4,345 research outputs found

    Transformation of UML Behavioral Diagrams to Support Software Model Checking

    Get PDF
    Unified Modeling Language (UML) is currently accepted as the standard for modeling (object-oriented) software, and its use is increasing in the aerospace industry. Verification and Validation of complex software developed according to UML is not trivial due to complexity of the software itself, and the several different UML models/diagrams that can be used to model behavior and structure of the software. This paper presents an approach to transform up to three different UML behavioral diagrams (sequence, behavioral state machines, and activity) into a single Transition System to support Model Checking of software developed in accordance with UML. In our approach, properties are formalized based on use case descriptions. The transformation is done for the NuSMV model checker, but we see the possibility in using other model checkers, such as SPIN. The main contribution of our work is the transformation of a non-formal language (UML) to a formal language (language of the NuSMV model checker) towards a greater adoption in practice of formal methods in software development.Comment: In Proceedings FESCA 2014, arXiv:1404.043

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Lightweight and static verification of UML executable models

    Get PDF
    Executable models play a key role in many software development methods by facilitating the (semi)automatic implementation/execution of the software system under development. This is possible because executable models promote a complete and fine-grained specification of the system behaviour. In this context, where models are the basis of the whole development process, the quality of the models has a high impact on the final quality of software systems derived from them. Therefore, the existence of methods to verify the correctness of executable models is crucial. Otherwise, the quality of the executable models (and in turn the quality of the final system generated from them) will be compromised. In this paper a lightweight and static verification method to assess the correctness of executable models is proposed. This method allows us to check whether the operations defined as part of the behavioural model are able to be executed without breaking the integrity of the structural model and returns a meaningful feedback that helps repairing the detected inconsistencies.Peer ReviewedPostprint (author's final draft

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    A logic-based approach for the verification of UML timed models

    Get PDF
    This article presents a novel technique to formally verify models of real-time systems captured through a set of heterogeneous UML diagrams. The technique is based on the following key elements: (i) a subset of Unified Modeling Language (UML) diagrams, called Coretto UML (C-UML), which allows designers to describe the components of the system and their behavior through several kinds of diagrams (e.g., state machine diagrams, sequence diagrams, activity diagrams, interaction overview diagrams), and stereotypes taken from the UML Profile for Modeling and Analysis of Real-Time and Embedded Systems; (ii) a formal semantics of C-UML diagrams, defined through formulae of the metric temporal logic Tempo Reale ImplicitO (TRIO); and (iii) a tool, called Corretto, which implements the aforementioned semantics and allows users to carry out formal verification tasks on modeled systems. We validate the feasibility of our approach through a set of different case studies, taken from both the academic and the industrial domain

    Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

    Get PDF
    One of the most essential processes within the software project life cycle is the REP (Requirements Engineering Process) because it allows specifying the software product requirements. This specification should be as consistent as possible because it allows estimating in a suitable manner the effort required to obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed and heterogeneous projects with multiple analyst teams and high integration between functional modules. This paper presents an approach for the systematic conciliation of functional requirements in big projects dealing with a web model-based approach and how this approach may be implemented in the context of the NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.Ministerio de Economía y Competitividad TIN2013-46928-C3-3-RMinisterio de Economía y Competitividad TIN2015-71938-RED
    corecore