
Lightweight and Static Verification of
UML Executable Models

Elena Planasa,∗, Jordi Cabotb,a, Cristina Gómezc

aUniversitat Oberta de Catalunya (Spain)
bICREA (Spain)

cUniversitat Politècnica de Catalunya (Spain)

Abstract

Executable models play a key role in many software development methods by
facilitating the (semi)automatic implementation/execution of the software sys-
tem under development. This is possible because executable models promote
a complete and fine-grained specification of the system behaviour. In this con-
text, where models are the basis of the whole development process, the quality
of the models has a high impact on the final quality of software systems derived
from them. Therefore, the existence of methods to verify the correctness of
executable models is crucial. Otherwise, the quality of the executable models
(and in turn the quality of the final system generated from them) will be com-
promised. In this paper a lightweight and static verification method to assess
the correctness of executable models is proposed. This method allows to check
whether the operations defined as part of the behavioural model are able to be
executed without breaking the integrity of the structural model and returns a
meaningful feedback that helps repairing the detected inconsistencies.

Keywords: Model-Driven Development (MDD), Model-Driven Architecture
(MDA), Executable Models, Verification, Static Analysis, Alf Action Language

1. Introduction

Executable models are models with a behavioural specification detailed enough
so that they can be systematically implemented or executed in the production
environment. Executable models play a cornerstone role in the Model-Driven
Development (MDD) paradigm, where models are the core artifacts of the de-
velopment life-cycle and the basis to generate the final software implementation.

Executable models are not a new concept (e.g. [31, 58]) but are now ex-
periencing a comeback, becoming a relevant topic within the OMG (Object

∗Corresponding author at: Rambla del Poblenou 156, 08018 Barcelona, Spain. Tel.: +34
93 326 35 49; fax: +34 93 326 88 22.

Email addresses: eplanash@uoc.edu (Elena Planas), jordi.cabot@icrea.cat
(Jordi Cabot), cristina@essi.upc.edu (Cristina Gómez)

Preprint submitted to Computer Languages, Systems and Structures January 13, 2017

montse aragues
Texto escrito a máquina
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

montse aragues
Texto escrito a máquina

Management Group). Their use is being promoted given the value they can
bring. As one of its creators declares “executable models increase productivity
by raising the level of abstraction; reduce costs by describing systems indepen-
dently of their implementation; and improve the quality of the final system by
facilitating early verification” [37].

Following this trend, the OMG has published in the last years several ver-
sions of the Foundational Subset for Executable UML Models (fUML) standard
[46], an executable subset of the UML that can be used to define, in an oper-
ational style, the semantics of systems. The OMG has also published the first
standard version of the Action Language for Foundational UML (Alf) standard
[45], a textual surface notation which maps to the fUML [46], that provides the
constructs to specify the fine-grained behaviour of systems in terms of actions.
As can be seen, the increasing implementation of these standards in modeling
tools [19, 39, 11] shows a raising interest for this topic.

Given the growing importance of executable models and the impact of their
correctness on the final quality of software systems derived from them [41], the
existence of methods to verify the correctness of such models is becoming crucial.
Otherwise, the quality of the executable models (and in turn the quality of the
final system generated from them) will be compromised.

In this paper we propose a method (see Figure 1) focused on the verification
of the executability of operations specified by means of actions (i.e. action-
based operations) with respect to a subset of the integrity constraints that can
appear in a model. We consider this is an important criteria to preserve the
correctness of such models. Besides checking the executability of the operations,
the method we propose returns a meaningful feedback that helps repairing the
detected inconsistencies.

Output

Executable Model

Feedback

Designer

Lightweight and Sta�c Verifica�on

Strong
ExecutabilityInput

feedback is used to improve the quality of the executable model

UML
Class

Diagram

Alf
Opera�ons

Weak
Executability

Figure 1: Method overview.

Like other studies that focus on executability [12, 13, 55], our method clas-
sifies the operations in three categories:

1. Strongly executable (SE) operations, i.e. operations that are guar-
anteed to always generate a consistent state. We know for sure that all
executions of the operation (regardless of the input values provided to the
operation and the initial system state where the operation is applied on)
reach a consistent state with respect to the structural model and their
integrity constraints.

2. Weakly executable (WE) operations, i.e. operations that sometimes
generate a consistent state, but are not guaranteed to do so. We can ensure

2

that at least one of the many possible executions of the operation during
the life span of the system will be successfully executed but probably not
all of them (e.g. depending on the input parameters).

3. Non executable (¬E) operations, i.e. operations that never generate
a consistent system state. After their execution, they always reach a
state that violates some integrity constraints of the structural model (e.g.
some cardinality constraints). Note that this does not mean that the
operations cannot be executed, but that their execution always generate
an inconsistent system state.

¬E operations, when executed as standalone operations, are useless since
every time a user tries to execute them (regardless the provided input values)
an error arises because some integrity constraints become violated. Also notice
that weak executability is a necessary (but not sufficient) condition for strong
executability. Then SE operations are a subset of WE operations.

In contrast with most related works, our method follows a lightweight ap-
proach. The term lightweight was popularized over almost twenty years ago
following the publication of a round-table article [56], which invited the use of
formal methods in a practical way. We consider our method as being lightweight
since it performs a static analysis of the model, i.e. it examines the model with-
out executing its operations [40]. Static analysis has been mainly applied to
analyze the source code of programs [54], but the same idea may be extended
to analyze models at design time without requiring any kind of simulation. Be-
sides, our method provides valuable information as feedback (in case of error,
it points out the source of the error and assists the designer during their cor-
rection). As we will see later, our method relies on some assumptions regarding
the input model and requires some trade-offs to enable our lightweight analysis.

The work reported here extends our previous works [51] and [52] on several
directions: (1) We increase the expressiveness of the models our method can
deal with; (2) In order to align our work with the new UML standards, we now
specify the operations by means of the Alf action language [45] provided by the
OMG; (3) We re-design our previous methods [51, 52] to provide a unique and
integrated method for verifying weak and strong executability properties; (4) In
our previous work [52] we only provide the skeleton of the method as a black
box, while in this work we elaborate in detail each step of the method; and (5)
We provide a prototype tool that implements our method.

To the best of our knowledge, only few works have been devoted to verify
fUML/Alf specifications [4, 8, 17, 33, 35, 38]. As suggested in [42, 24] and more
specifically in [49], the verification of such specifications should be studied.

Paper Organization. The rest of the paper is structured as follows. Sec-
tion 2 presents the motivation of our work. Section 3 introduces the basic
concepts and the notation that will be used in the rest of the paper. Section
4 defines the concepts of execution paths and executability. Section 5 describes
our method, Section 6 presents the prototype tool that implements it, Section
7 describes an empirical evaluation to assess the usefulness and the efficiency
of our method, and Section 8 discusses about its pros and cons. Finally, Sec-

3

tion 9 presents the related work and Section 10 summarizes with the relevant
conclusions and further work.

2. Motivation

Executability is one of the most fundamental correctness properties for be-
havioural models. As we introduced, operations can be classified as strongly
executable (SE), weakly executable (WE) or non executable (¬E).

The previous properties can also be characterized in terms of probabilities:
¬E operations generate a consistent state with probability 0, WE operations
generate a consistent state with probability strictly greater than 0 and SE oper-
ations generate a consistent state with probability exactly 1. Then, WE opera-
tions may be viewed as optimistic operations since they apply the changes to the
system state without ensuring that those changes will not break any constraint.
They hope that they will not but an external mechanism is needed to check this
and act accordingly (e.g. rolling back the changes if they indeed violate the
constraints). Instead, SE operations may be viewed as safe operations (they
will be successfully executed in any scenario).

Generally speaking1, making sure that all operations are WE ensures a basic
level of correctness. However, there might be cases (for instance, some critical
and/or concurrent systems) in which WE operations are not sufficient. In these
cases we believe it is also necessary to guarantee SE operations. Making sure
that all operations are SE at design time ensures a hight level of correctness, by
facilitating a lot the development (and run-time efficiency) of the system: since
we know that operations always leave the system in a consistent state, we can
avoid checking at the end of each operation execution whether all constraints are
satisfied which improves the efficiency of the system. Building (and executing)
such integrity checking mechanism is an error-prone and time-consuming process
that can be avoided when using our method.

Note that our purpose is to verify operations (ensuring operations are cor-
rect) and not to validate them (ensure they are the correct operations to imple-
ment the user expectations).

Executability is not a new property, it has been studied, for instance, to
verify declarative operations [13, 55] and model-to-model transformations [12,
53] (for more details, see the related work in Section 9). However, there is a
lack of methods to check this property on executable models.

2.1. The Need for Verification: Writing Executable Operations Is Not Easy

In general, we cannot assume that designers are able to easily write exe-
cutable operations by themselves. To prove this fact, we did an experiment

1Strictly speaking, and as we will discuss in Section 5, this only needs to apply to those
operations that can be directly executed by the user as a kind of single transaction (i.e. an
operation that guarantees an atomic and isolated execution, a consistent system state after
its execution and the durability of execution results [28]). Then, helpers and other operations
that will not be executed as standalone operations may be discarded from our analysis.

4

with a total of one hundred students of a Software Engineering course of the
Computer Science Degree taught at the Open University of Catalonia (UOC),
all of them had a good background about modeling and programming. The
students were provided with a UML class diagram (containing 14 classes, 10
associations and 32 integrity constraints) representing a car sharing system and
they were asked to design four action-based operations. All operations were of
low and medium complexity in terms of the number of actions they contained
(an average of 6.5 actions each operation).

The results (see Figure 2) showed that, among all the operations designed
by the students, 67% of them were ¬E, 33% of them were WE and only 26%
were also SE. Figure 3 shows the frequency of the typical errors found in the
operations designed by the students.

7%

Weakly and
Strongly Executable

26%

Weakly (but not Strongly)
Execubtale

7% 67% Non executable

Figure 2: Results of our experiment.

28,95%

13,16%

26,32%

5,26%

7,89%

7,89%

10,53%

0,00% 5,00% 10,00% 15,00% 20,00% 25,00% 30,00% 35,00%

Do not relate an object with at least Cmin* objects

Do not relate an object with at most Cmax*
objects

Empty mandatory attribute

Do not guarantee an object is an instance of at
least one subclass in a covering generalization

Do not guarantee an object is an instance of at
most one subclass in a disjoint generalization

Do not guarantee the value of an identifier
attribute is unique

Existence of links not linked to any object

* Cmin = minimum cardinality of an association
Cmax = maximum cardinality of an association

Figure 3: Frequency of the errors found in the operations of our experiment.

We believe this experiment supports the need for a method able to evalu-
ate the correctness of the operations and that can be easily integrated in the
modeling tools used by practitioners.

5

3. Basic Concepts and Notation

In order to facilitate the comprehension of our method, this section describes
the basic concepts that will be used in the rest of the paper. In the following,
the concepts of executable model (Section 3.1), structural model (Section 3.2)
and behavioural model (Section 3.3) are reviewed.

In this paper we assume that executable models are written using the OMG
standards (UML [47], OCL [44] and Alf [45] languages). Our choice is based on
the wide adoption of the OMG standards in modeling specifications, although
many concepts of this work are applicable to other languages as well.

3.1. Executable Model

It is widely accepted that a model is a simplified representation of a com-
plex reality [10]. Moreover, an executable model is a model with a behavioural
specification detailed enough so that it can be systematically implemented or
executed in the production environment.

We represent an executable model (ExM) as a 2-tuple 〈SM , BM〉, where
SM is a structural model and BM is a behavioural model.

3.2. Structural Model

A structural model specifies the static part of a software system, i.e. the
general knowledge about the system domain [43].

We represent an structural model (SM) as a UML class diagram, composed
by a set of classes, a set of attributes of each class, a set of binary associations
and generalizations among classes and a set of integrity constraints (i.e. condi-
tions that must be satisfied in all states of a software system [43]). Some integrity
constraints (for instance, cardinalities and disjointness/covering constraints
in generalizations) may be graphically represented in the class diagram, while
others can be textually specified in OCL [44].

When verifying the executability of operations, our method takes into ac-
count the most commonly used integrity constraints according to [16]. They
are shown in Table 1. First column (Contraint) identifies the constraint type,
second column (Abbreviation) indicates the precise notation that our method
internally uses, third column (Description) describes the meaning of the con-
straint, and last column (Formalization in OCL) provides its formal description.
Some new constraints could be added to this table, however, as we discuss in
Section 8 our method is not suitable to address arbitrary integrity constraints.

Table 1: Constraint types supported by our method.

Constraint Abbreviation Description Formalization in OCL

Minimum
cardinality
of a class

Cmin(cl) Expresses the mini-
mum objects of class
cl that must exist
simultaneously

context cl inv:
cl.allInstances() ->size()
>= Cmin(cl)

Maximum
cardinality
of a class

Cmax(cl) Expresses the maximum
objects of class cl that
may exist simultaneously

context cl inv:
cl.allInstances() ->size()
<= Cmax(cl)

Continued on next page

6

Table 1 – continued from previous page
Constraint Abbreviation Description Formalization in OCL
Minimum
cardinal-
ity of an
association

Cmin(as,r) Expresses the minimum
multiplicity of the mem-
ber end (i.e. role) r
of an association as be-
tween cl (with role r)
and cl’

context cl inv:
cl.r->size() >= Cmin(as,r)

Maximum
cardinal-
ity of an
association2

Cmax(as,r) Expresses the maximum
multiplicity of the mem-
ber end (i.e. role) r
of an association as be-
tween cl (with role r)
and cl’

context cl inv:
cl.r()->size() <= Cmax(as,r)

Mandatory
attribute

Mand(attr,
cl)

Expresses the attribute
attr of class cl must
have at least one value

context cl inv: not
cl.attr->oclIsUndefined()

Covering of
a generaliza-
tion

Cov(cl,
{cl1,. . . ,
cln}) (cl
generalizes
cl1,. . . , cln)

Requires each instance of
cl to be an instance of at
least one cli.

context cl inv:
self.oclIsTypeOf(cl1) or
... or self.oclIsTypeOf(cln)

Disjointness
of a general-
ization

Disj(cl,
{cl1,. . . ,
cln}) (cl
generalizes
cl1,. . . , cln)

Requires each instance of
cl to be instance of at
most one cli

context cl inv:
self.oclIsTypeOf(cli) implies
not self.oclIsTypeOf(clx),
where x,i=1..n and x 6= i.

Identifier3 ID(attr,cl) Expresses the attribute
attr uniquely identifies
instances of cl

context cl inv:
cl.allInstances() ->
isUnique(attr)

Symmetry of
a recursive
association

Sym(as) Guarantees if an object
o1 is as-related to o2,
then o2 is as-related to
o1

context cl inv: self.r
-> forAll(o|o.r ->
includes(self)), where r is
a member end of as

Asymmetry
of a re-
cursive
association

Asym(as) Guarantees that if an ob-
ject o1 is as-related to
o2, then o2 is not as-
related to o1

context cl inv: self.r
-> forAll(o|o.r ->
excludes(self)), where r is
a member end of as

Irreflexivity
of a re-
cursive
association

Irrefl(as) Guarantees that an ob-
ject o is never as-related
to itself

context cl inv:
self.r->excludes(self), where
r is a member end of as

Value com-
parison

ValueComp
(attr,op,v)

States a restriction on
the value of the at-
tribute attr: the expres-
sion attr op v (where
op is a comparison op-
erator and v is a value)
must be true

context cl inv: self.attr
<op> v

Referential
integrity
constraint

Referential
(cl, as)

Guarantees each partic-
ipant in the association
as (in which cl partic-
ipates) is an instance of
its corresponding class

context cl inv: not
self.r->oclIsUndefined(),
where r is a member end of as

The state of a system at a specific time is the set of instances of the classes
and associations defined in the class diagram that exist at that time [43]. It can
be represented in UML using an object diagram.

2Multivalued attributes are treated as associations, since they behave in the same way.
3Although the latest version of UML [47] allows to represent the constraint ID, it does not

define any associated notation. This is the reason why we represent this constraint by OCL.

7

RestaurantBranch

P

z

Offersaddress : String

phone : String [q--=]

City

name : String

P

IsLocatedIn

Menu

name : String

price : Real

P

Course

descrip�on : String

category : CourseCategory

v--PIsComposedOfP

SpecialMenu

discount : Real

{incomplete}
<<enumera�on>>

CourseCategory

Starter

MainCourse

Dessert

CanBeSubs�tutedBy

replaced

replacement P
P

contextMenu invmenuPrimaryKey: Menu-allInstancesDb)>isUniqueDnameb

context SpecialMenu inv atMostvSpecialMenus: SpecialMenu-allInstancesDb)>sizeDb<=v

context SpecialMenu inv validDiscount: self-discount >= zq

context Course inv symmetricAssocia�on: self-replaced)> forAllDc|c-replaced)> includesDselfbb

context Course inv irreflexiveAssocia�on: self-replaced)> excludesDselfb

IDDname(Menub

CmaxDSpecialMenub=v

ValueCompDself-discount(>=(zqb

SymDCanBeSubs�tutedByb

IrreflDCanBeSubs�tutedByb

Figure 4: Excerpt of a restaurant chain class diagram.

Example 1 Given the class diagram of Figure 4, a possible sys-
tem state called currentState would be a state in which there is a
restaurant branch with address “Camèlies Street, 53, Barcelona”,
which offers a non-special menu called “Anticrisis menu” for 5e
(see Figure 5) .

c: City

address = Camèlies Street 53

Offers

name = Barcelona

rb: RestaurantBranch m: Menu
name = An�crisisMenu
price = 5.00

IsLocatedIn

Figure 5: Object diagram representing the state currentState described in Example 2.

A state s satisfies an integrity constraint ic iff ic evaluates to true in this
state. We denote by Satisfies(s,ic) the proposition that states that s satisfies
the integrity constraint ic. Otherwise, we say that the constraint is unsatisfied
or violated.

Let ExM = 〈SM , BM〉 be an executable model, a system state s is con-
sistent regarding SM iff ∀ ic ∈ SM , Satisfies(s,ic). We denote by IsConsis-
tent(s,SM) the proposition that states that s is consistent regarding the struc-
tural model SM .

Example 2 The state currentState (see Figure 5) does not satisfy
the minimum cardinality constraint of the association
IsComposedOf in the role course, since the menu “Anticrisis
menu” does not contain any course, i.e. Satisfies(currentState,
Cmin(IsComposedOf,course)=3) = false.

8

Therefore, this state is not consistent with the structural model of
Figure 4, i.e. IsConsistent(currentState, RestaurantChain CD) =
false.

3.3. Behavioural Model

A behavioural model specifies the dynamic part of a software system, i.e. the
valid changes in the system state, as well as the functions that the system can
perform [43]. In UML there are several alternatives to represent the behaviour
of a system but low-level specifications typically rely on the specification of
operations (attached to UML classes) that are sequences of atomic steps that
the users may execute to query/modify the information of the structural model.
In this paper, we assume that a behavioural model (BM) is composed of a set
of operations 〈op1,. . . , opn〉, where each opi is a sequence of Alf actions [45].

Alf is a standard published at the end of 2013 by the OMG (first beta
version appeared in 2010). It provides a concrete syntax in charge of defining the
basic read/write actions that can be used to specify the fine-grained behavioural
aspects of systems plus some control flow statements to coordinate these actions
in action sequences, conditional blocks or loops. The expressiveness of Alf is
comparable to that of the instructions in traditional programming languages
but at a higher abstraction (and platform-independent) level.

Table 2 shows the main modification actions provided by fUML (1st column),
the corresponding concrete syntax provided by Alf (2nd column) and the de-
scription of the update they perform (3rd column). fUML predefines additional
actions not shown in Table 2 since they do not affect our analysis.

Table 2: Main modification actions provided by fUML and concrete syntax in Alf.
fUML Action Alf Syntax Description
CreateObject <object> = new <class>() Creates and returns a new object of

type class
DestroyObject <object>.destroy() Destroys the object object from its

class and from any immediate super-
classes (if such exists)

ReclassifyObject classify <object> [from
<oldCl>] [to <newCl>]

Removes object from classes in oldCl
and/or adds it as a new instance of
classes in newCl

AddStructuralFeature <object>.<attribute> =
<value>

Sets value as the new value for the at-
tribute attribute of object object

ClearStructuralFeature <object>.<attribute> =
null

Removes all values for the attribute
attribute of object object

CreateLink <association>.createLink
(<object1>,<object2>)

Creates a new link4 (i.e. associa-
tion instance) in the binary associa-
tion association between object1 and
object2

DestroyLink <association>.destroyLink
(<object1>,<object2>)

Destroys the link (i.e. association
instance) in the binary association
association between object1 and
object2

ClearAssociation <association>.clearAssoc
(<object>)

Destroys all links of the named
association that have at least one
end with value object

OperationCall [<result>]=<object>.
<operation>([<arguments>])

Invokes the operation in the context
of the object with arguments and, op-
tionally, returns the result

9

Example 3 We show three operations (specified as UML activi-
ties in Alf) defined with Alf: (1) newCourse (in the context of class
Course), creates a new course in the system; (2) addMenu (in the
context of class Menu), adds a new menu to the system; and (3)
classifyAsSpecialMenu (in the context of class Menu), classi-
fies a menu as special menu. We consider all these three operations
can be executed independently, then, they should be executable.

activity newCourse(in description:String, in
substitutingCourses:Course[*]) {
Course c = new Course();
c.description = description;
for (i in 1.. substitutingCourses→size()) {
CanBeSubstitutedBy.createLink(c, substitutingCourses[i]);
}
}

activity addMenu(in name:String, in price:Real, in
courses:Course[3..*]) {
if (!Menu.allInstances()→exists(m|m.name= name)) {
Menu m = new Menu();
m.name = name;
m.price = price;
for (i in 1.. courses→size()) {
IsComposedOf.createLink(m, courses[i]);
}
}
}

activity classifyAsSpecialMenu(in discount:Real) {
if (discount ≥ 10) {
classify self to SpecialMenu;
self.discount = discount;
}
}

4. Execution Paths and Executability

The aim of this section is to precisely define the notion of executability
regarding our two levels of correctness (weak and strong). With this purpose
we need to first introduce the concept of execution path.

4.1. Execution Paths

The verification of the executability property is based on an analysis of the
possible execution paths allowed by the actions that define the operation effect,
i.e., the possible sequences of actions that may be followed during its execution.

In order to determine the execution paths, we propose to draw each operation
as a Model-Based Control Flow Graph (MBCFG), a directed graph based on
the model specification (instead of on the program code, as traditional control
flow graph proposals). MBCFGs have also been used to express UML Sequence

4We assume that for every pair of objects there is at most one link in as between them.

10

Diagrams [23]. We adapt this idea to express the control flow of action-based
operations.

In order to represent Alf operations as MBCFGs, we consider the behaviour
of each operation is an instance of exactly one Activity metaclass from fUML
(see the fUML metamodel excerpt in Figure 6). We consider that each op-
eration (i.e. Activity) consists in a sequence of actions5 (Action metaclass
specializes the metaclass ExecutableNode which in turn specializes the meta-
class ActivityNode). The list of available actions are all the subclasses of the
Action metaclass as shown in Figure 6. This includes modification actions (also
described in Table 2), ConditionalNodes (which represents an exclusive choice
among a number of alternatives) and LoopNodes (that enables the definition of
loops by means of a setup, test and body sections).

Ac�on

AddStructuralFeatureValueAc�on

ReclassifyObjectAc�on

DestroyObjectAc�on

CreateObjectAc�on ClearAssocia�onAc�on

ExecutableNode

ac�vity node
*0..1Ac�vity Ac�vityNode

StructuralFeatureAc�on

WriteStructuralFeatureAc�on ClearStructuralFeatureAc�on

LinkAc�on

WriteLinkAc�on

Invoca�onAc�on

CallAc�on

CallOpera�onAc�on

CreateLinkAc�on DestroyLinkAc�on

StructuredAc�vityNode

Condi�onalNode LoopNode

Behavior
BehavioralFeature

concurrency:CallConcurrencyKind=sequen�al

Opera�on

method
*

specifica�on

0..1

Figure 6: Fragment of the fUML metamodel supported by our method.

We also internally use two artificial control nodes that do not explicitly
appear in Alf operations: the first node (representing the first instruction in the
operation) and the last node (representing the last one). These two nodes help
in clarifying the representation of our MBCFG.

Note that, since our method is focused on the correctness of single action-
based operations and not on the overall problem of verifying activity diagrams,
it only supports a subset of the constructs that can appear on operations (those
executable nodes included in Figure 6).

A Model-Based Control Flow Graph (MBCFG) for an operation op is a 2-
tuple (Vop, Aop). The corresponding vertices (Vop) and arcs (Aop) are obtained
applying the following rules:

• Every activity node (i.e. action) in op is a vertex in Vop. In order to sim-
plify the MBCFG, we only consider actions that may modify the system
state (i.e. modification actions) and structured actions (i.e. conditionals
or loops). It means that we skip other types of actions (as actions to read

5We ignore other types of ActivityNodes such as ControlNodes that can typically appear
on activity diagrams but more rarely on operation specfications.

11

values, to declare and initialize variables, and test actions to define the
condition expression of a conditional/loop structure) since they do not
affect the result of our analysis.

• An arc from a vertex v1 to v2 is created in Aop if v1 immediately precedes
v2 in an ordered sequence of nodes.

• A vertex v representing a conditional node n is linked by an arc to the
vertices v1, . . . , vn representing the first activity node for each clause (i.e.
the then clause, the else clause, . . .) in n. All vertices of each clause are
englobed into a dashed line box. The last vertex in each clause is linked
to the vertex vnext immediately following n in the sequence of executable
activities. If n does not include an else clause, an arc between v and vnext
is also added to Aop.

• Each arc from a conditional node to its first clause vertex is labelled with
the condition of the conditional structure. Each arc to an else clause (or
the arc between the conditional node and the vnext if there is not an else
clause) is labelled with the negation of the above condition.

• A vertex v representing a loop node n, is linked by an arc to the vertex
representing the first activity node for n.bodyPart (returning the list of
actions in the body of the loop) and the vertex vnext immediately following
n in the activity. The last vertex in n.bodyPart is linked back to v (to
represent the loop behaviour).

• Each arc from a loop node to its first vertex is labelled with the condition
fulfilled in the first execution of the loop followed by the times the loop is
executed.

• A vertex representing an OperationCall action is replaced by the sub-
digraph corresponding to the called operation op′ as follows: (1) the initial
vertex of op′ is connected with the vertex that precedes the OperationCall
activity node in the main operation; (2) the final vertex of op′ is connected
with the vertex/ces that follow the OperationCall; and (3) the parameters
of op′ are replaced by the arguments in the call.

Example 4 Figures 7, 8 and 9 show the MBCFGs for the op-
erations newCourse, addMenu and classifyAsSpecialMenu
respectively, where each node has been labelled with a number.

Course c =
new Course()

c.descrip�on =
_descrip�on

for

_subs�tu�ngCourses->size() >= 1,
executed _subs�tu�ngCourses->size() �mes

CanBeSubs�tutedBy.createLink(c, _subs�tu�ngCourses[i])
4

321

Figure 7: MBCFG of newCourse operation.

12

Menu m =
new Menu45

if

m.name =
_name

OMenu.allInstances45 -> exists4m|m.name=_name5

m.price =
_price

for

_courses->size45 >= 1,
executed _courses->size45 �mes

IsComposedOf.createLink4m,_courses[i]5

1

2 3 4 5

6

Figure 8: MBCFG of addMenu operation.

classify self to SpecialMenuif
_discount >= 10 self.discount = _discount

1 2 3

Figure 9: MBCFG of classifyAsSpecialMenu operation.

The process to verify the executability is based on an analysis of the possible
execution paths allowed by the MBCFG. An execution path of an operation op
is a finite and not empty sequence of actions that may be followed during the
operation execution (note that empty paths are discarded). For trivial opera-
tions (e.g. with neither conditional nor loop nodes) there is a single execution
path but, in general, several ones will exist.

Given a MBCFGop for an operation op, the set of execution paths (Paths(op))
for op is defined as Paths(op) = allPaths(MBCFGop), where
allPaths(MBCFGop) returns the set of all paths in MBCFGop that start
at the initial vertex (the vertex corresponding to the initial node), end at the
final vertex and do not include repeated arcs.

Example 5 Taking into account that empty paths are discarded,
operations newCourse and addMenu have two execution paths
(see Figures 10 and 11 respectively) and operation classifyAs-
SpecialMenu has a single execution path (see Figure 12).

4.2. Executability

The execution of an execution path p over a system state s, generates a
new state s′ where the changes described in p have been applied to s. We
denote by AllExecutions(p,s) = {s′1,. . . ,s′n} all the possible (potentially infinite)
executions of the execution path p over a system state s, that is, all the possible
states (s′1,. . . ,s′n) that may be reached (depending on the input arguments used
to call the operation) by executing p in s.

13

Course c =
new Course()

c.descrip�on =
_descrip�on

for

_subs�tu�ngCourses->size() >= 1,
executed _subs�tu�ngCourses->size() �mes

CanBeSubs�tutedBy.createLink(c, _subs�tu�ngCourses[i])
4

321

Course c =
new Course()

c.descrip�on =
_descrip�on

21 1st path

2nd path

Figure 10: Paths of newCourse operation.

Menu m =
new Menu45

if

m.name =
_name

OMenu.allInstances45 -> exists4m|m.name=_name5

m.price =
_price

for

_courses->size45 >= 1,
executed _courses->size45 �mes

IsComposedOf.createLink4m,_courses[i]5

1

2 3 4 5

6

Menu m =
new Menu45

if

m.name =
_name

OMenu.allInstances45 -> exists4m|m.name=_name5

m.price =
_price

1

2 3 4

1st path

2nd path

Figure 11: Paths paths of addMenu operation.

classify self to SpecialMenuif
_discount >= 10 self.discount = _discount

1 2 3
1st path

Figure 12: Unique path of classifyAsSpecialMenu operation.

4.2.1. Weakly Executable Operations

We consider an operation is weakly executable (WE) if it may generate a
consistent state, but it is not guaranteed to do so. That is to say, an operation is
WE if there is a chance that a user may successfully execute it, i.e. if there exists
at least an initial state and a set of arguments for the operation parameters for
which the execution of the actions included in the operation evolves the initial
state of the system to a new state that satisfies all the integrity constraints of
the structural model. Note that weak executability does not require the success
of all executions of the operation to be successful.

14

More formally:

Let ExM = 〈SM,BM〉 be an executable model, an operation op ∈ BM is
weakly executable (WE) iff ∃ p ∈ Paths(op) ∧ ∃ s IsConsistent(s,SM) ∧ ∃ s’
∈ AllExecutions(p,s) | IsConsistent(s’,SM)

Example 6 Operation newCourse is not WE since it never may
generate a consistent system state regarding the structural model
of Figure 4: every time we try to create a new course c but we
do not assign any category for it, we reach an inconsistent sys-
tem state where c has no category, a situation forbidden by the
structural model that defines the attribute category as mandatory
(Mand(category,Course)), i.e. it must have at least one value.
Instead, operation classifyAsSpecialMenu is WE since we are
able to find an execution scenario (a system state that contains less
than three special menus) where the menu can be successfully sub-
typed. Note that classifying an operation as WE does not mean that
every time this operation is executed the new system state will be
consistent with the integrity constraints. For instance, if the system
state where we apply the classifyAsSpecialMenu operation al-
ready contains three special menus, the operation will fail because
of the integrity constraint Cmax(SpecialMenu)=3, which defines
the class SpecialMenu may have at most three instances.

4.2.2. Strongly Executable Operations

We consider an operation is strongly executable (SE) if it is guaranteed to
always generate a consistent state. That is to say, an operation is SE if it
is always successfully executed, i.e. if every time we execute the operation
(whatever values are given as arguments for its parameters), the effect of the
actions included in the operation evolves the initial state of the system to a new
state that satisfies all the integrity constraints of the structural model. Note
that, unlike weak executability, strong executability requires all executions of the
operation to be successful.

More formally:

Let ExM = 〈SM,BM〉 be an executable model, an operation op ∈ BM is
strongly executable (SE) iff ∀ p ∈ Paths(op) ∧ ∀ s IsConsistent(s,SM) ∧ ∀ s’
∈ AllExecutions(p,s) IsConsistent(s’,SM)

Example 7 As we have seen, operation classifyAsSpecial-
Menu is not SE since after its execution we may violate the maximum
cardinality integrity constraint of class SpecialMenu
(Cmax(SpecialMenu)=3), in particular, when the system state
where the operation is applied already contains three special menus.
Instead, operation addMenu is SE since we may guarantee it will
never violate any integrity constraint of the structural model after

15

their execution. Note that, in this case, the operation addMenu in-
cludes a guard (i.e. a precondition) to guarantee the changes this
operation performs will only be executed in a safe context.

4.2.3. Non Executable Operations

Operations that are not WE are non executable (¬E). Non executable op-
erations never generate a consistent system state. After their execution, they
always reach a state of the system that violates some integrity constraints of
the structural model (e.g. some cardinality constraints).

More formally:

Let ExM = 〈SM,BM〉 be an executable model, an operation op ∈ BM is
non executable (¬E) iff ∀ p ∈ Paths(op) ∧ ∀ s IsConsistent(s,SM) ∧ ∀ s’ ∈
AllExecutions(p,s) ¬IsConsistent(s’,SM)

Example 8 Since newCourse is not WE, it is non executable.

5. Verifying Executable Models

In the previous section we have intuitively seen examples of executable and
non-executable operations (see Examples 7-9). However, for general and com-
plex operations, the manual reasoning to verify this property is tedious and
error-prone. In this section we provide a lightweight and static method that
automatizes this process to help the designers to verify her executable models.

Out method (see Figure 13) interacts with the designer through the following
data:

• Input. The method takes as input an executable model composed by a
structural model (a UML class diagram) and a behavioural model com-
posed by a set of operations. The designer can select which operations
from the behavioural model must be verified, that typically should be
those that need to behave as a transaction. Since UML does not have a
native support for transaction modeling, to mark an operation as transac-
tional in UML, several existing approaches could be adapted to our needs,
for instance: (1) the DSL presented in [32] to specify business and Web
transactions; (2) an extension of the Ubiquitous Web Applications Trans-
action Design meta-model, which specifically addresses the design of Web
application Transactions [18]; (3) UTML, a high level transaction design
language to facilitate the complex web transaction design process [25]; or
(4) the command pattern to encapsulate a request as an object, thereby
letting you parameterize clients with different requests and support trans-
actions as undoable operations [22].

• Output. For each selected operation, the method returns either a positive
answer, meaning that the operation is WE/SE or a corrective feedback
(see Section 5.4), consisting in a set of actions and guards that should be
added to the operation in order to make it WE/SE. Note that, extending

16

the operation with the provided feedback is a necessary condition but not
a sufficient one to immediately guarantee the WE/SE of the operation
since the added actions may in turn induce other constraint violations.
Therefore, the extended operation must be iteratively reanalyzed with
our method until we reach a WE/SE status.

When analyzing the WE/SE of an operation we must take into account all
the possible execution paths (see Section 4): an operation is WE iff at least one
of its execution paths is WE; and it is SE iff all its executions paths are SE;
otherwise it is ¬E. Therefore, prior to checking the weak/strong executability
of an operation, our method performs a pre-processing step to compute its
execution paths (Step 0). Once the execution paths have been computed, Steps
1 and 2 of the method are applied on each path p until we recognize a WE
path (in case of verifying weak executability) or until we check all paths are
SE (in case of verifying strong executability). First, Step 1 (see Section 5.1)
individually analyzes each action in the path p to see whether it may violate
some integrity constraints of the structural model. Then, Step 2 (see Section
5.2) performs a contextual analysis of each potentially violating action to see
whether other actions or conditions in p compensate or complement its effect
to ensure that we sometimes/always reach a consistent state at the end of the
operation execution. If all potentially violating actions can be discarded we
can conclude that p is WE/SE. Finally, Step 3 (see Section 5.3) classifies the
operation depending on the results obtained in the previous step.

Our method performs an over-approximation analysis. Over-approximation
is due to the lack of exhaustiveness in the comparison of conditions in the
operation to favor the efficiency of the process. This implies that, in case of
verifying the SE, our method may return false positives6, that is, it may return
as a non SE an operation which is actually SE. On the other hand, the method
does not return false negatives (in our opinion, more critical than the above),
that is, when it states that an operation is SE, this statement is always true.
As will be discussed in Section 8, this over-approximation may be eliminated
either with the user intervention or using external methods.

In the following subsections we describe the three steps of our verification
method (Sections 5.1, 5.2 and 5.3) and the feedback it provides (Section 5.4).

6According to the Oxford Dictionaries, we understand that a false positive is a
test result which wrongly indicates that a particular condition or attribute is present
(http://www.oxforddictionaries.com/definition/english/false-positive). Otherwise, a false
negative is test result which wrongly indicates that a particular condition or attribute is
absent (http://www.oxforddictionaries.com/definition/ english/false-negative). Then, when
our method returns as a non WE/SE an operation which is actually WE/SE, we are wrongly
indicating that the operation is incorrect, i.e. our method returns a false positive. Otherwise,
if our method returned as a WE/SE an operation which was not actually WE/SE, it would
wrongly indicate that the operation is correct, i.e. it would return a false negative.

17

Executable Model

Designer

ch
ec
k
th
e
fe
ed
b
a
ck

to
re
p
a
ir
th
e
in
p
u
t
o
p
er
a
�
o
n

UML
Class

Diagram

Alf
Opera�ons

Fe
e
d
b
ac
k

Input Step 0

Compu�ng Execu�on Paths

of the opera�on op

Step 1

Analyzing the existence of

Poten�ally Viola�ng Ac�ons (PVAs)

of the path p

NO p contains PVAs?

All paths

are SE?

p is WE/SE

YES

YES

NO

NO

At least one

path is WE?

op is SE

op is WE

op is ¬WE (¬E)

op is ¬SE

while
[for WE] A WE path p of op has not been found so far
[for SE] There are s�ll execu�on paths of op to analyze and

no ¬E paths have been found so far

Step 2

Discarding PVAs

YES

All PVAs discarded?

for each
PVA in p

NO

YES

p is ¬E

p is WE/SE

Lightweight and Sta�c Verifica�on Engine

Step 3

Classifying the opera�on op

Figure 13: Method overview.

5.1. Step 1: Analyzing the Existence of Potentially Violating Actions

First step of our verification method analyzes each action in the path to
see whether its effect can change the system state in a way that some integrity
constraints of the structural model become violated. If so, this action is declared
as Potentially Violating Action (PVA) and we refer to the constraints the PVA

18

can violate as Susceptible Violated Constraints (SVC). If the path has no PVAs,
it is WE/SE (and if we are checking if the operation is WE, we can directly
confirm it at this step). Otherwise, we need to continue the analysis with the
next step.

In order to detect the PVAs we have defined a set of rules that automatically
determine the actions that may violate each integrity constraint of the structural
model. Table 3 shows these rules. First column (Susceptible Violated Constraint
(SVC)) shows each constraint our method supports (see them at Section 3) and
second column (Potentially Violation Actions (PVAs)) determines the modifica-
tion actions each constraint may violate. Several subrows for the same integrity
constraint indicate several actions that may violate this constraint. Sharp sign
(#) represents irrelevant variables and consecutive letters (x, y,. . .) represent
free variables that may be bound to any value in the action. Note that, when
the minimum cardinality constraint of a class (Cmin(cl)) or of an association
(Cmin(as,role)) is not restricted (i.e. it is equal to zero), then no action may
violate this constraint. Similarly, when the maximum cardinality constraint of a
class (Cmax(cl)) or of an association (Cmax(as,role)) is not restricted (i.e.
it is equal to “*”), then no action may violate this constraint.

Table 3: Rules to determine the actions that may violate each integrity constraint.

Susceptible Vio-
lated Constraint
(SVC)

Potentially Violating Actions (PVAs)

1 Cmin(cl)6=0 o.destroy(), where o is an instance of class cl or of a subclass of cl
classify x from oldCl, where oldCl includes the class cl or one of
its subclasses (only applies when cl is child of a generalization)

2 Cmax(cl) 6=* x = new cl()
x = new cl’(), where cl’ is a subclass of cl
classify x to newCl, where newCl includes the class cl or one of
its subclasses (only applies when cl is child of a generalization)

3 Mand(attr,cl) x = new cl()
x = new cl’(), where cl’ is a subclass of cl
classify x to newCl, where newCl includes the class cl or one of
its subclasses (only applies when cl is child of a generalization)
x.attr = null, where x.oclIsTypeOf(cl) or x.oclIsTypeOf(cl’)
and cl’ is a subclass of cl

4 Cmax(attr,cl)6=* o.attr = #, where o is an instance of the class cl or of a subclass of
cl

5 Cmin(as,r)6=0 x = new cl(), where cl (or one of its superclasses) participates on
the association as with role r’ (r’ is the opposite role to r in as)
classify x to newCl, where newCl includes the class cl and cl (or
one of its superclasses) participates on the association as with role r’
(r’ is the opposite role to r in as) (only applies when cl is child of a
generalization)
as.destroyLink(x,y), where the pair of objects (x,y) participate on
the association as
as.clearAssoc(o), where o participates on the association as with
role r’ (and r’ is the opposite role to r in as)

6 Cmax(as,r) 6=* as.createLink(x,y)
7 Cov(cl,{cl1,...,

cln})
classify x from oldCl, where oldCl includes one cli

8 Disj(cl,{cl1,...,
cln})

classify x to newCl, where newCl includes one cli

9 ID(attr,cl) o.attr = #, where o is an instance of the class cl or of a subclass of
cl

10 Sym(as) as.createLink(x,y)
as.destroyLink(x,y)

Continued on next page

19

Table 3 – continued from previous page
Susceptible Vio-
lated Constraint
(SVC)

Potentially Violating Actions (PVAs)

11 Asym(as) as.createLink(x,y)
12 Irrefl(as) as.createLink(x,x)
13 ValueComp

(attr,op,v)
o.attr = #, where o is an instance of the class which owns attr or
of one of its subclasses

14 Referential(cl,as)7 classify o from oldCl, where o.oclIsTypeOf(cl) (before classi-
fying o), oldCl includes the class cl and cl participates on the asso-
ciation as (only applies when cl is child of a generalization)

As an example, we discuss the first row of Table 3, which determines the
actions that may violate the minimum cardinality constraint of a class cl when
it is different to zero (Cmin(cl)6=0):

• First subrow indicates every time we destroy an object of class cl or of
a subclass of cl (that is, the number of instances of cl is decreased), we
may violate the constraint Cmin(cl).

• Similarly, second subrow indicates every time we take out an object from
class cl or from one of its subclasses, we also may violate this constraint.

In this first step, the rules of Table 3 are applied over all the integrity
constraints that appear in the input structural model. As a result, we obtain
the set of potentially violating actions (PVAs) that may violate each integrity
constraint of the structural model. Then, we may determine whether a path p
contains PVAs by comparing this set of actions with the set of actions which
appear in p. All actions in the intersection of both sets are PVAs.

In order to do this comparison a mapping between the PVAs obtained from
Table 3 and the actions of the path has to be done. An action of the first
set (cointaining generic PVAs) can be mapped onto an action of the second
set (containing specific PVAs obtained from the operation paths) when the
following conditions are satisfied: (1) both actions are from the same type (e.g.
CreateObject, ReclassifyObject, etc.); (2) the model elements referenced by
the actions coincide (e.g. both CreateObjects create objects of the same class);
and (3) all instance-level parameters of the generic PVA (i.e. variables x, y,...)
can be bound to the parameters of the specific PVA (irrelevant variables - i.e.
- may be bound to any parameter value in the specific PVA).

Example 9 As an example, we show the PVAs for the two exe-
cution paths of operation newCourse. Second path (see Figure 14,
where PVAs are highlighted in red) contains two PVAs: (1) the 1st
action in the path, which may violate two mandatory constraints
(when the attributes description and category are not initialized);
and (2) the last action in the path, which may violate the symmetric

7Note that this constraint is not violated when we destroy an object of type cl, because
the Alf semantics for the action DestroyObject ensures the destruction of all links in which
the destroyed object participates.

20

association constraint (when the opposite link is not created) and
the irreflexive association constraint (when the link connects an ob-
ject with itself). First path (which is a subset of the former) only
contains the first PVA. Then, in order to determine if these paths
are WE/SE, we need to continue the analysis with the next step.

Course c =
new CourseV:

c.descrip�on =
_descrip�on

for

1.._subs�tu�ngCourses->sizeV:,
executed _subs�tu�ngCourses->sizeV: �mes

CanBeSubs�tutedBy.createLinkVc, _subs�tu�ngCourses[i]:
4

321

SVC1 : MandVdescrip�on,Course:
SVC2 : MandVcategory,Course:

SVC1 : SymVCanBeSubs�tutedBy:
SVC2: IrreflVCanBeSubs�tutedBy:

Course c =
new CourseV:

c.descrip�on =
_descrip�on

21

SVC1 : MandVdescrip�on,Course:
SVC2 : MandVcategory,Course:

1st path

2nd path

Figure 14: PVAs of the paths of the operation newCourse.

5.2. Step 2: Discarding Potentially Violating Actions

It may happen that the context in which a PVA is executed within the path
guarantees that the effect of the PVA is not going to actually violate any of its
SVCs. In these cases, the PVA may be discarded. Roughly, there are two ways
to discard a PVA: (1) when the path contains a guard (i.e. a precondition) that
ensures the PVA will only be executed in a safe context; and (2) when the path
contains another action which counters or complements the effect of the PVA
in order to maintain the integrity of the system after executing the operation.

In this second step, our method analyzes each PVA returned by the previ-
ous step and tries to discard them by analyzing the above possibilities. If all
PVAs that may compromise the WE/SE of the path can be discarded, then
it is classified as WE/SE. If not, the path is marked as ¬WE/¬SE and the
corresponding corrective feedback is provided (see Section 5.4). Note that, if a
PVA may violate several SVCs, it may be discarded only when it satisfies all
the conditions to avoid violating each SVC.

The conditions to discard the PVAs are expressed as action patterns that
should be matched in the path. To the sake of simplicity, here we only show a
small subset of the forty patterns we designed (the complete catalog of patterns
can be found on [50]). They are shown in Table 4, which has several columns:

• PVA: States the PVA we are trying to discard.

• SVC : States the constraint the PVA may violate.

21

• Conditions to discard the PVA: Describes the conditions the path must
satisfy to discard the PVA in order to avoid the violation of the SVC.
Conditions are expressed as an Alf pattern, i.e. in reference of Alf state-
ments that the path should or should not include complemented with a
textual description.

Note that when trying to match guard expressions (for instance, conditional
structures) we follow a syntactic approach, i.e. we do not try to formally prove
the expression in the path implies the expression in the guard (which would
be too costly for general expressions) but just to check whether a path expres-
sion matches one of the syntactic variation patterns predefined for the condi-
tion. For instance, if our pattern is expecting the guard cl.allInstances()
->size()<x (where x is an integer) and the checked operation contains the
guard cl.allInstances()->size()<OCLexpr (where OCLexpr is a new
OCL expression instead an integer), our algorithm does not semantically com-
pares x and OCLexpr but concludes the two guards do not syntactically match.
When the algorithm cannot conclude the implication it assumes that one does
not imply the other. This is why the method over-approximates the results
(as a necessary trade-off to foster the efficiency of the method) as commented
previously. The designer could optionally participate in this step to manually
identify those implications that were not found by the method using its syntactic
approach.

Table 4: Conditions to discard PVAs.

PVA SVC Conditions to discard the PVA

1 o = new cl() Mand(attr,cl) Pattern o = new cl(); //PVA
...
o.attr = #;

Descr. The path includes, after the PVA,
at least one action to initialize the
attribute attr.

2 o = new cl() Cmin(as,r) 6=0 Pattern o = new cl(); //PVA
...
for (i in 1..≥Cmin(as,r)) {
as.createLink(o,xi); //xi

participates in as with role
r
...
}

Descr. The path includes, after the PVA, at
least Cmin(as,r) actions to create a
link of as between the new object o
and another object (with role r).

3 as.createLink(o1,o2) Sym(as) Pattern as.createLink(o1,o2); //PVA
...
as.createLink(o2,o1);

Descr. The path includes the creation of
the symmetric link.

Irrefl(as) Pattern if (o1 6= o2) {
as.createLink(o1,o2); //PVA
...
}

Descr. The path contains a guard that
prevents the execution of the PVA
when the two member ends are the
same object.

22

Example 10 As an example, we try to discard the PVAs of the
second execution path of the operation newCourse (note that the
first path is a subset of the former). As we justified in the previous
step, this path contains two PVAs: (1) the first action: Course c =
new Course() and (2) the last: CanBeSubstitutedBy.create-
Link(c, substitutingCourses[i]). According to 1st row of
Table 4, in order to discard the first PVA (see action 1 of Figure 15)
when it may violate a constraint of type mandatory, the path must
include, after the PVA, at least one action to initialize the attributes
description and category. The path contains an action (see
action 2 of Figure 15) to initialize the attribute description but
it does not contain any action to initialize the attribute category.
Then the first PVA cannot be discarded because it always violate
the constraint Mand(category,Course).

At this point, our method can conclude this path is ¬E since it
always violates the above constraint. However, in order to illustrate
a complete example, in the following we analyze the remaining PVAs.

According to 3rd row of Table 4 (1st subrow), in order to discard
the second PVA (see action 4 of Figure 15) when it may violate a
constraint of type symmetric, the path must include the creation of
the symmetric link. The path does not create this link. Besides,
according to 3rd row of Table 4 (2nd subrow), in order to discard
the same PVA when it may violate a constraint of type irreflexive,
the path must include a guard to prevent the execution of the PVA
when the two courses are the same object. The path does not include
this guard. Then the second PVA cannot be discarded and, as we
pointed out before, our method concludes this path is not WE/SE.

Course c =
new CourseV:

c.descrip�on =
_descrip�on

for

1.._subs�tu�ngCourses->sizeV:,
executed _subs�tu�ngCourses->sizeV: �mes

CanBeSubs�tutedBy.createLinkVc, _subs�tu�ngCourses[i]:
4

321

SVC1 : MandVdescrip�on,Course:
SVC2 : MandVcategory,Course:

SVC1 : SymVCanBeSubs�tutedBy:
SVC2: IrreflVCanBeSubs�tutedBy:

according to

Table 5 (row 1)

1st path

2nd path

Course c =
new CourseV:

c.descrip�on =
_descrip�on

21

SVC1 : MandVdescrip�on,Course:
SVC2 : MandVcategory,Course:

according to

Table 5 (row 1)

Figure 15: Discarding PVAs for the second path of newCourse operation.

23

5.3. Step 3: Classifying the Operation

Last step of our method classifies the operation depending on the results
obtained in the previous step regarding each execution path of the operation.

If at least one of the execution paths of the operation is WE, the operation
is classified as WE. If all its execution paths are SE, the operation is classified
as SE. Otherwise, the operation is classified as ¬E.

Example 11 Since, as shown previously, both paths of the newCourse
operation are neither WE nor SE, our method concludes this oper-
ation is ¬E. Next section shows how to correct this.

5.4. Feedback

Besides determining the executability of an operation, a distinguishing fea-
ture of our method is that for ¬WE/¬SE operations it returns valuable infor-
mation to help the designers identifying and correcting the detected errors. This
feedback information is expressed in terms of the operation itself so it can be
easily understood and processed by the designer.

For ¬WE/¬SE operations, our method provides two kinds of information:
(1) the returned feedback identifies why the operation is non executable, i.e. for
each ¬WE/¬SE path our method provides the list of PVAs that could eventually
induce a violation of the integrity constraints together with the specific list of
SVCs that those PVAs could violate; and (2) the returned feedback explains how
the designer may fix these (potentially) violating scenarios by providing a set of
possible repair alternatives that should be included in the ¬WE/¬SE operation
paths. These alternatives are expressed as a finite set of Alf-patterns (see the
complete catalog on [50]) to be added to the path of those PVAs that cannot
be discarded. The designer should choose the most appropriate alternative in
her context.

Figure 16: Feedback for newCourse operation.

24

Example 12 Figure 16 shows the feedback provided when veri-
fying the strong executability for the operation newCourse. Next,
we show the repaired operation once the feedback provided by our
method has been integrated. The added sentences are emphasized in
bold type. Each added sentence fixes one of the problems detected
in the previous section.

activity newCourse(in description: String, in substitutingCourses:Course[*], in
category: CourseCategory) {

Course c = new Course();
c.description = description;
c.category = category;
for (i in 1.. substitutingCourses→size()) {

if (c 6= substitutingCourses[i]) {
CanBeSubstitutedBy.createLink(c, substitutingCourses[i]);
CanBeSubstitutedBy.createLink(substitutingCourses[i],c);

}
}

}

Three changes have been applied to the operation newCourse: (1)
the initialization of the attribute category, which ensures the con-
straint Mand(category,Course) will never be violated; (2) the
guard, which ensures the constraint type irreflexive will never be
violated; and (3) the creation of a new link, which ensures the con-
straint Sym(CanBeSubstitutedBy) will never be violated. After
applying these changes, the operation newCourse becomes WE and
SE.

6. Tool Support

In order to prove the feasibility of our method, we have built a prototype
tool that implements our algorithm for verifying Alf operations. The tool has
been implemented as an Eclipse plug-in which can be downloaded from [1]. A
demonstration video about it can be viewed on [2].

Figure 17 shows the general view of the tool architecture. As a first step,
the designer specifies the UML executable model she wants to deal with. The
structural model, composed by a UML class diagram and a set of OCL integrity
constraints, is modelled using the graphical modelling environment provided by
UML2Tools [59], an Eclipse Graphical Modeling Framework for manipulating
UML models. The behavioural model, composed by a set of Alf operations,
is specified in a text file with .alf extension. Once both models have been
defined, the designer selects the operation/s and the property (weak or strong
executability) she wants to verify. Then, the core of our method is invoked to
perform the static analysis we have described in Section 5. Finally, the feedback
provided by our method is displayed, integrated into the Eclipse interface. Once
the designer receives the feedback she can (manually) discard those implications
that cannot be detected by our method and/or (manually) modify the operation
according to the provided feedback to fix the detected errors.

Internally, our tool is implemented as a set of Java classes extended with
the library of the UML2Tools [59] to interact with the input UML model (i.e.

25

User

Tool Framework

Input

Output

Method
Implementa�on

Feedback

Figure 17: General architecture or our tool.

the class diagram and its constraints). To parse the input Alf operations, we
have implemented an Alf parser using the Xtext framework [3]. To this end,
we depart from the Alf grammar (defined using an EBNF notation) and use
the Abstract Syntax Tree provided by Xtext to generate the Java classes that
instantiate the classes of the fUML metamodel.

As an example, Figure 18 shows the main form of our Eclispe plug-in, which
permits to import both the UML model and the Alf operations and to choose
operation/s and the property the designer wants to verify. A screenshot of the
feedback for the operation newCourse provided by our method has been shown
in Figure 16.

This prorotype tool is a first attempt to implement our method so it could
be extended in several ways (see Section 10).

7. Empirical Evaluation

We evaluated our method concerning its usefulness and its efficiency. In
the following we present two experiments we carried out to evaluate the above
features.

7.1. Usefulness of Our Method

The first experiment was aimed to evaluate the usefulness of our method,
understanding the usefulness as the help for detecting and correcting defects in
operations.

With this experiment, that complements the experiment presented in Section
2, we compared the correctness of a model developed without using any verifi-
cation method wrt the correctness of a model developed using our verification
method.

26

Figure 18: Screenshot of the input view.

A total of 124 students of two Software Engineering courses of the Computer
Science Degree taught at the Open University of Catalonia (UOC) participated
in the experiment. All of them had a good background about modeling and
programming.

Before starting the experiment, the students were introduced to executabil-
ity property using the running example presented in this paper. As a starting
point, and to facilitate the understandability of the model, the students were
provided with a simplified version of the class diagram shown in Figure 4 (con-
taining 3 classes, 2 associations and 5 integrity constraints) and two operations
of low complexity in terms of the number of actions they contained (an average
of 4 actions each operation). Both operations were ¬E: the former violated one
integrity constraint and the later violated two integrity constraints of the struc-
tural model. Then, two tasks were assigned to the students. First, they were
encouraged to identify the source of the problem and correct both operations
without using any help. Finally, and to conclude the experiment, the same
students were encouraged to correct the same operations using the feedback
provided by our method.

The results (see Figure 19) show that, when the students did not have any
help, only 45% of them were able to properly correct the operations. All students
that were not able to correct the operations neither were capable to identify the
source of the problem in the operations. However, when the students were

27

helped with the feedback provided by our method, 93% of them were able to
correct the operations.

45%	

93%	

55%	

7%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

Without	using	any	feedback	 Using	the	feedback	provided	by	our	method	

corrected	operaCons	

operaCons	not	corrected	

Figure 19: Results of our experiment.

We believe this experiment clearly justifies the usefulness that our method
can bring to designers during the specification of their behavioural models.

7.2. Efficiency of Our Method

The second experiment was aimed to evaluate the efficiency of our method,
understanding the efficiency as the capability to perform the verification in a
reasonable time.

Given that current approaches consider different input models, properties
and types of feedback, it is difficult to make a fair comparison of efficiency
between our method and other approaches. Instead we aim to show that our
method provides the appropriate feedback in a reasonable time.

In this second experiment we conducted several simulations with our Eclipse
plug-in to measure the running time when verifying the strong executability of
several operations. Note that, to verify this property all execution paths have to
be analyzed, then, the time complexity when verifying the strong executability
will be greater than the time complexity when verifying the weak executability
(since in the former we must apply the method over all the paths of the operation
while in the second we must apply the method until we reach a WE path).

The performance results for the simulations are detailed in Table 5, which
contains several columns:

• Operation: contains the name of the verified operation. We have verified
the three operations of our running example plus several test operations
designed for this experiment.

• Class Diagram size: describes the size of the structural model regarding
the number of classes, attributes, associations and generalizations appear-
ing in the Class Diagram.

28

• Number of Integrity Constraints: states the number of integrity con-
straints (considering those graphically represented in the class diagram
plus OCL constraints).

• Operation size: describes the operation size in terms of the number of
actions, loops and conditional structures it contains.

• Number of Execution Paths: states the total number of executions paths
of the operation without considering the emtpy paths.

• Total number of PVAs: describe the total number of PVAs considering
all the paths. It means that, if one PVA appears in two execution paths,
it is counted twice since it will be considered during the analysis of both
paths. This is the reason why in some cases an operation contains more
PVAs than actions.

• Running time: time took for our method to perform the verification.

As can be seen in Figure 20, the time it took to perform the verification rea-
sonably increases when one or more variables (number of integrity constraints,
number of execution paths and/or number of PVAs appearing on those paths)
rises. However, the above simulations show that all the simulations took less
than 7 seconds. We consider this is a reasonable time for a verification, consid-
ering that the verification process will be launched by the user request (probably
at the end of the design phase) and not automatically in each update.

Time
(ms)

Number of Integrity Constraints

Time
(ms)

Number of Execution Paths

Time

(ms)

Number of PVAs

Figure 20: Results of our experiment.

Even though, theoretically, the computational cost of our method is expo-
nential (wrt the size of the MBCFG) in the worst case (when all the actions
of the operation are PVAs and none of them may be discarded), it is not di-
rectly affected by the size of the structural model (i.e. the number of classes,
attributes, integrity constraints, etc). For this reason, and considering the above
experiment, we consider our method is efficient.

7.3. Reliability of Our Method

The last experiment was aimed to evaluate the reliability of our method,
understanding the reliability as the proportion of truth in the results provided
by our method.

As we introduced, one limitation of our method is the fact that, when verify-
ing the strong executability, it may return false positives (see Section 5). Section

29

Table 5: Performance results for our prototype tool.
Operation Class Dia-

gram size
Number
of in-
tegrity
con-
straints

Operation
size

Number
of (non-
empty)
execution
paths

Total
number
of PVAs

Running
time

newCourse 6 classes, 8
attributes, 4
associations, 1
generalization

13 3 actions,
1 loop

2 3 3641 ms

addMenu 6 classes, 8
attributes, 4
associations, 1
generalization

13 4 actions,
1 condi-
tional, 1
loop

2 4 3579 ms

classifyAs-
SpecialMenu

6 classes, 8
attributes, 4
associations, 1
generalization

13 2 actions,
1 condi-
tional

1 2 3522 ms

scalability-
Test1

5 classes, 10
attributes, 4
associations, 1
generalization

10 10 ac-
tions, 1
condi-
tionals, 1
loop

4 6 3981 ms

scalability-
Test2

100 classes,
200 attributes,
40 associ-
ations, 10
generalizations

100 10 ac-
tions, 1
condi-
tionals, 1
loop

4 12 4921 ms

scalability-
Test3

5 classes, 10
attributes, 4
associations, 1
generalization

10 100 ac-
tions, 10
loops, 10
condi-
tionals

50 63 5087 ms

scalability-
Test4

100 classes,
200 attributes,
40 associ-
ations, 10
generalizations

100 200 ac-
tions, 10
loops, 10
condi-
tionals

50 140 5419 ms

scalability-
Test5

5 classes, 10
attributes, 4
associations, 1
generalization

10 200 ac-
tions, 10
loops, 10
condi-
tionals

100 131 5211 ms

scalability-
Test6

100 classes,
200 attributes,
40 associ-
ations, 10
generalizations

100 200 ac-
tions, 10
loops, 10
condi-
tionals

100 227 6462 ms

30

8 discusses about this fact. In this experiment we analyze the proportion of false
positives returned by our method.

Although there is a lack of Alf models publicly available, we based our ex-
periment in a total set of 30 Alf operations from several resources:

• 3 operations from the running example of this paper (with an average of
3 actions/operation), related to a class diagram composed by 6 classes, 8
attributes, 4 associations, 1 generalization and 13 integrity constraints.

• 12 operations of the OnlineBookStore case study [57] (with an average of
1.7 actions/operation), related to a class diagram composed by 6 classes,
12 attributes, 5 associations and 18 integrity constraints.

• 15 operations of the PropertyManagement case study [57] (with an average
of 4.8 actions/operation), related to a class diagram composed by 6 classes,
61 attributes, 5 associations, 1 generalization and 68 integrity constraints.

After verifying the strong executability of the above operations, we found
that our method was capable to provide the right result in 29 of the 30 exe-
cutions. This means our method returns the truth in the 96.67% of the cases
(i.e. it returns a false positive only in 3.32% of the cases). For this reason,
and considering the above experiment, we consider the level of reliability of our
method is acceptable.

8. Discussion

In this section we expose the assumptions our method relies on and discuss
their limitations in order to evaluate its pros and cons.

8.1. Assumptions of Our Method

Our method assumes all Alf operations are syntactically correct (i.e. they
conform to the standard Alf language [45]) and always terminate. This is a
reasonable assumption and necessary to begin our analysis.

According to the widely accepted criteria about the elimination of the un-
reachable code [15], our method also assumes the body of all conditional and
loop structures is reachable (given the proper input values). This means that
the condition of all conditional and loop structures may be satisfied (i.e. they
can evaluate to true) and then the body of these structures may be executed.
This assumption guarantees all the actions within an operation can be executed.
Otherwise (see Example 14), the actions in those paths that may be needed to
compensate the effect of a PVA could not be used and thus falsify the results
of the method. Roughly, this SAT-problem could be tackled with UML/OCL
verification tools [14] adding the test condition as an additional constraint to
the model and checking if the extended model is still satisfiable. However, this
analysis, would worsen the efficiency of our method.

31

Example 13 The code of the following operation is unreachable
since the condition of the conditional structure always evaluate to
false.
activity unreachableCode(in name:String) {
City c = new City(); {
if (c.oclIsTypeOf(Menu)) {
c.name = name;
}
}

We also assume that operations to be analyzed do not include recursive invo-
cations. This assumption is made because of recursive invocations generate in-
finite paths (given that the recursive invocation is replaced by the sub-diagraph
corresponding to the operation itself, then, this replacement process never fin-
ishes) that are not able to be addressed by our method. Nevertheless, recursive
operations could be transformed into their iterative counterparts [6] before the
application of our method.

Finally, since we consider operations are defined by actions, we ignore other
types of ActivityNodes (such as ControlNodes) and thus actions in the oper-
ation specification are always executed sequentially. The target platform could
allow simultaneous execution of the same or different operations by the same
or several users, which could introduce some inconsistencies on the data if not
treated properly. Still, since the focus of our method is to verify single opera-
tions at design time, we can avoid the possible concurrency issues that could oc-
cur when several sequentially operations are concurrently executed in a specific
context. This potential problem should be addressed by the execution platform
itself (e.g. ensuring ACID properties, like in database systems, if necessary) and
not responsibility of the individual operations themselves.

8.2. Limitations of Our Method

Moreover, our method presents several trade-offs that are required to enable
our lightweight analysis.

As we noted before, one limitation of our method is the fact that it performs
an over-approximation analysis. This implies that, when verifying the strong
executability, our method may classify as a ¬SE an operation which is actually
SE (but not the other way round, the method never marks as SE an opera-
tion which is not actually executable). False positives can appear because our
method is not able to exhaustively analyze the conditions of conditional and
loop structures. Although our method assumes all actions inside these struc-
tures are reachable, it cannot always determine how many times the actions
inside a loop will be executed. This information, as the Example 15 shows, may
be required to discard some violations related with the cardinality constraints.

Our method is able to determine this in a number of cases (when our patterns
syntactically match with the conditions of conditional and loop structures) but
it assumes the worst case scenario when it cannot be sure (i.e. it supposes
loops are executed once). However, to avoid this over-approximation, the user
can directly decide this by herself (see Example 15). The type of queries for
which our method requires the designer intervention are basic inequalities that

32

a designer may easily solve by examining the operation. Another most costly
solution to resolve this over-approximation could be extending the method with
a simulation component (as [14]) to decide these situations.

Example 14 Remember the operation addMenu:
activity addMenu(in name:String, in price:Real, in
courses:Course[3..*]) {
if (!Menu.allInstances()→exists(m|m.name= name)) {
Menu m = new Menu();
m.name = name;
m.price = price;
for (i in 1.. courses→size()) {
IsComposedOf.createLink(m, courses[i]);
}
}
}

Our method is able to determine this operation is WE (since it can be
successfully executed when the loop is executed at least three times).
In fact, this operation is also SE since the lower multiplicity of the
paramater courses guarantees the loop will be always executed at
least three times. Our method is not able to determine whether
“ courses→size() ≥ 3” and then it assumes this inequality is
not true and returns a false positive only in case of verifying if the
operation is SE. However, in this case the user can intervene to
resolve this fact (see Figure 21).

courses->size() >= 3

activity addMenu (in _name:String,
in _price:Real,
in _courses:Course[3..*])
{
...

}

yes!

Figure 21: Example of designer intervention.

Our method covers the most commonly used integrity constraints. However,
it is no suitable to address arbitrary integrity constraints, although some new
constraints could be added to our patterns. In order to consider new types of
integrity constraints we should proceed as follows: (1) determine the potentially
violating actions (PVAs) that may violate the constraint (i.e. adding a tow to
Table 3); and (2) determine the conditions to discard each detected PVA (i.e.
adding a new table similar to Table 4). The effort to support new constraints
will depend on the complexity of the constraints.

9. Related Work

A lot of research has been devoted to the problem of V&V (verify and
validate) UML models. In the context of UML behavioural models, there is

33

a broad set of research proposals devoted to the analysis of statechart diagrams
[34, 36, 48], activity diagrams [4, 7, 20, 35, 33, 38], operations [13, 26, 55], xUML
models [29, 60], or on verifying the consistent interrelationship between them
[9, 27], among others.

We classify the closest works wrt our method in Table 6 and position it
in relation with them. For each approach (1st column) we indicate the kind
of behavioural model targeted (2nd column), the integrity constraints that are
supported when analyzing the models (3rd column), whether UML actions can
be added to specify fine-grained details of the model (4th column), the main
correctness properties addressed by the method (5th column), the employed
method during the verification (6th column), the type of feedback provided
(7th column) and the existence of a tool publicly available to use each approach
(8th column).

As Table 6 shows, half of the works do not support the definition of UML
action sequences as part of the specification of their input behavioural models
(even when this is indeed allowed by the UML standard). To analyze this
detailed (i.e. fine-grained) specifications is precisely the focus of our method.
Although there are several works addressing the verification of UML models
including actions [27, 29, 35, 60], only some of them [4, 8, 17, 33, 38] are aligned
with the Alf action language standard.

On the other hand, works dealing with the executability of operations de-
part from declarative operations specified by means of pre and postconditions
contracts, instead of using imperative operations. A comparison between declar-
ative and imperative specifications is beyond the scope of this paper but it is
worth to note that there are methods that transform declarative operations into
imperative ones [14]. Once operations are transformed we can use the method
presented herein to verify them in an lightweight way.

Most of the above works simulate the behavioural models by translating
them into Model Checking [5], Constraint Programming [30] or Query Con-
tainment [21], and thus, they tend to present scalability issues. For instance,
model checkers work by generating and analyzing all the potential executions at
run-time and evaluating if for each (or some) execution scenario the given prop-
erty is satisfied. Even with the several optimizations available (as partial order
reduction or state compression), methods based on model checking techniques
suffer from the state-explosion problem (i.e. the number of potential executions
to analyze grows exponentially) compromising the efficiency of the method.

Regarding the type of feedback provided, some of the above methods just
provide a binary response (if the model satisfies the given property or not) and,
at most some provide example execution traces (counter-example) that do (not)
satisfy the property. None clearly identify the source of the problems nor assist
the designer to repair them. Instead, a strong point of our method is the kind
of feedback, that helps the designer repairing her models.

Finally, most of the works use existing verification tools to perform the core
of their analysis. However, only few works provide a tool publicly available
[13, 26, 38], even though others state they have a tool but it is not publicly

34

T
a
b

le
6
:

U
M

L
re

la
te

d
m

et
h

o
d

s
co

m
p

a
ri

so
n

(s
h

o
w

n
ch

ro
n

o
lo

g
ic

a
ll
y
).

W
o
rk

M
o
d
e
l

C
o
n
st

ra
in

ts
S
u
p
-

p
o
rt

e
d

A
c
ti

o
n
s

S
u
p
-

p
o
rt

e
d

P
ro

p
e
rt

y
M

e
th

o
d

T
y
p

e
o
f

F
e
e
d
b
a
ck

T
o
o
l

P
u
b
li
c
ly

A
v
a
il
a
b
il
it

y

P
a
lt

o
r

e
t

a
l.

[4
8
]

S
ta

te
ch

a
rt

d
ia

-
g
ra

m
N

o
N

o
D

e
a
d
lo

ck
s,

li
v
e
-

lo
ck

s,
e
tc

.
M

o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
a

U
M

L
se

q
u
e
n
c
e

d
ia

g
ra

m

N
o

L
a
te

ll
a

e
t

a
l.

[3
4
]

S
ta

te
ch

a
rt

d
ia

-
g
ra

m
N

o
N

o
S
a
fe

ty
,

li
v
e
n
e
ss

M
o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

N
o

X
ie

e
t

a
l.

[6
0
]

x
U

M
L

m
o
d
e
l

N
o

Y
e
s

(x
U

M
L

)
D

o
m

a
in

-
sp

e
c
ifi

c
p
ro

p
e
r-

ti
e
s

M
o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
x
U

M
L

n
o
ta

ti
o
n

N
o

G
ra

w
e
t

a
t.

[2
7
]

S
ta

te
ch

a
rt

d
ia

-
g
ra

m
,

se
q
u
e
n
c
e

d
ia

g
ra

m

N
o

Y
e
s

(A
c
ti

o
n

S
e
m

a
n
-

ti
c
s)

C
o
n
si

st
e
n
c
y

M
o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

N
o

E
sh

iu
s

e
t

a
l.

[2
0
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
N

o
S
a
fe

n
e
ss

,
e
tc

.
M

o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
a

U
M

L
a
c
ti

v
it

y
d
ia

g
ra

m

N
o

B
o
u
a
b
a
n
a
-

T
e
b
ib

e
l

e
t

a
l.

[7
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
N

o
D

e
a
d
lo

ck
s,

li
v
e
-

lo
ck

s,
li
v
e
n
e
ss

,
e
tc

.

M
o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

N
o

G
o
g
o
ll
a

e
t

a
l.

[2
6
]

D
e
c
la

ra
ti

v
e

o
p
-

e
ra

ti
o
n
s

Y
e
s

(a
ll
)

N
o

V
a
li
d
a
ti

o
n

ch
e
ck

s
A

n
im

a
ti

o
n

C
o
rr

e
c
t/

In
c
o
rr

e
c
t

Y
e
s

(U
S
E

)

C
a
b

o
t

e
t

a
l.

[1
3
]

D
e
c
la

ra
ti

v
e

o
p
-

e
ra

ti
o
n
s

Y
e
s

(a
ll
)

N
o

W
e
a
k

a
n
d

S
tr

o
n
g

E
x
-

e
c
u
ta

b
il
it

y
,

e
tc

.

C
o
n
st

ra
in

t
p
ro

-
g
ra

m
m

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
a

U
M

L
o
b

je
c
t

d
ia

g
ra

m

Y
e
s

(U
M

L
-

to
C

S
P

)

Q
u
e
ra

lt
e
t

a
l.

[5
5
]

D
e
c
la

ra
ti

v
e

o
p
-

e
ra

ti
o
n
s

Y
e
s

(s
u
b
-

se
t)

N
o

W
e
a
k

E
x
-

e
c
u
ta

b
il
it

y
,

e
tc

.

Q
u
e
ry

c
o
n
ta

in
-

m
e
n
t

C
o
rr

e
c
t/

In
c
o
rr

e
c
t

N
o

H
a
n
se

n
e
t

a
l.

[2
9
]

x
U

M
L

m
o
d
e
l

N
o

Y
e
s

(x
U

M
L

)
S
a
fe

ty
M

o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
a

U
M

L
se

q
u
e
n
c
e

d
ia

g
ra

m

N
o

B
ro

sc
h

e
t

a
l.

[9
]

S
ta

te
ch

a
rt

d
ia

-
g
ra

m
a
n
d

se
-

q
u
e
n
c
e

d
ia

g
ra

m

N
o

N
o

C
o
n
si

st
e
n
c
y

M
o
d
e
l

C
h
e
ck

-
in

g
C

o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

N
o

B
o
u
se

e
e
t

a
l.

[8
]

S
y
sM

L
st

a
te

-
ch

a
rt

d
ia

g
ra

m
Y

e
s

Y
e
s

(A
lf

)
S
a
fe

ty
T

h
e
o
re

m
p
ro

v
-

in
g

C
o
rr

e
c
t/

In
c
o
rr

e
c
t

N
o

L
a
i

e
t

a
l.

[3
3
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
Y

e
s

(A
lf

)
B

a
si

c
st

ru
c
tu

ra
l

e
rr

o
rs

(u
n
u
se

d
a
c
ti

v
it

ie
s,

u
n
-

u
se

d
c
la

ss
m

e
m

-
b

e
rs

)

S
ta

ti
c

a
n
a
ly

si
s

+
F
o
rm

a
l
v
e
ri

fi
-

c
a
ti

o
n

S
o
m

e
fe

e
d
b
a
ck

(n
o
t

d
e
ta

il
e
d

in
th

e
p
a
p

e
r)

N
o

A
b

d
e
lh

a
li
m

e
t

a
l.

[4
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
Y

e
s

(f
U

M
L

,
A

lf
)

D
e
a
d
lo

ck
s

M
o
d
e
l

ch
e
ck

in
g

C
o
u
n
te

r-
e
x
a
m

p
le

(e
rr

o
r

tr
a
c
e
)

tr
a
n
sl

a
te

d
in

to
a

U
M

L
se

q
u
e
n
c
e

d
ia

g
ra

m

N
o

C
ra

c
iu

n
e
t

a
l.

[1
7
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
Y

e
s

(A
lf

)
D

o
m

a
in

-
sp

e
c
ifi

c
p
ro

p
e
r-

ti
e
s

T
e
st

in
g

N
o
t

d
e
ta

il
e
d

in
th

e
p
a
p

e
r

N
o

L
a
u
re

n
t

e
t

a
l.

[3
5
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
N

o
Y

e
s

(f
U

M
L

)
C

o
n
tr

o
l-

F
lo

w
,

D
a
ta

-F
lo

w
,

R
e
-

so
u
rc

e
s,

T
im

e
,

B
u
si

n
e
ss

S
A

T
-s

o
lv

in
g

C
o
rr

e
c
t/

In
c
o
rr

e
c
t

N
o

M
ij

a
to

v
e
t

a
l.

[3
8
]

A
c
ti

v
it

y
d
ia

-
g
ra

m
Y

e
s

(s
u
b
-

se
t)

Y
e
s

(A
lf

)
D

o
m

a
in

-
sp

e
c
ifi

c
p
ro

p
e
r-

ti
e
s

T
e
st

in
g

F
a
il
in

g
a
ss

e
rt

io
n
s

Y
e
s

(a
s

p
a
rt

o
f

th
e

m
o
li
z

p
ro

je
c
t)

O
u
r

w
o
rk

Im
p

e
ra

ti
v
e

o
p
-

e
ra

ti
o
n
s

Y
e
s

(s
u
b
-

se
t)

Y
e
s

(A
lf

)
W

e
a
k

a
n
d

S
tr

o
n
g

E
x
e
-

c
u
ta

b
il
it

y

S
ta

ti
c

a
n
a
ly

si
s

R
e
p
a
ir

in
g

fe
e
d
b
a
ck

A
lf

-v
e
ri

fi
e
r

35

available [4, 35, 48]. This and the fact that existing approaches consider different
input models, support the verification of different properties, and provide limited
feedback, make it difficult to perform a fair comparison between our method and
other related implementations.

To sum up, our method is the only one that deals with the verification of
UML operations including actions and provides repairing feedback.

10. Conclusions and Further Work

We have proposed a lightweight and static method for assisting designers
during the specification of executable behavioural models. In particular, our
method verifies the weak and the strong executability of action-based UML
operations defined by means of the new standard Alf action language wrt the
structural constraints imposed by the domain model.

The main features of our method are that it is lightweight since it directly
reason over a model formalized in Alf language and it is based on a static analysis
of the model (no execution is required). This leads on a method that can be
easily integrated in the current software development processes and CASE tools.
But the more distinguishable feature comparing with other methods is that our
method provides a repairing feedback to help the designers improve her models.
Our method returns either a positive answer (meaning that the model achieves
the checked property) or a corrective feedback (otherwise) which is expressed in
the same language used to express the input model.

As a trade-off, our method supports a limited (but still useful) set of integrity
constraints and it may require the designer intervention in order to return a
more precise result. For these reasons, we believe the method presented in this
paper could be used to perform a first correctness analysis, as a basis to ensure
a fundamental quality level on action-based operations. Then, designers could
proceed with a more detailed analysis adapting other methods (such as model
checking) to perform a more complete verification (see Figure 22).

Output

Executable Model

Feedback

Lightweight

and Sta�c

Verifica�onInput

UML
Class

Diagram

Alf
Opera�ons

Other

Formal

Methods

Output

true/false

1st correctness analysis More detailed analysis

Figure 22: Connection with other verification methods.

As a further work, we plan to study the executability of operations when
they are included in other UML behavioural diagrams and explore the integra-
tion of our method in a more complete verification framework that could help
designers to choose the most appropriate verification technique for the model

36

they have defined, depending on the target property and the verification trade-
offs (expressiveness, completeness, efficiency,...) they are ready to accept. We
also plan to study how concurrent operations could be addressed in our method.

Finally, we plan to improve the usability of the prototype tool that im-
plements our method in several ways: (1) improving the expressiveness of the
addressed models to support new types of integrity constraints and to support
operations defined as part of other UML diagrams such as activity diagrams; (2)
improving the usability of the tool by automatically applying the feedback to
fix the detected errors and by automatically removing the potentially violating
actions discarded by the designer.

Acknowledgments.This work was partially supported by the Spanish funded
project EOSSAC, TIN2013-44641-P.

References

[1] Alf-verifier: A lightweight tool for verifying UML-Alf executable models,
https://github.com/som-research/alf-verifier.

[2] Alf-verifier: Example of use, https://goo.gl/pYEI9F.

[3] Xtext, www.xtext.org/ (Last visit September 2015).

[4] I. Abdelhalim, S. Schneider, and H. Treharne. An integrated framework for
checking the behaviour of fUML models using CSP. STTT, 15(4):375–396,
2013.

[5] R. Alur. Model Checking: From Tools to Theory. In 25 Years of Model
Checking, pages 89–106, 2008.

[6] J. Arsac and Y. Kodratoff. Some Techniques for Recursion Removal from
Recursive Functions. ACM Trans. Program. Lang. Syst., 4(2):295–322, Apr.
1982.

[7] T. Bouabana-Tebibel and M. Belmesk. An Object-Oriented Approach to
Formally Analyze the UML 2.0 Activity Partitions. Information & Software
Technology, 49(9-10):999–1016, 2007.

[8] E. Bousse, D. Mentré, B. Combemale, B. Baudry, and K. Takaya. Aligning
SysML with the B Method to Provide V&V for Systems Engineering. In
Model-Driven Engineering, Verification, and Validation 2012 (MoDeVVa
2012), Innsbruck, Autriche, Sept. 2012.

[9] P. Brosch, U. Egly, S. Gabmeyer, G. Kappel, M. Seidl, H. Tompits,
M. Widl, and M. Wimmer. Towards Scenario-Based Testing of UML Dia-
grams. In TAP, pages 149–155, 2012.

[10] D. Brown. An Introduction to Object-Oriented Analysis: Objects and UML
in plain English. Wiley, 2002.

37

[11] J. Cabot. Modeling Languages Portal. List of Exe-
cutable UML Tools. http://modeling-languages.com/
list-of-executable-uml-tools/(LastvisitApril2016),
2011.

[12] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and validation
of declarative model-to-model transformations through invariants. Journal
of Systems and Software, 83(2):283–302, 2010.

[13] J. Cabot, R. Clarisó, and D. Riera. Verifying UML/OCL Operation Con-
tracts. In IFM, volume 5423 of LNCS, pages 40–55, 2009.

[14] J. Cabot, R. Clarisó, and D. Riera. On the verification of UML/OCL class
diagrams using constraint programming. Journal of Systems and Software,
93:1–23, 2014.

[15] C. Click and K. D. Cooper. Combining analyses, combining optimizations.
ACM Trans. Program. Lang. Syst., 17(2):181–196, 1995.

[16] D. Costal, C. Gómez, A. Queralt, R. Raventós, and E. Teniente. Improv-
ing the definition of general constraints in UML. Software and System
Modeling, 7(4):469–486, 2008.

[17] F. Craciun, S. Motogna, and I. Lazar. Towards Better Testing of fUML
Models. In ICST, pages 485–486, 2013.

[18] D. Distante and S. R. Tilley. Conceptual modeling of web application trans-
actions: Towards a revised and extended version of the UWA transaction
design model. In 11th International Conference on Multi Media Modeling
(MMM 2005), 12-14 January 2005, Melbourne, Australia, pages 439–445,
2005.

[19] Eclipse. fUML/Alf support in Papyrus. https://wiki.eclipse.org/
Papyrus/UserGuide/fUML_ALF, 2014.

[20] R. Eshuis. Symbolic Model Checking of UML Activity Diagrams. ACM
Trans. Softw. Eng. Methodol., 15(1):1–38, 2006.

[21] C. Farré, E. Teniente, and T. Urṕı. Checking query containment with the
CQC method. Data Knowledge Engineering, 53(2):163–223, 2005.

[22] E. Gamma. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware (APC). Pearson Education, 1994.

[23] V. Garousi, L. C. Briand, and Y. Labiche. Control flow analysis of UML
2.0 sequence diagrams. In ECMDA-FA, pages 160–174, 2005.

[24] M. Genero, M. Piattini, and M. R. V. Chaudron. Quality of UML models.
Information & Software Technology, 51(12):1629–1630, 2009.

38

[25] N. Gioldasis and S. Christodoulakis. UTML: unified transaction modeling
language. In 3rd International Conference on Web Information Systems
Engineering, WISE 2002, Singapore, December 12-14, 2002, Proceedings,
pages 115–126, 2002.

[26] M. Gogolla, F. Büttner, and M. Richters. USE: A UML-based specification
environment for validating UML and OCL. Sci. Comput. Program., 69(1-
3):27–34, 2007.

[27] G. Graw and P. Herrmann. Transformation and Verification of Executable
UML Models. Electr. Notes Theor. Comput. Sci., 101:3–24, 2004.

[28] J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition,
1992.

[29] H. H. Hansen, J. Ketema, B. Luttik, M. R. Mousavi, J. van de Pol, and
O. M. dos Santos. Automated Verification of Executable UML Models. In
FMCO, pages 225–250, 2010.

[30] M. Hanus. Programming with Constraints: An Introduction by Kim Mar-
riott and Peter J. Stuckey, MIT Press, 1998. J. Funct. Program., 11(2):253–
262, 2001.

[31] D. Harel. Biting the Silver Bullet - Toward a Brighter Future for System
Development. IEEE Computer, 25(1):8–20, 1992.

[32] M. D. Jacyntho and D. Schwabe. Models and meta models for transactions
in web applications. In Current Trends in Web Engineering - 10th Interna-
tional Conference on Web Engineering, ICWE 2010 Workshops, Vienna,
Austria, July 2010, Revised Selected Papers, pages 37–48, 2010.

[33] Q. Lai and A. Carpenter. Defining and verifying behaviour of domain
specific language with fUML. In Proceedings of the Fourth Workshop on
Behaviour Modelling - Foundations and Applications, BM-FA ’12, pages
1:1–1:7, New York, NY, USA, 2012. ACM.

[34] D. Latella, I. Majzik, and M. Massink. Automatic Verification of a Be-
havioural Subset of UML Statechart Diagrams Using the SPIN Model-
Checker. Formal Asp. Comput., 11(6):637–664, 1999.

[35] Y. Laurent, R. Bendraou, S. Baarir, and M. Gervais. Formalization of
fUML: An Application to Process Verification. In Advanced Information
Systems Engineering - 26th International Conference, CAiSE 2014, Thes-
saloniki, Greece, June 16-20, 2014. Proceedings, pages 347–363, 2014.

[36] J. Lilius and I. Paltor. vUML: A Tool for Verifying UML Models. In ASE,
pages 255–258, 1999.

39

[37] S. J. Mellor. Executable UML Information Day - Keynote Presentation.
http://www.omg.org/news/meetings/tc/agendas/va/xUML_
pdf/Mellor_Keynote.pdf(LastvisitSeptember2015), 2011.

[38] S. Mijatov, T. Mayerhofer, P. Langer, and G. Kappel. Testing functional
requirements in UML activity diagrams. In Tests and Proofs - 9th Interna-
tional Conference, TAP 2015, Held as Part of STAF 2015, L’Aquila, Italy,
July 22-24, 2015. Proceedings, pages 173–190, 2015.

[39] ModelDriven.org. Alf Reference Open Source Implementation. http:
//modeldriven.github.io/Alf-Reference-Implementation/,
2014.

[40] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

[41] A. Nugroho and M. R. V. Chaudron. Evaluating the Impact of UML
Modeling on Software Quality: An Industrial Case Study. In MoDELS,
pages 181–195, 2009.

[42] A. Olivé. Conceptual Schema-Centric Development: A Grand Challenge
for Information Systems Research. In CAiSE, pages 1–15, 2005.

[43] A. Olivé. Conceptual Modeling of Information Systems. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2007.

[44] OMG. UML 2.0 OCL Specification. (ptc/03-10-14). 2003.

[45] OMG. Concrete Syntax for UML Action Language (Action Language
for Foundational UML), version 1.0.1, www.omg.org/spec/ALF (Last visit
september 2015). 2013.

[46] OMG. Semantics Of A Foundational Subset For Executable UML Mod-
els (fUML), version 1.1, www.omg.org/spec/FUML/ (Last visit September
2015). 2013.

[47] OMG. UML 2.5 Normative. 2015.

[48] I. Paltor and J. Lilius. Formalising UML State Machines for Model Check-
ing. In UML, pages 430–445, 1999.

[49] I. Perseil. ALF formal. ISSE, 7(4):325–326, 2011.

[50] E. Planas. Lightweight and static verification of UML executable models.
PhD Thesis. http://www.tdx.cat/handle/10803/116449 (Last
visit September 2015), 2013.

[51] E. Planas, J. Cabot, and C. Gómez. Verifying Action Semantics Specifica-
tions in UML Behavioral Models. In CAiSE, volume 5565 of LNCS, pages
125–140. Springer, 2009.

40

[52] E. Planas, J. Cabot, and C. Gómez. Lightweight Verification of Executable
Models. In ER, volume 6998 of LNCS, pages 467–475. Springer, 2011.

[53] E. Planas, J. Cabot, and C. Gómez. Two Basic Correctness Properties for
ATL Transformations: Executability and Coverage. In MtATL, pages 1–9,
2011.

[54] B. Pugh and A. Loskutov. FindBugs: A Static Analyzer Tool for Java
Code, http://findbugs.sourceforge.net.

[55] A. Queralt and E. Teniente. Reasoning on UML Conceptual Schemas with
Operations. In CAiSE, volume 5565 of LNCS, pages 47–62, 2009.

[56] H. Saiedian. An Invitation to Formal Methods. Computer, 29(4):16–17,
Apr. 1996.

[57] E. Seidewitz. Alf Examples. https://github.com/
ModelDriven/Alf-Reference-Implementation/tree/master/
dist(LastvisitApril2016), 2013.

[58] M. J. B. Stephen J. Mellor. Executable UML: A Foundation for Model-
Driven Architecture. Addison-Wesley, 2002.

[59] UML2Tools. http://www.eclipse.org/modeling/mdt/?project=uml2tools
(Last visit September 2015) .

[60] F. Xie, V. Levin, and J. C. Browne. Model Checking for an Executable
Subset of UML. In ASE, pages 333–336, 2001.

41

