67 research outputs found

    Contours in Visualization

    Get PDF
    This thesis studies the visualization of set collections either via or defines as the relations among contours. In the first part, dynamic Euler diagrams are used to communicate and improve semimanually the result of clustering methods which allow clusters to overlap arbitrarily. The contours of the Euler diagram are rendered as implicit surfaces called blobs in computer graphics. The interaction metaphor is the moving of items into or out of these blobs. The utility of the method is demonstrated on data arising from the analysis of gene expressions. The method works well for small datasets of up to one hundred items and few clusters. In the second part, these limitations are mitigated employing a GPU-based rendering of Euler diagrams and mixing textures and colors to resolve overlapping regions better. The GPU-based approach subdivides the screen into triangles on which it performs a contour interpolation, i.e. a fragment shader determines for each pixel which zones of an Euler diagram it belongs to. The rendering speed is thus increased to allow multiple hundred items. The method is applied to an example comparing different document clustering results. The contour tree compactly describes scalar field topology. From the viewpoint of graph drawing, it is a tree with attributes at vertices and optionally on edges. Standard tree drawing algorithms emphasize structural properties of the tree and neglect the attributes. Adapting popular graph drawing approaches to the problem of contour tree drawing it is found that they are unable to convey this information. Five aesthetic criteria for drawing contour trees are proposed and a novel algorithm for drawing contour trees in the plane that satisfies four of these criteria is presented. The implementation is fast and effective for contour tree sizes usually used in interactive systems and also produces readable pictures for larger trees. Dynamical models that explain the formation of spatial structures of RNA molecules have reached a complexity that requires novel visualization methods to analyze these model\''s validity. The fourth part of the thesis focuses on the visualization of so-called folding landscapes of a growing RNA molecule. Folding landscapes describe the energy of a molecule as a function of its spatial configuration; they are huge and high dimensional. Their most salient features are described by their so-called barrier tree -- a contour tree for discrete observation spaces. The changing folding landscapes of a growing RNA chain are visualized as an animation of the corresponding barrier tree sequence. The animation is created as an adaption of the foresight layout with tolerance algorithm for dynamic graph layout. The adaptation requires changes to the concept of supergraph and it layout. The thesis finishes with some thoughts on how these approaches can be combined and how the task the application should support can help inform the choice of visualization modality

    VMap: An Interactive Rectangular Space-filling Visualization for Map-like Vertex-centric Graph Exploration

    Full text link
    We present VMap, a map-like rectangular space-filling visualization, to perform vertex-centric graph exploration. Existing visualizations have limited support for quality optimization among rectangular aspect ratios, vertex-edge intersection, and data encoding accuracy. To tackle this problem, VMap integrates three novel components: (1) a desired-aspect-ratio (DAR) rectangular partitioning algorithm, (2) a two-stage rectangle adjustment algorithm, and (3) a simulated annealing based heuristic optimizer. First, to generate a rectangular space-filling layout of an input graph, we subdivide the 2D embedding of the graph into rectangles with optimization of rectangles' aspect ratios toward a desired aspect ratio. Second, to route graph edges between rectangles without vertex-edge occlusion, we devise a two-stage algorithm to adjust a rectangular layout to insert border space between rectangles. Third, to produce and arrange rectangles by considering multiple visual criteria, we design a simulated annealing based heuristic optimization to adjust vertices' 2D embedding to support trade-offs among aspect ratio quality and the encoding accuracy of vertices' weights and adjacency. We evaluated the effectiveness of VMap on both synthetic and application datasets. The resulting rectangular layout has better aspect ratio quality on synthetic data compared with the existing method for the rectangular partitioning of 2D points. On three real-world datasets, VMap achieved better encoding accuracy and attained faster generation speed compared with existing methods on graphs' rectangular layout generation. We further illustrate the usefulness of VMap for vertex-centric graph exploration through three case studies on visualizing social networks, representing academic communities, and displaying geographic information.Comment: Submitted to IEEE Visualization Conference (IEEE VIS) 2019 and 202

    Visualizing multidimensional data similarities:Improvements and applications

    Get PDF
    Multidimensional data is increasingly more prominent and important in many application domains. Such data typically consist of a large set of elements, each of which described by several measurements (dimensions). During the design of techniques and tools to process this data, a key component is to gather insights into their structure and patterns, which can be described by the notion of similarity between elements. Among these techniques, multidimensional projections and similarity trees can effectively capture similarity patterns and handle a large number of data elements and dimensions. However, understanding and interpreting these patterns in terms of the original data dimensions is still hard. This thesis addresses the development of visual explanatory techniques for the easy interpretation of similarity patterns present in multidimensional projections and similarity trees, by several contributions. First, we propose methods that make the computation of similarity trees efficient for large datasets, and also enhance its visual representation to allow the exploration of more data in a limited screen. Secondly, we propose methods for the visual explanation of multidimensional projections in terms of groups of similar elements. These are automatically annotated to describe which dimensions are more important to define their notion of group similarity. We show next how these explanatory mechanisms can be adapted to handle both static and time-dependent data. Our proposed techniques are designed to be easy to use, work nearly automatically, and are demonstrated on a variety of real-world large data obtained from image collections, text archives, scientific measurements, and software engineering

    Methods for multilevel analysis and visualisation of geographical networks

    Get PDF

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres Verstรคndnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstรผtzt. Ziel dieser Arbeit ist es, einen รœberblick รผber die Probleme dieser Visualisierungen zu geben und konkrete Lรถsungsansรคtze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingefรผhrt, um den Nutzen der gefรผhrten Diskussion fรผr die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ์ด์šฉํ•œ 3์ฐจ์› ๊ณต๊ฐ„ ๋‚ด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๋ฏธ์ˆ ๋Œ€ํ•™ ๋””์ž์ธํ•™๋ถ€ ๋””์ž์ธ์ „๊ณต, 2019. 2. ๊น€์ˆ˜์ •.Speculative visualization combines both data visualization methods and aesthetics to draw attention to specific social, political and environmental issues. The speculative data visualization project proposed in this work explores electronic waste trade and the environmental performance of various nations. Illegal trading of electronic waste without proper disposal and recycling measures has a severe impact on both human health and the environment. This trade can be represented as a network data structure. The overall environmental health and ecosystem vitality of those trading countries, represented by their Environmental Performance Index (EPI), can also give greater insight into this issue. This EPI data has a hierarchical structure. This work explores methods to visualize these two data sets simultaneously in a manner that allows for analytical exploration of the data while communicating its underlying meaning. This project-based design research specifically focuses on visualizing hierarchical datasets with a node-link type tree structure and suggests a novel data visualization method, called the data garden, to visualize these hierarchical datasets within a spatial network. This draws inspiration from networks found between trees in nature. This is applied to the illegal e-waste trade and environmental datasets to provoke discussion, provide a holistic understanding and improve the peoples awareness on these issues. This uses both analytical data visualization techniques, along with a more aesthetic approach. The data garden approach is used to create a 3D interactive data visualization that users can use to navigate and explore the data in a meaningful way while also providing an emotional connection to the subject. This is due to the ability of the data garden approach to accurately show the underlying data while also closely mimicking natural structures. The visualization project intends to encourage creative professionals to create both visually appealing and thought-provoking data visualizations on significant issues that can reach a mass audience and improve awareness of citizens. Additionally, this design research intends to cause further discussion on the role of aesthetics and creative practices in data visualizations.์‚ฌ๋ณ€์  ์‹œ๊ฐํ™”(speculative visualization)๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•๊ณผ ๋ฏธํ•™์„ ๊ฒฐํ•ฉํ•˜์—ฌ ํŠน์ •ํ•œ ์‚ฌํšŒ, ์ •์น˜ ๋ฐ ํ™˜๊ฒฝ ๋ฌธ์ œ์— ๊ด€์‹ฌ์„ ์œ ๋„ํ•˜๋Š” ๊ฒƒ์ž…๋‹ˆ๋‹ค. ์ œ์•ˆํ•œ ์‚ฌ๋ณ€์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋ฅผ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ๊ตญ๊ฐ€์˜ ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ์„ฑ๊ณผ๋ฅผ ์‚ดํŽด๋ด…๋‹ˆ๋‹ค. ์ ์ ˆํ•œ ์ฒ˜๋ฆฌ์™€ ์žฌํ™œ์šฉ ์กฐ์น˜๊ฐ€ ์ด๋ค„์ง€์ง€ ์•Š์€ ์ „์žํ๊ธฐ๋ฌผ์˜ ๋ถˆ๋ฒ• ๊ฑฐ๋ž˜๋Š” ํ™˜๊ฒฝ๊ณผ ์ธ๊ฐ„์— ์‹ฌ๊ฐํ•œ ์˜ํ–ฅ์„ ๋ฏธ์นฉ๋‹ˆ๋‹ค. ์ด ๊ฑฐ๋ž˜๋Š” ๋„คํŠธ์›Œํฌ ๋ฐ์ดํ„ฐ ๊ตฌ์กฐ๋กœ ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜(EPI)๋ฅผ ํ†ตํ•ด ์ด ๊ฑฐ๋ž˜์— ์ฐธ์—ฌํ•˜๋Š” ๊ตญ๊ฐ€๋“ค์˜ ์ „๋ฐ˜์ ์ธ ํ™˜๊ฒฝ ๋ณด๊ฑด๊ณผ ์ƒํƒœ๊ณ„ ํ™œ๋ ฅ์„ ์‚ดํŽด๋ณด๋Š” ๊ฒƒ์€ ์ด ๋ฌธ์ œ์— ๋” ๊นŠ์€ ํ†ต์ฐฐ๋ ฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ํ™˜๊ฒฝ์„ฑ๊ณผ์ง€์ˆ˜๋Š” ๊ณ„์ธต ๊ตฌ์กฐ๋กœ ๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„์ ์œผ๋กœ ํƒ๊ตฌํ•  ์ˆ˜ ์žˆ๋„๋ก ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ๋‘ ๊ฐ€์ง€ ๋ฐ์ดํ„ฐ๋ฅผ ๋™์‹œ์— ์‹œ๊ฐํ™”ํ•˜๊ณ , ์ด๋ฅผ ํ†ตํ•ด ํ‘œ๋ฉด์— ๋“œ๋Ÿฌ๋‚˜์ง€ ์•Š๋Š” ๋ฐ์ดํ„ฐ์˜ ์˜๋ฏธ๋ฅผ ์ „๋‹ฌํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ํƒ๊ตฌํ•ฉ๋‹ˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ํ”„๋กœ์ ํŠธ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ๋””์ž์ธ ์—ฐ๊ตฌ๋กœ, ๋…ธ๋“œ ๋งํฌ ์œ ํ˜• ํŠธ๋ฆฌ ๊ตฌ์กฐ๋ฅผ ํ†ตํ•ด ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ๋ฅผ ์‹œ๊ฐํ™”ํ•˜๋Š” ๊ฒƒ์— ์ค‘์ ์„ ๋‘๊ณ  ์žˆ์Šต๋‹ˆ๋‹ค. ์ž์—ฐ์—์„œ ๋ฐœ๊ฒฌํ•  ์ˆ˜ ์žˆ๋Š” ๋‚˜๋ฌด ๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ์˜๊ฐ์„ ์–ป์–ด ๊ณต๊ฐ„ ๋„คํŠธ์›Œํฌ์—์„œ ๊ณ„์ธต์  ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‹œ๊ฐํ™”ํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์ด๋ผ๊ณ  ํ•˜๋Š” ์ด ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๋ฐฉ๋ฒ•์„ ๋ถˆ๋ฒ• ์ „์ž ํ๊ธฐ๋ฌผ ๊ฑฐ๋ž˜์™€ ํ™˜๊ฒฝ ๋ฐ์ดํ„ฐ์— ์ ์šฉํ•˜์—ฌ ํ† ๋ก ์„ ์œ ๋ฐœํ•˜๊ณ  ์ „์ฒด์ ์ธ ์ดํ•ด๋ฅผ ์ œ๊ณตํ•˜๋ฉฐ ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•œ ์‚ฌ๋žŒ๋“ค์˜ ์ธ์‹์„ ๊ฐœ์„ ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค. ์ด๋Š” ๋ณด๋‹ค ๋ฏธ์ ์ธ ์ ‘๊ทผ๊ณผ ๋ถ„์„์  ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™” ๊ธฐ์ˆ ์„ ๋ชจ๋‘ ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. ๋ฐ์ดํ„ฐ ์ •์›์„ ํ†ตํ•œ ์ ‘๊ทผ์œผ๋กœ ์‚ผ์ฐจ์› ๋Œ€ํ™”ํ˜• ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด ์‹œ๊ฐํ™”๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉ์ž๋Š” ๋ฐ์ดํ„ฐ๋ฅผ ์˜๋ฏธ ์žˆ๋Š” ๋ฐฉ์‹์œผ๋กœ ์‚ดํŽด๋ณด๋Š” ๋™์‹œ์— ์ฃผ์ œ์™€ ๊ฐ์„ฑ์ ์ธ ์—ฐ๊ฒฐ์„ ๋ฐ›์„ ์ˆ˜ ์žˆ์Šต๋‹ˆ๋‹ค. ์ด๋Š” ๋ฐ์ดํ„ฐ ์ •์› ๋ฐฉ๋ฒ•์ด ๋ฐ์ดํ„ฐ๋ฅผ ์ •ํ™•ํ•˜๊ฒŒ ๋ณด์—ฌ์ฃผ๋Š” ๋™์‹œ์— ์ž์—ฐ ๊ตฌ์กฐ๋ฅผ ๋ฉด๋ฐ€ํ•˜๊ฒŒ ๋ชจ๋ฐฉํ•˜๊ธฐ ๋•Œ๋ฌธ์ž…๋‹ˆ๋‹ค. ๋ณธ ์‹œ๊ฐํ™” ํ”„๋กœ์ ํŠธ๋Š” ์ฐฝ์˜์ ์ธ ์ „๋ฌธ๊ฐ€๋“ค์ด ์ค‘์š”ํ•œ ๋ฌธ์ œ์— ๋Œ€ํ•ด ์‹œ๊ฐ์ ์œผ๋กœ ๋งค๋ ฅ์ ์ด๊ณ  ์ƒ๊ฐ์„ ์ž๊ทนํ•˜๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”๋ฅผ ๋งŒ๋“ค์–ด ๋Œ€์ค‘์—๊ฒŒ ๋„๋‹ฌํ•˜๊ณ  ์‹œ๋ฏผ๋“ค์˜ ์ธ์‹์„ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋„๋ก ๊ถŒ์žฅํ•ฉ๋‹ˆ๋‹ค. ๋˜ํ•œ, ๋ณธ ๋””์ž์ธ ์—ฐ๊ตฌ๋Š” ๋ฐ์ดํ„ฐ ์‹œ๊ฐํ™”์—์„œ ๋ฏธํ•™๊ณผ ์ฐฝ์กฐ์ ์ธ ์‹ค์ฒœ์˜ ์—ญํ• ์— ๋Œ€ํ•œ ๋” ๋งŽ์€ ๋…ผ์˜๋ฅผ ์œ ๋„ํ•˜๊ณ ์ž ํ•ฉ๋‹ˆ๋‹ค.Abstract I Table of Contents III List of Figures VI 1. Introduction 1 1.1 Research Background 2 1.2 Research Goal and Method 6 1.3 Terminology 9 2. Hierarchical Relationships: Trees 14 2.1 The History of Tree Diagrams 16 2.1.1 Significance of Trees 16 2.1.2 Aristotles Hierarchical Order of Life 19 2.1.3 Early Religious Depictions of Hierarchical Structures 22 2.1.4 Depicting Evolution 26 2.2 Tree Structures 29 2.3 Tree Layouts 31 3. Complex Relationships: Networks 34 3.1 Attributes of Networks 36 3.1.1 Interdependence and Interconnectedness 38 3.1.2 Decentralization 42 3.1.3 Nonlinearity 45 3.1.4 Multiplicity 46 3.2 Spatial Networks 46 3.3 Combining Tree Structures and Networks 48 4. Design Study Goals and Criteria 51 4.1 Objectives of the Design Study 71 4.2 Data Visualization Approaches 54 4.3 Criteria of Data Visualization 57 4.3.1 Aesthetics 58 4.3.2 Information Visualization Principles 62 4.3.2.1 Visual Cues in Data Visualization 62 4.3.2.2 Gestalt Principles 65 4.3.2.3 Increasing Efficiency of Network Visualizations 67 4.4 Case Study 70 5. Design Study: Data Garden Method 78 5.1 Concept of the Data Garden Structure 79 5.2 Data Garden Tree Structure 84 5.2.1 360ยฐVertical Branches 85 5.2.2 Break Point of the Branches 87 5.2.3 Aligning Hierarchy Levels 89 5.2.3.1 Design 01 โ€“ Extend Method 90 5.2.3.2 Design 02 โ€“ Collapse Method 91 5.2.4 Node Placement Technique 92 5.3 Conveying 3D Information 95 6. Design Study: Visualization Project 98 6.1 Theme 99 6.1.1 E-waste Trade 100 6.1.2 Environmental Performance Index 102 6.2 Visual Design Concept 104 6.3 Assigning Attributes 105 6.4 Visual Design Process 107 6.4.1 Leaf (Node) Design Process 107 6.4.1.1 Leaf Inspiration 107 6.4.1.2 Leaf Design 108 6.4.1.3 Leaf Area Calculation and Alignment 113 6.4.2 Stem (Branch) Design Process 116 6.4.3 Root (Link) Design Process 117 6.5 Interaction Design 118 6.5.1 Navigation 118 6.5.2 User Interface 119 6.5.3 Free and Detail Modes 120 6.5.4 Data Details 121 6.6 Visualization Renders 122 6.7 Exhibition 129 7. Conclusion 131 7.1 Conclusion 132 7.2 Limitations and Further Research 133 Bibliography 135 ๊ตญ๋ฌธ์ดˆ๋ก (Abstract in Korean) 144Docto

    Design of Interactive Visualizations for Next-Generation Ultra-Large Communication Networks

    Get PDF
    With the increasing size and complexity of next-generation communication networks, it is critical to utilize interactive information visualization to support the network monitoring, planning, and management. Effectively visualizing large-scale networks has been considered difficult with traditional methods because of the high link density and complicated node relationship. Given the limited screen space, it is essential to explore how to present ultra-large-scale network data efficiently that can assist Internet Service Providerโ€™s (ISP) network planning and management activities. This work proposes a design of the real-time interactive visualization system that combines the idea of progressive disclosure and multiple panels to elegantly visualize the large-scale network and avoid the information-overloaded problem. The system also visualizes the configuration of the network elements and provides the network performance information, including the port-level Quality of Service (QoS) metrics. Additionally, the system enables navigation through the port-level connection and provides different modes for multiple purposes

    Design of Interactive Visualizations for Next-Generation Ultra-Large Communication Networks

    Get PDF
    ยฉ 2013 IEEE. With the increasing size and complexity of next-generation communication networks, it is critical to utilize interactive visualizations to support the monitoring, planning, and management of networks. Effectively visualizing large-scale networks is difficult with traditional methods because of the high link density and complex node relationships. Given the limited screen space, to assist Internet Service Provider\u27s (ISP) network planning and management activities, investigating how to present ultra-large-scale network data efficiently is crucial. This paper presents a real-Time interactive visualization system that combines the design strategies of progressive disclosure and multiple panels to elegantly visualize the large-scale networks and avoid the information-overload problem. The system also visualizes the configuration of the network elements and provides the network performance information, including the port-level Quality of Service (QoS) metrics. Furthermore, the system enables navigation through the port-level connection and provides different modes for multiple purposes
    • โ€ฆ
    corecore