for acquiring the selected code from Ec-
lipse’s Java editor, creating an object that contains all the
information needed to perform the validation and extraction, such
as the beginning and final position of the selected code, the file
from which it will be extracted, and the file into which the aspect
code will be written.

Each refactoring has an Extractor, which is responsible for re-
moving the code from the Java class and creating the AspectJ
code that inserts the variation. Each Extractor has a correspond-
ing Validator, which is responsible for analyzing the selected
code to check if it meets all the preconditions of its refactoring
[3]. When a user wants to extract some code, FLiPex runs all
registered Validators through that code, returns a list of the ex-
tractors whose preconditions have been met, and a list of the ex-
tractors that cannot be used and the reasons their Validators
failed.

FLiPEx already provides an abstract base extractor class that takes
care of most of the peripheral tasks that all extractors need to per-
form, such as writing the Java and the aspect files, updating the
imports, and removing the selected code from the Java source file.
With this base extractor, the code of the concrete extractors is

very small and only takes care of creating the aspect code that will
be inserted in the aspect file. Additional refactorings can be added
to the platform through the extractors and validators extension
points that FLiPEx exports to plugin developers. Also additional
feature model tools can be used with FLiP, since it exports an
extension point for feature model tools adapters.

FLiPEx uses JDT’s infrastructure, AST and visitors, to perform
analysis on the preconditions that must be met by the Java classes
and to remove the selected code from the Java class. Due to in-
completeness of AJDT’s [6] plugin infrastructure for AspectJ
AST manipulation, code generation in FLiPEx is currently being
done by string manipulation.

4. Conclusions
We have presented FLiPEx, a tool for SPL refactorings, intro-
duced the refactorings it implements and a few that will be im-
plemented in the future, and described its architecture. Eclipse’s
plugin infrastructure was of easy understanding, not only because
of useful documentation, but also due to the available framework,
which is easy to use. On the other hand, working with AJDT was
difficult because its infrastructure for AST manipulation is not
finished yet, so our code generation is hardcoded with string ma-
nipulation at this point.

As future work, we intend to develop more refactorings, integrate
with other feature model tools, and improve our process of prod-
uct line refactoring.

Acknowledgments
We gratefully acknowledge the other FLiP team members: Isabel.
Wanderley, Geraldo. Fernandes, Andréa. Frazão and former
members Jorge Pereira and Davi Pires. We would also like to
thank Meantime Mobile Creations and C.E.S.A.R. for supporting
the FLiP project. This research was partially sponsored by CNPq
and MCT/FINEP/CT-INFO.

References

[1] P. Clements and L. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2002.

[2] V. Alves, R. Gheyi, T. Massoni, U. Kulesza, P. Borba, and
C. Lucena. Refactoring Product Lines. In Proceedings of
GPCE'06, October 2006. ACM Press.

[3] V. Alves, P. Matos Jr, L. Cole, P. Borba, and G. Ramalho.
Extracting and Evolving Mobile Games Product Lines. In
Proceedings of the 9th SPLC'05. September 2005.
Springer-Verlag.

[4] C. Krueger. Easing the transition to software mass
customization. In Proceedings of the 4th International
Workshop on Software Product-Family Engineering. Spain,
October 2001.

[5] Pure::Variants. http://www.pureystems.com/Variant_
Management.49.0.html, 2007

[6] AJDT: AspectJ Development Tools.
http://www.eclipse.org/ajdt/, 2007.

[7] abc. The AspectBench Compiler.
http://www.aspecbench.org, 2007.

1st Workshop on Refactoring Tools (WRT'07)

33

AJaTS: AspectJ Transformation System
Roberta Arcoverde

Informatics Center - UFPE
rla4@cin.ufpe.br

Sérgio Soares
Computing Systems Department - UPE

sergio@dsc.upe.br

Patrícia Lustosa
Informatics Center - UFPE

plvr@cin.ufpe.br

Paulo Borba
Informatics Center - UFPE

phmb@cin.ufpe.br

Abstract
The interest in aspect-oriented software development naturally
demands tool support for both implementation and evolution of
aspect-oriented software, as well as refactoring current object-
oriented software to aspect-oriented. In this paper, we present
AJaTS – a general purpose AspectJ Transformation System, that
supports AspectJ code generation and transformation. AJaTS
allows the definition of specific transformations, providing a
simple template-based language, as well as pre-defined aspect-
oriented refactorings.

Keywords Refactoring, Aspect-Oriented Programming, Code
Generation

1. Introduction
Aspect-Oriented programming intends to increase software
modularity, by separating the implementation of concerns which
generally crosscut the system. Therefore, AOP addresses some
object-oriented programming issues, like tangled and spread code,
usually related to the implementation of transversal requirements.
AspectJ [3], an aspect-oriented extension to Java [2], allows the
definition of separated entities called aspects, which implement
crosscutting concerns. This separation improves software quality,
since it increases its modularity and reuse.

Due to its power and simplicity, the implementation of aspect-
oriented systems with AspectJ is becoming each day more
common. Tool support for AspectJ transformations has therefore
become very important. However, there are still few tools that
provide AspectJ programs generation and transformation, as well
as refactoring’s definition support.

 In this paper, we present AJaTS – a general purpose AspectJ
Transformation System, that supports AspectJ code generation
and transformation. The main contribution of this paper is to
present AJaTS’s application value, describing its functionalities,
use scenarios and examples of aspect-oriented refactorings
supported.

Section 2 presents an introduction to the AJaTS engine,
including its functionalities, template’s language and application
examples. Next, we discuss the AJaTS’s architecture and
technical points and Section 5 offers our concluding remarks.

2. AJaTS
AJaTS – AspectJ Transformation System – was conceived as a
general purpose AspectJ Transformation System that supports
AspectJ code generation and transformation. The main concept in
AJaTS transformations is the capability of enable the user to
specify templates for matching and code generation. Such
templates are defined in a simple transformation language, similar
to the target language. Such similarity makes AJaTS
transformations easier to define and to understand. This feature
allows the implementation of refactorings in a declarative way

using a language, rather than hard coding refactorings in
programs that manipulate AST or source code. This makes easier
to write, to understand, and to evolve refactorings with AJaTS.

We show examples of both matching and generation templates
below:

//matching template
public aspect #ASPECT_NAME { }
//generation template
public aspect #ASPECT_NAME {
 private String newField;
}

The matching template will match the source code, defining

which classes/aspects will be transformed, as well as which
structures will be saved in AJaTS variables. The generation
template defines the transformation itself.

The basic constructs of the template’s language are the AJaTS
variables (i.e.: #ASPECT_NAME), used as information placeholders
in a transformation. These variables have well defined types that
can vary since a simple identifier until a whole set of methods of
a class or aspect. The AJaTS variables are preceded by a ‘#’
character. AJaTS template’s language also offers more complex
constructs, like conditional control (#if, #else) and loops
(forall).

The AJaTS engine allows the user to define general
transformation templates and applying them to any aspect-
oriented project. Likewise, it also allows the generation of
specific aspects, refactoring object-oriented software to aspect-
oriented.

Besides allowing any developer to write their own
transformation templates, AJaTS also brings some pre-defined
useful transformations, which can be automatically applied to any
Java/AspectJ project. One of these transformations is the
Distribution Concern implementation [5]. It generates aspects that
provide distribution, by modifying the system’s façade, business
entity classes and adding some auxiliary classes to the specified
project. The details of this implementation are extensively
explained elsewhere [5]. An example of how this transformation
affects the system’s code is shown above.

public class Facade {
 fds
 cds
 mds
}
//generated aspect
public aspect FacadeServerSideAspect {
 declare parents: Facade implements IFacade;
 declare parents : entities implements
 java.io.Serializable;
 ...
}

1st Workshop on Refactoring Tools (WRT'07)

34

In this example, entities represents a list of business
entity classes, automatically filled through user’s input. This
transformation example provide distribution through RMI, but it
would be possible to use another distribution technology.

To make the facade instance remote, AJaTS generates an
aspect called Server-side Aspect. It modifies the facade class
(Facade) to implement the following remote interface
(IFacade), also generated by AJaTS, which is demanded by the
RMI API [7].

//generated interface
public interface IFacade implements
 java.rmi.Remote { mds' }

AJaTS also applies some pre-defined recommended

refactorings to AspectJ code. The Extract Pointcut refactoring [4],
for example, is demonstrated below.

//source code
aspect A {
 before() : exp { ... }
 after() : exp { ... }
}
//transformed code
aspect A {
 pointcut pc() : exp;
 before() : pc() { ... }
 after() : pc() { ... }
}

In this example, the pointcut pc is derived from the replicated
expressions exp. All these transformations are implemented
through templates, using the AJaTS template’s language. The
templates that perform these transformations are available at the
project homepage (http://www.cin.ufpe.br/~jats/ajats).

Next section describes the architecture and implementation
issues of AJaTS engine. It also presents the AJaTS plug-in,
designed as an Eclipse IDE extension.

3. Architecture
The AJaTS Transformation Engine was conceived as an extension
to a previously developed Java Transformation System, i.e., JaTS
[1]. Whereas it reuses JaTS mechanisms to perform code
generation and transformation, we still had to extend JaTS
language and engine in order to support the manipulation of
AspectJ code.

In this way, the JaTS parser had to be extended, including
AspectJ syntax support. There were also included nodes to
represent AspectJ constructs, and their respective meta-variables.
These modifications allowed JaTS to create, identify and modify
AspectJ syntax trees, performing transformations also in AspectJ
programs.

In order to increase modularity and abstract JaTS’s code
modifications, AJaTS was designed as an aspect-oriented system
itself. The visitors responsible for manipulating the AST,
performing the engine operations, for example, were extended
with methods inter-type declarations (an aspect-oriented
construct), defined in separated aspects. Thus, we use AspectJ
aspects to integrate AJaTS’s code to the JaTS engine – making it
easier to maintain. Figure 1 summarizes the AJaTS’s extensions
over JaTS’s architecture: the addition of AspectJ nodes, and
extension of the visitors and the parser.

Figure 1 – JaTS x AJaTS architecture

We are currently improving an AJaTS Eclipse IDE plug-in. It

integrates AJaTS main functionalities, such as refactorings
definitions support, to Eclipse editor. This AJaTS implementation
allows the application of its refactorings by code selection
directly, using the Eclipse project explorer and the AspectJ editor
provided by AJDT plug-in [6].

4. Conclusions
The elaboration of this work has shown some of AJaTS’s
limitations. Whereas it is clearly possible to define complex
refactorings, they might require some extra processing, still not
supported by the transformation engine itself. The Extract Method
Calls [3], for example, is a well-known refactoring that involves
Java code removal after its application. In order to realize it,
several code comparisons are needed, which cannot be achieved
with current’s AJaTS version.

As a future work possibility, we propose an AJaTS
improvement, which allows code analysis in a lower granularity
level, to support the definition of such comparisons within the
transformation templates. Another valuable contribution to this
work is the implementation of a context-sensitive approach that
allows the definition of much richer refactorings. Such approach
is currently being developed.

Acknowledgments
We would like to thank the members of Software Productivity
Group (www.cin.ufpe.br/spg) for all their technical contributions
and support, in particular to Adeline Sousa. This research was
partially sponsored by CNPq.

References
[1] F. Castor and P. Borba. A language for specifying Java

transformations. In V SBLP , Brazil. May, 2001.
[2] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language

Specification. Java Series. Addison-Wesley, 2th Edition, 1996.
[3] G. Kiczales et al. Getting started with AspectJ. Communications of

the ACM, 44(10):59-65, October 2001.
[4] R. Laddad. Aspect-Oriented Refactoring Series. TheServerSide.com,

December 2003.
[5] S. Soares, E. Laureano, and P. Borba. Implementing distribution

and persistence aspects with AspectJ. In Proceedings of OOPSLA
2002. ACM Press, 2002.

[6] AspectJ Development Tools. http://www.eclipse.org/ajdt/, 2007.
[7] Sun Microsystems. Java Remote Method Invocation (RMI).

1st Workshop on Refactoring Tools (WRT'07)

35

TOWARDS A CHANGE

SPECIFICATION LANGUAGE FOR

API EVOLUTION

JÜRGEN REUTER AND FRANK PADBERG

Abstract. An important application
of distributed refactoring is automated
restructuring of client source code in re-
sponse to a revised library API. How-
ever, the standard refactorings are in-
sufficient to express all cases of API
changes, mainly because refactorings by
definition preserve semantics. We are
developing a language of transforma-
tion rules for metaprogramming at the
AST level. The transformation rules
specify changes required to adapt client
source code to library changes. In par-
ticular, our language will facilitate spec-
ifying new refactorings.

1. Introduction

Adapting client code to a library with a re-
vised API is a tedious and error prone work if
performed manually. Library vendors often try
to leverage this work by providing informal doc-
umentation or tools for updating client code. In-
formal documentation is of limited help, since it
does not immediately help automatizing the pro-
cess of updating. Typical tools for automatic up-
date that are bundled with revised libraries often
catch only very simple cases that are covered by
regular or context-free pattern matching and re-
placing, but fail as soon as semantic analysis is re-
quired for correct matching. For example, if in an
object-oriented language a library method is re-
named, scoping rules as well as method overload-
ing must be considered in order to update only
those method calls in the client code that refer to
the method with the changed name.

Current implementations of refactorings offered
by IDEs such as Eclipse[1] or NetBeans IDE[2]
use the underlying compiler tools in the IDE to
perform code transformations directly on the ab-
stract syntax representation. This way, they can

Key words and phrases. API Evolution, Automated
Software Adaptation, Refactoring, Metaprogramming.

also utilize results of the semantic analysis of the
underlying compiler. Increasingly more IDEs im-
plement recording and replaying of refactorings
to support distributed refactoring. An obvious
application of distributed refactoring is to record
refactorings on the library API and replay them
at the client code in order to automatically up-
date it. Henkel and Divan[3] follow this approach.
They observe that many API changes can be ex-
pressed as refactorings. Dig and Johnson[4] claim
that about 80% of the API changes of some real-
world APIs that they examined can be expressed
by refactorings. Still, we think that refactorings
as viewed and implemented today are unsatisfac-
tory to specify how to adapt client code to library
changes for a number of reasons.

• API evolution may lead to semantic chang-
es, whereas refactorings by definition pre-
serve behavior.

• Revised libraries most often retain old API
for backwards compatibility, rather than
replacing obsolete code elements, as refac-
torings typically do.

• For a library user, the library code may
be available in binary form only. Hence,
the description of changes must be inde-
pendent from any references to the library
source.

• The set of refactorings implemented by
popular IDEs is not tailored to API evo-
lution. For example, changes must be ap-
plied to the client code only, but not to
the library code.

• Internal changes to the library code that
do not have a visible effect on its interface
are irrelevant and must be ignored when
adapting the client code.

Rather than expressing API changes by stan-
dard refactorings, we think that code restructur-
ings should be expressed on a metaprogramming
basis. The Jackpot[5] scripting language provides
metaprogramming facilities. However, its pattern
matching operates on regular expressions of flat
token sequence patterns that do not consider AST
node types. As a result, patterns tend to match
wrong locations in the code.

Balaban, Tip and Fuhrer[6] use type constraints
to check if a class can be replaced by a different

0

1st Workshop on Refactoring Tools (WRT'07)

36

class without affecting type correctness or pro-
gram behavior. Our work focuses on the actual
program transformation.

Scripting languages like JunGL[7], that oper-
ate on a graph rather than tree representation of
the program, encompass static program semantics
and thus are very powerful and flexible. However,
the script author has to operate on the much more
complicated graph structure and manually extract
static program semantics from the graph. The
authors ignore object-oriented features like inher-
itance and visibility.

Our transformation rules language operates on
the simpler syntax-only tree view of the program
and provides static semantics through built-in func-
tions, thus loosely following the approach of Chow
and Notkin[8]. Chow and Notkin observe that se-
mantic analysis is crucial, but they consider only
a special case (resolving method overloading for a
simple signature). While they operate on the con-

crete syntax, we rely on the metaprogramming
framework recoder[9] that provides an abstract

syntax tree (AST) view of the code. recoder

supports full-fledged scoping and type resolution
based on tree node attribution.

RULE swapTwoParams(MethodDecl M) {

FOREACH LOC(MethodRef: REF(M))

;; for all invocations of M do

RULE {

(P=Expression, Q=Expression)

;; find params P, Q by looking

;; for sequence of expressions

=>

(Q, P)

;; replace (P,Q) by (Q,P)

}

}

Figure 1. Rule for Adapting
Methods in Response to Swapped
Parameters

Our approach is to make recoder’s semantic
analysis features available as functions in our rules
language. For example, given a method declara-
tion M , in our rules language we provide a lo-
cator function LOC(MethodRef : REF(M)) that
will represent all syntax tree locations that have
a method reference that refers to M according
to recoder’s semantic analysis. Imagine that in
the declaration of a method M with two formal
parameters, the parameters have been swapped.

The rule in Fig. 1 will adapt all references to this
method accordingly.

Our rules language is under development and
currently provides

• hierarchical node type matching, such as
matching any expression node or the more
specific expression statement nodes,

• generating collision-free identifiers for in-
troducing new variables, methods, etc.,

• semantic checks as built-in Boolean func-
tions, and

• semantic dereferencing as built-in locator
functions to be used in FOREACH con-
structs.

API changes and refactorings are on the same
level of abstraction, such as the example of re-
naming a method or moving a field shows. There-
fore, we expect that our rules language will also
be useful to express new refactorings in a handy
way, rather than implementing each new refactor-
ing from scratch over and over again.

References

[1] The Eclipse Foundation, “The Eclipse project.”
http://www.eclipse.org/, 2007.

[2] Sun Microsystems, Inc., “NetBeans IDE.” http://

www.netbeans.org/, 2007.
[3] J. Henkel and A. Diwan, “Catchup! capturing and re-

playing refactorings to support api evolution,” in Pro-
ceedings of the 27th international conference on Soft-
ware engineering (ICSE’05), pp. 274–283, May 2005.

[4] D. Dig and R. Johnson, “How do APIs evolve? A

story of refactoring,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, no. 2,
pp. 83–107, 2006.

[5] Sun Microsystems, Inc., “NetBeans IDE Jackpot.”
http://jackpot.netbeans.org/, 2007.

[6] I. Balaban, F. Tip, and R. Fuhrer, “Refactoring sup-
port for class library migration,” SIGPLAN Not.,
vol. 40, no. 10, pp. 265–279, 2005.

[7] M. Verbaere, R. Ettinger, and O. de Moor, “Jungl: a
scripting language for refactoring,” in ICSE ’06: Pro-
ceeding of the 28th international conference on Soft-
ware engineering, (New York, NY, USA), pp. 172–181,
ACM Press, 2006.

[8] K. Chow and D. Notkin, “Semi-automatic update of
applications in response to library changes,” in Proceed-
ings of the 1996 International Conference on Software
Maintenance (ICSM ’96), (Washington, DC, USA),
pp. 359–368, IEEE Computer Society, 1996.

[9] A. Ludwig, Automatische Transformation großer
Softwaresysteme. Dissertation, Universität Karlsruhe
(TH), Fakultät für Informatik, Karlsruhe, Germany,
Dec. 2002.

IPD, Universität Karlsruhe, Germany

E-mail address: {reuter,padberg}@ipd.uka.de

1st Workshop on Refactoring Tools (WRT'07)

37

Holistic Semi-Automated Software Refactoring

Erica Mealy
School of Information Technology and Electrical Engineering

The University of Queensland
St Lucia, Qld 4072, Australia

{erica}@itee.uq.edu.au

Abstract

Post-deployment maintenance and evolution can ac-
count for up to 75% of the cost of developing a software
system. Software refactoring can reduce the costs as-
sociated with evolution by improving system quality, but
although refactoring can yield benefits, the process in-
cludes potentially complex, error-prone, tedious and time-
consuming tasks. It is these tasks that automated refac-
toring tools seek to address. However, although the refac-
toring process is well-defined, current refactoring tools do
not support the full process. In this paper we present a
study of refactoring in terms of automation and situation
awareness in order to propose an ideal allocation of tasks
between the user and automated refactoring support en-
vironments. This allocation defines an ideal level of au-
tomation designed to remove from the user unnecessary
and undesirable processing tasks whilst still maintaining
the user’s understanding of the system they are refactor-
ing. The developed ideal was compared to four sample
refactoring support tools to identify where improvement is
needed to better support users.

1 Introduction

Software refactoring is the process of internal improve-
ment of software without change to externally observable
behaviour [3, 4]. Tourwé and Mens [6] identify three
phases associated with the process of refactoring:

1. Identification of when an application should be refac-
tored (code-smells).

2. Proposal of which refactorings could be applied
where.

3. Application of the selected refactorings.

Software refactoring presents several challenges for
computer-based tool support. During refactoring, users
must synthesize and analyse large collections of data
(code) to identify inappropriate or undesirable features
(such as duplicated code), propose solutions to discov-
ered issues, and perform potentially complex, error-prone
and tedious transformations to rid their systems of these
undesirable features. Throughout the process, the user
must maintain the existing behaviour of their system in
addition to maintaining or improving their own under-
standing (mental model) of the system being refactored.

This requires that the level of automation the tool ex-
hibits must also take care not to negatively affect the user’s
understanding. Through the application of research and
theory from situation awareness [1, 7] and function/task
allocation[5, 2], we aim to improve the quality of support
provided for software refactoring.

2 Automation
Automation is often introduced to aid users by reduc-

ing effort and cognitive load [1, 7]. In the context of soft-
ware refactoring, automation allows the ability to intro-
duce more thorough, complex or subtle code-smell detec-
tion mechanisms, better matching of refactoring transfor-
mations to code-smell instances, and more thorough and
correct refactoring transformations.

Although automation can bring benefits, the addition or
increase of automation in any system has inherent prob-
lems including mistrust (reliability and calibration) and
over-trust (complacency) [1, 7]. For complicated appli-
cations, in which computer-based support is used to assist
the user operating on and understanding a system, over-
automation can have the further problem of interfering
with the user’s understanding [1]. Thus, the addition or
increase of automation in a refactoring tool requires care-
ful analysis and consideration.

Sheridan [5] identifies eight levels of automation (pre-
sented in Figure 1) which can assist in classifying the level
of automation a process exhibits. Sheridan identifies four
general stages in which automation can occur: ‘acquire’,
‘analyse’, ‘decide’ and ‘implement’. For the three-stage
process of software refactoring, code-smell detection maps
to the acquire and analyse stages, the proposal of the ap-
propriate refactoring transformations maps to the analyse
and decide stages, and the application of refactoring trans-
formations maps to the implementation stage.

3 Situation Awareness

A user’ssituation awarenessis defined in terms of their
perception and comprehension of a system’s state, and the
projection to future states and actions relevant to the com-
pletion of a particular task [1]. For refactoring, situation
awareness applies to the developer’s understanding of the
system, including its structure and conventions, and pro-
jections of how actions will affect their ability to maintain
and re-design the system in the future. Endsley [1] argues
that to minimise the negative effects from the introduction

1st Workshop on Refactoring Tools (WRT'07)

38

1. Computer offers no assistance: human must do it all.
2. Computer suggests alternative ways to do the task.
3. Computer selects one way to do the task.
4. Computer selects one way to do the task, and executes that

suggestion if the human approves.
5. Computer selects one way to do the task, and executes that

suggestion if the human approves, or allows the human a
restricted time to veto before automatic execution.

6. Computer selects one way to do the task, and executes au-
tomatically, then informs the human.

7. Computer selects one way to do the task, and executes au-
tomatically, then informs the human only if asked.

8. Computer selects, acts, and ignores the human.

Figure 1. Sheridan’s levels of automation [5]

of automation, systems should be designed to maximise
user involvement whilst reducing the load that would have
been associated with doing the task manually.

4 Ideal Automation for Refactoring

In order to appropriately allocate the sub-tasks of
software refactoring between computers (automated) and
users (manual), we have used Fitts’ MABA-MABA (Men
[sic] are better at-Machines are better at) List [2]. The
items from Fitts’ List relevant to software refactoring are
for usersReasoning inductively(generalisation) andEx-
ercising judgement, and for automationReasoning deduc-
tively (specialisation).

Code-smell detection requires both inductive and de-
ductive reasoning and cannot by wholly automated as not
all code-smells can be quantified. The proposal and selec-
tion of appropriate refactoring transformations to remedy
code-smells similarly requires both inductive and deduc-
tive reasoning. When considered in context, the partial
automation of the proposal stage leads to the integration
of the whole refactoring process within a single tool. The
software refactoring task that requires judgement is the de-
cision on what refactoring transformations will be applied
to remedy an identified code-smell instance. This need for
judgement is due to the subjective nature of the goal of
refactoring. Using Sheridan’s levels, the ideal level of au-
tomation for refactoring is 6-6-2-4 (Figure 2).

5 Existing Automation in Refactoring tools

To identify areas in which current automation is not
ideal, we studied four sample refactoring tools to ascer-
tain their levels of automation. The tools selected were:
Eclipse 3.2, Condenser 1.05, RefactorIT 2.5.1, and Eclipse
3.2 with the Simian UI 2.2.12 plugin. These tools were
selected as representative of available automated refac-
toring tools, with the inclusion of Eclipse (open source)
and RefactorIT (commercial) due to their reputation as
premiere refactoring transformation tools, and Condenser
(command-line) and Simian (GUI) as representative of
code-smell detection tools.

The graph in Figure 2 shows the levels of automation
for the four refactoring tools studied compared to the pro-
posed ideal level presented in Section 4. From this graph it
can be seen that none of the studied tools provided the ideal

Figure 2. Automation of refactoring tools

level of automation. The tools exhibiting automation clos-
est to the ideal are Eclipse with the Simian UI plugin and
Condenser, however these tools still over-automated and
under-automated key parts of the refactoring process. Im-
portantly, none of the tools studied attempted to automate
the proposal stage, and as such none of the tools exhibited
a holistic approach to supporting the refactoring process.

6 Conclusion

This paper presented the case for a holistic approach
to automating software refactoring. This approach was
designed to balance automation with user involvement to
meet the aim of removing the burden of complex, error-
prone, tedious and time-consuming tasks, whilst still sup-
porting user involvement and allowing maximum program
understanding and situation awareness. An ideal level of
automation was presented, and when compared against au-
tomation levels found in existing refactoring tools, it was
found that there is still work required to produce an ideal
automated software refactoring support environment.

References

[1] M. Endsley. Automation and situation awareness. In R. Para-
suraman and M. Mouloua, editors,Automation and hu-
man performance: Theory and applications, pages 163–181,
1996.

[2] P. Fitts. Human engineering for an effective air navigation
and traffic control system. Technical report, Ohio state Uni-
versity Foundation Report, Columbus, OH, 1951.

[3] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[4] W. Opdyke.Refactoring Object-Oriented Frameworks. PhD
thesis, Department of Computer Science, 1992.

[5] T. Sheridan. Function allocation: Algorithm, alchemy or
apostasy?International Journal of Human-Computer Stud-
ies, 52(2):203–216, 2000.

[6] T. Tourwé and T. Mens. Identifying refactoring opportunities
using logic meta programming. InProceedings of 7th Euro-
pean Conference on Software Maintenance and Reengineer-
ing, pages 91–100. IEEE Computer Society, 2003.

[7] C. Wickens, S. Gordon, and Y. Liu.An Introduction to Hu-
man Factors Engineering. Addison-Wesley Longman, 1998.

1st Workshop on Refactoring Tools (WRT'07)

39

Engineering usability for software refactoring tools

Erica Mealy
School of Information Technology and Electrical Engineering

The University of Queensland
St Lucia, Qld 4072, Australia

{erica}@itee.uq.edu.au

Abstract

The goal of refactoring tools is to support the user in
improving the internal structure of code whilst maintain-
ing its existing behaviour. As a human-in-the-loop process
(i.e. one that is centered around a user performing a task),
refactoring support tools must aim to meet high standards
of usability. In this paper we present an initial usabil-
ity study of software refactoring tools. During the study,
we analysed the task of software refactoring using the ISO
9241-11 standard for usability. Expanding on this analy-
sis, we reviewed 11 collections of usability guidelines and
combined these into a single list of 34 guidelines. From
this list and the definition of refactoring, we developed 81
usability requirements for refactoring tools. Using these
requirements, four sample refactoring tools were studied
to analyse the state-of-the-art for usability of refactoring
tools. Finally, we have identified areas in which further
work is required.

1 Introduction

Software refactoring is a software development process
designed to reduce the time and costs associated with soft-
ware development and evolution. Refactoring is defined as
the process of internal improvement of software without
change to externally observable behaviour [1, 5].

Usability of software refactoring tools is an area in
which little research has been performed. In general,
the production of and research into software development
tools often overlooks the issue of usability [6]. In the
area of refactoring, usability related research has focused
on understandability of error messages and assisting the
user in the selection of text with a mouse cursor prior to
the application of an automated refactoring transformation
[3]. We believe that there are more important aspects af-
fecting the usability of existing refactoring tools and we
wish to identify and address these issues. To identify ar-
eas in which usability can be improved, we have devel-
oped usability requirements for refactoring tools and have
used these requirements to analyse the state-of-the-art for
refactoring tools. To achieve this, we sought usability de-

sign guidelines which could yield a set of usability require-
ments when combined with a definition of the process of
refactoring using the ISO 9241-11 interface design stan-
dard [2].

In general, the process of usability engineering con-
sists of the identification of the intended user group for the
tool, and the tailoring of the tool’s design specifically for
that user group. The implementation of estabilished stan-
dards, norms (etc.), both general and domain-specific, that
make human-computer interaction more efficient, produc-
tive and desirable, are also included in ‘designing for the
intended user group’. Nielsen [4] defines theUsability En-
gineering Life Cycleas a framework for more consistently
and formally addressing the issue of designing or engineer-
ing for usability. In this paper we will present the results
of the application of the pre-design and design phases of
this life cycle.

2 Defining Refactoring for usability

To design refactoring support with maximum usability,
we used the ISO 9241-11 specification as a framework to
define the process of refactoring in terms of goals, users,
tasks, environment and equipment (which maps to stage
1 of Nielsen’s Usability Engineering Life Cycle). For ex-
ample, the goals of refactoring tools are defined as ‘assist-
ing a software developer to perform software refactoring
in the most efficient and effective means possible’, and
‘not hindering the developer’s ability to understand and
reason about the software system being refactored and de-
veloped’. This specification of refactoring is reusable and
is available online1.

3 Usability guidelines

Guidelines have been used for both the design and eval-
uation of user interfaces since the early 1970s. In look-
ing at usability guidelines, we found many different sets
of guidelines, rules, heuristics, maxims, etc., yet no one
set was complete. During our study we collected 126
guidelines from 13 sources from 1971 to 2000. To man-
age the number of individual guidelines, we collated and

1http://www.itee.uq.edu.au/ erica

1st Workshop on Refactoring Tools (WRT'07)

40

categorised the lists based on fundamental groupings that
were evident across the initial 13 sources. Duplicate guide-
lines and those addressing a similar or closely-related con-
cept became more prevalent as the categorised list became
larger. We distilled the categorised list of 126 initial guide-
lines into 34 to provide a more usable list.

The results of this study of usability guidelines yielded
a single, published list of guidelines (available online1)
that are applicable to not just the development of software
refactoring tools, but also general software systems. These
guidelines are particularly useful for application in Usabil-
ity Engineering Life Cycle stage ‘Guidelines and Heuristic
Analysis’.

4 Usability requirements

To improve the usability of software refactoring tools,
we developed a set of usability requirements. These re-
quirements can be used in the design of new software
refactoring tool support as well as to evaluate existing tools
to identify issues and improve usability in subsequent iter-
ations. These requirements were developed through a pro-
cess of refinement using the 34 distilled usability guide-
lines and the definition of refactoring using ISO 9421:11.
This process yeilded 81 usability requirements which are
available online1. An example of the refinement of a
guideline into a requirement using the ISO 9241-11 spec-
ification of refactoring is Requirement 3 “Make refactor-
ing tool interface work and look same as code editors and
related tools”. This requirement was derived from guide-
line C1 “Ensure things that look the same act the same
and things that look different act different” and the refac-
toring ISO 9241-11 equipment specification of a software
development environment. A similar requirement is de-
rived mandating the use of operating system standards and
norms.

5 Usability Analysis

To analyse the current level of usability in existing
refactoring tools, we evaluated four refactoring tools us-
ing the 81 usability requirements we developed. The tools
evaluated were: Eclipse 3.2, Condenser 1.05, RefactorIT
2.5.1, and Eclipse 3.2 with the Simian UI 2.2.12 plugin.
These tools were selected as representative of available
automated refactoring tools, with the inclusion of Eclipse
(open source) and RefactorIT (commercial) due to their
reputation as premiere refactoring transformation tools,
and Condenser (command-line) and Simian (GUI) as rep-
resentative of code-smell detection tools. This study aimed
not to focus on particular issues exhibited by these tools,
but to instead identify trends across the tools that would al-
low us to determine usability issues requiring further work.

Overall, our evaluation found that there is much work
to be done on the usability of refactoring tools. The area in
which tools performed best was consistency with existing
operating system and environment standards. The require-
ments that the tools performed most poorly on were related

to user control, i.e. the ability to define new, and modify or
delete existing code-smells, code-smell-to-transformation
proposals and transformations. Providing feedback about
code-smell instances to the user within the user’s regular
development view and the integration of support for the
whole refactoring process are other areas identified by the
evaluation. Another area is the user’s control over the level
of automatic investigation, i.e., whether refactoring tools
act reactively (i.e. only when the user instructs) or actively
(such as with incremental compilation) which is vurrently
is not supported by any of the studied tools. It is feedback
to the user, integration of the stages of refactoring and the
level of automatic investigation that is the focus of our re-
search.

6 Conclusion

This paper has presented a summary of three contri-
butions to the area of usability of refactoring tools. The
first contribution is a set of collated and distilled usabil-
ity guidelines to aid in the development of usable software
tools in a general, as well as refactoring tool context. The
second contribution is a set of 81 usability requirements
for software refactoring environments. The final contri-
bution is a usability analysis of four existing refactoring
tools, baselining the level of usability that exists for refac-
toring tools. This analysis has identified areas in which
further work is necessary to develop better and more us-
able software refactoring tools.

References

[1] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley, 1999.

[2] International Standards Organisation & InternationalElec-
trotechnical Commission, Geneve, Switzerland.Interna-
tional Standard ISO 9241-11 Ergonomic requirements for
office work with visual display terminals (VDTs) Part 11:
Guidance on Usability, 1998.

[3] E. Murphy-Hill. Improving refactoring with alternate pro-
gram views. Technical Report TR-06-05, Portland State Uni-
versity, Department of Computer Science, 2006.

[4] J. Nielsen. The usability engineering life cycle.IEEE Com-
puter, 25(3):12–22, 1992.

[5] W. Opdyke.Refactoring Object-Oriented Frameworks. PhD
thesis, Department of Computer Science, 1992.

[6] M. Toleman and J. Welsh. Systematic evaluation of design
choices for software development tools.Software – Concepts
and Tools, 19:109–121, 1998.

1st Workshop on Refactoring Tools (WRT'07)

41

Automated Testing of Eclipse and NetBeans
Refactoring Tools∗

Brett Daniel Danny Dig Kely Garcia Darko Marinov
Department of Computer Science

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA

{bdaniel3, dig, kgarcia2, marinov}@cs.uiuc.edu

ABSTRACT
This position paper presents our experience in automated
testing of Eclipse and NetBeans refactoring tools. Test in-
puts for these tools are Java programs. We have developed
ASTGen, a framework for automated generation of abstract
syntax trees (ASTs) that represent Java programs. ASTGen
allows developers to write imperative generators whose exe-
cutions produce ASTs. ASTGen offers a library of generic,
reusable, and composable generators that make it relatively
easy to build more complex generators. We have developed
about a dozen of complex generators and applied them to
test at least six refactorings in each tool. So far, we have
found 28 unique, new bugs and reported them, 13 in Eclipse
Bugzilla and 15 in NetBeans Issuezilla. This is ongoing
work, and the numbers are increasing.

We advocate the importance of automated testing—not
only automated execution of manually written tests (using
JUnit or XTest) but also automated generation of test in-

puts. We have developed several oracles that programmati-
cally check whether a refactoring tool correctly made some
program transformations (or gave warning that a specific
refactoring should not apply to the given input program).

We hope that this paper motivates developers of refac-
toring tools to incorporate such generation and oracles into
their tools. While most refactoring tools are already quite
reliable, we believe that the use of such generation would
further increase reliability, to the benefit of all users of refac-
toring tools. Moreover, we argue that such generation can
be useful for testing other related tools that take (Java)
programs as inputs. To encourage collaboration and enable
others to try out ASTGen, we have made our ASTGen code
and all experimental results publicly available at the AST-
Gen web page, http://mir.cs.uiuc.edu/astgen

1. WHY AUTOMATED GENERATION?
Testing involves several activities, including generation of

test inputs (and expected outputs), execution of test inputs,
and checking of obtained outputs. For a refactoring tool,
each input consists of a program and a refactoring to apply,
and each output is either a refactored program or a warning
if the specific transformation might change the program’s
semantics.

∗This paper is based on the work [1] to be presented at
the 6th joint meeting of the European Software Engineer-
ing Conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering (ESEC/FSE 2007) in
Dubrovnik, Croatia.

It is often said that manual testing is tedious and error-
prone. Indeed, developers of refactoring tools automate a
large portion of testing. For instance, we have counted 2,673
JUnit tests for the major refactorings in Eclipse version 3.2.
JUnit automatically executes these tests and checks the ob-
tained outputs. However, JUnit does not automatically gen-
erate test inputs, and to the best of our knowledge, Eclipse
developers manually wrote their JUnit tests.

Automated generation of test inputs has one significant
benefit: it makes it easier to generate a large number of test
inputs, which hopefully results in a more thorough testing
and enables finding bugs before they are encountered in pro-
duction runs. However, automated generation of test inputs,
especially for refactoring tools, poses several challenges. We
discuss these challenges and our solution.

1.1 Generation of Input Programs
How does one automatically generate valid Java programs

to give as inputs to a refactoring tool? There is no obvi-
ous answer. While simpler test inputs, say one integer or a
sequence of integers, can be generated even randomly, it is
unclear how one could randomly generate sequence of char-
acters (or abstract syntax trees) that satisfy the syntactic
and semantic constraints for a valid Java program. More-
over, even if one could generate programs randomly, how
would one ensure that these programs have properties rele-
vant to the refactoring under test?

We have developed the ASTGen framework to generate
a large number of relevant Java programs. ASTGen is not
fully automatic. It requires that the developer write a class
(which we call generator) that can produce test inputs rel-
evant to a specific refactoring. ASTGen provides a library
for generation of simple AST nodes. This library makes it
easy to build more complex combinations of AST nodes. We
have written several generators that produce Java programs
for testing refactoring engines. More details are in the con-
ference paper [1]. We point out that the generators do not
always produce programs that compile. (The column “CI”
in Figure 1 shows how many of the generated inputs compile
and are thus valid inputs for a refactoring.)

1.2 Execution of Refactorings
How does one automatically run a refactoring tool on the

automatically generated input programs? This is seemingly
an easy task: just develop a piece of code that (efficiently)
runs a specific refactoring on each of the generated pro-
grams. However, we have encountered a number of prob-
lems while developing this piece of code, in both Eclipse and

1st Workshop on Refactoring Tools (WRT'07)

42

Generation Oracles Bug

Refactoring Generator TGI Time CI WS DNC C/I Diff Reports

[min:sec] Ecl NB Ecl NB Ecl NB

Rename(Method) MethodReference 9540 89:12 9540 3816 0 0 0 0 5724 0 0
Rename(Field) FieldReference 3960 28:20 1512 0 0 0 304 0 40 0 1

EncapsulateField

ClassArrayField 72 0:45 72 0 0 48 0 0 48 1 0
FieldReference 3960 15:19 1512 0 0 320 432 14 121 4 3

DualClassFieldRef. 14850 41:45 3969 0 0 187 256 100 511 1 2
DualClassGetterSetter 576 8:45 417 216 0 162 162 18 216 2 2

PushDownField
DualClassFieldRef. 4635 10:56 1064 760 380 152 228 0 380 2 2

DualClassParentDecl. 360 6:50 270 246 168 18 90 0 78 1 2
PullUpField DualClassChildDecl. 60 1:14 44 0 18 10 6 0 44 1 1

MemberToTop
ClassRelationships 70 0:36 51 0 0 0 2 0 2 0 1
DualClassFieldRef. 6600 29:04 2824 0 0 353 507 0 2824 1 1

Total Bugs: 13 15

Figure 1: Refactorings tested and bugs reported, Ecl = Eclipse, NB = NetBeans
TGI = Total Generated Inputs, Time in [min:sec], CI = Compilable Inputs,
WS = WarningStatus, DNC = DoesNotCompile, C/I = Custom/Inverse, Diff. = Differential

NetBeans. These problems have been partly due to certain
design decisions in these refactoring tools.

Two key problems that we encountered were (1) how to
reduce the dependency of the refactoring under test from
the rest of the IDE and (2) how to efficiently execute the
refactorings. We still have not solved the first problem sat-
isfactorily in Eclipse. Namely, our testing of refactorings
requires that we run Eclipse in the GUI mode, which not
only slows down the execution but also disallows using (fast)
servers with a text-only connection. We still have not solved
the second problem satisfactorily in NetBeans. Namely, our
testing does not release all the resources after each refactor-
ing. (Specifically, it creates a new project for each input pro-
gram.) This results in an increasing memory usage over time
and requires that we rerun NetBeans several times, split-
ting a large number of input programs into several smaller
batches that can each fit into one run. We hope that de-
velopers of refactoring tools can provide better “hooks” for
running automatically generated inputs programs.

1.3 Checking of Outputs
How does one automatically check the outputs that a refac-

toring tool produces for the automatically generated inputs?

While this problem is related to checking correctness of com-
pilers [2] (the output program should be semantically equiv-
alent to the input program), in addition, the refactored pro-
gram should have the intended changes.

We have developed a variety of oracles for programmatic
checking of refactoring tools. The simplest oracle checks
that the refactoring tool does not throw an uncaught excep-
tion, but we have not found such a case in either Eclipse or
NetBeans. The WarningStatus (WS) oracle checks whether
the tool produces a warning or a refactored program. The
DoesNotCompile (DNC) oracle checks whether the refac-
tored program compiles. The Custom/Invertible (C/I) or-
acle checks specific structural properties (e.g., moving an
entity should indeed create the entity in the new location)
or invertibilty (e.g., renaming an entity from A to B and
then from B to A should produce the same starting input
program). The Differential (Diff) oracle [2] gives the same
input program to both Eclipse and NetBeans and compares
whether they produce the same output.

1.4 Experimental Results
When is testing with automatically generated inputs ap-

plicable? There are at least two benefits of manually writ-

ten tests. First, in test-driven development, the tests are
written even before writing the code, and thus such tests
help in designing the code. Second, in regression testing,
when developers want to get a quick feedback about the
code changes they are making, it is better to use a smaller
number of tests manually written (or previously manually
selected from some automatically generated tests) than to
use a large number of automatically generated tests. How-
ever, we claim that when developers can run tests for longer
time or want to exercise their code more thoroughly, it is ap-
propriate to use automatically generated tests (in addition
to manually written tests).

Figure 1 shows some of our experimental results that sup-
port the above claim. (The full results are available in the
conference paper [1].) The “Time” column shows the total
time required to generate the input programs and to run
them in Eclipse. Running is over an order of magnitude
slower than generation. Testing each refactoring takes less
than an hour and a half (on a a dual-processor 1.8 Ghz
machine), and the entire suite can be run overnight. The
benefit is finding new bugs, as shown by a total of 28 new
bugs in Eclipse and NetBeans.

2. BEYOND REFACTORING TOOLS
We believe that automated testing based on ASTGen gen-

erators is useful beyond refactoring tools. In principle, any
tool that operates on programs (or abstract syntax trees)
could benefit from ASTGen. The main question is how
easy/hard it is to write the generators that produce inter-
esting programs that satisfy the required constraints. We
plan to investigate this in new application domains, e.g., in
other parts of Eclipse and NetBeans IDEs.

3. REFERENCES
[1] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated

testing of refactoring engines. In ESEC/FSE 2007, Dubrovnik,
Croatia, Sept. 2007. (To appear.).

[2] W. M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1), 1998.

1st Workshop on Refactoring Tools (WRT'07)

43

Refactoring in Erlang, a Dynamic Functional Language∗

László Lövei, Zoltán Horváth, Tamás Kozsik, Roland Király,
Anikó Vı́g, and Tamás Nagy

Eötvös Loránd University, Budapest, Hungary

Abstract

Refactoring in object-oriented languages has been
well studied, but functional languages have received
much less attention. This paper presents our ideas
about refactoring in Erlang, a functional program-
ming language developed by Ericsson for building
telecommunications systems. The highlights of our
work is dealing with the strong dynamic nature of
Erlang and doing program manipulations using a
relational database.

1 The Erlang programming
language

Erlang/OTP [1] is a functional programming lan-
guage and environment developed by Ericsson,
designed for building concurrent and distributed
fault-tolerant systems with soft real-time character-
istics (like telecommunication systems). The core
Erlang language consists of simple functional con-
structs extended with message passing to handle
concurrency, and OTP is a set of design principles
and libraries that supports building fault-tolerant
systems.

Erlang is a functional language which means that
a program is run by successively applying func-
tions. Branches of execution are selected based
on pattern matching of data and conditional ex-
pressions, and loops are constructed using recursive
functions. Variables are bound a value only once
in their life, they cannot be modified. Most con-
structs are side effect free, exceptions are message
passing and built-in functions (BIFs).

∗Supported by GVOP-3.2.2-2004-07-0005/3.0 ELTE
IKKK, Ericsson Hungary, ELTE CNL, and OMAA-ÖAU
66öu2.

The speciality of Erlang is its strong dynamic na-
ture. Variables are dynamically typed, there is no
compile time type checking. The identifiers of func-
tions are of a special data type called atom and they
can be generated at run-time and passed around in
variables. Execution threads are also created at run
time, and they are identified by a dynamic system.

The challenge in building an Erlang refactoring
tool is to cover as wide area of language constructs
as possible by static (compile-time) analysis, and
to identify the exact conditions when we can guar-
antee behaviour-preserving transformations.

2 Refactoring in Erlang

While refactoring in object-oriented languages has
been well studied [3], functional languages have re-
ceived much less attention, and most work is ori-
ented towards pure functional languages with a
strict type system. Our work has been focused on
those refactorings that are applicable in Erlang as
well and help us to develop a framework that makes
implementation of other refactorings easy.

2.1 Transforming expressions

Expressions are the basic building blocks of func-
tional programs, and many of the refactorings
move, restructure, or modify expressions. We found
that to preserve the behaviour of an expression,
the most important thing is to maintain the bind-
ing structure of its variables. We defined the bind-
ing structure using the concepts of variable scope
and visibility. Another expression-related concept
is whether an expression is side effect-free.

We have studied the rename variable and extract
function refactorings that use only these concepts.

1st Workshop on Refactoring Tools (WRT'07)

44

2.2 Tracking function references

The most frequently used expression is the func-
tion application, and refactorings that transform a
function call, must transform the function defini-
tion accordingly. Unfortunately, finding the rela-
tion between function calls and function definitions
is not always possible by static analysis. Remember
that the identifier of a function is really a data tag.
Most function calls include this tag as a constant,
but it is possible to create the tag at run-time, and
there are built-in functions that call a function with
an argument list constructed at run-time.

We classified these constructs as directly sup-
ported (e.g. constant name and static argument
list), partially supported (e.g. static name and dy-
namic argument list) and not supported (e.g. name
read from standard input) calls, and plan to cover
a broader range using data flow analysis (e.g. func-
tion name stored in a variable, or lambda expres-
sions).

Refactorings that use only this kind of informa-
tion are rename function and reorder function argu-
ments, and generalisation needs the binding struc-
ture and function reference tracking as well.

2.3 Restructuring data types

Erlang has no static type information attached to
variables, but types exist in the language, and they
are strictly checked at run-time. Available com-
pound types are lists, tuples, and records, these
can be used to build more complex data struc-
tures. Sometimes the transformation of such a data
structure is desired, but it is hard to describe what
changes are to be made, and usually data flow anal-
ysis is required to find the expressions that manip-
ulate the data.

Our most recent work is the analysis of such
a transformation, when a record is introduced to
store the elements of a tuple. This refactoring
transforms the expressions that work with the same
(or slightly modified) tuple, and these expressions
can be found by a kind of data flow analysis. Track-
ing the way of a piece of data is easy when there are
no side effects, the complicating factors are function
references and constructs where more than one type
of data is handled.

A simpler refactoring on data structures we dealt
with is tuple function arguments.

3 Implementation

Our approach to refactoring is that we express the
side conditions and code transformations by graph
manipulation. We build a semantic graph starting
from the abstract syntax tree of the source code
and extending it with edges that represent seman-
tic relations between nodes. Semantic concepts like
variable scoping or function references are encapsu-
lated into the graph this way.

A working prototype software is built using these
concepts, written in Erlang. Building on previ-
ous experiences with Clean refactoring [2], we de-
cided to represent the semantic graph in a relational
database, and use SQL to describe the manipula-
tions. Every node type has a table that contains
the attributes of the nodes and the links to other
nodes (represented by their unique ID). A nice fea-
ture of this representation is that fixed length graph
traversals can be expressed by joining tables.

Refactoring Erlang programs is a joint research
with the University of Kent, building on expe-
riences with Haskell and Clean. While we are
sharing ideas and experiences, they are investi-
gating a completely different implementation ap-
proach using traversals on annotated abstract syn-
tax trees [4].

References

[1] J. Armstrong, R. Virding, M. Williams, and
C. Wikstrom. Concurrent Programming in Er-
lang. Prentice Hall, 1996.

[2] P. Diviánszky, R. Szabó-Nacsa, and Z. Horváth.
Refactoring via database representation. In The
Sixth International Conference on Applied In-
formatics (ICAI 2004), volume 1, pages 129–
135, Eger, Hungary, 2004.

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design
of Existing Code. Addison-Wesley, 1999.

[4] H. Li, S. Thompson, L. Lövei, Z. Horváth,
T. Kozsik, A. Vı́g, and T. Nagy. Refactor-
ing Erlang programs. In The Proceedings of
12th International Erlang/OTP User Confer-
ence, Stockholm, Sweden, November 2006.

1st Workshop on Refactoring Tools (WRT'07)

45

Operation-based Merging of Development Histories

Tammo Freese
Department of Computing Science

University of Oldenburg
Germany

tammo.freese@informatik.uni-oldenburg.de

ABSTRACT
In development teams, refactorings can lead to merge prob-
lems if text-based merging algorithms are used. This pa-
per describes a system which aims at reducing these prob-
lems by an operation-based merging of development histo-
ries captured in the development environments. In the case
of library development, the merged development histories
can later be used for automated migration of the libraries’
clients.

1. INTRODUCTION
In development teams, changes are typically applied to local
copies of the source code. Other workspaces remain unaf-
fected by refactorings applied locally.

Text-based merging of the changes in different workspaces
can lead to problems when refactorings have been applied:
refactorings in one workspace may conflict with changes in
the other, or they may not make some necessary changes, as
they are not re-applied to the code of the other workspace.

This paper describes a system which aims at reducing the
merge problems by using development histories, i.e. the se-
quence of edits and refactorings from the personal workspaces,
as the foundation for an operation-based merging.

2. CAPTURING DEVELOPMENT HISTO-
RIES

To capture a development history, the IDE needs to be ex-
tended so that changes to the program, refactoring informa-
tion and compile results are captured.

The recorded data is then compacted by removing refac-
toring information for refactorings which start or end at a
non-compilable state and summarizing subsequent edit steps
to one edit step. With the additional requirement that the
code compiles at begin and end of the capturing, the result is
a sequence of edit and refactoring steps/operations, where
the code compiles before and after each of them. We call
this sequence a development history.

3. MERGING DEVELOPMENT HISTORIES
In merging we have a program p, a local development his-
tory L = l1, . . . , ln which changes p to pL = (l1; . . . ; ln)(p)
and a development history R = r1, . . . , rm from the version
control repository which changes p to pR = (r1; . . . ; rm)(p).
The merge result should be adapted steps L′ = l′1, . . . , l

′
k

and R′ = r′
1, . . . , r

′
s so that applying the adapted local steps

to the program from the repository results in the same pro-
gram as applying the adapted repository steps to the local
program: (l′1; . . . ; l′k)(pR) = (r′

1; . . . ; r′
s)(pL).

To merge the development histories, the first local and the
first repository step are merged, resulting in adapted local
and repository steps. Then the adapted repository step(s)
are merged with the second local step. This is repeated for
all local steps, and then the whole process is repeated for all
repository steps.

4. MERGING TWO OPERATIONS
Two operations l and r commute on program p iff p′ =
(l; r)(p) = (r; l)(p) and p′ compiles, otherwise they conflict.
When merging two operations, it is in many cases possible to
rule out a conflict, or to detect and resolve conflicts without
inspecting the program source.

Refactorings only conflict if one invalidates the preconditions
of the other, otherwise, they can be applied in any order. As
an example, the refactorings rename method a to b in class
X and rename class Y to Z commute.

An edit operation σ conflicts with a refactoring operation ρ if
it either invalidates ρ’s preconditions, or changes the places
in the code which ρ changes. Again, conflicts can often be
ruled out. For example, rename class A to B and an edit
operation that changes class C which does not include any
reference to the names A and B commute.

Two edit operations obviously conflict if they change the
same places in the code. But even when changes are applied
to different files, conflicts can occur, such as one developer
making method a() private, while the other introduced a
call of method a() in another class. Ruling out such con-
flicts without needing to compile the merge result involves
an analysis of the added, removed and changed names in
both edits.

5. RELATED WORK
The system described here is based on the author’s earlier
work [4, 5], which uses the idea of operation-based merging.
The author is aware of two other systems using refactoring
and edit operation in merging. Both operation-based merg-
ing and the two other systems use different approaches to
merging than presented here.

1st Workshop on Refactoring Tools (WRT'07)

46

5.1 Operation-based Merging
In 1992, Lippe and van Oosterom described operation-based
merging of two sequences of transformations which are ap-
plied to a snapshot of an object management system (OMS)
[7, 6].

Their merging approach mixes the transformations from both
sequences to a sequence of blocks. Only blocks may contain
conflicting transformations. Conflicts are resolved by order-
ing, editing or deleting transformations. The merge result is
retrieved by applying the transformations from each block
to the snapshot.

To build the blocks, the merge algorithm relies on global
commutation information which is retrieved using unique
object identifiers. In the context of this research, unique
identifiers are not available, so the merge algorithm cannot
be applied here.

Furthermore, the algorithm proposed by Lippe and van Oos-
terom gives no hint how the merge result is included in the
OMS so that subsequent mergings work. Assume that de-
veloper A checked out version 3 and developer B checked out
version 4. The current version is 6. Developer A merges his
local changes with the changes from version 3 to version 6,
generating the new version 7. However, as the transforma-
tions are mixed, and some may be edited and deleted, there
is no sequence of steps from version 4 to version 7 which
developer B may use to merge his changes.

5.2 Refactoring-Aware Versioning
Ekman and Asklund presented refactoring-aware versioning
[3]. They built a version control system which stores the ab-
stract syntax tree (AST) of the program. Each of the AST’s
nodes is identified by a unique id, so that refactorings can
be described independent to parallel, non-conflicting refac-
torings.

Refactorings and edits are recorded by an extension to the
Eclipse IDE [2]. In merging, refactorings and edits are re-
ordered: edits are applied first, then the refactorings. How-
ever, this cannot work in all cases. As an example, one
developer may have inlined method a and then edited of
the places where the method has been inlined, while the
other developer changed the body of a. Applying the inline
method refactoring last would result in a successful merge,
but there should be a conflict, since the code which has been
edited locally is not the code that is inlined when the refac-
toring is applied last.

As in operation-based merging, it is not shown how subse-
quent mergings can be applied to the merge result.

5.3 MolhadoRef
Dig et.al. presented MolhadoRef, a refactoring-aware con-
figuration management for object-oriented programs [1]. As
Ekman and Asklund’s refactoring aware-merging, Molhado-
Ref integrates in the Eclipse IDE [2]. For merging, only
refactorings are recorded.

The input for the merge algorithm consist of the base ver-
sion of the program, two changed versions, and the refactor-
ings which were applied while creating each of the changed

versions. API and code edits are detected by 3-way differ-
encing of the three program versions (step #1). Then, con-
flicts of API edits and refactorings are detected and resolved
by the user—either by editing or by deleting a refactoring
(step #2). After that, the refactorings are inverted and ap-
plied to the changed programs (step #3), so that in the next
step, the changes in the two versions can be merged textu-
ally (step #4). The last step reorders the refactorings and
applies them to the textual merge result (step #5).

Compared to the merge algorithm presented in this paper,
MolhadoRef’s should be much faster, as it does not merge
each operation combination. However, undoing the refactor-
ings may lead to unnecessary conflicts or problems. As an
example, assume that one developer edited method a, while
the other renamed it to b and introduced a new method a

that delegates to b. In this situation, one would expect that
the merge result is to simply apply the changes of the second
developer to the changes of the first.

According to MolhadoRef’s description, the refactoring will
either be removed/edited in step #2, or it will be inverted
in step #3. However, the refactoring cannot be inverted, as
a method with the old name a already exists, and remov-
ing/editing refactoring would mean that the merge result is
not the expected one.

6. CURRENT STATUS
A prototype of the system is under development for the
Eclipse IDE [2] and the Subversion version control [8]. At the
time of writing, capturing the development history works,
and the basic merge algorithm is implemented. Some merg-
ers for two operations are realized as well.

7. REFERENCES
[1] D. Dig, K. Manzoor, R. Johnson, and T. Nguyen.

Refactoring-aware configuration management for
object-oriented programs. In Proceedings of ICSE ’07,
2007.

[2] Eclipse. http://www.eclipse.org/.

[3] T. Ekman and U. Asklund. Refactoring-aware
versioning in Eclipse. Electronic Notes of Theorical
Computer Science, 107, 2004.

[4] T. Freese. Towards software configuration management
for test-driven development. In Software Configuration
Management ICSE Workshops SCM 2001 and SCM
2003, volume 2649 of LNCS, 2003.

[5] T. Freese. Refactoring-aware version control: Towards
refactoring support in api evolution and team
development. In Proceedings of ICSE ’06, pages
953–956, 2006.

[6] E. Lippe. CAMERA – Support for distributed
cooperative work. PhD thesis, Utrecht University, 1992.

[7] E. Lippe and N. van Oosterom. Operation-based
merging. Software Engineering Notes, 17(5):78–87,
1992.

[8] Subversion. http://subversion.tigris.org/.

1st Workshop on Refactoring Tools (WRT'07)

47

Improving Method Extraction: A Novel Approach to Data Flow
Analysis Using Boolean Flags and Expressions

1st Workshop on Refactoring Tools, Berlin, 2007

Nicolas Juillerat, Béat Hirsbrunner

Pervasive and Artificial Intelligence Research Group,
University of Fribourg, Switzerland

nicolas.juillerat@unifr.ch, beat.hirsbrunner@unifr.ch

1. Motivation
Method extraction is a complex refactoring: it has to transform
statements of source code and preserve semantics. While many
recent development environments provide a semi-automated
implementation of this refactoring, most of them are still
flawed. The part of the process we want to discuss is the so
called data flow analysis. Its purpose is to determine the
arguments and the results of the method to extract.

Various approaches to this problem have been proposed:
graph based, scripting languages, and direct analyses.

Graph-based approaches [1] are the most widely spread
techniques. The problem with graph-based approaches is that
the construction of the graph itself from the source code is
difficult: the common representation of statements is not a
graph, but the Abstract Syntax Tree (AST). While these
approaches have shown to be good for analyses, their use in
transformation is usually limited to the class graph which does
not model statements. Their use for method extraction is hence
limited.

 Scripting languages [2] have been used to express program
transformations in a way that is simpler than an
implementation in a language such as Java. While they can
provide a high-level and simple description of various
refactorings, these languages are hiding the actual
implementation, for which they do not provide any help.

A look on the source code of Eclipse revealed that the
implementation of method extraction was neither based on
graphs, nor on scripting languages. It is just a “plain”
implementation based on the AST.

Why does Eclipse use a “plain” implementation when high
level formalisms are available? We give a partial answer to
this question, by proposing a novel and simpler formalism for
the problem of data flow analysis. Our approach differs from
previous work in two aspects. First, it only uses very simple
data structures and algorithms: tables of flags and boolean
expressions. Second, it is based on the common representation
of the source code: the AST.

2. Our New Approach to Data Flow Analysis
The idea behind our approach is to maintain, for each local
variable, a table of boolean flags. Each flag captures some
information about the variable, which is potentially relevant to
identify arguments and results. More precisely, we define four
facts and three regions, yielding 12 different flags per variable.

The four facts are: whether the variable is read (R), whether
it is always written (W), whether it is conditionally written (w),

and whether it is “live” (L). A variable is live if a read access
(R) occurs before a certain write access (W).

The three regions are the regions before (b), within (f) and
after (a) the range of statements we want to extract. Using
these facts and regions, a flag can be identified by two letters,
such as “Rb” for a read access occurring before the extracted
statements. Assuming a parser that produces an AST out of the
source code, gathering these flags for each variable by
traversing the AST is straightforward to do, as long as the code
does not contain control statements and loops. We now detail
how to deal with these two constructs.

2.1. Dealing with control statements

Our solution basically has to identify “multiple paths” and
“merge points”. “Multiple paths” occur whenever the
execution flow can vary. An if-then-else construct, for
instance, contains two paths; one for the “then” block and one
for the “else” block. If there is not “else” block, we still have
two paths, but one of them is empty (it covers no statement).
The same approach applies to a while loop: one path traverses
the loop body, and the other one skips the loop and is empty.

“Merge points” are the locations in the source code in
which multiple paths are merged. Typically, in a conditional,
the paths for the “then” and the “else” block are merged just
after the conditional. But this is not always the case. If one of
the blocks contains a break statement, then its merge point is
after the loop that is escaped.

Every break and return statement generates two paths
within a control statement: one path ends at the location of the
statement and has its merge point at the end of the escaped
block. The other path continues normally and has its merge
point at the end of the current block.

When multiple paths are encountered, the current table of
flags is stored and each path is analyzed separately with new
tables of flags. When the end of the control statement is
reached, the table stored at the beginning of the control
statement is merged with every table whose merge point is
located at this place. The merging logic can be expressed as
follows. We use the “k” index to identify the flags of the paths
to merge and no index to identify flags of the table stored at
the beginning of the control statement:

L = L OR (NOT W AND ∪(Lk)). A variable gets live if it

already was or if it is live in any path and was not previously
written.

R = R OR ∪(Rk). A variable gets read if it already was, or
if it is read in any paths.

1st Workshop on Refactoring Tools (WRT'07)

48

W = W OR ∩(Wk). A variable gets certainly written if it
already was, or is certainly written in all paths.

w = w OR ∪(Wk OR wk). A variable gets possibly written if
it already was, or is written in any paths.

These flags are gathered separately for each region of the

source code: before, within and after the fragment of
statements we want to extract in a new method.

2.2. Dealing with loops

If the statements to extract are within a loop, an additional
step is required. More precisely, the flags of the region after
the fragment to extract must be combined with those of a
special region, the “entrance”. The “entrance” is defined as the
region of code from the beginning of the top-most enclosing
loop to the end of the fragment to extract.

Intuitively, because a loop can iterate again and again,
variable accesses in the “entrance” must also be considered
like the accesses occurring after the region to extract. Because
the loop may eventually execute only once, the “entrance”
must only be considered in a conditional way. Our
implementation actually uses the merging logic discussed in
the previous section in the following way: the region after the
fragment is merged with two paths; the first one corresponds to
the “entrance” region and the second one is an empty one.

2.3. Putting it all together

Once the flags have been gathered for all variables, getting
arguments and results is straightforward. Arguments are all
variables for which the “Lf” flag is true, that is, all variables
that are “live” in the fragment to extract. Results are all
variables for which the “La AND (Wf OR wf)” expression is
true. In other words, the variable must be “live” after the
fragment to extract (“La”), and must be written (conditionally
or always) within the fragment itself (“Wf OR wf”).

3. Preliminary Results
We have implemented the “extract method” refactoring using
our new approach for the data flow analysis. The
implementation is an Eclipse plugin and uses the “jdt” (Java
Development Tools) library provided by Eclipse [3]. It is
implemented in 10 classes totalizing less than 1000 lines of
code (excluding any user interface). About two thirds of the
code is language-independent. The rest basically deals with
each different Java statement and dispatch to the
corresponding methods of the language-independent part.

The implementation already performs correctly on a small
subset of the Java language. Some constructs such as switch
statements are still missing though and exception handling is
incomplete. A more promising result is that we already found
cases in which it outperformed existing implementations.

One case is the following:

int test(int y) {
 int x;
 if (y > 0) { // extract from here
 x = 1;
 y = y + x;
 } // to here
 x = y;
 y = y + x;
 return y;
}

NetBeans 5.5 and Visual Studio 2005 development
environments are each producing a result that fails to compile.

NetBeans incorrectly identifies the x variable as an argument
and Visual Studio incorrectly identifies it as a result. In both
case a compilation error occurs afterwards because the variable
is then used (as an argument or result) before it is initialized.
Our version produces the correct result (the y variable is
identified as the only argument and result).

A second case is the following:

void test(int x, int y) {

 while (x < 0) {

 doStuff(--x); // extract from here

 y++; // to here

 x = y - 1;

 }

}

Eclipse 3.2 and NetBeans 5.5 refuse to extract a method,
because they incorrectly identify two required results (the x
and y variables) where only one is actually required. Our
version produces again the correct result (only the y variable is
identified as a result and both x and y are identified as
arguments).

The latter case is not trivial: if the last assignment of the x
variable was removed for instance, both the x and y variables
would be required results, as they are both potentially reused in
the next loop iteration(s). The notion of “entrance” discussed
in section 2.2 would properly capture this fact.

4. Conclusion

We have briefly presented an algorithm to identify
arguments and results of a method to extract. Unlike traditional
dataflow analyses [4], our approach provides only the
information that is relevant for method extraction. As a result,
the process is drastically simplified: it is not iterative and can
be based only on tables of flags and boolean expressions.
Because of its simplicity compared to previous approaches
coming from the field of compiler optimization, we believe
that our approach can be of interest to people that are
implementing refactoring tools.

As a future working direction, we are investigating more
complex AST-based refactorings such as forming a template
method [5].

References:

1. Tom Mens: On the Use of Graph Transformations for Model
Refactoring, Pre-proceedings of GTTSE, pp. 67–98, 2005

2. Tom Mens, Tom Tourwé: A Survey of Software Refactoring, IEEE
Transactions on software engineering, vol. 30, no. 2, pp. 126–139,
2004

3. Leif Frenzel: The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs, Eclipse Magazin, vol. 5,
2006

4. John D. Morgenthaler : Static Analysis for a Software
Transformation Tool, PhD Thesis at the University of San Diego,
California, 2003

5. N. Juillerat, B. Hirsbrunner: Toward an Implementation of the
“Form Template Method” Refactoring, 7th IEEE International
Working Conference on Source Code Analysis and Manipulation,
2007

1st Workshop on Refactoring Tools (WRT'07)

49

Refactoring-Based Support for Binary

Compatibility in Evolving Frameworks

Ilie Şavga and Michael Rudolf

Institut für Software- und Multimediatechologie, Technische Universität Dresden,
Germany, {is13|s0600108}@inf.tu-dresden.de

Abstract. Framework refactoring may invalidate existing plugins —
modules that used one of its previous versions. We use traces of refac-
toring to generate an adaptation layer that translates between plugins
and the framework. For each supported refactoring operator we formally
define a comeback—a refactoring used to construct adapters. For an or-
dered set of refactorings that occured between two framework versions,
the backward execution of the corresponding comebacks yields the adap-
tation layer.

Motivation. Our industrial partner
is developing a .NET framework. A
new version of the framework is re-
leased every six months, potentially in-
validating existing plugins. Either plu-
gin developers (which are third-party
companies) are forced to manually
adapt their plugins or framework main-
tainers need to write update patches.
Both tasks are usually expensive and
error-prone. We want to achieve binary

compatibility of existing plugins—they
must link and run with new framework
releases without recompiling.

Solution. Refactorings are the ma-
jor cause of binary incompatibility
comprising more than 80% of problem-
causing changes. We use the trace
of framework refactoring to create an
adaptation layer between the frame-
work and plugins. The adapters then
shield the plugins by representing
the public types of the old version,
while delegating directly to the new
version (see Fig. 1). For each sup-

F
1

P
1

time

delegate

generate

input

Legend

time

Change Specification

Generator F
3

AL
1

AL
2

P
1 P

2
P
3

Fig. 1. Plugin adaptation in an evolving
framework. In the upper part, the frame-
work version F1 is deployed to the user,
who creates a plugin P1. Later, two new
framework versions are released, with F3

as the latest one. While new plugins (P3)
are developed against the latest version,
binary compatibility of existing ones (P1

and P2) is preserved by creating adapter
layers AL1 and AL2 (the lower part).

1st Workshop on Refactoring Tools (WRT'07)

50

FnFn-x

Pn-x

r4

c1

evolution

adaptation

r3

c2

r2

c3

r1

c4

Framework site

Client site

execution flow

delegates-to

corresponds-to

ALnALn-x

Legend

Fig. 2. Adaptation workflow. To a set of refactorings (r1-r4) between two framework
versions (Vn−x, Vn, n > x > 0) correspond comebacks (c4-c1). Comebacks are executed
on the adaptation layer ALn backwards to the framework refactorings. The resulting
adaptation layer ALn−x delegates to the new framework, while adapting plugins of
version Pn−x.

ported refactoring we define a come-

back—a behavior-preserving transfor-
mation that defines how a compensat-
ing adapter is constructed. For an or-
dered set of refactorings that occured
between two framework versions, the
backward execution of the correspond-
ing comebacks yields the adaptation
layer.

Figure 2 shows the workflow of
refactoring-based plugin adaptation.
First, we create the adaptation layer
ALn (the right part of the figure). For
each public class of the latest frame-
work version Fn we provide an adapter
with exactly the same name and set
of method signatures. An adapter del-
egates to its public class, which be-
comes the adapter’s delegatee. Once
the adapters are created, the actual
adaptation is performed by executing
comebacks backwards with respect to
the recorded framework refactorings,
where a comeback is derived using the
description of the corresponding refac-
toring. When all comebacks for the
refactorings recorded between the last
Fn and a previous Fn−x framework ver-
sion are executed, the adaptation layer
ALn−x reflects the old functionality,

while delegating to the new framework
version.

Tool Validation. We are evaluat-
ing our concept in an operational envi-
ronment using a logic programming en-
gine. For a set of refactorings we speci-
fied the corresponding comeback trans-
formations as Prolog rules and devel-
oped a parser for the CIL code (as
stored in .NET assemblies) in order
to extract meta-information about API
types. This meta-information is used
to create a fact base, on which a Pro-
log engine then executes the required
comebacks. Once all comebacks are ex-
ecuted, the fact base contains the nec-
essary information to create adapters
and is serialized back to assemblies.

1st Workshop on Refactoring Tools (WRT'07)

51

The LAN-simulation: A Refactoring Lab Session

Serge Demeyer, Bart Du Bois, Matthias Rieger, Bart Van Rompaey

Lab On Re-Engineering, University Of Antwerp

Abstract

The notion of refactoring —transforming the source-
code of an object-oriented program without changing its ex-
ternal behaviour— has been studied intensively within the
last decade. Despite the acknowledgment in the software
engineering body of knowledge. there is currently no ac-
cepted way of teaching good refactoring practices. This
paper presents one possible teaching approach: a lab ses-
sion (called the LAN-simulation) which has received pos-
itive feedback in both an academic as well as industrial
context. By sharing our experience, we hope to convince
refactoring enthusiasts to try the lab-session and to stim-
ulate teachers to incorporate refactoring lab sessions into
their courses.

Introduction

Refactoring is widely recognized as one of the principal
techniques applied when evolving object-oriented software
systems. The key idea is to redistribute instance variables
and methods across the class hierarchy in order to prepare
the software for future extensions. If applied well, refactor-
ing improves the design of software. As such, refactoring
has received widespread attention within both academic and
industrial circles, and is mentioned as a recommended prac-
tice in the software engineering body of knowledge [1].

The success of refactoring implies that the topic has
been approached from various angles. As a result, refactor-
ing research is scattered over different software engineer-
ing fields, among others object-orientation, language engi-
neering, modeling, formal methods, software evolution and
reengineering (see [2] for an overview of refactoring re-
search). However, to actually teach refactoring in a class-
room setting, we should distill the essence of what is good
refactoring in a teachable format.

At the University of Antwerp1, we have adopted an “ac-
tive learning” approach, where students are asked to refac-

1This work has been sponsored by Eureka Σ 2023 Programme; under
grants of the ITEA project if04032 entitled “Software Evolution, Refactor-
ing, Improvement of Operational and Usable Systems” (SERIOUS).

tor a small system during a session in the computer lab.
During the lab, the students are confronted with several of
the most common refactoring operations (e.g., renaming,
moving, extracting) to resolve a number of typical code-
smells (e.g., duplicated code, nested conditionals, naviga-
tion code). In this paper, we share our experience with the
lab-session.

lanSimulation

Network

LANSimulation

DefaultExample(): Network
isInitialized(): boolean
hasWorkstation(nm: String): boolean
consistentNetwork(): Boolean
requestWorkstationPrintsDocument (
ws: String, doc: String, prntr: String,
report: Writer)

requestBroadcast(report: Writer)
printOn (buffer: StringBuffer)
printHTMLOn (buffer: StringBuffer)
printXMLOn (buffer: StringBuffer)

lanSimulation.internals

Packet

Node

message_: String
origin_: String
destination_: String

type_: byte
name_: String
nextNode_: Node

Figure 1. The design at the beginning of the
lab — refactor the god class NETWORK.

The LAN-Simulation

We use a simulation of a Local Area Network (LAN)
as the basis for the refactoring lab. The LAN-simulation is
small enough to be refactored during a single lab-session
(typically 3 hours), yet contains the necessary ingredients
(new requirements, an implementation containing code-
smells, a test suite that covers just the basics, . . .) to be
representative for what happens in realistic situations. The
main goal of the lab is to have a practical hands-on experi-
ence with refactoring tools and relate it with other software
reengineering skills, such as redesign, problem detection
and regression testing. The lab requires students with good
knowledge of object-oriented design principles and which
are able to evaluate several design alternatives.

1st Workshop on Refactoring Tools (WRT'07)

52

Table 1. Overview of the use cases for the LAN-simulation.
1.0 BASIC DOCUMENT PRINTING A workstation requests the token ring network to deliver document to a printer.

REPORT NETWORK STATUS Print a report of the network status as ASCII, HTML or XML
1.1 LOG PACKET SENDING Each time a node sends a packet to the next one, log it on a log file.
1.2 POSTSCRIPT PRINTING A packet may start with “!PS” to invoke a PostScript printing job.
1.3 PRINT ACCOUNTING Printers register author and title of document being printed for accounting.
1.4 BROADCAST PACKET A special type of packet “BROADCAST‘” is accepted by all nodes.
2.0 READ FROM FILE Read network configuration and network actions from a file.
2.1 GATEWAY NODE Introduce a special “gateway” node, which can defer packets with an addressee outside the

current subnetwork.
2.1 COMPILE LIST OF NODES Gateway uses BROADCAST PACKET to periodically collect all addresses on the subnetwork.
3.0 SHOW ANIMATION Have a GUI showing an animation while the simulation is running.

The refactoring lab starts from a requirement specifica-
tion (a set of use cases — see Table 1), an initial design
(a class diagram; see Figure 1) and a first increment which
has been implemented in five iterations (1.0 — 1.4), both in
Java and C++. To give an idea of the size: iteration 1.4 in
Java consists of 4 classes totaling 677 lines of code and 280
lines of test-code. The use cases, design and code plus the
lab assignments for the students can be downloaded from
the “Artefacts” page at HTTP://WWW.LORE.UA.AC.BE/.

To illustrate a realistic refactoring situation, the 1.4 re-
lease is done in a procedural style. Most of the function-
ality is implemented in a single class NETWORK and the
other classes mainly serve as data-holders – in refactoring
parlance such a single class monopolizing control is called
a “god class”. Obviously, this class shows some typical
code-smells (duplicated code, nested conditionals, naviga-
tion code) that warrant attention. Moreover, the use-cases
we are expected to implement in the second release will
even enlarge the god class, so it is best to refactor before
starting increment 2.0. The tests should be used to demon-
strate that the system does not regress during the refactoring
process. However, students must assess whether the pro-
vided tests are an adequate safety net (i.e. sufficient cover-
age of use cases 1.0 — 1.4).

Of course there are several ways a software engineer can
refactor this procedural design. During the lab session, the
students are suggested to follow a path based on a number
of reengineering patterns [3]: (a) EXTRACT METHOD to
remove some duplicated code (release 1.5); (b) MOVE BE-
HAVIOUR, to move methods close to the data they operate
upon (release 1.6); (c) ELIMINATE NAVIGATION CODE to
reduce the coupling between some classes (release 1.7); and
finally (d) TRANSFORM SELF TYPE CHECKS to change
switch statements into polymorphism (release 1.8). Af-
ter those refactorings, a lot of the code in NETWORK will
be moved onto the class NODE and its newly created sub-
classes PRINTER and WORKSTATION; some code will be
moved onto PACKET as well.

Teaching Experience

The lab was used by students from three universities.
We did not conduct any formal questionnaires, but infor-
mal feedback indicates that the lab session is able to pos-
itively influence and change the way that students think
about reengineering in general and refactoring in particular.

The lab was also applied in training sessions with profes-
sionals. In the latter case we provide step-by-step instruc-
tions, to allow trainees to redo the lab session in their office.
We encourage trainees to pass the word to their colleagues
and have several reports of persons who downloaded the
package from the web-site and executed the lab individu-
ally with good results.

Conclusion

We presented a lab-session demonstrating a typical
refactoring scenario that mimics realistic circumstances.
The lab session has been used within university classes as
well as industrial training sessions, and many trainees have
responded positively to this approach to teach the do’s and
don’ts of refactoring. Based on this result, we invite practi-
tioners who want to learn more about refactoring to try the
lab. We also encourage teachers to incorporate this refactor-
ing lab in their classes as it will help them to demonstrate
the subtle craft of evolving existing software.

References

[1] P. P. C. I. C. Society. Guide to the Software Engineering Body
of Knowledge. IEEE Computer Society, 2003.

[2] T. Mens and T. Tourwé. A survey of software refactoring.
Transactions on Software Engineering, 30(2), 2004.

[3] S. Demeyer, S. Ducasse, and O. Nierstrasz. Object-Oriented
Reengineering Patterns. Morgan Kaufmann, 2003.

1st Workshop on Refactoring Tools (WRT'07)

53

A Heuristic-Based Approach to Code-Smell Detection
Position Paper

Douglas Kirk, Marc Roper, Murray Wood
Department of Computer and Information Sciences

University of Strathclyde
Glasgow, UK

{doug,marc,murray}@cis.strath.ac.uk

ABSTRACT
Encapsulation and data hiding are central tenets of the object
oriented paradigm. Deciding what data and behaviour to form into
a class and where to draw the line between its public and private
details can make the difference between a class that is an
understandable, flexible and reusable abstraction and one which is
not. This decision is a difficult one and may easily result in poor
encapsulation which can then have serious implications for a
number of system qualities.

It is often hard to identify such encapsulation problems within
large software systems until they cause a maintenance problem
(which is usually too late) and attempting to perform such
analysis manually can also be tedious and error prone. Two of the
common encapsulation problems that can arise as a consequence
of this decomposition process are data classes and god classes.
Typically, these two problems occur together – data classes are
lacking in functionality that has typically been sucked into an
over-complicated and domineering god class. This paper
describes the architecture of a tool which automatically detects
data and god classes that has been developed as a plug-in for the
Eclipse IDE.

The technique has been evaluated in a controlled study on two
large open source systems which compare the tool results to
similar work by Marinescu, who employs a metrics-based
approach to detecting such features. The study provides some
valuable insights into the strengths and weaknesses of the two
approaches.

1. DATA CLASSES AND GOD CLASSES
Data classes can be described as “dumb data holders” [1]. In the
extreme case they have methods for getting and setting the data
and nothing else. Data classes are a problem as they typically
provide poor encapsulation of their data and lack significant
functionality. God classes are often a corollary to data classes and
frequently represent an attempt to capture some central control
mechanism. Riel [3] describes a god class as one that, “performs
most of the work, leaving minor details to a collection of trivial
classes” - these trivial classes being data classes. This relationship
between god and data classes captures a situation where the
behaviour within a system has become misplaced. Instead of
being evenly distributed amongst the classes, the behaviour has
somehow gravitated from the data classes into the god class. This
is clearly an undesirable situation within a system and impacts
upon a range of attributes of the design.

2. THE TOOL
The smell finder tool has been developed as a plug-in for Eclipse.
In general terms the tool is based on the automatic identification
of a set of heuristics that are symptoms of poor design – patterns
of interaction or elements within the source code that are
indicative of encapsulation problems and may be identified
statically. It uses a static analysis of Java source files to detect
these heuristics and from this infer the presence of god and data
classes. Eclipse provides a rich environment for the development
of such a tool because it provides project management functions
and frameworks to enable the static analysis of project artefacts.

The tool has been developed to assess the utility of our detection
strategies. As it currently stands it is a relatively basic
implementation which only provides a minimum amount of
functionality suitable for experimental purposes. In practice any
such tool would require a more sophisticated front end for
specifying queries and a more detailed mechanism for reporting
and visualising the problems that it discovers.

2.1 Data Class Detection.
Our approach identifies a data class if the class exposes public
state or if it contains one or more data methods. Public state is
recognised by looking at the access modifiers for each
FieldDeclaration Node in a class, any node which responds
positively to an isPublic() query is considered public state. Data
Methods are slightly more complex. In our approach they are
detected by searching for the presence of a return statement,
which returns class state or an assignment statement which
assigns a value from a method parameter to the class state. The
detection of class state is too elaborate to describe fully here.

2.2 God Class Detection.
In our approach god classes are detected by the presence of calls
from a suspect class to a data class. This is detected in the tool by
looking at the body of each method in the project searching for
method calls to known data methods or field accesses to public
fields (excluding self references or calls to inherited methods or
fields). This test must also consider the affect of polymorphism
and inheritance which can effect the physical location of the
method we wish to inspect. For inherited behaviour it is relatively
easy to search up the hierarchy until a suitable definition is found
but polymorphic calls are not quite as simple. There may be
several compatible definitions of the method and it is not possible
statically to determine which of these definitions will be invoked
at runtime. The tool therefore takes a conservative position of

1st Workshop on Refactoring Tools (WRT'07)

54

checking each permissible definition that might be invoked and if
any of those are found to be a data method then the polymorphic
call is also considered to be a data method.

3. EVALUATION
We have found performing an objective comparison of this tool
with others difficult to perform due to the ambiguity surrounding
the definitions of data and god classes. For these reasons we have
initially configured the tool to adopt a conservative approach
where any data leaks are reported to be evidence of a data class
and any use or abuse of such leaked data is regarded as evidence
of a god class.

Clearly this is an extreme position to adopt but it is our view that
any breaches of encapsulation should be identified and reported as
even the most minor violation may be indicative of the start of a
more serious problem. It is also our plan to augment these
detectors with additional ones that sniff out evidence of the more
serious problems (for example by using information such as the
proportion of data leaks, the number of accesses and the way in
which this data is manipulated). For this reason we have chosen to
compare our system with the metrics implementation developed
by Marinescu [2], not from a competitive point of view, but for
the purposes of evaluating the strengths and weaknesses of the
two approaches.

3.1 Results
The tool was evaluated in a comparison with the metrics-based
approach of Marinescu based on two open-source case-studies -
BeautyJ and JEdit1. The results of this comparison are shown in
table 1. This shows the number of total, unique, and common
problems identified using both approaches. Looking at the data
there is a considerable difference in the number of problems
identified by each technique. Marinescu’s approach detects
significantly fewer problems than our technique. This
immediately raises a number of questions regarding the accuracy
of the two approaches.

Table 1. Metric and heuristic results for the two systems

System BeautyJ JEdit

classes Data God Data God

Total 10 10 70 46
Metrics

Unique 2 1 56 15

Common 8 9 18 31

Heuristics Unique 63 83 161 114

Total 71 92 179 145

A manual examination of the data class results shows that both
techniques were accurate in their detection (a small number of
false positives (12) were found from our technique but in relation
to the number of problems identified (163) this is quite
insignificant). This suggests that the difference lies with the
numbers of false negatives detected by each approach. The table

1 It must be stressed that this study is in no form intended as a

criticism of either system and we are indebted to the authors for
making their source available.

also shows that, despite quite different approaches to analysis,
both techniques discover a surprisingly large number of data and
god classes in the two case studies. Our approach suggested that
about 35% of the classes in both BeautyJ and JEdit had some
symptoms of broken encapsulation through data classes and 46%
of the classes in BeautyJ and 29% of the classes in JEdit had some
symptoms of god class breaches of encapsulation. Marinescu's
top-level results were much less than this, identifying 5% data
classes and 5% god classes in BeautyJ, and 14% data classes and
9% god classes in JEdit. However, Marinescu heavily filters his
results, only showing the worst examples of data and god class
breaches of encapsulation. If the filters are removed then
Marinescu's results are of the same order as those produced by our
approach. The main differences that remain result from the key
differences in the two approaches - Marinescu relying on method
naming conventions and requiring data methods to be relatively
small and simple for data class detection, and the consideration of
inheritance and polymorphism in our analysis of god classes and
the consideration of cohesion and complexity in Marinescu's
analysis of god classes. It is our contention that although a
metrics-based approach exhibits certain strengths and is attractive
in its relative simplicity, our AST-based analysis suffers from
fewer weaknesses and has the potential to perform a more detailed
and accurate analysis particularly when it comes to the more
sophisticated design flaws we plan to study (such as “Feature
Envy”, “Primitive Obsession” and “Data Clumps” [1]).

4. CONCLUSIONS AND FUTURE WORK
A central tenet of object-oriented design guidance is information
hiding that encapsulates data and functionality together in a
balanced set of cooperating classes. However, achieving this
design goal in practice is extremely challenging, especially for
large systems that are developed and maintained iteratively over a
long period of time. This paper has described an automated
approach that detects data and god class violations of
encapsulation. The main contribution of this work is the
demonstration that data and god class violations of encapsulation
in object-oriented programs can be detected automatically by a
heuristic-based analysis of the abstract syntax tree representation
of the code. In applying the technique to two-open source case
studies a surprising number of data and god classes were detected.
- if these two case studies are representative of software that is
currently being developed then data and god class breaches of
encapsulation are extremely common. Further work is required to
investigate whether this is really the case and to determine
whether breaking encapsulation in this way is having the major
impact on maintenance that conventional software design wisdom
would have us believe.

5. REFERENCES
[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,

“Refactoring: Improving the Design of Existing Code”,
Addison Wesley, Reading Mass. 1999.

[2] R. Marinescu, “Detecting Design Flaws via Metrics in
Object-Oriented Systems”, Proc. 39th International
Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS39), IEEE
Computer Society, 2001. pp. 173-182.

[3] A. J. Riel, “Object-oriented Design Heuristics”, Addison
Wesley, Reading Mass. 1999.

1st Workshop on Refactoring Tools (WRT'07)

55

Using Java 6 Compiler as a Refactoring and an Analysis
Engine

Jan Bečička
Technical Lead for the NetBeans

Refactoring Engine
 Sun Microsystems, Inc.
Jan.Becicka@sun.com

Petr Zajac
 Sun Microsystems, Inc.

PhD student at VŠB - TU Ostrava
Petr.Zajac@sun.com

Petr Hřebejk
 Engineering Manager

 Sun Microsystems, Inc.
Petr.Hrebejk@sun.com

Abstract:
One of the cool features available in Java 6

is set of three related compiler APIs: JSR-199:
Java TM Compiler API , JSR 269: Pluggable
Annotation Processing API, and the Tree API
(com.sun.source.tree and
com.sun.source.util). These APIs provide a
read-only model of Java source code.
NetBeans IDE puts all these three APIs
together with Jackpot transformation engine
and provides full model of Java language
offering read/write model capable of model
transformation and formatted source
rewriting. These four API work together to
define a toolkit to create just about any Java
language-aware tool.

This presentation will show these APIs in
action. We will talk about using Java 6
compiler for Java Refactoring features and for
Code Analysis features (Codeviation project).

Presentation Summary:
Our presentation will have two parts. First

we will talk about Javac APIs and their
integration into NetBeans APIs as part of
Refactoring Engine and than we will talk
about Codeviation project – code analysis tool
utilizing javac to measure various quality
criteria of the source code.
NetBeans Refactoring Engine

Refactoring is the technique of
restructuring an existing body of code,
altering its internal structure without changing
its external behavior. This presentation is a
practical instruction on how to create product-
quality refactoring features in NetBeans IDE
6.0. The audience is expected to have prior
understanding of the theoretical aspects of
refactoring. NetBeans IDE 6.0 supports the
creation of refactorings in two ways: through
a new language-independent Refactoring API

and through project Retouche - the integration
of Java 6 compiler into NetBeans IDE. The
new Refactoring API is an infrastructure that
allows uniform handling of transformations to
various file types (Java, XML, C++ etc). It
can be viewed as the unification of various
pluggable language-specific refactorings.
Retouche (French for touching up images) is a
framework that specifically provides for
refactoring Java sources. It consists of the
following components:

1. JSR 199 - The Javac API: Retouche
uses the Javac API to obtain a read-
only Tree view of the Java Abstract
Syntax Tree. This way, Retouche
reuses the compiler and stay up to date
with the latest language features.

2. JSR 269 - The Pluggable Annotation
Processing API: Retouche exposes a
standard API from JSR 269 to refer to
types and elements. This allows tools
written around Retouche to use the
javax.lang.model interfaces and be
independent of the platform provider.

3. Tree API & Jackpot technology:
While the Tree API gives an
immutable view of the Java sources,
Retouche uses a Jackpot-based code
generator to perform model-based
transformations of the code. This way,
Retouche ensures that the modified
code is formatted as per the user's
specification, and performs an in-place
modification of the source to avoid
making changes to unaffected part of
the source file.

This presentation will show the above
technologies in action. The talk will then
proceed to demonstrate some API examples
showing how new refactorings can be
integrated into NetBeans IDE. Such

1st Workshop on Refactoring Tools (WRT'07)

56

http://www.jcp.org/en/jsr/detail?id=199
http://www.jcp.org/en/jsr/detail?id=199
http://jackpot.netbeans.org/docs/org-netbeans-libs-javacapi/com/sun/source/util/package-summary.html
http://jackpot.netbeans.org/docs/org-netbeans-libs-javacapi/com/sun/source/tree/package-summary.html
http://www.jcp.org/en/jsr/detail?id=269
http://www.jcp.org/en/jsr/detail?id=269

refactorings can eventually become
contributions to the NetBeans open-source
project.
Codeviation Project

The Codeviation project permits for
computing metrics and looking for potential
bugs in software written in Java. It uses
modified Javac compiler in order to measure
arbitrary project. The data can then be
connected to other sources of information
about the project e.g. bug tracking systems,
version control systems etc. Connecting all
the information together makes it possible to
prove and disprove hypothesis about the
software development or to evaluate the
usefulness of given metrics.

The system also produces historical data. It
is possible to measure the project in different
development phases (e.g. milestones or
releases). This helps to understand how given

project evolves. Last but not least the system
is capable of detecting hot-spots of the bad
quality in given software. Such hot-spots are
good candidates for applying refactoring to
them. It should also be possible to evaluate
whether applying a refactoring to given class
or set of classes really helped the quality of
the whole application.

This presentation will give brief overview
of the system and its architecture, list
experiments already done using it and list
other ideas which experiments and usages we
envision for the future. We also will give a
short demo of the project in action., showing
how a new project and new metric can be
added and how the resulting data can be
visualized in the web.

Audience is supposed to have basic
knowledge of the Java programming language
and of metrics for object oriented languages.

1st Workshop on Refactoring Tools (WRT'07)

57

Making Programmers Aware Of Refactorings

Peter Weißgerber Benjamin Biegel Stephan Diehl
University of Trier, 54286 Trier, Germany

{weissger, diehl}@uni-trier.de benjamin.biegel@gmail.com

Abstract

Modern integrated development environments, such as
ECLIPSE, provide automated or semi-automated refactoring sup-
port. Despite this support, refactorings are often done manually
— either because the developer is not aware of the tool support
or because he is not aware that what he did was a refactoring.
Moreover, as we found in [7] programmers tend to do a bad job in
documenting the refactorings they have performed or even do not
document them at all.

In this paper we present the design rationale of a plug-in for
the ECLIPSE development platform that informs programmers
about the refactorings they have performed manually and provides
hyper-links to web sites describing these. The plug-in is currently
under development. Finally, it should support the developer in
documenting refactorings by appending an exact description of
each performed refactoring to the CVS/SVN log message. For such
refactorings that have been done manually, but can be performed
automatically using ECLIPSE, our tool should inform the devel-
oper that this tool support exists and it is much safer to use it than
to implement the refactoring manually.

1. Introduction

In evolving software systems, refactoring tasks are virtually
essential too keep the code maintainable and the code structure
understandable, and thus, are part of the daily work of a devel-
oper [6]. However, if done manually, refactorings can be error-
prone. Thus, Fowler’s book [3] contains a large catalog of refac-
torings and for each of it a description how it is implemented
correctly. An additional problem is that, as we found in earlier
work [7], for a project such asTOMCAT3 less than 10% of all
refactorings are documented in the log messages of the software
repository.

Thus, a tool that makes the programmer aware of his refactor-
ings, provides links to web pages explaining these, and helps to
document these, would certainly be helpful.

2. Refactoring Identification

This section gives a short overview on our refactoring detection
approach, which is described in detail in [7]. In summary, this
approach works in three phases:

Preprocessing: Find out which code blocks (classes, fields,
methods; all identified by their fully-qualified signature)
have been added and deleted compared with an earlier ver-
sion of the software (e.g., the latest version in the repository).

Signature-based Identification: Compare the added and re-
moved code-blocks using a signature-based approach

to find refactoring candidates. E.g., if the method
doComputation(int, int):double has been re-
moved and the methodcompute(int, int):double
added to the same class, we detect a candidate for aRename
Method refactoring.

Ranking and Filtering: Rank the candidates using code clone
detection on the old resp. new body of the block. Filter out
all candidates below a certain rank.

The remaining candidates are presented to the user. Obviously,
the quality of these candidates strongly depends on the exact con-
figuration of the clone detection and the filter. However, discussing
these configuration details is beyond the scope of this paper. In-
stead, we focus on how to leverage the information about identified
refactorings to make programmers aware of refactorings, improve
the documentation of refactorings in log messages, and help to
prevent errors.

Currently, we detect move, as well as rename refactorings,
changes to the visibility of a symbol, and parameter addi-
tions/deletions to/from methods. Additionally, we want to record
all refactorings that are done using theECLIPSE refactoring func-
tionality.

3. Integration in ECLIPSE

In the following we describe how we intend to integrate our
refactoring identification approach intoECLIPSE.

A Refactoring View in ECLIPSE

As the space in this paper is very limited, we do not describe each
feature separately. Instead, we illustrate how our tool could look
like and how it can be used by a programmer by means of an ex-
ample.

Figure 1 shows a mock-up how the user interface of our
ECLIPSE plug-in could look like. The list of identified refac-
torings is presented in its own view next to the list of problems,
declarations, the console, etc.. The first line contains a summary
of how many refactorings have been identified, and how many of
those have been performed manually respectively automatically
(using theECLIPSE refactoring tool).

In the table below the summary, each line shows information
about a single identified refactoring. The first column of each line
contains the refactoring kind, while the second column contains a
detailed description of the refactoring. The third column indicates
whether this refactoring has been done automatically or manually.
Next, links to web pages with additional information on this kind
of refactoring are listed. For example, we can link to the particular
sub-page belowwww.refactoring.com (the web page of the
book [3] which also includes the refactoring catalog). The last

1st Workshop on Refactoring Tools (WRT'07)

58

Figure 1. Example how the Eclipse integration could look like

two columns provide check-boxes to approve the refactoring and
to automatically add a description of it to the log message when it
is committed to the repository.

To make programmers really aware of new refactorings we also
intent to show a pop-up every time new refactorings have been
identified. Obviously, such a pop-up can annoy developers who
are experienced enough to watch the refactoring list anyway or
who are not interested in this functionality. Thus, this pop-up
should be enabled by default but may be disabled easily.

Options

In the next paragraphs, we discuss technical issues respectively
design options.

When to update and show the refactoring list? There are
several options when the refactoring list can be updated: Our first
idea was to update the liston request, i.e. every time the user
pushes a particular button. The advantage would be that the com-
putation of the refactoring candidates (which may cause latency
on slow systems) is only done when the user requests it. However,
requiring the programmer to push a button conflicts with our goal
to make him aware of refactorings. Thus, we dismissed this ap-
proach and decided to update the list automaticallyon save, that
means each time a file is saved to the disk. If the pop-up option is
enabled, also a pop-up window opens then, provided a new refac-
toring is detected. Finally, the third option is that the list of refac-
torings is updated and presented when the developer tries to com-
mit his changes to the repository. If only this option (and not “on
save”) is used, the problem is that the developer is informed about
his changes quite late, but at least before they get available to other
developers. We decided to implement this option additionally to
“on save”: if the pop-up is enabled, it should be shown again be-
fore the commit operation is executed.

How to get the changes? As explained in Section 2 we need
to compare removed code block with added code blocks in order
to identify refactorings. Thus, obviously the current version of the
software (as shown in the workspace) has to be compared with
some older version. The first approach would be to take the older
version from the local history of the changes withinECLIPSE 1.
This approach should work quite fast and be easy to implement
because no access to the software repository (which could be a
SCM system likeCVS or SUBVERSION) is required. However,
as the memory to store this local change history is limited within
ECLIPSE, old changes in a session can get lost. Furthermore, the
local history is cleared wheneverECLIPSE is restarted. Thus, re-
trieving the older version from the repository enables us to identify
more refactorings under certain conditions.

1The local history is anECLIPSE feature that allows to browse through
then latest changes performed in anECLIPSE session.

4. Related Work

While there exists tool support for performing refactorings in
most of today’s programming IDEs [5] only few researchers have
tried to identify refactorings automatically [2, 7, 1].

Henkel and Diwan have shown that is useful to record automat-
ically performed refactorings [4]. TheirCATCHUP tool records
refactorings performed with theECLIPSE tool and allows to re-
apply these to client code. In contrast, we additionally take identi-
fied refactorings into account and help the programmmer keeping
track of the refactorings he has done.

5. Conclusion

In the introduction we have motivated why anECLIPSE plug-
in that makes programmers aware of refactorings and helps to doc-
ument these, would be a helpful tool. We explained how the refac-
toring identification works and presented how it can be integrated
reasonably intoECLIPSE.

While the refactoring detection algorithm has already been im-
plemented and evaluated [7], we have just recently started to im-
plement theECLIPSE integration. We are very confident, that
we will be able to present a first prototype at the workshop pro-
vided that the paper is accepted. This prototype should at least
perform the refactoring identification and present a list of the iden-
tified refactorings including web links, each time a developer saves
his changes.

References

[1] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via
change metrics. InProc. Conference on Object-Oriented Program-
ming Systems, Languages & Applications (OOPSLA 2000).

[2] D. Dig, C. Comertoglu, D. Marinov, and R. Johnson. FindingRefac-
torings via Change Metrics. InProc. European Conference on Object-
Oriented Programming (ECOOP 2006).

[3] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.Refactor-
ing: Improving the Design of Existing Code. Addison-Wesley, 2001.

[4] J. Henkel and A. Diwan. Catchup!: capturing and replaying refactor-
ings to support api evolution. InProc. International Conference on
Software Engineering (ICSE 2005).

[5] E. Mealy and P. Strooper. Evaluating software refactoring tool sup-
port. In Proc. Australian Software Engineering Conference (ASWEC
2006).

[6] T. Mens and T. Tourẃe. A survey of software refactoring.IEEE Trans-
actions On Software Engineering, 30(2), 2004.

[7] P. Weißgerber and S. Diehl. Identifying Refactorings from Source-
Code Changes. InProc. International Conference on Automated Soft-
ware Engineering (ASE 2006).

1st Workshop on Refactoring Tools (WRT'07)

59

Why Don’t People Use Refactoring Tools?

Emerson Murphy-Hill and Andrew P. Black

Portland State University

{emerson,black}@cs.pdx.edu

Abstract

Tools that perform refactoring are currently

under-utilized by programmers. As more advanced

refactoring tools are designed, a great chasm widens

between how the tools must be used and how

programmers want to use them. In this position

paper, we characterize the dominant process of

refactoring, demonstrate that many research tools do

not support this process, and initiate a call to action

for designers of future refactoring tools.

1. Refactoring Tools are Underutilized

Since the original Refactoring Browser [11],

programming environments have seen a remarkable

integration of tools that perform semi-automatic

refactoring. Programmers have their choice of

refactoring tools in most mainstream languages such

as Java and C#.

However, we believe that people just aren’t using

refactoring tools as much as they could. During a

controlled experiment, we asked 16 object-oriented

programming students whether they had used

refactoring tools – only two said they had, reporting

using them only 20% and 60% of the time [7]. Of

the 31 users of Eclipse 3.2 on Portland State

University computers in the last 9 months, only 2

users logged any refactoring activity. In a survey we

conducted at the Agile Open Northwest 2007

conference, 112 people self-reported on their use of

refactoring tools. When available, they chose to use

refactoring tools 68% of the time when tools were

available, an estimate which is likely optimistically

high. Murphy and colleagues’ data on Eclipse usage

characterizes 41 programmers who were early tool

adopters, and who used Eclipse for a significant

amount of Java programming [6]. According to this

data, over a mean period of about 66 hours per

programmer, the median number of different

refactoring tools used was just 4, with Rename and

Move as the only refactorings practiced by the

majority of subjects.

While it is difficult to tell when people are using

refactoring tools and when they could be using

refactoring tools, this second hand evidence leads us

to believe that refactoring tools are currently not used

as much as they could be.

2. When do Programmers Refactor?

We believe that explaining when programmers

refactor also explains why programmers don’t use

refactoring tools, especially tools produced by

researchers.

There are two different occasions when

programmers refactor. The first kind occurs

interweaved with normal program development,

arising whenever and wherever design problems

arise. For example, if a programmer introduces (or is

about to introduce) duplication when adding a

feature, then the programmer removes that

duplication. Fowler originally argued strongly for

this kind of refactoring [1], and more recently,

Hayashi and colleagues [3] and Parnin and Görg [8]

stated they believed this was a common refactoring

process. This kind of refactoring, done frequently to

maintain healthy software, we shall call floss

refactoring.

The other kind of refactoring occurs when time is

set aside. For example, a programmer may want to

remove as much duplication as possible from an

existing program. This sort of refactoring has been

described by Kataoka and colleages [4], Pizka [9],

and Borquin and Keller [1]. This kind of refactoring,

done after software has become unhealthy, we shall

call root canal refactoring.

Floss refactoring appears to be more effective,

currently more widely used, and likely to be more

widely used in the future. Both Pizka [9] and

Borquin and Keller [1] note distinct negative

consequences when performing root canal

refactoring. Over the history of 3 large open-source

projects, Weißgerber and Diehl were surprised to

find that development contained no days of only

refactorings [13]; if a day contained only

refactorings, it would have indicated root canal

refactoring was taking place. Likewise, Eclipse

usage data from Murphy and colleagues [6] show

that on only one occasion out of thousands did a

programmer perform only refactoring iterations

between version control commits. Furthermore,

because floss refactoring is a central part of Agile

1st Workshop on Refactoring Tools (WRT'07)

60

methodologies, as more programmers become Agile,

we expect more programmers to adopt floss

refactoring.

3. Tool Support for Floss Refactoring

Even though floss refactoring appears to be a more

popular strategy than root canal refactoring, many (if

not most) tools for refactoring described in the

literature are built for root canal usage.

Smell detectors, fully automated refactoring tools,

and refactoring scripts are examples of refactoring

tools are typically built for root canal refactoring.

For instance, jCosmo takes a significant amount of

time and reports system-wide smells [12], making it

inappropriate for floss refactoring. Guru restructures

an entire inheritance hierarchy without regard to what

a programmer is having trouble modifying or

understanding [5], making this tool unsuitable to

floss refactoring as well. Refactoring Browser

scripts [10] may be too viscous for a programmer to

use to perform an impromptu restructuring during

floss refactoring.

While we are only able to point out a few

examples due to space constraints, we believe that

the majority of tools described in the literature are

designed for root canal refactoring. Some exceptions

do exist, such as Hayashi and colleagues’ tool, which

suggests refactoring candidates based on

programmers’ copy and paste behavior [3].

4. Future Work

We suggest that future work on refactoring tools

should pay more attention to floss refactoring. Many

refactoring tools can be built in a way that supports

either floss or root-canal refactoring; we suggest tool

builders be cognizant of which one their tool

supports.

A good way to determine what kind of refactoring

your tool supports is to conduct user studies. These

studies can be as simple as having a few

undergraduates try to refactor some open-source

code. In our research, we have found that such

studies are invaluable in determining the preferred

usage and the limitations of our tools.

5. Acknowledgements

This research supported by the National Science

Foundation under grant number CCF-0520346.

6. References

[1] F. Bourquin and R. Keller, “High-Impact refactoring

based on architecture violations,” Proceedings of CSMR

2007.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D.

Roberts, Refactoring: Improving the Design of Existing

Code: Addison-Wesley Professional, 1999.

[3] S. Hayashi, M. Saeki, and M. Kurihara, "Supporting

Refactoring Activities Using Histories of Program

Modification," IEICE Transactions on Information and

Systems, 2006.

[4] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya, "A

quantitative evaluation of maintainability enhancement by

refactoring," presented at International Conference on

Software Maintenance, 2002.

[5] I. Moore. “Automatic inheritance hierarchy

restructuring and method refactoring,” In Proceedings of

Object-Oriented Programming, Systems, Languages, and

Applications. ACM Press, New York, NY, 235-250,

1996.

[6] G. Murphy, M. Kersten, and L. Findlater, "How Are

Java Software Developers Using the Eclipse IDE?," IEEE

Software, 2006.

[7] E. Murphy-Hill. Improving Refactoring with

Alternate Program Views. Technical Report TR-06-05,

Portland State University, Portland, OR, 2006.

[8] C. Parnin, G, and C. Görg, "Lightweight

visualizations for inspecting code smells," Proceedings of

the 2006 ACM Symposium on Software Visualization,

2006.

[9] M. Pizka. “Straightening Spaghetti Code with

Refactoring.” In Proc. of the Int. Conf. on Software

Engineering Research and Practice - SERP, pages 846-

852, Las Vegas, NV, June 2004.

[10] D. Roberts and J. Brant, "Tools for making

impossible changes - experiences with a tool for

transforming large Smalltalk programs," IEE Proceedings -

Software, vol. 151, pp. 49-56, 2004.

[11] D. Roberts, J. Brant, and R. Johnson, "A refactoring

tool for Smalltalk," Theor. Pract. Object Syst., vol. 3, pp.

253-263, 1997.

[12] E. Van Emden and L. Moonen, "Java Quality

Assurance by Detecting Code Smells," Proceedings of the

Ninth Working Conference on Reverse Engineering, 2002.

[13] P. Weißgerber, and S. Diehl, "Are refactorings less

error-prone than other changes?," presented at MSR '06:

Proceedings of the 2006 international workshop on Mining

software repositories, 2006.

1st Workshop on Refactoring Tools (WRT'07)

61

Automating Feature-Oriented Refactoring of Legacy Applications

Christian Kästner, Martin Kuhlemann
School of Computer Science

University of Magdeburg
{ckaestne,mkuhlema}@ovgu.de

Don Batory
Dept. of Computer Sciences
University of Texas at Austin

batory@cs.utexas.edu

Abstract

Creating a software product line from a legacy appli-
cation is a difficult task. We propose a tool that helps au-
tomating tedious tasks of refactoring legacy applications
into features and frees the developer from the burden of
performing laborious routine implementations.

1. Introduction

A software product line (SPL) aims at creating highly
configurable programs from a set of features. To reduce
costs and risks, developers often take an extractive approach
for creating the SPL by refactoring and decomposing one or
more legacy applications into features [2]. In prior case stud-
ies, we detached optional features like transactions, statis-
tics, or caches from database systems, and experienced that
refactoring legacy applications manually is a complex and
difficult task containing many routine operations [7].

When decomposing a legacy application into features,
the developers focus is on identifying the feature code, i.e.,
classes, methods, fields, or statements associated with a cer-
tain feature. In contrast, the actual refactoring, consisting of
removing code fragments and reintroducing them in feature
modules, is a routine task that can be automated with a tool.

Previously, we built a tool called ColoredIDE to identify
and mark feature code in a legacy Java application. Now, we
use this marked code base to refactor a legacy application
into a software product line with multiple features.

Features in an SPL can be implemented in different ways.
Current research suggests to implement features as mixin
layers [12] or aspects [5, 8], but other implementation ap-
proaches are possible. In the prototype of our tool we inves-
tigated refactorings into feature modules implemented with
Jak [1] and AspectJ [8]. In this paper we focus on AspectJ
as target language and assume a basic knowledge of it.

2. Refactoring

The input of our refactoring tool is a list of features and
a marked version of the source code, where fragments are
associated to these features. In Figure 1 we show an ex-
ample class Stack with a feature Locking whose code is
underlined. Technically, features are associated to elements
in the abstract syntax tree (AST) of the source code, e.g.,
the AST node for the method lock (Line 8) and the state-
ments in Lines 3 and 5 are marked with the Locking feature
(underlined).

1 c l a s s Stack {
2 void push(Object o) {
3 Lock lock = lock(o);
4 elementData[size++] = o;
5 lock.unlock();
6 }
7
8 Lock lock(Object o) { /*...*/ }
9 }

Figure 1. Marked Legacy Code

Our tool now creates a new project for the SPL with
directories for every feature and a directory for the base
code. The base code contains the original program without
any feature code. The feature directories contain aspects
that reintroduce the feature code. In Figure 2 we show the
resulting class of the base code and the aspect implementing
the Locking feature for our example. The SPL can now
be configured by selecting the directories to include in the
compilation process.

For the implementation of the AspectJ refactoring we fol-
low proposals for refactorings like Extract Introduction [6],
Move Field from Class to Inter-type [10], or Extract Ad-
vice [6].

3. Advanced Topics

Generally, our tool uses more sophisticated rewrites than
shown in the example above. For instance, when the feature

1st Workshop on Refactoring Tools (WRT'07)

62

1 c l a s s Stack {
2 void push(Object o) {
3 elementData[size++] = o;
4 }
5 }

6 a s p e c t Synchronization {
7 void around(Stack stack, Object o) :
8 e x e c u t i o n(void Stack.push(Object)) && args(o) &&

t h i s(stack) {
9 Lock lock = stack.lock(o);

10 proceed(stack);
11 lock.unlock();
12 }
13 Lock Stack.lock(Object o) { /*...*/ }
14 }

Figure 2. Refactored SPL code

code is not placed at the beginning or end of the method.
AspectJ does not support statement level join points [11].
In some cases it is possible to advise a method call that is
located next to the feature code, in other cases we have to
create artificial join points by preparing the base code. For
example, we introduce calls to empty hook methods [11] or
perform a preliminary Extract Method refactoring [4].

Furthermore, code can be associated with multiple fea-
tures. Such code is usually a result of feature interactions,
e.g., when one feature calls a method introduced by an-
other feature. To refactor such cases we use the derivative
model by Liu et al. [9] and create separate modules con-
taining aspects for these code fragments. Again our tool
automates the creation of the additional modules and the
refactorings.

Finally, our tool initially refactored every marked code
fragment individually. That means that advanced AspectJ
mechanisms, e.g., pattern expressions for homogeneous
pointcuts, were not employed. However, our tool combines
pointcuts where advice statements have equal bodies with
automated Extract Pointcut refactorings [3]. Thus, our refac-
toring tool takes advantage of AspectJ’s capabilities and
reduces code replication automatically.

4. Conclusion

Refactoring a legacy application into features to create a
SPL is a difficult and laborious task. It consists of detecting
features in the legacy code and of their refactoring. While
detecting features is an interactive procedure the refactoring
can be automated completely. We propose a refactoring
tool which generates an SPL implemented in Jak or AspectJ
based on marked legacy code.

Figure 3. ColoredIDE Screenshot

References

[1] D. Batory, J. N. Sarvela, and A. Rauschmayer. Scaling Step-
Wise Refinement. IEEE Trans. Softw. Eng., 30(6), 2004.

[2] P. Clements and C. Kreuger. Point/Counterpoint: Being
Proactive Pays Off/Eliminating the Adoption Barrier. IEEE
Software, 19(4), 2002.

[3] L. Cole and P. Borba. Deriving Refactorings for AspectJ.
In Proc. Int’l Conf. Aspect-Oriented Software Development,
2005.

[4] M. Fowler. Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 1999.

[5] M. L. Griss. Implementing Product-Line Features by Com-
posing Aspects. In Proc. Int’l Software Product Line Confer-
ence. 2000.

[6] S. Hanenberg, C. Oberschulte, and R. Unland. Refactoring of
Aspect-Oriented Software. In Proc. Net.ObjectDays, 2003.

[7] C. Kästner. Aspect-Oriented Refactoring of Berkeley DB.
Master’s thesis, University of Magdeburg, Germany, 2007.

[8] G. Kiczales et al. An Overview of AspectJ. In Proc. Europ.
Conf. Object-Oriented Programming. 2001.

[9] J. Liu, D. Batory, and C. Lengauer. Feature Oriented Refactor-
ing of Legacy Applications. In Proc. Int’l Conf. on Software
Engineering, 2006.

[10] M. P. Monteiro and J. M. Fernandes. Towards a Catalog of
Aspect-Oriented Refactorings. In Proc. Int’l Conf. Aspect-
Oriented Software Development, 2005.

[11] G. C. Murphy et al. Separating Features in Source Code: an
Exploratory Study. In Proc. Int’l Conf. on Software Engineer-
ing. 2001.

[12] Y. Smaragdakis and D. Batory. Mixin Layers: an Object-
Oriented Implementation Technique for Refinements and
Collaboration-Based Designs. ACM Trans. Softw. Eng.
Methodol., 11(2), 2002.

1st Workshop on Refactoring Tools (WRT'07)

63

An Adaptation
Browser for MOF?

Guido Wachsmuth

Humboldt-Universität zu Berlin
Unter den Linden 6

D-10099 Berlin, Germany
guwac@gk-metrik.de

1 Metamodel Adaptation

Refactoring improves the structure of
code in a behaviour-preserving man-
ner. MOF compliant metamodels de-
scribe the structure of models. Thus,
behaviour-preservation properties do
not characterise metamodel refactoring
accordingly. In [1], we define semantics-
preservation properties in terms of
modelling concepts of a metamodel and
its set of possible instances. In these
terms, metamodel refactoring improves
the structure of existing metamodels in
a semantics-preserving manner.

Like other software artefacts, meta-
models evolve over time due to sev-
eral reasons: During design, alternative
metamodel versions are developed and
well-known solutions are customised
for new applications. During mainte-
nance, errors in a metamodel are cor-
rected. Furthermore, parts of the meta-
model are redesigned due to a better
understanding or to facilitate reuse.

Metamodel evolution is usually per-
formed manually by stepwise adap-
tation. Our tool provides automated
adaptation steps listed in Table 1.
Each step is classified according to its
? This work is supported by grants from

the DFG (German Research Founda-
tion, Graduiertenkolleg METRIK).

semantics- and instance-preservation
properties. Metamodel adaptation goes
beyond pure refactoring. Construction
increases the instance set of a meta-
model. In contrast, destruction de-
creases the instance set.

Models need to co-evolve in order to
remain compliant with the metamodel.
Without co-evolution, these artefacts
become invalid. Like metamodel evo-
lution, co-evolution is typically per-
formed manually. This is an error-
prone task leading to inconsistencies
between the metamodel and related
artefacts. These inconsistencies usu-
ally lead to irremediable erosion where
artefacts are not longer updated [2].
The adaptation browser comes with
automatic co-evolution steps deduced
from well-defined evolution steps. This
co-adaptation prevents inconsistencies
and metamodel erosion.

2 Implementation

Our tool is build upon A MOF 2 for
Java [3]. This tool offers a non persis-
tent but fast model storage, a Java lan-
guage mapping that allows type-safe
programming without type-casts, and
an integrated OCL processor. Further-
more, it supports property subsetting
and other advanced redefinition fea-
tures. The adaptation browser is im-
plemented as an Eclipse plugin bun-
dle. Thereby, we rely on Eclipse’s Lan-
guage Tool Kit. This provides us with
undo/redo support, adaptation history,
and scripting facilities.

3 Applications

The tool facilitates a well-defined step-
wise metamodel design. Starting from

1st Workshop on Refactoring Tools (WRT'07)

64

Table 1. Metamodel adaptations provided by the adaptation browser.

Adaptation Semantics preservation Inverse

Refactoring
rename element strictly preserving rename element
move class preserving modulo variation move class
move property preserving modulo variation move property
extract class preserving modulo variation inline class
inline class preserving modulo variation extract class
association to class preserving modulo variation class to association
class to association preserving modulo variation association to class

Construction
introduce class introducing eliminate class
extract superclass introducing flatten hierarchy
generalise property increasing restrict property
introduce property increasing modulo variation eliminate property
pull property increasing modulo variation push property
dissociate properties increasing modulo variation associate properties

Destruction
eliminate class eliminating introduce class
flatten hierarchy eliminating extract superclass
restrict property decreasing generalise property
eliminate property decreasing modulo variation introduce property
push property decreasing modulo variation pull property
associate properties decreasing modulo variation dissociate properties

basic features, new features are intro-
duced by construction. Scripts of con-
secutive adaptation steps document de-
sign decisions. By changing particular
steps, metamodel designers can alter-
nate designs.

Like other software, metamodels are
subject to maintenance. Metamodel
maintenance also benefits from a trans-
formational setting. Erroneous fea-
tures can be corrected by construction
and destruction. Refactoring provides
for reengineering a metamodel design
without introducing defects. Construc-
tion and destruction assist adjustment
to changing requirements.

Often, language knowledge resides
only in language-dependent tools or
semi-formal language references. Lan-
guage recovery is concerned with the
derivation of a formal language specifi-

cation from such sources. For grammar
recovery, a transformational approach
already proved to be valuable [4]. In a
similar way, our tool assists metamodel
recovery.

References

1. Wachsmuth, G.: Metamodel adap-
tation and model co-adaptation. In
Ernst, E., ed.: ECOOP’07. Volume
4609 of LNCS., Springer (2007) 600–
624 (to appear).

2. Favre, J.M.: Meta-model and model co-
evolution within the 3D software space.
In: ELISA’03. (2003) 98–109

3. Scheidgen, M.: A MOF 2.0 for Java.
(http://www.informatik.hu-berlin.de/
sam/meta-tools/aMOF2.0forJava)

4. Lämmel, R.: Grammar adaptation. In
Oliveira, J.N., Zave, P., eds.: FME ’01.
Volume 2021 of LNCS., Springer (2001)
550–570

1st Workshop on Refactoring Tools (WRT'07)

65

Refactoring Functional Programs at the University of Kent

Simon Thompson, Chris Brown, Huiqing Li, Claus Reinke, Nik Sultana
Computing Laboratory, University of Kent, UK

S.J.Thompson@kent.ac.uk

http://www.cs.kent.ac.uk/projects/refactor-fp/
http://www.cs.kent.ac.uk/projects/forse/wrangler/doc/

We have developed tools for refactoring
functional programs written in both Haskell
and Erlang. As well as giving brief
demonstrations of our tools, we will

• discuss the particularities of refactoring
functional programs, such as
verification of refactorings;

• examine the differences in building
refactoring support for the two
languages; and

• ask the question of how to design tools
that will be taken up by the working
software developer.

Haskell and Erlang

Both Haskell and Erlang are general-purpose
functional programming languages, but they
also have many differences. Haskell is a lazy,
statically typed, purely functional language
featuring higher-order functions,
polymorphism, type classes, and monadic
effects.

Erlang is a strict, dynamically typed functional
programming language with built-in support
for concurrency, communication, distribution,
and fault-tolerance. In contrast to Haskell,
which arose from an academic initiative,
Erlang was developed in the Ericsson
Computer Science Laboratory, and has been
actively used in industry both within Ericsson
and beyond.

Refactoring Haskell

Our project Refactoring Functional Programs,
has developed the Haskell Refactorer, HaRe,
providing support for refactoring Haskell
programs. HaRe is a mature tool covering the
full Haskell 98 standard, including

“notoriously nasty” features such as monads,
and is integrated with the two most popular
development environments for Haskell
programs: Vim and X/Emacs. HaRe
refactorings apply equally well to single- and
multiple-module projects. HaRe is itself
implemented in Haskell.

Haskell layout style tends to be idiomatic and
personal, especially when a standard layout is
not enforced by the program editor, and so
needs to be preserved as much as possible by
refactorings. HaRe does this, and also retains
comments, so that users can recognise their
source code after a refactoring. The current
release of HaRe supports a wide variety of
refactorings, and also exposes an API for
defining Haskell refactorings and program
transformations.

The refactorings supported by HaRe fall into
three categories: structural refactorings
affecting the names, scopes and structure of
the entities defined in a program; module
refactorings affecting the imports and exports
of modules and the definitions contained in
them; and data-oriented refactorings of data
types. All these refactorings have been
successfully applied to multiple module
systems containing tens of thousands of lines
of code.

Refactoring Erlang

Wrangler is an Erlang refactoring tool that
supports interactive refactoring of Erlang
programs. The current snapshot (Wrangler 0.1)
is a prototype, made available so that potential
users can experiment with refactoring support
for Erlang programs, and feed back on their
experience; nonetheless, this release
incorporates features elicited from the user
community (e.g. support for macros).

1st Workshop on Refactoring Tools (WRT'07)

66

Wrangler 0.1 supports a number of basic
Erlang refactorings, including renaming
variable/function/module names and
generalisation of a function definition. Built on
top of the functionalities provided by the
Erlang syntax-tools package, Wrangler is
embedded in the Emacs editing environment,
and makes use of the functionalities provided
by Distel, an Emacs-based user interface
toolkit for Erlang, to manage the
communication between the refactoring tool
and Emacs.

All the implemented refactorings are module-
aware. In the case that a refactoring affects
more than one module in the program, a
message telling which files have been
modified by the refactorer will be given after
the refactoring has been successfully effected.
Since there is no formal notion of 'project' in
Erlang, we provide a 'customize' command in
the refactorer to allow the user to specify the
boundary of the program for the purposes of
the transformation. Undo is supported by the
refactorer. Applying undo once will revert the
program back to the status right before the last
refactoring performed.

Wrangler makes use of functionalities
provided by the epp_dodger module from
Erlang SyntaxTools to parse Erlang source
code, and the refactorer is able to refactor
Erlang modules containing preprocessor
directives and macro applications, as long as
these are syntactically well-formed, otherwise
the refactorer will give a syntax error message.

Publications

Refactoring Erlang programs. Huiqing Li,
Simon Thompson, Laszlo Lovei, Zoltan
Horvath, Tamas Kozsik, Anik Vig, and Tamas
Nagy. In The Proceedings of 12th
International Erlang/OTP User Conference,
Stockholm, Sweden, November 2006.

A comparative study of refactoring Haskell
and Erlang programs. Huiqing Li and Simon
Thompson. In Massimiliano Di Penta and
Leon Moonen, editors, Sixth IEEE
International Workshop on Source Code
Analysis and Manipulation (SCAM 2006),
pages 197-206. IEEE, September 2006.

Formalisation of Haskell Refactorings.
Huiqing Li and Simon Thompson. In Marko
van Eekelen and Kevin Hammond, editors,
Trends in Functional Programming, September
2005.

Refactoring Functional Programs. Simon
Thompson. In Varmo Vene and Tarmo
Uustalu, editors, Advanced Functional
Programming, 5th International School, AFP
2004, volume 3622 of Lecture Notes in
Computer Science, pages 331-357. Springer
Verlag, September 2005.

The Haskell Refactorer: HaRe, and its API.
Huiqing Li, Simon Thompson, and Claus
Reinke. In John Boyland and Grel Hedin,
editors, Proceedings of the 5th workshop on
Language Descriptions, Tools and
Applications, 2005.

Progress on HaRe: the Haskell Refactorer.
Huiqing Li, Claus Reinke, and Simon
Thompson. Poster, International Conference
on Functional Programming, Snowbird, Utah.
ACM, 2004.

Tool support for refactoring functional
programs. Huiqing Li, Claus Reinke, and
Simon Thompson. In Johan Jeuring, editor,
ACM SIGPLAN 2003 Haskell Workshop.
Association for Computing Machinery.

A case study in refactoring functional
programs. Simon Thompson and Claus
Reinke. In Roberto Ierusalimschy, Lucilia
Figueiredo, and Marcio Tulio Valente, eds.,
VII Brazilian Symposium on Programming
Languages, Sociedade Brasileira de
Computacao, 2003.

1st Workshop on Refactoring Tools (WRT'07)

67

