
Detecting Functional Requirements Inconsistencies within
Multi-teams Projects Framed into a Model-based Web Methodology

J. A. García-García1, M. Urbieta2, J. G. Enríquez1 and M. J. Escalona1
1Web Engineering and Early Testing (IWT2) Research Group, University of Seville, Seville, Spain

2LIFIA, Facultad de Informática, UNLP, Buenos Aires, Argentina

Keywords: Functional Requirements, NDT, Consistency, Ambiguity, Requirement Gathering, Distributed Teams.

Abstract: One of the most essential processes within the software project life cycle is the REP (Requirements
Engineering Process) because it allows specifying the software product requirements. This specification
should be as consistent as possible because it allows estimating in a suitable manner the effort required to
obtain the final product. REP is complex in itself, but this complexity is greatly increased in big, distributed
and heterogeneous projects with multiple analyst teams and high integration between functional modules.
This paper presents an approach for the systematic conciliation of functional requirements in big projects
dealing with a web model-based approach and how this approach may be implemented in the context of the
NDT (Navigational Development Techniques): a web methodology. This paper also describes the empirical
evaluation in the CALIPSOneo project by analyzing the improvements obtained with our approach.

1 INTRODUCTION

Requirements Engineering Process (REP) is the
process of eliciting, understanding, specifying and
validating customers’ and users’ requirements. The
elicitation and specification of these requirements is
the most critical tasks in requirements engineering
(Robles et al., 2010) and it is a complex, an iterative
and co-operative process as it is necessary to analyze
and identify the functionality that the system has to
fulfill in order to satisfy the users’ and customers’
needs.

In projects, being for the software or not, where
analysts teams carry out the application’s
requirements eliciting, it can appear ambiguities or
inconsistencies due to different points of view of the
same business concept (Kotonya and Sommerville,
1996). These ambiguities and/or inconsistencies can
cause variations in the project scheduling which can
overestimate the required effort. These problems may
be exacerbated in projects where: (i) high integration
between its modules is required; and (ii) big teams of
analysts are simultaneously working but in different
modules. Consequently, it’s necessary to carry out a
validation and conciliation process which may be
composed by analysis and consistency checking tasks
between requirements in order to eliminate
requirements ambiguity and contradictions. After

performing this process in an iterative manner, the
quality in the requirements specification can be
improved which may imply an important reduction of
development cost.

Traditionally, conciliation tasks are performed
through meeting-based techniques and tools (De
Lucia and Qusef, 2010). However, a high number of
requirement inconsistencies are not usually detected
on time (being this one of the most severe reason of
project cost overrun (Yang et al., 2008)). In this
context, the effort to correct the faults is several
orders of magnitude higher than correcting
requirements at the early stages (Leffingwell, 1997).

These problems may be increased when any
methodology is used. In this sense, we propose to
extend a highly used methodology in business and
academia environments in order to define model-
based systematic mechanisms to detect
inconsistencies between requirements in early stages.
This methodology is NDT (Navigational
Development Techniques) (Escalona and Aragon,
2008) which is briefly described in Section 4.

This paper proposes a formal and systematic
technique to detect inconsistencies in the catalog of
requirements and a software tool with which it is
possible to automate the early detection of these
ambiguities and conciliate software requirements in
MDE (Model-driven Engineering (Schmidt, 2006))

García-García, J., Urbieta, M., Enríquez, J. and Escalona, M.
Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology.
In Proceedings of the 12th International Conference on Web Information Systems and Technologies (WEBIST 2016) - Volume 1, pages 327-335
ISBN: 978-989-758-186-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

327

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by idUS. Depósito de Investigación Universidad de Sevilla

https://core.ac.uk/display/227044109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

environments.
To achieve these objectives, we continue a

previous paper (García-García et al., 2012) where we
laid the foundations of our formal technical and its
supporting tool which is named NDT-Merge. This
tool detects conflicts from a lexical point of view.
Now, this paper aims to propose a process in order to
detect inconsistencies from a structural perspective
based on models and later, it proposes solutions to
solve these conflicts. In addition, this paper aims to
implement this process within NDT-Merge.

Once defined the improvements mentioned on the
NDT methodology for detecting conflicts, we have
applied it on a real project called CALIPSOneo
(Section 3). This project has been launched by Airbus
Military and some work-packages were executed by
the IWT2 Research Group.

Although the NDT methodology is purely focused
on software projects, it was possible to successfully
apply this methodology on CALIPSOneo where a
methodological framework was needed during the
capture of requirements and the analysis of the project
as well as the testing phase.

The rest of this paper is structured as follows.
Section 2 offers a global vision of NDT. Section 3
presents the problem which has been our catalyst to
carry out this research. Section 4 presents some
related work in requirements validation. Section 5
describes our previous work based on systematic
conflicts and presents our model-based approach for
detecting inconsistencies and dealing with them
based on NDT by means of an illustrative example.
In section 5, it is expliained the requirement quality
impact in budget And, finally, Section 6 concludes by
discussing the lessons learned, our main conclusions
and some further work on this subject.

2 NDT

NDT (Navigational Development Techniques)
(Escalona and Aragon, 2008) is a Model-Driven
methodology that was initially defined to deal with
requirements in Web development. NDT has evolved
in the last years and it offers a complete MDE-based
support for each phase of the software development
lifecycle: the feasibility study, requirements, analysis,
design, construction, implementation, as well as the
maintenance and testing phases.

At present, NDT defines formally a set of
metamodels for each phase of its lifecycle and it uses
OCL (International Organization for Standardization,
2012) in order to define semantic constraints which
ensure the definition of well-defined models. In

addition, NDT defines transformation rules (using
QVT (Object Management Group, 2008)) with which
it is possible to generate models from others
systematically. This implies a lower cost and a quality
improvement for the software development.

However, this paper is mainly focused on the
requirements phase. In this phase, NDT offers a set of
techniques to capture, define and validate different
kinds of requirements that are formally defined by a
metamodel and they can be traced to the remaining
artifacts of the lifecycle by managing them in a
suitable manner. NDT uses information previously
captured, defined and validated in the requirements
phase as the basis for the analysis phase.

3 MOTIVATING SCENARIO:
CALIPSOneo PROJECT

CALIPSOneo (advanCed Aeronautical soLutIons
using Plm proceSses & tOols) (Escalona et al., 2013)
has been developed in Airbus Military and where
multiple teams have worked. From the experience of
this project we know requirements are difficult to
conciliate in projects involving multiple teams. This
paper proposes improving the NDT methodology
using in CALIPSOneo project to solve these
problems during requirements’ analysis phase.

In CALIPSOneo we have three interrelated
subprojects (MARS, ELARA and PROTEUS) and
independent teams (you can find more information in
(Escalona et al., 2013)). However, subprojects have
to be coordinated and they have to be correctly
integrated because they have common actors who
demand common functionality. Consequently, a
flexible software methodology was needed to ensure
the success of the CALIPSOneo project and the
communication between different teams that were
working on CALIPSOneo.

In this sense, NDT and NDT-Suite were adapted
to work on this project where a collaborative and
distributed environment was necessary taking into
account the quality assurance during the specification
and development of the project. In this context, NDT-
Profile was adapted to provide a collaborative
environment according to NDT; NDT-Quality was
used to measure and ensure the quality and
traceability between project results and NDT-Driver
was used to automate the systematic generation of
analysis models and testing models from the
requirements phase.

For instance, in a particular way, NDT-Profile
was adapted to enable use functional requirements of
a specific subproject (e.g., MARS) in the

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

328

specification of other subproject (e.g., ELARA). In
this case, use case diagrams were used to identify and
organize functional requirements.

In PROTEUS, a hierarchical structure with two
levels was defined. In the first level, use case
diagram, four use cases were defined: Process
definition in DPE (DELMIA Process Engineering),
Process validation in DPM (DELMIA digital Process
for Manufacturing), Process simulation in DPM and
Product import. Each of these use cases were
decomposed into a second level use case diagram. For
instance, the Process validation in DPM contained
verification of product, resources and process, and
verification of lifecycles. Each second level use case
has an activity diagram to define the flow of activities
to be carried out by the main actor, in this case the
manufacturing planner shows an extract, in NDT-
Profile, of the activity diagram of the use case
Verification of product, resources and process.

The activity diagram has three objectives. The
first one is to define the sequence of tasks, as a step-
by-step guide, for the main actor. Such sequence
defines the working process. The second objective is
to define in detail the lower level tasks to be carried
out, allowing to identify where it is necessary to
conduct an application development to assist the main
actor or to automate a task. Once an application
development is identified, a class diagram is created
to specify the concepts to be implemented by such
application. The third objective is to be used as basis
for the definition of the diagrams for the testing phase
of CALIPSOneo.

Considering these aspects and the collaborative
nature of the CALIPSOneo project, we have
considered necessary to research, propose and define
formal technical with which is possible the early
detection of ambiguities and inconsistencies when
software requirements (specifically, functional
requirements) are defined using use cases models and
activity models. In addition, it is also necessary to
conciliate different points of view of the same
requirement once detection has been carried out.

4 RELATED WORK

Before developing our proposal to detect
inconsistencies in functional requirements
inconsistencies within multi-team projects, a
Systematic Literature Review (SLR) has been carried
out in order to know the state-of-the-art about this
issue and take into account the proposals existing
before tackling the indicated problem. This SLR is
based on the protocol defined by (Kitchenham et al.,

2007). Above, several works related to requirements
validation are mentioned in this section.

Requirements Engineering (RE) is a coordinated
effort to allow clients, users, and software engineers
to jointly formulate assumptions, constraints, and
goals about a software solution. However, one of the
most challenging aspects of RE is the detection of
inconsistencies between requirements in the
requirements phase. Thus, this phase is considered the
most critical tasks in RE (Robles et al., 2010). A
global view presented in (Escalona and Koch, 2004)
divides this phase in three main tasks: requirements
capture, requirements definition and requirements
validation. The detection of conflicts is normally
executed in the last one.

Focusing only on the detection of conflicts, over
the last decade have been several proposals. Below,
some of these proposals are described.

In (Brito et al., 2007), authors propose to detect
concerned conflicts using a Multiple Criteria
Decision Making method to support aspectual
conflicts management in aspect-oriented
requirements. It results limited since it points out the
treatment of aspect-oriented requirements and it only
deals with concerned conflicts.

From a UML-based perspective, the conflict-
detection process in other phases of the software life
cycle has been deeply studied. In (Altmanninger,
2007), author proposes to detect conflicts in a twofold
process: analyzing syntactic differences by raising
candidate conflicts and understanding these
differences from a semantic view.

In (Sardinha et al., 2009), authors present a tool
for identifying conflict in aspect-oriented
requirements called EA-Analized that process
Requirement Definition Language (RDL)
specifications. By classifying text using Naive Bayes
learning method, it is possible to detect conflict
dependencies with high accuracy.

Others authors propose to solve the detection of
inconsistencies between requirements using
knowledge-based techniques. In (Tuong Huan
Nguyen et al., 2012), a knowledge-based
requirements engineering tool, named REInDetector,
is presented. This tool supports automatic detection
of inconsistencies studying the semantic of
requirements after capturing each requirement using
its description logic language.

Moreover, UML has been widely studied for
providing extensions and tools that allow modeling
and developing high quality applications. In
(Nugroho, 2008) it has been empirically analyzed the
relation of level of detail of UML models and the
resultant application’s defect density. The outcome

Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

329

Figure 1: Distributed requirement gathering process.

showed that more detailed are models less defects
report. Same authors provided a throughout empirical
research about consequences of imperfect models.
They point out, that although there are defects that are
easily detected by developers, most of defects, such
as Classes duplication, are hardly detected by them
and therefore propagated in the solution. Duplicated
element definitions in models such as Classes or
Business Processes are named clones. Different
technics has been addressed for detecting Clones in
UML models (Störrle, 2010) or models repositories
(Ekanayake et al., 2012).

5 OUR APPROACH FOR
DETECTING CONFLICTS
WITH NDT

Our approach to detect conflicts in the Software
Requirement Specification (SRS) extends our
previous proposal (Escalona et al., 2008). With this
paper, we aim to extend our proposal introduced in
(Escalona et al., 2008) taking into account the
peculiarities of the functional requirements within
distributed and heterogeneous projects where the
NDT methodology is applied.

Due to large project complexity, our approach
proposes a four steps process based on dividing and
conquering by promoting different analyst teams that
can focus in a specific subset of requirements. Each
analyst team uses NDT approach for specifying
application requirements.

Figure 1 shows an overall schema for our process
and takes into account each NDT specification that
comprises different models such as storage,
functional and interaction requirements. The process
is applied iteratively each time a new set of
requirement rises (Harth and Koch, 2012). The new

incoming set of requirements is checked with each of
the already consolidated requirements of the system
space.

Step 1. Requirement Gathering and Requirement
Modelling. We propose to combine classical capture
requirements techniques such as interviews or
brainstorming for the requirements gathering; for the
requirements modelling, we propose NDT-Profile.
When analysts have completed the requirements
catalogue represented in NDT-Profile, they should
execute the next steps with the aim of detecting
requirements inconsistencies.

Step 2. Requirement Merge. When analyst teams
are specifying different functional modules with a
high degree of interaction and integration among
them, it is necessary to merge their works. This
commitment is audited by a cross domain analyst who
watches over the consistency of SRS. This kind of
guardian is responsible keep SRS consistent and
watches for the correct use of NDT guidelines. Each
team’s SRS is a perspective of the application
meanwhile SRS is a stable view of the whole solution.

Step 3. Inconsistency Detection in Functional
Requirements. When dealing with model oriented
approaches like NDT, requirements are formalized
using specific languages that provide facilities for
describing system behavior. These models face same
ambiguity issues when specifying requirements than
traditional requirement gathering techniques does but
have as advantage that reality has already been
preprocessed by the analyst obtaining a simplified
and clear problem to be solved.

Thus, once the “merge step” has been completed, a
conciliation task start taking place where functional
requirements are analyzed in order to look syntactic
and structural inconsistencies. After that, if an issue
is detected, it is reported to those analysts that their
artifacts reported the issue.

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

330

As abovementioned, NDT specification is built of
artifacts which compliant with diverse model
schemas. Therefore, we had to define specific
techniques for each kind of model for detecting
ambiguities. Next we describe each technique.

1) Storage Requirement Analysis. Searching for
syntactic conflicts aims to detect when two NDT
artefacts are textually defining the same
functional requirement. For this, we carried out
the analysis of text using the technique described
in (Salton and Buckley, 1988): «the vector space
model technique». Both the use of this technique
as its applications in NDT is described in (García-
García et al., 2012). Thus, we are going to
describe it briefly.

The identification of object’ duplication depends on
the analysis of the objects’ description. Our paper has
used a variation of «the vector space model
technique» based on the statistic «term frequency-
inverse document frequency technique». This
technique associates a mathematical equivalence to
any text, i.e., n-dimensional vector where n is the
numbers of terms of the text. Each component stores
the weight of each term. This weight of each word is
calculated by the multiplication of two parameters: tf
* idf.

On the one hand, tf indicates the frequency of the
word in the text, i.e., the number of occurrences of the
term in the text divided by the total number of terms
in the text.

On the other hand, idf is the inverse document
frequency, and it evaluates the importance of the
considered term in the whole set of descriptions. Its
definition allows giving a greater weight to the less
frequent terms, which are considered as the most
characteristic words. It is calculated by taking the
logarithm of the quotient obtained by dividing the
number of descriptions by the number of descriptions
that contains the term. Then, the mathematical
expression of idf is presented.

idf (t,D) = log (|D| / (1+|{d ∈ D : t ∈ d}|)) (1)

With:
 |D|. D is the corpus or set of descriptions analyzed

and |D| is the number of descriptions in the corpus.
 (1 + | {d ∈ ∈ D : t d} | This mathematical

expression represents the number of descriptions
in which the term t appears. The number of
descriptions where the term t appears. This
expression avoids a division-by-zero in the case in
which the term would be absent.

Finally, the mathematical expression of tf * idf is
presented:

tf * idf (t,d,D) = tf (t,d) * idf (t,D) (2)

The similarity of the descriptions is evaluated
considering that descriptions are vectors of words.
Since we consider vectors, we have to apply a single
order of words. All the words of the whole set of
descriptions have to be considered and each new one
is a new dimension in the vector. Then, the
description's original order is not relevant, it is only
necessary to have all the words.

After building the two vectors, we can know what
is the similarity between the two descriptions. For
this, we apply the cosine to calculate of the angle
between two vectors. The cosine with value 1 implies
that the angle between the vectors is 0, which implies
that the texts are similar.

cos(α) = V1.V2 / (||VI||.||V2||),
(0≤cosine≤1)

(3)

To apply the technique described, first of all, the
words are stemmed to their roots so that plurals,
verbal forms or other forms are not considered. We
also don’t consider pronouns, articles and other
connection terms. Then, the cosine similarity is
applied; the algorithm calculates cosines between two
vectors. Therefore, we understand that all the relevant
words of the corpus have to be represented in the
vectors.

The algorithm returns a number for similarity
ratio between 0 and 1 when comparing two texts.
Zero means completely different texts and numbers
near to one mean similar texts. When comparing texts
in Spanish, using the Spanish stemmer, the algorithm
returned lower values for unrelated texts and higher
numbers for similar texts.

In order to find similar objects, we had to compare
each requirement to each other, and then filter the
results that returned the higher values. We defined
filter threshold 0.5 to filter those results above such
number.

In requirement gathering process we could detect
two related definitions by analyzing storage
requirements. Next we present both requirements that
describe the same system need but they were defined
differently. Analysts were warned by our tool because
its similarity ratio 0.62856 was above defined
threshold.

2) Use Case Analysis. Searching for use case
conflict aims at detecting when two NDT
functional requirements are defining the same
functionality of the system in a different manner.
For this, we are going to take advantage of this
situation for introducing automatic analysis of
modeled requirements using well-known graph
theory. NDT uses UML Activity diagram as tool

Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

331

for describing use cases in such a way models can
be analyzed as graph using algorithms developed
in graph similarity or graph isomorphism research
line.

In order to avoid model duplications and
inconsistencies, we profit from developments
performed in UML field by (Störrle, 2010); (Kelter et
al., 2005).

Our analysis tool takes each FR as UML Activity
diagram modeled and stored in an Enterprise
Architect document and builds an equivalent graph
that represents each element of Activity Diagram but
adds extra information that is not present in
Enterprise Architect´s diagram. For instance,
Activities in EA´s models are not related with
swimlanes. Elements are placed over swimlanes in
such a way they overlap but a relationship between
them is not defined although it is perceivable by a
designer. The translation is straightforward because
object oriented models are by definition graph were
objects are Vertex and relationships are Edges. In
figure 2, we show two simple activity diagrams, their
corresponding graph and how their differences are
detected. The lower activity diagram has a start state,
a simple states and a final state. Its graph
representation shows five nodes. On the other hand,
the upper activity diagram is a little bit more complex
and has a start state, two linked states and a final state.
Its graph representation has seven nodes; two
additional nodes highlighted with grey. These last
two nodes represent the difference between two
activity diagrams.

Once activity diagrams have been derived to a
navigable graph, firstly the tool takes two graphs and
compares them looking for equality in graph
definition (same vertexes and edges) and inclusion.
By means of identifying equality, we can improve
estimation of budget because a given requirement is
not computed twice. By detecting inclusion, it allows
defining reusable concepts that will simplify
development and maintenance tasks.

In order to detect differences between models, we
used well-known graph algorithms for isomorphism
and equivalence analysis. Our tool was built on top of
JGraphT library which provides a framework for
graph computation.

We identified a couple common problems when
modelling that can be identified using graph
manipulation. Next we list two supported
inconsistencies identification with a simplified graph
operation.

 Similarity on Elements Definition. By means of
comparing elements in model specification, it is
defined a similarity ratio based on amount if diffe-

rent element over total graph elements.

Ratio values are in a range from 0 to 1 where 0 stand
for totally different models and values closer to 1
means similar models.

ratio(ad,ad2) = (((graphad1 ∪ graphad2)-
(Δ(graphad1, graphad2)))) / (graphad1 ∪

graphad2)
(4)

 Duplications. Occurrences of models
duplications within other elements. This analysis
is quite straightforward because, after removing
redundant element such as initial and final state, it
is checked whether a model is included within
others.

1< graphad1 ∩ (graphad2 – {initial state,
final state})

(5)

 When the intersection result is not empty, it means
that both diagrams share few elements definition.

3) User Interface Models. We propose a twofold
process for analyzing NDT user interfaces: a
syntactic step that compares each model in order
to detect differences and a second step called
semantic analysis that compares two models that
show to be similar called conflict in order to
evaluate if they are equivalent semantically.

A candidate conflict arises when the set of syntactic
differences among requirements appear as a
consequence of: (i) the absence of an element in one
user interface model that is present in the other; (ii)
the usage of two different artefacts for describing the
same information; or (iii) a configuration difference
in an element such as the properties values of an
artefact. This situation may arise when two different
stakeholders have different views of a single
functionality, or when an evolution requirement
contradicts an original one.

As the result of the structural analysis of models,
a list of candidate conflicts is reported; this list must
be verified in order to detect false positives (i.e.
conflicts that actually are not conflicts since the
compromised specifications describe the same
requirement). This issue has been already studied in
(Altmanninger, 2007) and (Li and Ling, 2004) where
models are analyzed in order to expose their
underlying goals. When the underlying goals are
different, we are facing a confirmed conflict.

On the other hand, there are requirements that can
be documented twice in different NDT diagrams
duplicating specifications and injuring requirement
traceability. These cases are also studied in this
process.

We use an approach proposed in (Altmanninger,
2007) which focuses on having an additional seman-

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

332

State1 State2

1

Name:start
Type:InitialState

2

Name: -
Type:Transition

3

Name: State1
Type:State

4

Name: -
Type:Transition

5

Name: State2
Type:State

6

Name: -
Type:Transition

7

Name: end
Type:FinalState

1

Name:start
Type:InitialState

2

Name: -
Type:Transition

3

Name: State1
Type:State

4

Name: -
Type:Transition

7

Name: end
Type:FinalState

State1

Activity Diagram 2

Activity Diagram 1

Graph 1

Graph 2

Figure 2: Graph representation of activity diagrams.

tic view of requirements that complements the
existing syntactic view. For achieving this,
requirements models are downgraded in terms of
abstraction, obtaining a simplified model formed only
by semantically simple elements.

This approach is twofold: a meta-model called
semantic view, in this case it is NDT requirement
meta-model without those meta-model elements that
give RIA support, and a transformation from the
source model to one that obeys the semantic view.

For each detected conflict, the compromised
models (the new and the stable one) are transformed
into a semantic view where the derived models are
finally compared syntactically. This approach avoids
false positives because the semantically equivalent
constructions compositions are disambiguated.

Step 4. Conciliation Process. So far, we have shown
how to detect conflicts that must be resolved in order
to keep the requirements document sound and
complete. Next we will introduce a set of heuristics
that helps resolving structural and navigation
conflicts that have been implemented as suggested
refactoring.

6 IMPACT IN BUDGET

CALIPSOneo has already finished and we cannot
replicate the whole process. However, we could do
our experiment to measure the grade of efficiency and
effectiveness reached when applying it.

This project was managed in a particular manner.
In each subproject (MARS, PROTEUS and ELARA),
meetings were held weekly during which, work teams

discussed about possible integration problems when
they were defining a catalog of requirements.

In this mechanism of reviewing two main
problems were detected:
 Inconsistences were “discovered”, without any

special mechanism or technique and their
detection depended on the experience of the team.

 When an inconsistence was detected, the way to
solve it was to discuss between teams. Depending
of the kind of inconsistence, this discussion was
in a local team (MARS, PROTEUS or ELARA)
or even, if the inconsistence affected several
subprojects, it provoked global meetings
involving several teams.

Apart of “the luck” in the detection of inconsistences,
the execution of the second point affects directly to
the cost of the project. In this meetings, mainly if they
affect to the three teams, resulted too expensive.

In these meetings analyst for each member,
project leader of the affected subprojects and
functional users had to participate and discuss about
different solutions.

As no systematic mechanism were detected. Each
subproject teams have weekly meeting to review the
evolution of the requirements and monthly a global
meeting was celebrated. Besides, the quality team of
the project participated in each meeting. The cost of
these meetings was too high and it could be reduced
using approaches like proposed in this paper.

7 IMPACT IN BUDGET

In a software project, one of the most relevant phases

Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

333

in the lifecycle is the requirements phase, which
conditions the development through all the aspects of
the project, mainly economic. With the increase of
complexity of applications with big, distributed and
heterogeneous projects, this phase acquires a more
relevant role because often, these systems are
specified by multiple analyst teams and in this
context, it is necessary to perform an effective
conciliation of requirements.

When there are different set of requirements, they
have been merged in order to obtain conciliated
requirements to initiate the system development.
However, this task frequently depends on the
analyst’s experience or is done manually. Thus, it is
necessary to establish formal mechanisms to combine
different requirement specifications and detect
conflicts among these requirements.

This paper extends a previous paper in which we
had presented the application of a general MDE
approach for the systematic detection of requirements
inconsistencies and how that approach was extended
to improve the NDT methodology.

Our proposal is based in techniques for detecting
similarities between graphs and techniques for the
detection of syntactic conflicting in a textual manner.
This paper illustrates the application of our proposal
on the CALIPSOneo project that originally was
conciliated by hand without the use of any
mechanism to check it.

ACKNOWLEDGEMENTS

This research has been supported by the MeGUS
project (TIN2013-46928-C3-3-R), by the SoftPLM
Network (TIN2015-71938-REDT) of the Spanish
Ministry of Economy and Competitiveness, and
CALIPSOneo Project.

REFERENCES

International Organization for Standardization, 2012.
ISO/IEC. ISO/IEC 19507:2012 Object Management
Group Object Constraint Language (OCL). 2012.

Kitchenham, B., Charters, S. Guidelines for performing
Systematic Literature Reviews in Software
Engineering. Version 2.3. Department of Computer
Science, University of Durham. EBSE-2007-01. 2007.

Kotonya, G.; Sommerville, I.: Requirements engineering
with viewpoints. Software Engineering Journal, vol.11,
no.1, pp.5-18 (1996).

De Lucia, A., Qusef, A.: Requirements Engineering in
Agile Software Development. In Journal of Emerging
Technologies in Web Intelligence, Vol. 2, No 3 (2010),

212-220 (2010).
Yang, D., Wang, Q., Li, M., Yang, Y., Ye, K., Du, J.: A

survey on software cost estimation in the Chinese
software industry. ESEM 2008:253-262 (2008).

Leffingwell, D.: Calculating the Return on Investment from
More Effective Requirements Management. American
Programmer, 1997, VOL 10; NUMBER 4, pages 13-
16 (1997).

Escalona, M. J., Garcia-Garcia, J. A., Mas, F., Oliva, M.,
Del Valle, C. Applying model-driven paradigm:
CALIPSOneo experience. Conference on Advanced
Information Systems Engineering 2013 (CAiSE'13),
vol. 1017, pp 25-32. 2013.

Robles, E., Garrigós, I., Grigera, J., Winckler, M.: Capture
and Evolution of Web Requirements Using WebSpec.
ICWE 2010:173-188 (2010).

Escalona, M. J., Koch, N.: Requirements Engineering for
Web Applications: A Survey. Journal of Web
Engineering. Vol. II. Nº2. pp. 193-212 (2004).

Escalona, M.J., Aragón, G. 2008. NDT: A Model-Driven
Approach for Web requirements, IEEE Transactions on
Software Engineering. Vol. 34, no. 3. pp 370-390.

Escalona, M. J., Urbieta, M., Rossi, G., Garcia-Garcia, J.,
Luna, E.. Detecting Web requirements conflicts and
inconsistencies under a model-based perspective.
Journal of Systems and Software, 86(12), 2013.

Brito, I. S., Vieira, F., Moreira, A., Ribeiro, R. A.: Handling
conflicts in aspectual requirements compositions. In
Transactions on aspect-oriented software development
III, LNCS, Vol. 4620. Springer-Verlag, Berlin,
Heidelberg 144-166 (2007).

Altmanninger, K.: Models in Conflict - Towards a
Semantically Enhanced Version Control System for
Models. MoDELS Workshops 2007:293-304 (2007).

Sardinha A., Chitchyan R., Weston N., Greenwood P.,
Awais Rashid: EA-Analyzer: Automating Conflict
Detection in Aspect-Oriented Requirements. ASE 2009:
530-534, (2009).

Tuong Huan Nguyen, Bao Quoc Vo, Markus Lumpe, and
John Grundy. 2012. REInDetector: a framework for
knowledge-based requirements engineering.
DOI=10.1145/2351676.2351754. 2012.

García-García J. A., Escalona M. J., Ravel E., Rossi G.,
Urbieta M. NDT-merge: a future tool for conciliating
software requirements in MDE environments. iiWAS
2012:177-186 (2012). ISBN/ISSN: 978-1-4503-1306-
3. Bali, Indonesia. 2012b.

Salton G., Buckley C. 1988. Term-Weighting approaches
in automatic text retrieval. Department of Computer
Science, Cornell University, Ithaca, NY 14853, USA.

A. Nugroho, B. Flaton, and M. R. Chaudron. Empirical
Analysis of the Relation between Level of Detail in
UML Models and Defect Density. In Proceedings of the
11th int. conference on Model Driven Engineering
Languages and Systems (MoDELS '08).

C. C. Ekanayake, M. Dumas, L. García-Bañuelos, M. La
Rosa, and A. H. M. ter Hofstede. 2012. Approximate
clone detection in repositories of business process
models. In Proceedings of the 10th int. conference on
Business Process Management (BPM'12).

APMDWE 2016 - International Workshop on Avanced practices in Model-Driven Web Engineering

334

Li, C., Ling, T. W.: OWL-Based Semantic Conflicts
Detection and Resolution for Data Interoperability. ER
(Workshops) 2004:266-277 (2004).

Harth, A., & Koch, N. (2012). Current Trends in Web
Engineering: Workshops, Doctoral Symposium, and
Tutorials, Held at ICWE 2011, Paphos, Cyprus, June
20-21, 2011. Revised Selected Papers. Springer Science
& Business Media.

Schmidt, D. C., 2006. Model-Driven Engineering.
Published by the IEEE Computer Society vol 39.

Harald Störrle. 2010. Towards clone detection in UML
domain models. In Proceedings of the Fourth European
Conference on Software Architecture: Companion
Volume (ECSA '10), Carlos E. Cuesta (Ed.). ACM, New
York, NY, USA, 285-293.

Kelter, U., Wehren, J. & Niere, J. (2005). A Generic
Difference Algorithm for UML Models. In P.
Liggesmeyer, K. Pohl & M. Goedicke (eds.), Software
Engineering (p./pp. 105-116).

Detecting Functional Requirements Inconsistencies within Multi-teams Projects Framed into a Model-based Web Methodology

335

