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1 Motivation

To visualize means to “form a mental image” of something ([Soa03]). In
English, the words “to see” and “to understand” can often be used syn-
onymously. Although understanding does not always require one to
view an image, it is often a tremendous help. Popular historical examples
of images used for successful communication and visualization of data
are Playfair’s statistical charts of England’s economy (1786), Snow’s map
of the London cholera outbreak in 1854, which gave a convincing plan for
how to counter it, and Minard’s Carte Figurative, that shows Napoleon’s
troop losses during his Russia campaign along with environmental fac-
tors over time on a map (1869). A detailed account of these examples is
given by Tufte ([Tuf01, Ch. 1], [Tuf97, Ch. 2]). All three demonstrate a
clear superiority of images over plain representation of numbers in ta-
bles and text. Anscombe showed a set of four very small datasets that
are equivalent in different statistical measures but show substantial dif-
ferences when plotted ([Ans73]), thereby demonstrating that sometimes
images can be more effective than statistics.

As Donald Norman once put it, “It is things that make us smart”
[Nor93], claiming that tools are not merely helpers but essential in the
process of problem solving. In the context of visualization, Card et al.
even speak of external cognition ([CMS99, Preface]). Humans have a
quite limited memory for images, probably intentionally so: as the eye
can sample the world very rapidly, the world is its own memory ([War08,
p. 2]). Munzner says that “visualization allows people to offload cogni-
tion to the perceptual system, using carefully designed images as a form
of external memory” ([Mun09, emphasis in original]). A suitable image can
thus serve as a tool to understand large information resources or complex
processes, and computers with their vast arsenal of methods for gener-
ating and interactively manipulating images have become indispensable
tools in this process. According to Cart, Mackinglay, and Shneiderman,
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2 CHAPTER 1. MOTIVATION

visualization is therefore “The use of computer-supported, interactive,
visual representations to amplify cognition” [CMS99, p. 6].

But not just any image is helpful. In the seminal article “Why a Di-
agram is (Sometimes) Worth Ten Thousand Words”, Larkin and Simon
list several necessary conditions for when information put in diagram-
matic representation is more effective than in a sequential representation
like a list or a text. But even for the same data, multiple visualizations
are possible; some being more effective than others. The field of visual-
ization thus studies the design space of visual representations and their
properties.

According to Stuard Card ([War04, Preface]), the phase of exploratory
design in information visualization, i.e. exploration of the design space
using point designs, is over and the characterization phase is imminent,
where a taxonomization of methods and a structuring of the design space
takes place. However it appears that this transition is not yet finished
as point designs still dominate the field and existing taxonomies do not
have sufficient descriptive power to enable visualization specifications.
There is an abundance of possible reasons for this: the design space for
static visualizations is not yet fully explored, basic cognitive science re-
search constantly produces new insight into how humans process visual
information and enables better designs (e.g. [PW12]), the interaction
of human memory with animation and interactive visualizations is not
yet fully understood ([Lam08]), the value of visualizations is difficult to
judge ([vW06]), it is not fully clear how to measure insight and integrate
other resources, like text and observer knowledge, into the analytic pro-
cess ([Nor06]), and, of course, the fact that data grows much faster than
screen space.

Another reason might be that the design space extends over multiple
fields with fuzzy borders: scientific, information, geographic, and soft-
ware visualization, graphic design, graph drawing, diagrammatic rea-
soning, visual analytics, etc., each concerned with the creation or study
of visual representations, but with different restrictions on dataset types,
use cases, or applicable methods. An indicator for this is that e.g. the
currently most popular model for the description of effective scientific
and information visualizations based on visual attributes and preatten-
tive processing is quite different than e.g. the aesthetic criteria of draw-
ing node-link or Euler diagrams (see Chapter 2). The explosion of dataset
sizes in scientific visualization can be countered by feature extraction and
then a presentation of features and their relations, which cannot be done
with methods from scientific visualization, but requires information vi-
sualization or graph drawing methods instead (e.g. [CS03, SWC+08,
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SHCS12]).
This thesis studies some topics that lie on the boundary of informa-

tion visualization, scientific visualization, graph drawing and Euler dia-
grams. Chapter 3 is concerned with the interactive manipulation of clus-
terings based on Euler diagrams. Chapter 4 then presents a GPU-based
approach to render Euler diagrams to extend the first method to larger
datasets. Chapter 5 presents an algorithm to draw contour trees, used
in scientific visualization to find features in scalar fields and allows for
the efficient selection of isosurfaces and contours. Chapter 6 presents
an algorithm for a similar problem from bioinformatics: dynamic barrier
trees. Barrier trees are in many ways similar to contour trees: they are de-
fined on discrete rather than continuous observation spaces. The chapter
also provides a building block for dynamic contour tree drawing.
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Overview of Publications
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2 Background

Existing visualizations can be categorized under various aspects. Each
visualization can be described as a interactive mapping from data to
graphical objects which are then rendered interactively. This chapter de-
scribes some of the current models for visualization as far as they af-
fect the remaining chapters. A more extensive discussion of the founda-
tions and principles of information visualization can be found in [Maz09,
WGK10, Spe07, SM00, Tel08, CMS99, War04, War08]. It is particularly
noteworthy that information visualization, graph drawing, and Euler di-
agrams have different notions of what constitutes a good diagram. It
remains a challenge to unify the models and quality criteria for these
fields.

2.1 Data

Stevens [Ste46] proposed a simple and powerful model of scales of mea-
surements, stemming from the need in psychophysics to measure exter-
nal stimulus on human senses. He classified scales as nominal, ordinal,
interval, and ratio. A nominal data scale only allows to determine the
equality of values, ordinal data incorporate an intrinsic ordering of val-
ues. Additionally, interval allows to determine the equality of intervals or
differences, and ratio even the determination of equality of ratios. Stevens
also listed permissible statistics on these scales.

A dataset is often constructed from multiple measurements both from
making multiple observations under different aspects. Typically there
is a measurement for each observation-aspect pair. All measurements
from the same observation give a data point and the different aspects
are referred to as variables. The variables are called independent if they
are systematically varied by the measurement process and dependent
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6 CHAPTER 2. BACKGROUND

otherwise. E.g., a trajectory dataset has two independent variables: the
tracked object’s identifier and the time, and one dependent variable: its
spatial position at that time. Most of information visualization is con-
cerned with the display of data with at least one independent variable.

It is not always possible or necessary to systematically vary variables
for observations. Some high-level features, e.g. cities, and their structural
relations, e.g. roads, only allow a hypothetical space, e.g. each pair of
cities is connected by roads, of which the observations form a subspace.
Similarly, there can be inclusion relations between entities, e.g. a partic-
ular country includes a particular state and other types of associations,
e.g. a particular compound partakes in a particular chemical reaction.
These relations can also be expressed graphically, although the percep-
tual mechanics of these representations differ from systematically-varied
relations, as we will see shortly.

2.2 Visual Variables
More than 40 years ago, cartographer Jacques Bertin [Ber11] laid the
foundation for a theory of visualization. He proposed that all graphic
representations are ultimately a set of marks on a plane which differ in
their appearance based on so-called visual variables. The marks could be
points, lines, and areas, and the variables planar position, size, value, tex-
ture, color, orientation, and shape. He classified the data types into the
levels: qualitative (nominal), ordered, and quantitative (interval-ratio),
These levels have an inclusion relationship, e.g. quantitative data is also
ordered, which is also qualitative. He proposed a similar classification
for visual variables, namely selective, associative, ordered, and quantita-
tive, and postulated that a graphic design is successful if the level of the
data matches the level of the visual variable. Ware [War04, p. 6] judged
this proposal:

Jacques Bertin attempted to classify all graphic marks in
terms of how they could express data. For the most part, this
work is based on his own judgment, although it is a highly
trained and sensitive judgment. There are few, if any, refer-
ences to theories of perception or scientific studies.

Cleveland and McGill [CM86] partially evaluated and ranked the vi-
sual variables with respect to which can be read by a human observer
with the highest precision. For this purpose they surveyed psychophysics
research and augmented it with own studies. The ranking was used
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by Mackinlay [Mac86] in the automatic presentation tool (APT) to de-
sign graphics automatically according to these guidelines using meth-
ods from artificial intelligence. Mackinlay also distinguished between a
graphic’s expressiveness, i.e. the property that it shows all the facts and
nothing but the facts that are supported by the data, and a graphics ef-
fectiveness, i.e. the amount of exploiting the abilities of the rendering
device and the human visual system. The first criterion can be seen as
equivalent to Bertin’s suggestion.

In a similar automatic design system, Roth [RM90] refined the data
classification so that established presentation conventions for specific mea-
surements such as time (dates) are respected. Casner [Cas90] extended
the general approach by recognizing that every image also has a commu-
nicative purpose and if the goal of the observer is specified, the drawing
can be tuned to highlight that aspect of the data. He extended the lev-
els of Bertin’s visual variables to a large set of perceptual operators that
visual variables support and matched them with the observer’s logical
operations required to achieve the goal. The most current general frame-
work for graphic design is given by Wilkinson and Willis [WW05].

The search for automatic design rules is hampered by the lack of a
full understanding of human perceptual processes. More recent research
is finding new and refining old visual channels and their perceptional
properties. Of these properties, the ability to process marks preatten-
tively currently receives most attention. Preattentive processing allows
to process marks very fast and can be used to distinguish or “pop out”,
sum or average, and even group items. An excellent survey over the cur-
rent state of the art is given by Healey and Enns [HE12], but Ware [War04,
Ch. 5] is also a good reference. These sources add mainly time-varying
visual variables (e.g. frequency and phase of simple circular or elliptical
motion), but also shading cues.

Visual variables have varying resolution, i.e., the number of values
which can be discriminated by a human observer varies [Mil56]. But it is
also known that the visual variables can interfere with each other, mean-
ing that combinations of visual variables may not be separated easily
by the mind. This complicates automatic graphic design. Ware [War04,
p. 180] summarizes pair combinations of variables that were experi-
mentally verified to be integrable or separable. Examples of integrable
pairs are the red-green and yellow-blue color channels, their value com-
binations are perceived as one hue, but also size and shape/color, i.e.
if a mark gets smaller, its shape and color becomes difficult to deter-
mine. Munzner gave examples of how integrable variables can be used
to combine visual channels of low discriminability into one perceived
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channel of high discriminability [Mun09]. Whether there are interactions
between three variables is still an open question [War04, p. 182].

2.3 Grouping Channels
While the visual variables provide an excellent framework for designing
charts and statistical graphs, relational information that describes links or
grouping of data cannot be directly expressed in this framework. Instead
Gestalt laws ([War04, Ch. 6]) describe the principles under which marks
are perceived as a group. Of the many principles I wish to point out the
following:

Proximity Elements that are closely together are perceived as a group.

Similarity Elements that look similar are perceived as a group.

Connectedness Elements that are connected are perceived as a group.

Closure Elements that are inside a common closed contour are perceived
as a group.

In the Bertin model, the law of proximity and similarity can be rephrased
as: marks whose visual variables are similar are perceived as a group
(recall that planar position was one of the visual variables). But the two
other principles are fundamentally different and usually represented dif-
ferently in graphics. The principle of connectedness is used in graph
drawing and the principle of closure in Euler diagrams. An early work
by Marks [Mar91] tried to incorporate these Gestalt principles into the
automated graphic design of diagrams.

2.4 Graph Drawing
We use the same terminology in this thesis as Diestel [Die05]. A graph
G = (V, E) is a pair of a finite vertex set V and an edge set E ⊆ {{u, v}|u, v ∈
V, u 6= v}. Each edge e = {u, v} is incident on u and v; u and v are then
called adjacent. A digraph G = (V, E) is a graph where edges are ordered
pairs rather than sets. In an edge e = (u, v) the vertex v is called the head
and u is called the tail of e. A path is a sequence of unique edges that
connects vertices u and v. In a digraph the sequence of edges must sat-
isfy that each head of an edge is the tail of the successor in the sequence.
A cycle is a non-empty path from u to u. A graph or digraph is acyclic if
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it contains no cycle. A graph is connected if for each pair of vertices u, v
there exists a path from u to v. A tree is a connected acyclic graph, and a
directed acyclic graph, or DAG, is an acyclic digraph. A directed edge (u, v)
is transitive, if there is a directed path excluding (u, v) that connects u and
v. A transitive reduct of a directed graph G is the largest subgraph of G
that contains no transitive edges. A (di-)graph (V′, E′) is a subgraph of a
(di-)graph (V, E), if V′ ⊆ V and E′ ⊆ E. A (di-)graph (V′, E′) is a minor
of a (di-)graph (V, E), if V′ ⊆ V and for each edge (u, v) in E′ there is a
path from (u, v) in (V, E); (V, E) is then called an expansion of (V′, E′).

Drawing a graph is the process of transforming topological properties
of the graph to geometric objects in a graphical representation. This pro-
cess is mostly determined by the generation of a layout for that graph,
that places vertices in a vector space and routes edges to connect the ver-
tices. Formally, a graph layout is a pair L = (p, r) of a function p that
maps each vertex of G onto a point in Rd (typically d = 2, 3) and a func-
tion r that maps each edge to a simple Jordan arc in the same space.
The field of static graph layout creation has been intensely studied in
the past decades. Introductions and surveys for general graph drawing
can be found in [BETT99, KW01, JM04, BETT94, HMM00, Tam99]. Effec-
tive graph drawings are based on conventions, constraints, and aesthetic
criteria, that capture the user’s expectations of visual clarity ([BETT99]).

The conventions lay down the graphical elements used, e.g. whether
edges are straight lines, polylines, curved, or orthogonal, i.e. segments
of horizontal and vertical lines. Other conventions can be the restriction
of vertices and edge bends to integer positions, forcing a planar drawing,
i.e. a drawing without edge crossings, and requiring that directed edges
follow only one direction, e.g. downwards. One may think of these con-
ventions as design constraints, and are used to tailor the appearance of
certain graph classes.

The other constraints are user-provided and can be used to specify
positions of single or groups of vertices in a center, a common area, or at
the boundary of the layout.

The layout of a graph has properties that can be measured with cer-
tain cost functions, e.g., area of the layout, number of edge crossings,
distribution of vertices and edges, congruence of isomorphic structures,
etc. Aesthetic criteria try to capture the notion of visually pleasing draw-
ings. Among these criteria are minimizing the number of edge crossings,
layout area, total or maximum edge length, total or maximum number of
edge bends, maximizing angular resolution between edges meeting at a
vertex or crossing each other, making vertices and edge bends uniformly
distributed, striving for a given aspect ratio, or increasing symmetry.
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For a full discussion of these conventions, constraints, and aesthetic
criteria see Battista et al. [BETT99]. For the purposes of this thesis I want
to emphasize a few points:

• It is known that not all aesthetic criteria can be fulfilled simultane-
ously. A layout algorithm typically has to find a trade-off between
the different competing requirements.

• Graph drawing is not only concerned with the creation of images
for visualization, it also has applications in circuit board design.
Some conventions and aesthetic criteria are therefore less relevant
for visualization.

• The aesthetic criteria were defined from the common sense of re-
searchers in the field of graph drawing without any psychological
foundation. When a study was finally carried out ([Pur97]), it was
found that only minimizing edge crossings had a non-negligible
impact on human performance for simple navigation tasks in small
graphs.

• The conventions and aesthetic criteria are conceptually quite dif-
ferent from the concepts of quality in information visualizations
named above.

In Chapter 3 and Chapter 4 we use and extend a force-directed layout
algorithm for the distribution of elements on the screen. Generally, such
a layout algorithm determines the layout of a graph G using a physical
simulation. Vertices of G are treated as particles, sometimes having a
mass or electrical charge, and edges of G are treated as springs or spring-
like connections between the vertex particles. A simulation then com-
putes the physical forces between the particles and moves them accord-
ing to these forces towards an equilibrium, typically a configuration of
minimum energy.

The force-directed method was first proposed by Eades [Ead84], who
used electrically charged particles that repel each other and springs that
force vertices connected through an edge to attract each other. This early
approach was refined by Fruchterman and Reingold [FR91], who im-
proved the force formulas and gave a simple optimization for the prob-
lem of computing the pairwise repelling forces. Kamada and Kawai
[KK89] modeled the system using springs exclusively. Most formulations
of these force-directed layout algorithms require the graph to be con-
nected and suffer from long running times, often because of bad conver-
gence. To avoid local minima, simulated annealing can be used. Newer
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a b c

Figure 2.1: A concrete Euler diagram for the abstract Euler diagram
({a, b, c}, {∅, {a}, {b}, {a, b}, {c}}). It expresses that there are elements
shared in the categories a and b, but c does not share any elements.

formulations solve these problems by calculation of the layout on multi-
ple levels or resolutions of the graph (e.g. [HJ04, HK00, ACL04, CCLP03]).
Hachul and Jünger [HJ05] experimentally compared these methods for
visual and computational performance. More recent research ports these
approaches to the GPU [FT07a, GHGH08, IMO09].

2.5 Euler Diagrams
An Euler diagram is a set of contours, usually simple curves, that parti-
tion the plane into connected regions called zones or faces. In contrast to
Venn diagrams, where the set of zones is equal to the power set of con-
tours, some zones may be omitted in an Euler diagram. The following
definition is adapted from Flower and Howse [FH02]. An abstract Euler
diagram is a pair: D = (C(D), Z(D)) where

1. C(D) is a finite set of contours. These contours are purely symbolic
and not actual curves in a plane.

2. Z(D) ⊆ 2C(D) is the set of zones of D, i.e., for each z ∈ Z(D) holds
z ⊆ C(D).

3.
⋃

z∈Z(D) z = C(D)

4. ∅ ∈ Z(D)

This abstract diagram can be transformed to a concrete Euler diagram
on the plane in two phases: the layout of the zones and the construction
of contours, i.e. the actual Euler representation. Figure 2.1 shows an
example. A concrete Euler diagram is well-formed if it meets all of the
following criteria.
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1. Contours are simple curves, i.e. they do not cross themselves.

2. All zones are connected, they are not represented by multiple faces
in the diagram.

3. A curve segment does not represent 2 or more contours.

4. Curves cannot touch without crossing.

5. Only two contours can intersect at any given point.

There are algorithms for automatic construction of Euler diagrams,
e.g. work by Flower and Howse [FH02] and Chow [Cho07]. The authors
admit, that these methods are only applicable for a small number of el-
ements and contours. Any abstract Euler diagram allows for either zero
or an infinite number of well-formed representations. For instance, the
abstract Euler diagram ({a, b}, {∅, {a, b}}) cannot be presented without
breaking rule 3, or inserting a zone {a} or {b}. Unfortunately, many real-
world datasets are usually of the type that cannot be represented in a
well-formed manner. As motioned by Fish and Stapleton [FS06] as well
as Verroust and Viaud [VV04], the class of representable diagrams can be
extended by relaxing rules. Recently, Rodgers et al. [RZP12] gave recom-
mendations under which circumstances wellformedness criteria can be
dropped.

Euler diagrams have seen an increased interest in the information vi-
sualization community recently, e.g. Collins et al. [CPC09] extracted con-
tours to augment UML diagrams with package information. Simonetto
and Auber [SA08, SA09, SAA09] proposed dedicated layout algorithms
for Euler diagrams. They proposed to remove some of the wellformed-
ness characteristics of Euler diagrams, too, in order to enable every input
to be drawn. Henry-Riche and Dwyer [RD10] in particular allowed ele-
ments to be drawn more than once, contours to be represented by more
than one face, and showed very aesthetic diagrams. Some research in Eu-
ler diagrams, e.g. by Wilkinson [Wil12], is geared towards generating di-
agrams where the faces have prescribed sizes, generalizing on treemaps.
Euler diagrams regularly use graph drawing for placing zones, and the
relation to treemaps indicates a deep connection with information visu-
alization.



3 Manual Clustering Refinement
using Interaction with Blobs

The huge amount of different automatic clustering methods emphasizes
one thing: there is no optimal clustering method for all possible cases.
In certain application domains, like genomics and natural language pro-
cessing, it is not even clear if any of the already known clustering meth-
ods suffice. In such cases, an automatic clustering method is often fol-
lowed by manual refinement. The refined version may then be used as
either an illustration, a reference, or even an input for a rule-based or
other machine learning algorithm as a new clustering method.

In this chapter we describe a novel interaction technique to manually
refine cluster structures using Euler diagrams and the metaphor of soap
bubbles, represented by special implicit surfaces (blobs). For instance,
elements can simply be moved inside and outside of these blobs, adding
or removing them, respectively, from the contours the blobs represent.

3.1 Design

There are two goals that have to be achieved for the manual improve-
ment of a clustering. The first is to effectively communicate the current
structure of the clustering to the user and the other is to provide him with
means to change that structure.

One method of achieving the first goal is to lay out the elements as
point marks in a scatter plot, positioning similar elements very close to
each other. A cluster is indicated by a high density of points at one lo-
cation. This can be used to quickly communicate attributes like size and
extend of a cluster but often suffers from a poor usage of screen space.
Large parts of the screen usually stay blank. As an improvement, it is

13
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possible to use additional information like color or shape of marks to in-
dicate which element belongs to which cluster. Using this method, the
position of the point mark has less importance, or – more importantly –
there is a larger degree of freedom for the placement of elements. This
freedom may be used to distribute the elements more uniformly on the
drawing area, but in general, only a small number of colors and shapes
can be properly distinguished by a human ([War04]). So most existing
systems combine scatter plots with colors and shape and neglect to use
the freedom of positioning elements evenly on the screen.

There is another possibility for increasing the degree of freedom for
placement. Again point marks are drawn so that similar elements are in
similar places. These marks are then surrounded by a graphical shape
per cluster that directly indicates that all elements inside the region of
this shape belong to the cluster. As long as these graphical shapes do
not overlap each other except for elements that they share, this method
communicates the clustering properly. The elements may be distributed
more uniformly on the screen as long as neighborhood relationships be-
tween the marks are maintained. This design replaces the Gestalt law
of proximity, that is typically used for visualization clustering results, by
the law of closure. We use special implicit surfaces, called blobs, to define
the contours representing clusters. The strength of this diagram is that
clusters may overlap arbitrarily, i.e. they do not have to be hierarchical.

Blobs appear to most lay observers like soap bubbles. In reality soap
bubbles are too fragile, but we allow elements to be pushed inside or
pulled outside of bubbles. For generality, we also allow elements to be
part of multiple clusters, although, again in reality, it is impossible for
two soap bubbles to intersect each other.

While the system is of value to any clustering problem where manual
refinement of clustering or layout is necessary, we have two applications
areas as major targets that led us to the development of the system. First,
we are working closely with biologists looking at clusterings generated
from gene expression data. The initial automatic clustering based on the
data contradicts knowledge from other experiments to some extend, so
they asked us to provide them with a tool. Second, we cooperate also
with the natural language processing group in our department. They
work intensively on topic maps and novel text clustering algorithms,
where automatic clustering and manual refinement based on human un-
derstanding are an important subtopic.
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3.2 Clustering Graphs as Euler Diagrams
The structure of a clustering can be described by an acyclic directed graph.
Each entity and each cluster is a vertex in that graph, and there is an edge
from vertex A to B, if and only if there are corresponding clusters CA and
CB with CA ⊃ CB and there is no vertex C with corresponding cluster CC
and CA ⊃ CC ⊃ CB. The layout of a DAG can also be used to visualize
the clustering (Figure 3.1), but we will use this constructed DAG only
as a supporting data structure later on. The duality of DAG and Euler
diagrams is illustrated in Figure 3.1.

Figure 3.1: A clustering graph and its corresponding Euler representa-
tion. In this illustration, additional zones were inserted so that the shapes
can be circles. This, however, is not misleading, because the elements are
also drawn inside their respective zones, indicating that some faces are
not zones.

As a hierarchy can be represented by a rooted tree, an arbitrary clus-
tering may be represented by a directed acyclic graph G = (V(G), E(G)).
The vertex set V(G) is then simply one vertex for each element and clus-
ter. The edges E(G) correspond to the clustering structure, i.e. there is a
directed edge from u to v, if and only if v is an element and u is a clus-
ter that contains this element or if v is a subcluster of u. The sinks of
G, i.e. the vertices having no successor, represent the elements and all
other vertices represent the clusters. We implicitly assume that there are
no empty clusters. Multiple clusterings may be combined into one DAG
by constructing the supergraph, i.e. the smallest graph that contains all
other graphs as subgraphs.

This DAG could be laid out using standard graph layout techniques,
however, for the observer to determine, which element belongs to which
cluster, which elements does a cluster contain, and where areas overlap,
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an Euler diagram usually is the better choice as most people can compre-
hend these diagrams because their mathematical education included an
introduction in set theory, where these diagrams are used to familiarize
with set relations.

We can generate an abstract Euler diagram from a DAG. Let L(v) de-
note the set of all sinks that are descendants of a vertex v in G. It can be
constructed recursively by

L(v) =
{

{v} if v is a sink in G⋃
(v,u)∈E(G) L(u) else

For any possible zone z ∈ 2C(D) let L(z) =
⋂

v∈z L(v) be the elements it
contains, the abstract Euler diagram is then D = (C(D), Z(D)) with

C(D) = {v ∈ V(G)|v is not a sink in G} ⊆ V(G)

Z(D) = {∅} ∪
{

z ∈ 2C(D)
∣∣∣L(z) 6= ∅

}
.

The clusters are represented by contours and each sink will be contained
in exactly one zone precisely describing which clusters it belongs to. Al-
though this transformation is interesting from a theoretical point of view,
as it compares the expressive power of DAGs and Euler diagrams, our
implementation stores the DAG, as it is more compact.

The clustering graph is a rooted tree in the absence of overlapping
clusters, i.e. clusters that share some elements but neither one is fully
contained in the other.

3.3 Related Work on Cluster Visualization
Clustering deals with the identification and grouping of similar entities
according to a given metric. Let S be a set of entities, then a clustering C
is a set of clusters C ⊆ 2S (2S denotes the power set of S). A partition or
classification is a clustering C which satisfies⋃

c∈C
c = S

and
∀a, b ∈ C : a 6= b→ a ∩ b = ∅.

A strictly hierarchical clustering is a clustering C where⋃
c∈C

c = S
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and
∀a, b ∈ C : a ∩ b 6= ∅→ (a ⊆ b ∨ a ⊇ b).

Other types of clustering will be referred to as “general”.
Cluster results are typically shown using dendrograms [Har75], which

is a tree diagram using orthogonal edges. The problem with this type of
representation is that it does not extend to general clusterings and that it
requires some training to solve the task of determining which elements
belong to a given cluster visually. Often the task is solved by the com-
puter rather than the human observer by highlighting elements when
hovering over a cluster. Dendrograms are also often only used to vi-
sually determine the maximum element distance that can be used for a
partition clustering.

To solve the element-cluster task visually, many possibilities for draw-
ing shapes around clusters have been proposed. Frishman and Tal [FT04]
draw rectangles around clusters, Kumar and Garland [KG06] use shaded
circles, van Ham and van Wijk [vHvW04] position elements in 3D and
draw one sphere per entity. Closely-positioned elements automatically
clump together. Sprenger et al. [SGEK97] construct ellipses around enti-
ties of the same cluster using principle component analysis to determine
the orientation and length of the ellipses’ axes. None of these techniques
can guarantee that shapes will not overlap elements from foreign clus-
ters.

Hierarchies may also be presented using space-filling techniques like
treemaps [JS91]. These techniques have been significantly improved us-
ing squarified treemaps [BHvW00], cushion treemaps [vWvdW99], and
Voronoi treemaps [BD05].

Gross et al. [GSF97] and Sprenger et al. [SBG00] use blobs in 3D,
but only consider partition and hierarchical clusterings. To represent
polyarchies, i.e. multiple hierarchies sharing elements, Robertson et al.
[RCCR02] uses multiple tree views. However, the method only shows
the clustering structure in the context of a very small subset of elements.
De Chiara and Fish [CF07] present EulerView: a tree-view-like widget
for representing and manipulating arbitrary groupings. The method ac-
tually presents an explorer-like tree view and automatically inserts nodes
for group pairs with non-empty intersection.

3.4 Cluster Display
We visualize clusters by blobs. Let S be a set of elements. A (simple)
blob of a cluster C ⊆ S, C 6= ∅ is an implicit surface where each ~x on this
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surface satisfies:

∑
e∈C

ω(e)

‖~x− ~xe‖k = γ

~xe is the position of the element e, γ is an arbitrary positive threshold and
k an arbitrary positive number. For our implementation we chose k = 2
and for simplicity γ = 1. ω(e) is the importance of an element, which can
be used to give elements a larger area around them. One can safely set
ω(e) = 1 for all elements e ∈ E. The points that satisfy the equation not
necessarily form a connected structure. So we either have to guarantee
that the blob is always connected, or indicate blobs belonging together
by an additional attribute, e.g., color. We chose to indicate such enclaves
by color, and do not draw the boundary contour but only the interior of
every blob. A point ~x belongs to the interior if it satisfies:

∑
e∈C

ω(e)

‖~x− ~xe‖k ≥ γ

However, we modified this formula to the following one:

∑
e∈E

gC(e)ω(e)

‖~x− ~xe‖k ≥ γ (3.1)

where

gC(e) =
{

1 e ∈ C
−0.25 e /∈ C

This avoids blobs accidentally overlapping elements that are not part of
its cluster. Even very closely positioned elements would rather create a
hole in the blob than to be accidentally overlapped by it.

Instead of using an isosurface algorithm to extract an approximation
of the blob’s contour, we simply test each pixel of the screen if it is inside
a certain cluster. As we allow elements to be part of any cluster, i.e., the
clustering is not restricted to a partition or a hierarchy, a pixel may belong
to multiple clusters. When presented on the screen the pixel will get the a
mixture of all colors that have been assigned to each cluster overlapping
the pixel.

A straightforward implementation can be very slow, because each
pixel requires the computation of its distance to each element’s position
and the summation of the contributions to each cluster. This results in
a complexity of O(A · N · M), with N being the number of elements, A
being the area, i.e. the number of pixels, and M being the number of clus-
ters. A meaningful approximation of the area A in our case is A ∈ O(N)
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as our layout algorithm will give each element the same amount of screen
space, and typically clusterings will satisfy M ∈ O(N log N). So the over-
all complexity of this method can be approximated by O(N3 log N). If
the clustering is a strict partitioning, then M ≤ N and the method is
bounded by O(N3).

If the clustering is strictly hierarchical, then the contribution of each
element to each pixel has only to be computed for the leaves of the hierar-
chy tree and can be propagated in O(M+ N) time upwards along the tree
edges. So the overall complexity can be reduced to O(A(N + N + M)) =
O(N2 log N). This idea can be extended to general clusterings. The clus-
tering can be described by a directed acyclic graph with M + N vertices,
and a propagation tree that spans this DAG may easily be constructed
and maintained when the clustering changes.

The rendering can be sped up using the following quad-tree-based
heuristic. Most of the time, neighboring pixels belong to the same clus-
ters. First we determine the set of clusters for each pixel of a coarse rec-
tilinear grid. Then we test the four adjacent points of each mesh cell for
the equality of the set of clusters. If they are all equal, we assume that
each pixel of the cell belongs to the same clusters. If one of them differs,
we split the cell in four equally-sized cells, compute the five new points,
and proceed recursively, terminating when the cell’s area equals exactly
one pixel. This is illustrated in Figure 3.2. It makes the method much
faster, while still staying in the aforementioned order of time complexity.
Unfortunately, it can introduce artifacts, e.g., if the cells of the mesh are
too large, and a blob is fully contained inside it. To avoid this, our im-
plementation uses a grid size that is the biggest power of two that is still
smaller than the diameter of a blob with a single element.

Figure 3.2: quad-tree test to approximate boundary

But we can still do better. When testing a certain pixel, we might
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neglect elements that are far away from it, because their contribution to
Equation 3.1 is minimal. So it suffices to just consider elements that are
very near. One option is to compute the Voronoi diagram of the elements’
positions as input sites. This partitioning can then be used to find the
nearest site to each pixel considered in the quad-tree test and the neigh-
bors of that site. As a site may have up to N − 1 neighbors, this does not
reduce the upper bound of the time complexity but can be expected to
perform much better.

An alternative is to compute the Delaunay triangulation of the ele-
ments’ positions, find for each considered pixel the surrounding triangle,
and consider the contribution of the three elements incident on the trian-
gle and optionally also the incident elements on the three adjacent trian-
gles. Using this method a maximum of six elements contribute to Equa-
tion 3.1. The correct Voronoi cell or Delaunay triangle can be searched
for in O(log N) time using trapezoidal maps ([dBvKOS08]) so the over-
all complexity reduces to O(N log N + A · (log N + h)). The first part is
given by the construction of the Voronoi diagram or Delaunay triangu-
lation, the second part consists of determining the Voronoi cell or Delau-
nay triangle and the propagation of the contribution of the neighboring
sites through the directed acyclic graph for each considered pixel. h is
the height of the propagation tree in the DAG describing the clustering
structure. This height is seldom outside O(log N) so the overall complex-
ity can be approximated by O((N + A) log N). It has to be noted, how-
ever, that the later optimizations may result in discontinuities along cell
or triangle boundaries. As long as the elements are evenly distributed,
the artifacts are negligible.

3.5 Distributing Elements

Our system implements a simple spring embedder that has been modi-
fied to avoid these two problems. We chose a single-level, force-directed
layout, mainly because the user of the system can watch it work and it
has a high “dynamic stability”, i.e., if the graph is altered after its layout
has been determined the layout of the new graph will look almost the
same.

While these algorithms are useful for an initial layout of the entities
on the screen, during the interaction phase, we actually prefer the sim-
pler force-directed algorithms for their higher “dynamic stability” and
because it is easier to trap them in a local minimum. This leaves more
freedom for the user to arrange entities after their own fashion and taste.
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The layout process uses a modified force-directed layout algorithm.
Most force-directed layout algorithms require the graph to be connected.
However, some of the datasets we are provided with contain only ele-
ments without any edges between them. Furthermore, we want to show
the clustering structure and not the full relationships between elements.
We use a simplified van-der-Waals force for the general forces between
particles:

~Fr(e) = ∑
n∈X\{e}

Ω
(
‖~xe −~xn‖

2 · γ

)
~xe −~xn

2 · γ

where

Ω(d) =
{
−2 d < 1

2
1
d −

1
d2

1
2 ≤ d

It repels particles if their distance is less than 2 · γ and attracts them oth-
erwise. So this force is sufficient to nicely distribute the potentially dis-
connected elements uniformly on the screen.

If we would implement this method, each element would create a
force on another one, so our algorithm would be O(N2) per iteration.
However, because the force vanishes quickly with increasing distance, it
is sufficient to look only at the closest elements. Again, the set of neigh-
bors of each element can be computed using either a Voronoi diagram or
Delaunay triangulation. The formula becomes:

~Fr(e) = ∑
n∈N(e)

Ω
(
‖~xe −~xn‖

2 · γ

)
~xe −~xn

2 · γ .

Because of planarity the number of neighbor pairs to consider lies in
O(N). Therefore, the computation of the Voronoi diagram or Delaunay
triangulation become the driving factor for the asymptotic run-time. Be-
cause of that, the general forces may be computed in O(N log N) time.

However, if we were initially provided with edges, we use them in
our layout. We use simple logarithmic springs to determine the current
force, setting the optimal spring length to 2 · γ. The complexity of one
layout iteration is then O(N log N + E), E being the number of edges.
Much more interesting, however, is how to enforce elements of the same
cluster to be grouped together. The straightforward way would be to add
edges or springs that connect elements of the same cluster. But because
each element might be connected with each other element of the same
cluster and each element may belong to multiple clusters, this introduces
far too many edges. Instead, we implemented a probabilistic algorithm.
First we choose a cluster randomly, but respect the size of the cluster, i.e.,
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large clusters have a linearly greater probability for being chosen. Inside
this cluster we choose two distinct elements and compute the force of
a logarithmic spring between them. We repeat the process O(N log N)
times. The ideal spring length is set to γ. This achieves the desired goal
of elements being closer if they are in the same cluster, but leaves enough
freedom for the user to tune the arrangement of elements.

3.6 Interaction

If the number of elements is large, it may be preferable to show only a
subset of them. For that purpose we use the standard zoom and pan
technique. We also allow the user to collapse and expand clusters. We
represent collapsed clusters by a blob of one element. Subclusters are no
longer visible, i.e., there will be no blob for them. There is a problem
when elements are part of more than one collapsed cluster. In this case
we use one representative for the intersection of both clusters and one
for the rest of the cluster. Usually the elements are represented on screen
by their name. We do not automatically determine the optimal name
of a collapsed cluster based on its contents as this is highly application-
dependent. If an application does not provide a name for a collapsed
cluster, we show only the number of elements in this cluster.

We allow the user to arrange the elements on the screen in any way
he sees appropriate. He can do this by moving either single elements,
in which case he has to click on an element and drag it around with the
mouse. To move clusters, he clicks somewhere inside a blob, and the pro-
gram will determine the correct cluster or clusters just like it would deter-
mine the set of blob that contain the pixel. If the mouse is then dragged,
all elements of all selected clusters follow accordingly. Because the lay-
out process is active during this interaction for deselected elements, these
will automatically make way. If the element or the cluster is released, the
layout process will again arrange the elements so that they are uniformly
distributed, but, in general, it will preserve their horizontal and vertical
ordering.

A user can change a given clustering using one of the following meth-
ods:

• The user moves one element very close to another element that is
in one or more clusters. If the distance of both elements drops be-
low a certain threshold δ the moved element is assigned to all the
clusters the other element belongs to. It appears as if the element



3.6. INTERACTION 23

was pushed into the soap bubble. This process is illustrated in Fig-
ure 3.3. We chose δ = γ

2 .

Figure 3.3: Addition of an element to a cluster.

• A single element is moved away from elements of the same cluster,
thereby stretching the cluster. Once the distance to all the other el-
ements grows beyond a certain threshold ∆, it is removed from the
cluster. It appears as if the element was pulled out of the soap bub-
ble. This process is illustrated in Figure 3.4. In our implementation
we use ∆ = 2 · γ.

Figure 3.4: Removal of an element from a cluster.

• The user draws a freehand line around some elements. These ele-
ments will be assigned to a new cluster. This appears as if the user
has made a new soap bubble around some elements (Figure 3.5).

• The user double-clicks on a cluster, thereby deleting it. The bubble
appears to be pierced and bursts.

Because the layout process is active during this interaction, the user
has to move the elements quickly enough, so that the other elements do
not flee to fast (in case of pushing an element into a cluster) or follow to
fast (in case of pulling an element from a cluster). In our implementation
we update the layout exactly 50 times a second and enforce an upper
bound on the velocity of an element empirically. An alternative would
be to use a modifier key (e.g. “Shift”) to slow down the layout update.
We also use the “CTRL” modifier key, if we drag elements around and
do not want them to leave their current clusters regardless of how far
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Figure 3.5: Lasso selection of multiple elements into a new cluster.

they are dragged from their original position. This is really helpful in
situations where we want one element of an cluster be part of another
one as well, but leave the others as they are.

3.7 Results

We implemented our method in a system called “BubbleClusters” in Java.
The optimization techniques used make layout recomputations and re-
display of blobs fast enough to be interactive on a Pentium IV 2.54GHz.
The first users of our system found it very intuitive and “fun to work
with”. Figure 3.6 shows the system working on an example that was in-
spired by a common task of the domain experts that we developed the
application for. The application depicted is from the field of genomics,
where a given set of genes have been clustered for same functionality, but
genes often are part of multiple clusters, as they behave differently in the
presence of other genes. Biologists would like to create a partition of the
genes to gene groups using the knowledge they already have from spe-
cific experiments. Figure 3.7 shows a real-world dataset to illustrate how
complex the clusterings can become that a domain expert will refine.
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(a) (b) (c)

Figure 3.6: (a) Our method’s grouping technique was used to create this
initial clustering to some randomly created gene names. (b) IKT53 has
been pushed inside a cluster. (c) EWA66 has been pulled outside a cluster.

3.8 Summary
We presented a pixel-based algorithm to show Euler diagrams using blobs.
The blobs are reminiscent of soap bubbles. The method is most effec-
tive when elements are distributed uniformly on the screen, therefore we
gave a force-directed layout algorithm that uses van-der-Waals forces,
which converges quickly to uniformly-distributed configurations. We
presented and implemented multiple ideas on how to improve the layout
and rendering speed to enable interactive manipulation of clusterings,
using well-known data structures from computational geometry and ex-
ploiting the DAG structure of the clustering to reuse partial results. First
user tests demonstrated a “fun factor” that gives some evidence for the
intuitive understanding of the system.

The presented solution has some drawbacks. First, where many clus-
ters overlap, colors mix to various gray tones. We can counter this prob-
lem by using and mixing textures instead. Also we do not explicitly show
contours, but these could help in resolving zone borders where mixing
colors produces indistinguishable colors. Also the speed is not sufficient
for datasets larger than approximately 100 elements. These problems will
be addressed in the next chapter.
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Figure 3.7: Euler diagram of a complex dataset. The dataset shown is a
randomly selected part of a real-world dataset of a correlation analysis
of genes. It consists of 78 elements and 24 clusters. On average each
element is part of 4 clusters.



4 Euler-Diagram Rendering on
the GPU with Applications to
Document Analysis

Efficient human exploration of document collections is still a major chal-
lenge. Common approaches combine automatic natural language pro-
cessing techniques and interactive visualization approaches. Typically,
automatic text analysis creates an information space and projection meth-
ods allow interactive visual exploration of the space. Since the infor-
mation space creation is usually not perfect and projection increases the
problem, users often wish to change the projection and sometimes the
information space during the exploration phase to obtain an improved
model of the document collection. We present a fast GPU-based ren-
dering of the clustering structure of the document collection using an
Euler-diagram representation. As the clusters may overlap arbitrarily we
use colors and patterns to distinguish different sets including the vari-
ous intersections. We apply this approach to a combination of document
and paragraph clustering based on novel methods from computational
linguistics. Users can interactively change cluster, document, and para-
graph layout. Furthermore, the user can, in principle, also change the
clustering which may lead to effective steering of the information space
creation in the future. Finally, the visualization allows the selection of
particularly coherent or incoherent parts of texts with the low effort.

4.1 Problem Statement

Efficient human exploration of document collections is a major challenge
of the information age. Common approaches combine natural language

27
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processing with visualization to reach this goal. Typically, automatic text
analysis regards documents as elements in a high-dimensional space.
In this space, a metric [AKS+02], self-organizing map [LSM91, RI96],
or clustering [AKS+02, JTP+95, Ren94] defines a neighborhood relation
creating an information space. This space is projected to two or three
dimensions using principle component analysis [FMG05], multidimen-
sional scaling [AKS+02, CC92, FMG05], or the low-dimensional struc-
ture of the Kohonen maps [LSM91, RI96]. The results are visualized as
annotated point clouds [AKS+02, Ren94], or landscapes after applying a
low-pass filter [FMG05, JTP+95].

Classical graphical interaction metaphors like panning and zooming
allow exploration of the collection. Additional information like keywords
associated with the mouse position is provided [FMG05]. Some sys-
tems support active querying of documents based on interaction with the
landscape [JTP+95]. While all this research is promising, there are poten-
tially shortcomings. The basic process of creating the information space
is usually not perfect – typical recall in controlled experiments reaches
around 90%.

Usually the information space is a partition or a hierarchical struc-
turing of the document collection. But many natural phenomena such
as natural language contain ambiguities and a higher recall may be ob-
tained by allowing an arbitrary rather than a strict hierarchical clustering
of the document collection. As another example, documents may be cat-
egorized with respect to different aspects and the union of these catego-
rizations usually does not fit naturally in a hierarchy.

Furthermore, a user may want to personalize the projection, e.g. chang-
ing the cluster layout, based on his growing understanding of the infor-
mation space during exploration. This is especially typical if the infor-
mation space is created based on more than one similarity measure, e.g.
document and paragraph similarity. Finally, the user may want to adjust
the results of the information creation process in certain areas. Ideally,
this information should be used to adapt the parameters of the process
generating the neighborhood relation. The exploration and adjustment,
however, require a system that effectively communicates the clustering
structure before and after changes, preserving the mental map and in an
adequate response time.

Recently, the field of computational linguistics, or more specifically
text mining [HQW05], has seen the appearance of a variety of algorithms
that allow extracting information from raw texts, such as morphology
[KCT08], word similarity [Bor07] or terminology [Wit05]. These algo-
rithms can be used in common clustering or classification algorithms to
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reveal the relations between texts or parts of texts, such as paragraphs or
sentences. Such paragraph and text similarity enables the computation
of an accurate clustering of documents.

In this chapter, we concentrate on information spaces based on clus-
terings that may be non-hierarchical. We combine novel natural lan-
guage processing algorithms with a new GPU-based rendering of the re-
sulting information space. Given a set of input documents, we construct
a grouping of documents and an independent grouping of paragraphs
using a specialized clustering algorithm. Chinese whispers [Bie06a] and
an optional module taking similarity between words into account [Bor07]
allows to group documents that do not necessarily share a single word
with each other, as long as the content is related. This framework can be
easily extended to take morphological segmentation, part-of-speech tags,
syntactic patterns or other linguistic information into account. A termi-
nology extraction algorithm is then used to find cluster labels consisting
of the three most significant terms.

The visualization process consists of an initial layout of the elements
representing documents and paragraphs using a force-directed layout al-
gorithm. After this step, the clustering structure is shown in an Euler
diagram with contours and overlapping patterns. Our method does not
impose a restriction on the amount of overlap but is limited by the abil-
ity of the human observer to distinguish multiple overlapping patterns
and colors. We render the Euler diagram using a local approximation. It
ensures that no element is drawn inside a contour that it does not belong
to and results in contours that are relatively slim. We use the GPU ex-
tensively for this local approximation to achieve interactive frame rates
for up to multiple hundred simultaneously visible elements and clusters
even on dated graphics hardware. We repeatedly show the clustering,
change the currently visible part of the hierarchy, move elements, or even
change the clustering structure. After such operations, the elements are
distributed again uniformly on the screen, while preserving the mental
map.

4.2 Linguistic Processing

Given a set of documents, the main goal of this work is to uncover sim-
ilarities between them. Assuming that the texts in question are machine
readable, i.e. not stored as images, a simulation of semantic similarity
between two texts, or parts of it, e.g. paragraphs, is usually computed by
measuring the angle between two vectors in a high-dimensional vector
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space [Seb02]. The vector space is defined such that each word has an
own dimension, entirely orthogonal to all other dimensions (i.e. words).
A document is then represented by a point in this vector space that corre-
sponds to the words occurring in it (and their frequency). However, for
example, highly frequent words tend to have less differentiation power
than less frequent words. Therefore a measure such as tf.idf [Seb02] is
used to transform pure frequencies of words into weights that are high-
est for words that occur frequently, but in very few documents, or put
differently, for the most document-specific words.

Once a basic vector space model is defined, any clustering algorithm
can be used to find groups of texts belonging together. The undirected
weighted graph that contains one vertex for each document or, depend-
ing on the case, parts of the document, like paragraphs, and the sim-
ilarities between them as edges will be referred to as the document or
paragraph similarity graph. A clustering algorithm augments this graph
by adding vertices representing the new clusters as well as new edges
for the similarities that can be computed among the new clusters and the
elements already contained in the graph. We will call this graph the sim-
ilarity graph. The main output of the clustering describes relationships
between the clusters, i.e. which clusters are subclusters of each other and
which elements each cluster contains. Because this information defines
an order on the elements and clusters, the result of the clustering can be
described by a directed acyclic graph we call the clustering graph. This
graph usually omits transitive information.

Chinese Whispers (CW) [Bie06a], a probabilistic graph clustering al-
gorithm, is particularly well suited for clustering natural language mate-
rial (such as texts, words, etc.). It is both very scalable (time-linear com-
plexity) and it produces excellent results, as evidenced in several appli-
cations such as unsupervised language separation [BT05], part of speech
clustering of words [Bie06b] or even detecting spam [BW07]. CW pro-
duces flat clusterings by default (or rather it partitions the graph).

The last step of the natural language processing part is finding short,
but descriptive labels for each cluster. To this end, we decided to use the
terminology extraction algorithm developed by Witschel [Wit05] which
combines cues from syntax and morphology with a differential analysis
to produce a ranking of most significant words for a given document.
To find a label for a cluster, all texts of that cluster are combined into one
long text and then the terminology extraction is run on that text. Since the
terminology extraction also includes a tagger, all words extracted were
filtered such that no words tagged as stop words are shown.
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4.3 Layout

We use the force-directed layout algorithm by Fruchterman and Rein-
gold [FR91] for the initial layout of the similarity graph, independent of
the clustering graph. In case the similarity graph is not available, we
construct it from the clustering graph simply by estimating the simi-
larity of elements based on the number of clusters they both reside in.
The Fruchterman-Reingold algorithm does not scale well, but we do not
consider this to be a disadvantage of our method, as it can be replaced
by faster layout algorithms that also have a better convergence behavior
(e.g. see the comparison by Hachul and Jünger [HJ05]).

The set of visible elements and clusters will be represented by nodes
on the screen. This set may change through the expansion or collapse of
nodes. If this happens, the user shifts nodes, or changes the clustering
the layout of the visible part of the graph is adapted by further iterations
of the Fruchterman-Reingold algorithm, but instead of computing all the
n(n−1)

2 repelling forces, we calculate the Delaunay triangulation on the
position of the nodes and exert repelling forces only between neighbors
in the triangulation. We show all iterations of this layout adaption to help
the user understand the transition in order to preserve the mental map.

The layout of the nodes can result in Euler representations with dis-
connected zones. We use colors and patterns to indicate disconnected
zones of the same cluster. We use this effect as a visual cue for inspec-
tion as it highlights regions where the clustering failed for ambiguities or
systematic reasons.

4.4 Euler-Diagram Rendering

Concerning the wellformedness criteria of Euler diagrams, our render-
ing method guarantees that contours are simple curves, but zones may
be disconnected. This relaxation is required to allow any abstract Euler
diagram to be rendered. We minimize the effect of this disadvantage by
using colors and patterns for each region. Unfortunately, also contours
can touch each other without crossing and there are curve segments that
can represent more than one contour because of the local approximation
we use when rendering the Euler diagram for speed reasons. We com-
pensate the effect of breaking these rules by varying the thickness of lines
to indicate the number of contours they represent.

We present an overview over the algorithm first and then discuss the
single steps.
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1. Compute the Delaunay triangulation of the locations of the nodes,
i.e. the currently visible elements and clusters.

2. Add a border to the triangulation by replicating vertices of the con-
vex hull.

3. Replace long lines on the new convex hull of the triangulation by
further insertion of points.

4. For each triangle, precalculate and mix the patterns that occur in it.
The number of mixtures per triangle is limited by a constant.

5. Draw each triangle using a certain interpolator and the premixed
patterns.

4.4.1 Zone Mapping

A concrete Euler diagram can be defined as a function mapping each
contour c ∈ C(D) to a set of points Pc ⊆ R2 in the plane interior to its
curve. This can also be described by a relation T ⊆ C(D)× R2 where it is
clear that a dual function can be created mapping each point p ∈ R2 to a
zone and therefore to a (possibly empty) set of clusters Cp = {c|(c, p) ∈
T}.

The input to this stage of the algorithm is a finite set of points P re-
sulting from the node layout and a set of contours C(D). Furthermore,
there is a function that maps each point p ∈ P to its zone z(p) ∈ Z(D). To
compute z(p), we use a simple traversal upwards starting from p in the
clustering graph. This operation can be costly but is computed before-
hand and only needs to be updated when the user changes the clustering
graph. If P were the entire plane, or at least the part that is shown on
screen, the mapping z(p) could be inverted to get an Euler representa-
tion. Unfortunately, P is only a finite subset of the plane and an interpo-
lation has to determine the set of clusters for at least the points presented
on the screen. To interpolate efficiently, we interpolate on triangles of a
triangulation.

Because we do not interpolate scalar values but rather finite sets of
clusters, we partition each triangle of the triangulation into up to nine
connected regions as illustrated in Figure 4.1. It shows which set of clus-
ters is assigned to each point of the interior of the triangle.

Using the triangulation, it is clear that only points inside the convex
hull of the original point set can be interpolated. When the outside is ne-
glected, some contours are not closed but rather end at the convex hull.
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Figure 4.1: Five different interpolators. The interpolators partition the
triangle into connected regions being equivalent in the set of clusters and
contour pieces between pairs of neighboring regions. C(a) means the set
of all clusters point a belongs to. C(ab) means C(a) ∩ C(b) and C(ab|bc)
means C(a) ∩ C(b) ∪ C(b) ∩ C(c). (a) is the simplest interpolator and
gives a Voronoi-like representation, (e) is the most complex but gives the
best results in practice. (d) and (e) also have the advantage of being con-
figurable with respect to the radius of the smaller circles around the end
vertices. The radii of the center or the larger circles is then determined
so that the circles touch the smaller circle. Note that for all interpolators
contours are C0 continuous across triangle boundaries. With the excep-
tion of (b), the region borders are perpendicular to the triangle borders.

To extrapolate outside the original point set we add further points that lie
outside. These points belong to the zone ∅. We simply duplicate each of
the original points that lie on the convex hull and position the duplicate
at unit distance from the original in the direction opposite the barycenter
of all points. Inserting these points in the Delaunay triangulation can cre-
ate sharp border triangles and the contours can get very distorted. This
happens especially where the convex hull has a long edge. We counter
this effect by adding more virtual points on these long edges. The points
are positioned at least one and at most two unit distances away from
their next neighbor. The number of additional points added in this step
can only be bounded trivially by of the number of nodes as it depends
on the circumference of the drawing. Fortunately, the layout keeps the
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drawing compact so the number of additional points required is usually
low compared to the number of nodes.

4.4.2 Colors and Pattern Mixing

In cases where the zones become disconnected, a different type of visual
information is needed to communicate the connectivity. This can be done
by using colors and textures and also has the benefit of making legal Eu-
ler diagrams visually more appealing as demonstrated by Ware [War04,
p. 198]. Therefore, we apply this coloring to all clusters and defer the
problem of finding disconnected zones.

Where point sets overlap, these textures have to be mixed. The tex-
tures can be mixed at each point but it is more efficient to mix them for
each triangle and even for the whole triangulation. For m textures there
are 2m possible mixtures, but only a very small subset are actually used.
A triangulation of n points cannot contain more than 2n− 5 triangles. As
we have seen in the previous section, each triangle is partitioned into a
maximum of nine regions, many of them shared across triangle bound-
aries, so we never need more than a constant amount of mixtures per
node.

In our implementation, the user has the ability to freely assign col-
ors and patterns to each cluster. Clusters may not need to have a color
or pattern, in this case they are simply distinguished by their contour
line. When the ROUND7 and ROUND9 interpolators are used, there is al-
ways a border region between clusters that do not share any elements,
i.e. contours cannot touch from the outside. In this case, it is impossible
to mistake a partition for an inclusion, as Figure 4.2 shows. We therefore
do not have to mix the patterns of all clusters that contain the point, but
rather can use the most specific clusters, i.e. all the clusters in the set that
have a pattern assigned and do not have any descendant in the set.

4.4.3 Implementation

Before actually drawing the triangulation, we iterate through it to deter-
mine all the mixtures we actually need. These mixtures are then gener-
ated and stored in one large texture that is used when the triangulation
is drawn. Because mixtures are shared across triangles we use a cache
to avoid multiple mixing and keep the size of the texture small. The im-
ages in the result section have been drawn with just one 512x512 texture
containing 8x8 pixel sizes tiles. Our implementation does not limit the
number of base textures, and any texture may be used as base texture.
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Figure 4.2: How to avoid mixing textures unnecessarily. The left Euler
diagram can mean either that b is a subset of a (contour b touches a from
the inside) or that they do not share any elements (b touches a from the
outside). This ambiguity can be removed by mixing of textures. The
second image therefore represents b is a subset of a and the third that
they don’t intersect just like the fourth diagram. When contours cannot
touch from the outside, image 3 can always be interpreted as b is a subset
of a without the need to mix the textures.

Currently our implementation uses for the base textures twelve pattern-
less colors and eight simple line patterns in six different colors each.

For brevity, we describe only the ROUND7 interpolator. The other
interpolators can be implemented similarly. Given a point ~p inside the
triangle, as well as the three end points~a,~b,~c of the triangle, we compute
the barycentric coordinates βA, βB, βC of ~p. These coordinates are used
to map to a point in an equilateral triangle. In this equilateral triangle,
there is a circle around each end point of the triangle with radius δ for
some 0 < δ ≤ 1

2 . There is also a circle at the barycenter of the triangle
with radius 1√

3
− δ. Figure 4.3 illustrates these zones. The circles do not

overlap but rather touch each other. The parameter δ is used to define
the relative size of the circle inside and the circles on the end points of
the triangle. We determined δ = 0.4 experimentally to produce balanced
results.

Using barycentric coordinates, we can treat every triangle as if it were
equilateral and effectively map the regions of the equilateral to the origi-
nal triangle. The region borders in the interpolators are perpendicular to
the triangle border. When the regions are mapped to the original trian-
gle, these circles become ellipses and do not necessarily cross perpendic-
ularly. As a result, the combination of contour pieces from neighboring
triangles may not be C1 continuous. To minimize this effect we chose
the Delaunay triangulation as the triangulation of the original point set
because it maximizes the minimum angle in all triangles. It allows any
layout of nodes to be drawn with the method. An alternative would be
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Figure 4.3: Determining the regions and contour pieces. The point-region
test is performed using a simple point-inside-circle test on the four cir-
cles and a minimum barycentric coordinate test for the remaining three
regions. This test also splits the contours in 9 contour pieces. In the lower
left image, an example is shown where each contour piece is assigned a
thickness based on the number of clusters in the symmetric difference of
the adjacent region’s cluster sets. The elements a, b, and c belong to the
clusters {M, N}, {L, O}, and {L, M, N} respectively. In the lower right
image, an example is shown that combines all contour pieces to contours.
Note that virtual points have to be added outside the convex hull of the
point set so that contours are closed.
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to use a Kohonen-map-based node layout on a mesh with equilateral tri-
angles.

An OpenGL vertex and fragment shader compute the barycentric co-
ordinates, perform the region test, classify border pixels based on the
given contour piece thicknesses and even anti-alias the borders. When
classifying border pixels, the distance to a contour is not calculated for
the equilateral triangle but for the original triangle in order to guarantee
constant line width, independent of the actual size and shape of the tri-
angle. The fragment shader calculates the two-dimensional vectors ~∆p,X
as the difference of the point p as projected into the equilateral triangle
and the center of each circle X ∈ A, B, C, ABC. This difference vector is
then projected to a vector that gives the difference vector in the original
triangle. Its length is determined and shortened by the projected circle
radius in that direction. Because the projection is linear, the final tests can
be expressed simply as:

kp,X =
∣∣∣∣∣∣J ·~∆p,X

∣∣∣∣∣∣ ·
1− RX∣∣∣∣∣∣~∆p,X

∣∣∣∣∣∣


kp,X < 0 means p is inside the circle X. 1
2 |kp,X| < dK means p is a border

pixel on one of the four circles X ∈ A, B, C, ABC, and a contour piece K
with thickness dK that lies on the circle X. J is a linear transform from
the equilateral triangle with coordinates

(
0,
√

3
2

)
,
(
−1

2 ,− 1√
3

)
,
(

1
2 ,− 1√

3

)
to the actual triangle with coordinates (ax, ay), (bx, by), (cx, cy).

J =

(
bx − cx

1√
3
(2ax − bx − cx)

by − cy
1√
3

(
2ay − by − cy

) )

4.4.4 Analysis

In the following, let n denote the number of nodes. When the layout is
updated, an iteration first computes the Delaunay triangulation in O(n log n)
time. The number of edges in the triangulation is O(n) and repulsive
forces are only computed for neighbors in the triangulation. Attract-
ing forces are calculated for all edges of the visible part of the similarity
graph. It takes time in the order of O(n log n + E) to make one iteration
of the layout.

We then compute the convex hull of the nodes’ locations. This can
be done in O(n) time using O(n) space when it is extracted from the
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Delaunay triangulation. The vertices of the convex hull are then dupli-
cated and additional points are inserted on long edges. Usually, their
number is much smaller than n. The new Delaunay triangulation can be
constructed in O(n log n) time. We use CGAL [CGA] for both the con-
vex hull as well as the Delaunay triangulation. Colors are mixed in O(n)
time and O(n) space. The actual rendering draws each triangle once and
the triangulation does not contain more that O(n) points, so the commu-
nication with the GPU takes O(n) time. For each pixel the number of
operations to be executed can be bounded by a constant and we render
each pixel at most once. Let A denote the number of pixel of the drawing
area then the overall complexity is O(A + n log n) to generate one image.

4.5 Interaction

The user may pick one ore more nodes using a mouse click or by draw-
ing rectangles. The modifier keys known from file management systems
are available and behave similarly. The selected nodes may be moved
around the screen by dragging them with the mouse. After release the
layout is updated towards a uniform redistribution of nodes. This allows
the user to change the layout to his desire.

Text documents collections often contain a huge number of docu-
ments. Usually, only a small fraction of them can be presented on the
screen because the representation is limited both by the size and the res-
olution of the screen. Also the perceptional abilities of the observer is
limited to only a few nodes. We provide simple zoom and pan inter-
actions as well as the expansion and the collapse of nodes. These tech-
niques are well known from other applications for exploring hierarchies
but the operations are more complex for arbitrary clusterings. A simple
implementation can use an aggressive collapse strategy, where all nodes
are hidden when their parent is collapsed, regardless of whether they be-
long to some clusters that are expanded. On the other hand, there is a
safe collapse strategy as well, where only the nodes are hidden that are
not inside other expanded clusters.

The user is also able to change the clustering by a gesture similar to
file explorers. The current selection is dragged (picked up) and released
over a point specified by the mouse pointer. As this point belongs to
exactly one zone of the Euler diagram, we can add all selected nodes to
all the clusters the zone represents, and remove them from all others. If
the CTRL key is pressed while releasing the nodes, they are not removed
from their old clusters imitating a “copy” behavior. The “move” opera-
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tion can be used for removal from clusters as well, e.g., the removal from
all clusters can be accomplished by dragging the nodes to a point on the
zone that belongs to no cluster. For convenience, we also provide the
user with a pop-up menu showing all visible clusters and allowing him
to directly select and deselect clusters.

These techniques can be used with any clustering, not necessarily
based on documents but we provide further means to inspect the data.
When hovering over a node, its text is shown in a large tool tip win-
dow. Selected nodes have small transparent tool tips shown near them.
In these tool tips either the text or some significant words of it are shown.
Because the tool tip windows may not be large enough to show the whole
content, it is scrolled automatically. On the selected nodes, further lin-
guistic processing can occur. Generally, the flexibility of this visualization
framework with respect to interactivity allows nearly every conceivable
operation to be performed on masses of text, such as refining a clustering,
ordering a number of documents into different folders or finding natural
groupings for an enhanced exploration of unknown texts.

4.6 Results

To illustrate the method, a small collection of 35 newspaper texts was
created. Documents concerning three topical issues were taken from
six main German online newspapers (such as www.spiegel.de), namely
about the Russian presidential elections, the riots in Burma, and a polit-
ical issue in Northern Korea. After removing paragraphs with less then
10 words, the total number of paragraphs is 288. On the described exper-
imental data, the clustering should theoretically produce three clusters,
each containing all texts from one topic. However, the typical result is
that there are up to 8 clusters with three large clusters correctly repre-
senting the three topics and several small clusters of texts that did not fit
either of the big clusters. This means that the precision is usually nearly
perfect, whereas recall is somewhere between 70% and 90%.

Using a standard force-directed layout, Figure 4.4 shows the structure
of the text similarity graph along with a typical outcome of the CW color
based clustering. As can be seen, the ‘Putin’ cluster is very dense with
many high similarities in between its texts, whereas the other two clus-
ters have several inter-cluster similarities, which is because both topics
discuss military and unrest in a country. The three most significant terms
for each cluster of one randomly chosen clustering outcome of the experi-
mental setup are shown below (along with the number of texts contained
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Figure 4.4: Typical result of Chinese Whispers clustering of the 35 exper-
imental documents.

in that cluster):

1. (10) Putin, Subkow, Russland

2. (6) Roh, Pjöngjang, Grenze

3. (6) Burma, Burmesen, Junta

4. (4) Nordkorea, Kim, Pjöngjang

5. (4) Mönche, Birma, Nagai

6. (3) Gambari, Rangun, Birma

7. (2) Iwanow, Putin, Subkow

After locating the overlaps in the Euler diagram we then used the tool
tips to investigate the data further. A screen shot from this session is pre-
sented in Figure 4.5. This session revealed that paragraph clustering can
help improving the clustering as one can find useful interrelations be-
tween the text clusters. The observer can immediately recognize that the
red cluster is separated. Investigation into the data reveals that it could
be merged with the white, magenta and blue cluster as they deal with the
same topic. For the same reason, the green and the yellow cluster might
be merged as well. There are only two overlaps: one between the green
and the cyan text cluster and also one overlap between the red, white,
and magenta text cluster. This indicates that the clustering on the para-
graphs mostly concur with the clustering of the text. After merging all
clusters to their correct topic, only the overlap between the green and the
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cyan persist. Investigating the texts reveals that the one paragraph of the
green cluster, which deals with a political issue in North Korea, mentions
economic relationship with Russia. A political issue in Russia is the topic
of the cyan cluster.

Our program SIMDOCBROWSE shows two clusterings: one for the
texts and one for the paragraphs. Both were generated with the Chinese
whispers algorithm. We were mainly interested, where the clustering of
the paragraphs disagrees with clustering of the texts and whether this
information can be used to correctly identify the topics. We used this
dataset to first determine the best interpolator of the five we have pre-
sented. The interpolators can be switched at the run-time of our program
to examine their differences in detail. Figure 4.6 shows the visualization
on the same dataset and the same layout of the elements using the differ-
ent interpolators. At first, we were impressed that although the layout of
the elements is determined independently of the clustering graph, only
few clusters are disconnected. This indicates the high quality of the CW
clustering algorithm. The parts where clusters are disconnected seem to
be most visible when using the interpolators of the ROUND class. The
ROUND7 and ROUND9 clusters furthermore show overlaps of clusters
better than the others. We prefer the ROUND9 over the ROUND7 inter-
polator because contours are less jaggy and therefore cause less stress to
the observer.

In Figure 4.7 the image is separated into patterns and contours allow-
ing to study the contribution to their combination. The contours mask
the patterns, which is why in the combination the paragraph clustering
is not as salient as the text clustering using colors. Figure 4.8 shows an
example where too many contours produce simply too much clutter and
hide the essentially simple clustering just using grayscale colors, indicat-
ing that colors and patterns may be more efficient in communicating set
relations than contours.

4.7 Summary

We implemented a general framework for representing non-hierarchical
clustering structures as Euler diagrams using different interpolators. It
makes the implementation of new interpolators easy, in fact, the ROUND9
interpolator was designed last and was implemented in less than half an
hour. The presented visualization algorithm has proved to be a very intu-
itive and sufficiently fast way of representing the relations between texts
and parts of texts. The computational linguistics algorithms, responsi-
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Figure 4.5: An Euler diagram of a clustered collection of text documents.
In the example, there are 35 texts that have been partitioned into 7 clus-
ters and 288 paragraphs partitioned into 66 clusters. The texts themselves
are also clusters for the paragraphs but have no texture, only a border.
Clusters that have only one element (text or paragraph) have no texture
attached, e.g., there is a “white” cluster of just one text that only has a bor-
der. In total, there are 108 clusters and 6 of them have a color, 60 of them
have a pattern attached. Because we only have 48 patterns available,
some of them were assigned multiple times. In the yellow cluster, some
paragraphs have been selected and the mouse currently hovers over a
text and the content of it is shown.



4.7. SUMMARY 43

(a) PVoronoi (b) Voronoi

(c) straight4 (d) round4

(e) round7 (f) round9

Figure 4.6: The same clustering structure using different interpolators.
Labels have been omitted. The PVORONOI interpolator emulates a
Voronoi treemaps to give an impression what the data would look like
if that method were used instead, although the emulator lacks the shad-
ing of cells and their thicker borders.
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(a) without patterns (b) without borders

Figure 4.7: Demonstration how the combination of contours and textures
support each other towards an improved perception of the clustering.
The same dataset as in Figure 4.5 is used, using the ROUND9 interpolator.

ble for the clusterings and cluster labels, proved to be very powerful and
also produce very fitting relations. Therefore, it is not surprising that
even though Figure 4.5 contains a total of 323 elements in 73 clusters, it
still is easy to grasp and renders sufficiently fast to allow interactive ex-
ploration (at a resolution of 1280x800 with 17-21 FPS on a GeForce Go
6100). The actual rendering is very fast, we determined the performance
bottlenecks of our application to be the rendering of labels and, at large
numbers of visible elements, the Delaunay triangulation and the layout
refinement that is based on it.

Further research will concentrate on improving even further the qual-
ity of the clusterings by adding more linguistic knowledge, such as au-
tomatic morpheme segmentation or automatically acquired word asso-
ciations. Another huge improvement regarding the rendering speed can
be obtained if the Delaunay triangulation were not to be computed in
each step of the layout rearrangement, but replaced by a dynamic Delau-
nay triangulation with lower average run-time complexity. Because the
elements are moved only slightly during layout rearrangement the topol-
ogy of the Delaunay triangulation mostly stays the same. Because of that,
mixtures only have to be determined when the topology changes. In our
current implementation, it is cumbersome to detect these events. This
could be improved if a dynamic Delaunay triangulation including event
handlers is used. Finally, many ideas regarding the possible interactions
with the underlying data will be explored in more detail.
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Figure 4.8: A clustering of the isolet dataset. The isolet dataset consist-
ing of 6238 data points in 25 dimensions has been clustered using a di-
visive hierarchical clustering. The points have been laid out by depth-
first traversal of the hierarchy and positioning them on a Hilbert curve
([MM08]). The region of each point is colored using grayscale accord-
ing to the height of the point’s parent, i.e. the distance at which he was
merged into a cluster. Using this simple scheme already shows the clus-
ters, while showing all contours leads to clutter. The uniform region col-
ors indicate that the intracluster distances are homogeneous but vary by
cluster and therefore a single maximal distance for partitioning the points
could not be found.





5 Drawing Contour Trees in the
Plane

Scientific and medical visualization often involve scalar fields. A com-
mon visualization technique is the isosurface: a geometric surface de-
fined by a single function value. Connected components of an isosurface
are called contours, analogous to contour lines on a map.

Large datasets can be studied with topological analysis of the con-
tours. For an arbitrary manifold, the Reeb graph [Ree46] describes con-
tour evolution as a topological skeleton in graph form. For the special
case of functions on simply-connected domains, the Reeb graph is also
connected and acyclic: the contour tree.

Since the contour tree summarizes contours of a scalar field, it can be
used as a visual abstraction of the field in user interfaces [BPS97]. This
requires layouts that emphasize topological and geometric properties. In
particular, it is desirable to fix the y-coordinates of the tree nodes using
the isovalues of the corresponding contours in the tree.

Existing graph-drawing algorithms work poorly for contour trees, as
they assume that vertices can be given arbitrary (x, y) positions, or that
constraints in y are based on graph properties, not vertex or edge at-
tributes.

We therefore formalize aesthetic constraints for drawing contour trees,
adapt and evaluate some existing graph drawing approaches to contour
trees, and propose a novel algorithm for automated 2-D layout of large
contour trees subject to these constraints. We choose 2-D layout rather
than 3-D, because abstract information such as graphs is more easily un-
derstood in 2-D [War04] and because existing 3-D layouts struggle to
maintain a user’s sense of orientation to the isovalue dimension.

47
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5.1 The Contour Tree
A scalar field is a continuous function f : Rn → R, whose range is a
single (scalar) value. We assume the domain to be simply-connected.
Level sets, or isosurfaces, are sets S(w) = f−1(w) for some isovalue w.
Figure 5.1 shows an example of isosurfaces in a small dataset.

Figure 5.1: A set of isosurfaces with corresponding contour tree. By set-
ting the y-coordinate of the vertices based on the isovalue, we preserve
the property that a horizontal line cuts exactly one edge of the tree for ev-
ery contour at the corresponding isovalue. In this example, it is possible
to choose x-coordinates so that no edge crossings occur. Moreover, sec-
ondary attributes such as color can be used to emphasize the relationship
between individual contours and the contour tree. Edge ι represents a set
of contours not visible in the images because they live inside the contours
of edge θ.

A contour is a connected component of S(w). As w increases, con-
tours appear at local minima, join or split at saddles, and disappear at
local maxima. Contracting each contour to a point gives the contour tree,
which tracks this evolution (Figure 5.1). The contour tree is then the nest-
ing diagram of all possible contours [BR63] and has a 1–1 mapping from
points in the tree to contours of f .

More formally, Morse theory [Mil63] shows that topological changes
in f occur at critical points where the differential of f vanishes. Leaf
nodes represent local extrema, while interior nodes represent saddles
at which global connectivity changes, but not saddles at which surface
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genus changes. All other contours at w occur at the intersection of edges
with a horizontal line y = w.

This property is fundamental to the utility of the contour tree: it im-
plies that each contour can be represented uniquely by a single point in
the contour tree. Since the isovalue is important both to the definition
of the contours and to human perception of the abstraction, this leads to
an unusual constraint for 2-D graph layout: the y-coordinate is fixed, but
the x-coordinate is free.

The contour tree has been used to index contours [BR63, CS03], to
simplify data topologically [CL03, CSvdP04, PCMS04, TNTF04], and to
compare fields directly by graph matching [ZBB04, SWC+08]. In user
interfaces, the contour tree is displayed to help the user explore and an-
alyze the dataset [BPS97] and as an abstraction for indirect manipulation
of individual contours [CS03, CSvdP04, SWC+08] or regions of the data
[TTFN05, WDC+07].

Simplifying the contour tree and the underlying topology is performed
by pruning (removing) branches of the tree in order of importance [CSvdP04,
PCMS04, TNTF04], as shown in Figure 5.2. Longer and longer sets of
edges are joined by sequences of collapses – a process known as branch
decomposition. Each child branch c connects at a saddle s to a more stable
parent branch p. This parent-child relation defines the branch hierarchy,
with the most stable branch being the root branch. The desire to perform
pruning dynamically leads to an additional criterion when drawing the
contour tree: vertices should be inserted onto their parent edge, as shown
in Figure 5.2, fixing both x and y coordinates. Moreover, simplification
can be driven by geometric properties such as persistence (range of iso-
values), volume (of the branch), and hypervolume (integral of the func-
tion inside the branch) [CSvdP04]: the desire to represent these proper-
ties also leads to a criterion.

5.2 Related Work on Contour Tree Drawing

While substantial literature exists on the computation and uses of the
contour tree, relatively little work has been reported on its visual layout
and presentation.

Shinagawa and Kunii [SKK91] gave an algorithm for 2-D layout of
the Reeb graph, using iconic descriptions of the nesting of contours. The
images are hard to interpret because the viewer has to know the meaning
of the icons.

Bajaj, Pascucci, and Schikore [BPS97] showed contour trees and geo-
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Figure 5.2: Simplifying a contour tree by pruning an edge (left) and col-
lapsing a redundant node (right).

metric properties to guide isovalue selection, but did not discuss algo-
rithms for contour tree layout. Carr and Snoeyink [CS03] extended this
work to use contour trees to manipulate contours indirectly by dragging
tags through a tree drawing, representing the evolution of a particular
contour as the isovalue varied. This implies that smooth contour evolu-
tion should be represented by smooth tag movement, penalizing angu-
lar drawings of edges. They also noted that some contour trees cannot
be laid out without crossings (Figure 5.3a), and instead provided manual
layout tools and the ability to use dot [GKNV93] to lay out trees of 256
vertices or less, but at the expense of run-time on the order of several
minutes.

Pascucci, Cole-McLaughlin, and Scorzelli [PCMS04] introduced the
toporrery, which laid the contour tree out radially in x and y, then set the
z-coordinate to the isovalue. L-shaped edges were used to connect the
vertices. While these L-shaped edges help the user understand 3-D ori-
entation, the interface requires non-intuitive 3-D interaction with an ab-
straction of the data, and does not avoid occlusion due to edge crossings
in projection). Moreover, rotation and perspective projection hamper the
user’s ability to compare isovalues visually.

Weber et al. [WBP07] generated landscapes with specific contour trees
in 3-D and were able to indicate both the branch hierarchy and an addi-
tional geometric property (they chose volume), but again this method
has the problem of choosing the right projection because mountains of-
ten occlude smaller mountains or valleys.

The automatic visualization of the more general Reeb graphs seems
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even more problematic. Doraiswamy and Natarajan [DN08] used the
toporrery method [PCMS04] on a contour tree that spans the Reeb graph.
A more recent work by Doraiswamy and Natarajan [DN08] used the
Sugiyama-style layout of Tulip [Aub04].

Recently, Takahashi et al. [TFO09] extended the isomap [TSL00] frame-
work to automated computation and presentation of approximate con-
tour trees. We discuss the part of this work that deals with contour tree
drawing and propose modifications in Section 5.3.3.

5.3 Graph Drawing

As previous work shows, visual representations of contour trees using
graph drawing techniques usually use a Sugiyama-style layout (e.g. dot
[GKNV93], Tulip [Aub04]). However, a formal discussion of the appli-
cation of standard graph drawing techniques to contour trees has been
lacking. In this section, we remedy this with an account of how graph
drawing can be applied to contour trees, and identify the shortcomings
of existing methods.

Existing basic algorithms for tree drawing, e.g. rooted tree drawing
[RT81] and radial layout [Ead92], are not well-suited to the contour tree,
as they do not indicate the isovalues of the critical points. Tree drawing
algorithms that support drawing vertices with one coordinate fixed can
draw dendrograms [Har75], which show cluster relations, and phyloge-
netic trees [PLCB04], which show the evolution of species: species being
leafs and inner nodes being hypothetical predecessors where evolution
diverged. The drawings of our algorithms resemble their style, but com-
binatorially, these trees are a subclass of contour trees, because they fan
out in only one direction.

These shortcomings lead us to consider more general techniques for
drawing contour trees and Reeb graphs.

5.3.1 Layered Graph Layout with dot

Reeb graphs and contour trees can be described as DAGs, with edges
oriented from lower to higher isovalue. It is therefore possible to apply
DAG drawing, such as the Sugiyama approach [STT81], which splits the
problem in three phases: Rank, Order, and Position. Rank assigns vertices
to ordered layers with edges directed from lower to higher layers. Order
sweeps layers and swaps vertices and edges in each layer to minimize
edge crossings. Finally, Position adjusts vertices to minimize edge lengths
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but preserves their intralayer order. Most DAG drawing algorithms fit
this framework: our proposed algorithm may also be thought of in these
terms.

A popular algorithm for drawing DAGs is dot [GKNV93]. It extends
the Rank phase in the Sugiyama framework by adding augmented ver-
tices to each layer that an edge spans. Crossing minimization in the Order
phase can then be done by swapping vertices. Position ranks vertices hor-
izontally to determine final x-positions. dot also allows minimum vertex
separation and edge importance to be specified. These are used to keep
important edges mostly free of crossings and bends. dot ends with a post-
processing phase that translates augmented vertices to control points of
splines so that edges are drawn as smooth curves. However dot may
need to add as many as O(|V| · |E|) augmented nodes [Fri96]. Thus, dot
works best when the number of augmented nodes is small.

dot defines the ranking problem as: Given a DAG (V, E), let δ : E →
R+ be the minimum edge length, ω : E → R+ be the importance of an
edge, then a ranking λ : V → R can be found by the linear program:

min ∑
(u,v)∈E

ω(u, v)(λ(v)− λ(u))

subject to: δ(u, v) ≤ λ(v)− λ(u) ∀(u, v) ∈ E.

The importance of an edge indicates the desire to keep that edge short.
Gansner et al. [GKNV93] give an algorithm to solve instances of this
problem. We also use it in the last phase of our algorithm (Section 5.5).

dot is very popular but also dated. More recently, Auber introduced
Tulip [Aub04] based on the Sugiyama framework. Tulip reduces mem-
ory requirements and run-time by inserting fewer augmented nodes: no
more than two augmented nodes per edge, reducing the requirements to
O(|V|+ |E|) space and O(|V| · |E|) run-time. Eiglsperger et al. [ESK04]
then further improved the run-time to O(|V|+ |E| log |E|) under the same
constraints. Both publications provide results only for small graphs with
few or no crossings. A loss in quality compared with dot was noted
[ESK04] but not shown.

Applying dot to Contour Trees

Trivially, dot applies to contour trees by ignoring the actual isovalues and
preserving only edge orientation. But this ignores the principal visual
constraint on contour trees: the y coordinate must reflect the isovalue.
While the y-coordinate can be reset to the isovalue, this leads to occlu-
sions and additional edge crossings.
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This can be avoided by exploiting dot’s layers. One layer is defined
for each isovalue containing all vertices at that value. Thus, resetting the
y-coordinate introduces no new edge crossings or overlaps. This layering
is achieved by subdividing every edge at every isovalue and forcing ver-
tices to their correct layer by issuing samerank statements in the dot input
file. In practice, this requires dot to augment many vertices and causes a
prohibitive run-time. For example, the gas furnace chamber dataset (see
Section 5.6) augmented from 1, 556 to 99, 137 vertices (unpruned) or from
214 to 4, 750 vertices (pruned).

A partial solution quantizes the isovalue of each vertex to a layer
l(v) = k · f (v) · (wmin − wmax)−1, where wmin and wmax denote the min-
imum and maximum isovalue, respectively. The y-position assigned to
each vertex is then close to the desired value, so additional crossings or
overlaps are unlikely when correcting the y-value. However, the user
must choose the number of levels k, and the run-time of the algorithm
increases significantly with the number of levels due to the increased
number of augmented nodes (Table 5.1).

A layout generated by dot using 50 layers is shown in Figure 5.7c. As
we can see, contour tree drawings using layer-constrained dot contained
very few edge crossings (see Section 5.6), but at an unacceptable cost in
time.

An example drawing using [ESK04] is shown in Figure 5.7d and Fig-
ure 5.8b. While this has successfully reduced the number of crossings,
the branch decomposition structure of the contour tree is not apparent.
However, the loss of quality predicted by Eiglsperger [ESK04] was not
observed, even for very large contour trees.

In summary, then, dot is unsuitable for large contour trees. Either
the y-constraint is not respected, or extra crossings are generated when
resetting y-coordinates, or layering with augmenting vertices induces a
prohibitive run-time, even with recent optimizations of dot. And in all
Sugiyama-style layouts, the branch decomposition structure of the con-
tour tree is not apparent.

5.3.2 Stress-Based Graph Layout

A popular general graph drawing algorithm by Kamada and Kawai [KK89]
embeds the data points in a low-dimensional space where the distances
used for drawing resemble the original distances dij between points i, j
in an high-dimensional space, or the graph-theoretic distances between
vertices i, j. The quality of such a mapping can be quantified using the
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stress:
stress =

1
2 ∑

i<j
wij(dij − ||pi − pj||)2

where pi is the position in the low-dimensional space, and wij = d−2
ij

gives the importance of fitting the distance dij. This cost function can be
interpreted as the energy of a system of springs connecting points that
have an ideal rest length of dij and stiffness wij.

There are many known techniques for finding embeddings optimiz-
ing the stress, such as stress majorization [GKN04]. Koren and Harel
[KH03] described a method which minimizes stress for each coordinate
in turn. Since we wish to fix the y-coordinates of the vertices, this method
is easily modified, simple to implement, and can be extended to more
than one dimension if needed, although Gansner et al. [GKN04] claim
that stress majorization and axis stress minimization are only equivalent
in the one-dimensional case.

The axis stress algorithm computes optimal x-positions given fixed
y-positions using simple linear algebra techniques. When the y-positions
are fixed, the stress is defined as

stress = ∑
i<j

wij(
√

d2
ij − (yi − yj)2 − |xi − xj|)2.

The algorithm approximates this functions by a slightly simpler function
that bounds stress from above and for which one set of xi can be com-
puted exactly by solving a system of linear equations. This solution is
used to construct a better upper bound on stress and new xi are com-
puted. The process is iterated until no better bound can be found and the
last set of xi is then returned.

Applying Stress Based Layout to Contour Trees

Unfortunately, this approach performs very badly for contour trees, as
can be seen in Section 5.6 and Figure 5.7b). Starting from an initial ran-
dom configuration, the algorithm is very easily trapped in a local mini-
mum. Even when another approach is used to find a reasonable starting
configuration, the axis stress method often fails after only a few itera-
tions, or generates a configuration that is actually worse than the initial
configuration. We believe that this is because the strong constraints on
the contour tree and the inability to move nodes vertically generate many
local minima and many impassable barriers to the assumptions behind
stress-based optimization.
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5.3.3 HDE-Based Graph Layout

Harel and Koren also gave a fast algorithm [HK04] that draws general
undirected graphs on n vertices by embedding them in a k-dimensional
space (k� n), then using a maximum-variance projection onto the plane.
They called it high-dimensional embedding (HDE).

The initial embedding is chosen to be the shortest distance from each
vertex to k landmark vertices. These landmarks are equally distributed in
the graph and are determined by an approximate k-centers problem: the
first landmark vertex is chosen at random, and each additional landmark
is chosen to be the vertex with maximum shortest distance to all previous
landmarks. The shortest distances of each vertex i to each of the k land-
marks are stored in k-dimensional vectors Xi which are then centered
X̂i = Xi − 1

n ∑ Xi. Then a covariance matrix is computed Sij =
1
n X̂T

i · X̂j.
The two eigenvectors e1, e2 for the two biggest eigenvalues of S are com-
puted and used as projection directions to give each vertex i a position
(e1, e2) · X̂i in the plane. This approach is not particularly well-suited to
drawing trees, as they usually span large high-dimensional subspaces
([HK04]). Selecting only one or two eigenvectors for projection then nor-
mally results in visual overlaps.

Applying HDE Layout to Contour Trees

Close observation of Takahashi et al. [TFO09] reveals that their method
of drawing contour trees is essentially the HDE approach on the x and
y coordinates of the reconstructed domain mesh. Thus, only x and y are
computed using HDE, while z is set to the isovalue of each vertex. More-
over, during computation of shortest distances the difference in isovalue
of their incident vertices is used for each edge’s weight (i.e. length). What
the method fails to address is why this approach works, and we will in-
vestigate this in the remainder of this section.

Takahashi et al. [TFO09] introduced the geodesic distance between
vertices, which is the sum of the absolute isovalue differences along the
shortest path sp in the given mesh graph M = (V, E)

dij = ∑
{u,v}∈spM(i,j)

| f (u)− f (v)| .

Although not stated explicitly, geodesic distance d in a mesh M is re-
lated to geodesic distance d′ in the Reeb graph R computed from M. In
fact, d bounds d′ from above and the difference, if any, is reduced if M’s
resolution is increased. Moreover, where the shortest path sp uses a small
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number of mesh edges, d tends to be a better approximation of d′. Thus,
positioning vertices using d and M produces results similar to using d′

and R, without needing to compute either R or d′ from the data. How-
ever, this method produces only a visual arrangement of points, from
which the Reeb graph must be inferred. This works well with simple
Reeb graphs or contour trees, but tends to break down due to visual oc-
clusion in large graphs, or where many of the branches are short (i.e.
have few vertices).

Because geodesic distances in the mesh and Reeb graph are related,
the method can also be applied directly by using the contour tree or Reeb
graph as a substitute for the mesh (in which case d = d′).

We then apply HDE using the geodesic distances and compute one
eigenvector-eigenvalue pair for the x coordinate and set y of each vertex
i to the isovalue f (i). To make the geometric distances in the drawing
a better match for the geodesic distances, we follow Koren and Harel
[KH03] and subtract y = f from the distance computation, as this already
ensures separation in the drawing. To that end we replace dij by

d′ij =
√

d2
ij − ( f (i)− f (j))2.

In both Takahashi et al. [TFO09] and HDE, the landmarks are deter-
mined heuristically using the k-centers problem. We instead use the con-
tour tree itself. As we have already noted, there is no significant visual
difference between using all the vertices of the mesh and using only crit-
ical vertices as landmarks. Essentially, any good drawing of the contour
tree shows the relationship of the critical vertices. It therefore follows
that using the critical vertices as landmarks is likely to lead to a suitable
result. We further optimize by considering only the local extrema, as in
most cases they have the greatest influence on the shape of the contour
tree.

Even if these modifications are applied to Takahashi et al. [TFO09]
their approach is no longer successful for larger contour trees, because
subtrees tend to overlap at the borders of the drawing, as can be seen in
Figure 5.7a and Figure 5.8a. This is consistent with the observation that
HDE performs poorly for trees in general.

5.3.4 Summary of Existing Methods

We have seen that while various existing methods can be modified or
coerced to draw contour trees, these drawings are rarely successful in
accentuating the fundamental structure of the trees. This is primarily
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because the layout of contour trees is strongly constrained in ways that
are inconsistent with the assumptions of these methods. In short, these
methods have been applied on an ad hoc basis, rather than in a considered
fashion.

5.4 Contour Tree Aesthetics
In general terms, graph drawing algorithms operate best when there is a
clear statement of what constitutes a good drawing, expressed as a set of
drawing aesthetics. We therefore start our analysis by considering the aes-
thetics relevant to contour tree drawing. We begin by observing that the
contour tree can be viewed as a layered free (i.e. rootless) tree with addi-
tional semantic, topological, and geometric information associated with
it. This is best displayed when the following aesthetics are observed:

• crossing line: cutting the tree at height y = w results in the same
number of crossings as there are contours at the isovalue w,

• branch stability: parent branches in the branch hierarchy (more im-
portant) should be more stable in the layout than child branches,

• smooth movement: moving a tag on the contour tree by a small amount
in y direction should not result in a large movement in x direction,

• crossing minimization: edge crossings convey no information about
the contour tree, increase visual clutter, and should therefore be
minimized. Prefer crossings between child branches over crossings
between parent branches, and

• geometric properties: geometric properties such as volume, etc. should
be presented as ancillary (attributed) information.

Usually, the isovalue w of a critical point is closely associated with its
y-value in the drawing. Conceptually, the isovalue derives from some
physical property, e.g. pressure, and is therefore of a different domain
than a screen coordinate. So the actual mapping may be described by a
function y = c · w for some constant c. It is also possible to generalize
the crossing line property by replacing y by any strict monotonic function
that preserves the relative vertical ordering of critical and regular points.
We present an example for such a function in Section 5.5.7 that improves
the resolution in regions with very similar critical values. Note that to
achieve the crossing line property, the edges’ Jordan arcs also have to be
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monotonic in the y direction and do not exceed the y-values of their inci-
dent critical points.

The branch stability property must be strengthened when the drawing
may be simplified after pruning. When a saddle is removed as a result
of a child branch being pruned, the parent branch will deform unless the
saddle lies exactly on the parent branch as drawn in the pruned contour
tree. We therefore require that the saddle between a parent and a child
branch should be positioned on the direct line between the highest and
the lowest point of the parent branch.

For the smooth movement property, there is no direct algorithmic impli-
cation. One may model it as: edges’ curves have to be strictly monotonic
in y direction, or: never exceed a specified angle with the y-axis. Note
that these two models are similar in nature: if all edges are strict mono-
tonic there is always a non-singular scaling in x-direction that results in
all angles being lower than the threshold. Small angles should also be
avoided to allow the visual discrimination of edges.

Geometric properties can be shown by varying an edge’s thickness or
drawing a partially transparent shape of varying thickness around it.
Multiple thicknesses and colors can then be used to show more than one
geometric property. Note that using the mapping y = c ·w, the persistence
of edges and branches is directly visible.

As usual in graph drawing, not all criteria may be met simultane-
ously. Also, individual applications will rank their importance differ-
ently. Figure 5.3a shows that it is impossible to avoid edge crossings fully
if the y-values are fixed. But even if tree edge crossings can be avoided
preserving the isovalues for some contour tree, the smooth evolution is
sometimes impossible (Figure 5.3b).

As Sugiyama-style layouts are driven by minimizing edge crossings,
they naturally respect the crossing minimization criterion. Ensuring the
crossing line criterion requires either a post-processing by shifting the
vertices to their correct y-value or a proper layering different from the
original implementation. Details were given in Section 5.3.1. The post-
processing phase of dot makes edges smooth, thereby partially respecting
smooth movement. Both the stress-based and HDE-based approach con-
form to the crossing line and smooth movement aesthetic criteria. Note that
we can not attest the crossing minimization criterion to either method, be-
cause Kamada and Kawai [KK89] already observed that distance-based
drawings – in general – favor symmetry over minimization of edge cross-
ings. All methods fail to show branch stability and geometric properties
(other than persistence).
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Figure 5.3: Unavoidable edge crossings. (a) a contour tree with an un-
avoidable edge crossing if y-values are constrained by isovalues. (b) a
contour tree with an unavoidable near-horizontal edge (either (100, 200))
or (100, 202), without violating y-value fixation or allowing an edge
crossing. Note that allowing 101 to come arbitrarily close to 100 is also
not desirable as then two edges would nearly lie on each other, i.e. their
angle becomes very small.

The yFiles layout of Eiglsperger [ESK04] can be modified to place all
vertices of each branch to lie on a line. The crossing minimization then
sweeps through all layers and places each vertex close to the vertices
in the adjacent layers. Unfortunately, the branch stability constraint then
fixes this so rigidly that the crossing minimization gets stuck directly in
a local minimum after one sweep.

In this chapter, we present two novel drawing methods for contour
trees. The diagonal algorithm (see Section 5.5.8) respects the crossing line,
branch stability, and smooth movement properties. It ensures the last prop-
erty by drawing all edges diagonal, so the movement of a tag in x-direction
always equals the movement in y-direction. The orthogonal algorithm
(see Section 5.5) respects all but the smooth movement criterion.
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5.5 Orthogonal Contour Tree Drawing

The orthogonal method is centered around crossing minimization. Branches
are drawn as vertical lines and are connected by saddles which are drawn
as horizontal lines rather than points. This restriction obviously violates
the smooth movement, because tags can “jump” when they pass a saddle,
but it allows us to divide the layout problem into four phases that trans-
form the pure combinatorial part of the layout (i.e. the branch hierarchy
plus its attributes) step by step into the final layout. The phases of the
algorithm, as illustrated in Figure 5.4 are: s

• SIMPLIFY: Partition the hierarchy in branch groups that can always
be drawn without edge crossing.

• PERMUTE: Order the branch groups to minimize edge crossings.

• ORDER: Partially order all branch groups and their contained branches.

• POSITION: Position vertices horizontally, preserving order and min-
imizing total horizontal edge length.
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Figure 5.4: The phases of the orthogonal algorithm. The contour tree is
simplified to a coarse tree of branch groups. The branch groups are then
ordered and minimum separation constraints are computed from the or-
dering from which finally x-positions are computed. See main text for
details.

Note that the last two phases of the algorithm are named after phases
in the Sugiyama framework because they are similar in spirit. Our al-
gorithm omits the Rank phase and treats all vertices as belonging to the
same layer. One may also think of the SIMPLIFY phase as a Ranking into
vertical layers and then Ordering them rather than individual vertices.
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The method shows geometric properties by using branch silhouettes
representing the varying contour size along each branch. Integrating the
size over the isovalue would give the volume the branch contains, there-
fore drawing the contour sizes also shows this volume via the area of the
branch’s silhouette. We assume that the varying contour size has been
computed beforehand, usually during the contour tree computation. In
our implementation, we use the approach presented in the contour spec-
trum [BPS97] to that aim. For faster rendering, we resample the actual
varying contour size along each branch using a fixed step size and use
piece-wise linear interpolation.

5.5.1 The SIMPLIFY Phase

The SIMPLIFY phase finds substructures of the contour tree T = (V, E)
that can be laid out trivially. These substructures are simplified to obtain
a coarse contour tree T′, for which the run-time is much reduced and the
convergence of the PERMUTE phase is improved.

A branch group is a set of connected branches that satisfy a crossing
criterion: for any saddle s of the branch group connecting it to a differ-
ent branch group, there is only one branch in the group that has an iso-
value range that includes s. Because branches will be drawn as vertical
lines and saddles as horizontal lines connecting them, this can also be
described as: each saddle s crosses only one branch of its group. This
criterion ensures that the layout inside the branch group is independent
of the global ordering of branch groups.

The algorithm for this phase starts with each branch of the branch hi-
erarchy being its own branch group and then successively joins branch
groups c that are leaves in the hierarchy with their parent unless there is
a sibling s of c where the isovalue of the saddle connecting p and s lies
within the isovalue range of c, thus ensuring the crossing criterion. A
child that joined its parent is removed from the hierarchy and if all chil-
dren of a branch have been joined, that branch too becomes a leaf. The
algorithm terminates when no branches can be joined without violating
the crossing criterion.

Figure 5.4 shows a sub-optimal partition of a contour tree into branch
groups. The shape of branch groups was chosen to indicate that branches
may have varying “thickness” (number of edges at a given isovalue),
although only one edge at the saddles connecting to other branch groups.
In the illustration, branch group a could join with the branch group f ,
however, it is not done for illustrative purpose. The group b cannot join
e because of the saddle between d and e and similarly d cannot join e. e
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may not join f because it is no leaf.
We observed that this phase joins branches that “grow” mostly in one

direction, i.e. have only short “back branches”. Furthermore, the result
of the algorithm is not dependent on the actual order in which the joining
takes places. The number of branches in the hierarchy is one less than the
number of leaves in the contour tree. For contour trees without multisad-
dles, this automatically means that the coarse contour tree is at most half
the size of the original tree. For real-world datasets, we even observed a
typical reduction by 75% and a maximum reduction by 97%.

5.5.2 The PERMUTE Phase

The PERMUTE phase finds an ordering of branch groups that minimizes
the weighted number of edge crossings.

Let T′ = (G, E′) be the coarse contour tree with G being the set of
branch groups and E′ the set of edges between groups. Let c : G× E′ →
R be a function that gives a weighted crossing number c(g, e) when the
branch group g is crossed at the saddle’s isovalue e represents. This
weighted crossing number is the sum of all crossed branches’ weights.
If all weights are 1, this number equals the number of edge crossings.
For the weight, we simply use the persistence of a branch, although this
can be substituted by other stability measures, e.g. the inverse of the hi-
erarchy depth, the volume, hypervolume, etc. Finally let σ : G → N

denote the (unique) position of a branch group in a permutation and
l(u, v) = min(σ(u), σ(v)) and h(u, v) = max(σ(u), σ(v)). The PERMUTE
phase finds the σ that minimizes:

∑
g ∈ G, e ∈ E′

σ(g) ∈
(l(e), h(e))

c(g, e).

This cost function effectively sums over all crossings that actually take
place given a fixed permutation σ. The weights are chosen so that impor-
tant branches are kept crossing free.

It is not known, whether there is a polynomial time algorithm that
solves this minimization problem. We use a random walk combined with
simulated annealing to solve it, making this the only non-deterministic
phase of our algorithm. We start with a random permutation of the
branch groups and refine it iteratively. For each iteration i, our algo-
rithm takes one branch group, reinserts it elsewhere in the ordering, and
reevaluates the cost function. Improvements are always kept, and if the
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cost deteriorates by ∆, the new configuration is kept with probability
exp(− i∆

τ ). We experimentally found τ = |G| to give good convergence.
We remember the best configuration found yet and terminate when no
improvements over this configuration’s cost were observed within the
last |G| iterations.

5.5.3 The ORDER Phase

In the ORDER Phase, we extend the ordering of branch groups to an or-
dering of branches before assigning final horizontal positions.

(a) (b) (c) (d)

Figure 5.5: Merging two silhouettes into a new one. To avoid overlaps, a
partial ordering of points on the silhouette has to be preserved (b). The
silhouettes then are fitted together (c) and treated as one (d).

We describe the partial ordering of branches by a DAG. Each branch
of the original contour tree is represented as a vertex in the DAG and
there is an edge from branch b1 and b2 if they have a non-empty overlap
in isovalues and

1. they belong to the same branch group and b2 is a descendant of b1
in the branch hierarchy, or

2. they belong to different branch groups g1 and g2 and σ(g1) < σ(g2),
with σ being the result of the PERMUTE phase.

Furthermore, each edge of the DAG can be annotated with a mini-
mum length, which ensures a minimum distance between branches after
the POSITION phase. This minimum separation is chosen to avoid over-
laps of branches’ shapes which show geometric properties, e.g. volume
distribution. Let ti : R→ R+ denote the “thickness” of the branch bi at a
given value inside its isovalue range [wmin(bi), wmax(bi)]; it is assumed to
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be zero outside this range. The minimum separation between branches
bi and bj is then given by

δ(bi, bj) = c + max
w∈O

ti(w) + tj(w),

if bi and bj have a non empty overlap O in isovalue and zero otherwise.
c > 0 is chosen to ensure that all branches are separated even if their
thickness is zero.

The DAG can be huge because it contains transitive information. To
compute the transitive reduction, we use the silhouette idea of the Reingold-
Tilford layout [RT81]. In contrast to this method, our silhouettes do not
have a fixed shape. We only track edges that are currently on the sil-
houette border and successively join silhouettes while updating both the
DAG and δ. Initially, each branch has a silhouette with all its edges on
both its left and right border and the DAG contains only one vertex for
each branch. For all silhouettes S, let LBS denote the set of edges on the
left border of S and RBS the edges of the right border of S. When two
silhouettes u and v are joined to a silhouette w and u should be left of v,
then LBw is LBu plus all edges of LBv that are not spanned by the isoval-
ues of the edges of LBu. We proceed similarly to generate RBw by adding
edges of RBu to RBv. Edges are inserted into the transitive-reduct DAG
under the same conditions as in the transitive DAG, but only the edges
of RBu and LBv are considered.

5.5.4 The POSITION Phase

In the POSITION phase, we augment some edges to the partial order DAG
and compute a ranking to define the x-position of each branch. Note
that this phase does the exact same thing as the Position phase of dot
[GKNV93], only on a different graph.

Because of the orthogonal drawing convention, any weighted topo-
logical numbering1 on the DAG and δ computed in the ORDER phase
gives a horizontal positioning of elements that avoids overlaps and pre-
serves the number of edge crossing as computed by the PERMUTE phase.
However, we observed that child branches are often not close to their
parent and horizontal edge segments can be very long. We solve this
problem by using the ranking and use the same trick as dot. Recall that in
dot’s ranking (Section 5.3.1) δ denoted the minimum separation between
elements and ω denoted the importance of an edge to be short. First we

1See [BETT99] for definition and an algorithm to compute it in linear time. Suffice
it so say that it is a simpler problem than ranking.
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Figure 5.6: Merging in close detail. Shown on the outer are the two trees
to be merged and their inner silhouette compressed to a line in the mid-
dle. The partial order of silhouette points can be described by a partial
order of the graph elements they originate from. Colors and letters indi-
cate that correspondence.

set ω of the original DAG edges (they only represent ordering relations)
to 0 so that they have no effect on the length of horizontal edges. Their δ
value is as was computed in the ORDER phase. For each horizontal seg-
ment, i.e. saddle between branches u, v, we insert a new vertex eu,v into
the DAG and edges (eu,v, u) and (eu,v, v). We set δ for these augmented
edges to 0 and their weight ω to 1. We then solve the linear program to
finally get the x-position of each branch.

5.5.5 Implementation

A straightforward implementation of the algorithm can be very slow. In
this section, we present three data structures that help making the ele-
mentary operations needed in the three phases of our algorithm faster.

To quickly determine the weighted number of crossings of an isovalue
with a branch group, we store for each branch group a sequence of pairs
(isovalue, nCross), sorted by isovalue. To find the crossing weight for a
given isovalue w, we search the sequence for the largest isovalue lower
than w by binary search, and retrieve nCross from the corresponding pair.
When branch groups are joined, we apply a kind of merge sort on their
pair sequence, at each step adding nCross of both sides.

Since the PERMUTE phase takes most of the run-time, we have opti-
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mized it, in particular the evaluation of crossing costs. We observed that
many pairs of horizontal lines (saddles) and branch groups can never
cross, either because their isovalue ranges do not intersect, or because
they are incident. In fact, as the tree becomes larger, each edge tends to
have a smaller range of isovalues, and thus the proportion of other edges
that it can intersect decreases. We represent all potential intersections in
a conflict graph. In this bipartite graph, each branch group gi and edge
ej,k = (gj, gk) of the coarse contour tree T′ is a vertex and (gi, ej,k) is an
edge if i 6= j and i 6= k and the isovalue of the saddle between gj and gk
lies between the minimum and maximum isovalue of the branch group
gi.

Another improvement is based on the observation that many itera-
tions do not change the crossing cost, because the branch group was not
moved sufficiently far in the ordering. Here, for any branch group gi,
if the movement changes the number of crossings because of some edge
ej,k = (gj, gk), then (gi, ej,k) must be an edge in the conflict graph. More
precisely, if the order of gi and all the gj that have a graph-theoretic dis-
tance of 2 in the conflict graph is changed, the global cost changes too.
Thus, instead of picking an entirely random new position for gi, we pick
a random new position between the gj other than the interval that gi
currently resides in. Although this computation takes significantly more
time than just randomly picking a new position, it greatly reduces the
number of iterations needed.

In the ORDER phase, we describe the silhouettes of branches and
branch groups by an alternating list of edges and switch isovalues, or-
dered by switch isovalues for both the left and right border. The switch
isovalues indicate at which isovalue another of an edge (part) appears
on the silhouette. Note that because of varying edge lengths, edges may
occur multiple times and/or only in part on the border. Joining is done
by simple merge-sort-like traversing of list pairs.

The presence of multisaddles and regular vertices in the contour tree
do not pose a problem to the diagonal and the orthogonal algorithm, the
layout will even be the same, with the regular vertices sitting peacefully
on the lines of the branches they reside on. Regular vertices will increase
the run-time in an uncritical fashion, i.e. having them while running the
algorithm will be as fast as running the algorithm after removing them.

5.5.6 Extension to Reeb Graphs

Our algorithm can be extended to the more general Reeb graphs. The
biggest challenge is that for Reeb graphs there is no proper definition of
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branch hierarchy so for the time being one has to compute the branch
hierarchy of a “spanning” contour tree. This is similar to the idea of
“loop surgery” [TGSP09]. The only changes to our algorithm are trivial.
The crossing criterion in the SIMPLIFY phase has to be checked against
all Reeb graph saddles. The PERMUTE phase has to deal with more sad-
dles and therefore more horizontal lines and potential crossings. The
ORDER phase does not take any saddles into account and therefore stays
unchanged. The POSITION phase is essentially the one from dot which
is already applicable to general graphs and therefore extends naturally.
However, our algorithm is tuned for contour trees and there may be more
or other desired aesthetic criteria for Reeb graphs.

5.5.7 Resolution Improvement

This phase is an optional preprocessing step that maps isovalues to y-
values distorting edge lengths (and persistence). It preserves the relative
ordering of vertices and distributes them more evenly in the y-direction.

We can approximate the density of isovalues by letting each value be
the source of a small Gaussian kernel with fixed standard-deviation σ.
Let d(x) be the density function:

d(x) =
1
|V| ∑

v∈V

1
σ
√

2π
e
(x− f (v))2

2σ2

Clearly d(x) is high in populated regions and low elsewhere. The same
is true for the steepness of the integral:

D(X) =
∫ X

−∞
d(x)dx

We observed that using y = D( f (v)) rather than y = c · f (v) distributes
the vertices more evenly, improving on the resolution in dense areas and
attracting outliers. Furthermore, we noticed, when all values are pair-
wise different and σ approaches ∞, D( f (v)) becomes the sorting number
of f (v).

Unfortunately, integrating Gaussians cannot be done analytically, so
we use the logistic function to approximate:

D(x) =
1
|V| ∑

v∈V

1
1 + e( f (v)−x)σ−1

We determined σ = (maxv∈V f (v) − minv∈V f (v))/
√
|V| empirically to

give good results.
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5.5.8 The Smooth Movement property

As the orthogonal algorithm only lacks the smooth movement property, we
investigated how an algorithm would look like that achieves it. In fact,
it is quite simple to construct an algorithm that respects the smooth move-
ment, crossing line, and branch stability: the diagonal algorithm.

Given the branch hierarchy of a contour tree, the diagonal algorithm
simply draws the root branch as a diagonal line from (ymin, ymin) to (ymax, ymax)
and proceeds recursively on its child branches, each one drawing them-
selves orthogonally and incident to their parent branch at the saddles
y-value that connects them. Figure 5.7f shows an example of such a
drawing. This method is deterministic and can be implemented to run in
linear time. Furthermore, it has the interesting property of dynamic sta-
bility: adding a new child branch does not change the layout of the other
ones, thereby ensuring the branch stability property without effort. The
method, however, suffers from many edge crossings, often making the
drawing unreadable.

It is very difficult to combine smooth movement and crossing minimiza-
tion. Furthermore, the smooth movement at one point requires that branches
are not drawn as vertical lines. In this case, the silhouette showing vary-
ing contour size should be skewed rather than rotated in order not to
distort information. But as this skewing gets stronger, the viewer gets a
more distorted impression of the actual contour sizes, i.e. the branch ap-
pears thinner. Although branch attributes may be represented in another
fashion, it indicates that smooth movement may not be combined with the
geometric property aesthetic criterion.

5.6 Results

We implemented the diagonal and orthogonal algorithms in C++ and tested
them on several simulated flow fields. These datasets were the pres-
sure field of the flow inside a gas furnace chamber, and the pressure
and velocity field of the unsteady flow around a cuboid. The sizes of
the datasets are 32440 and 1003 points, respectively. Computing the con-
tour tree took less than 10 seconds in each case, and the contour trees
have 788, 6665 and 1493 branches, respectively. The branch hierarchy
was created and topologically simplified using persistence as measure
of stability. The Sugiyama layouts were generated using yFiles [WEK01]
which is a Java program. The dot layouts were generated with graphviz
[GN00]. We use an own implementation of the HDE-based and axis stress
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methods in C++ that build on the GNU Scientific Library [Gal].
Figure 5.7 and Figure 5.8 give example drawings of the gas furnace

chamber’s contour trees with the different methods presented. Figure 5.8
shows layouts of rather large contour trees and aims at qualitative eval-
uation of the algorithms. The irregular and overlapping subtrees of the
HDE-based layout in Figure 5.8a renders this method unsuitable even in a
system providing zooming capabilities. Although the regular look of the
Sugiyama layout in Figure 5.8b is rather pleasing, it lacks to show which
branches are important and in fact which edges constitute branches. The
orthogonal layout of Figure 5.8c precisely shows the branching, and the
varying contour sizes indicate important branches and areas of explo-
ration. It suffers a bit from long horizontal edges, but generally unim-
portant structures are drawn very small.

Figure 5.9 shows the influence of showing geometric properties and
using resolution improvement with the simplified contour tree of the gas
furnace chamber data set. Notice how contour size rapidly increases in
the vicinity of saddles and how this attracts attention towards further
exploration. Figure 5.10 shows contour trees for the pressure and velocity
of the cuboid dataset. Note the zig-zag of branches in Figure 5.10a and
the long horizontal edges of Figure 5.10b, that show where the algorithm
could be improved further.

Table 5.1 gives run-times and the number of edge crossings in the fi-
nal drawing as a simple measure of quality. We chose edge crossings as it
has been verified to be the measure of most importance on human under-
standing [Pur97]. All measurements took place on one core of a 1.8GHz
dual-core Opteron. Run-times are an average of 10 runs with the excep-
tion of the dot layout for the unsimplified gas furnace chamber contour
tree where the first run required more than 7 days and was aborted. The
214 and 1556 layer dot layouts refer to the exact layering, i.e. one isovalue
per layer, whereas the other dot layouts were generated using fixed-step
isovalue quantization (Section 5.3.1). Because the orthogonal algorithm
is non-deterministic, we present the minimum, median, and maximum
number of crossings in the resulting images.

The orthogonal algorithm is able to find a crossing free layout for the
contours trees of a couple of hundreds of vertices and is generally faster
than dot unless dot uses very few layers. The run-time of the orthogonal al-
gorithm for the large contour trees is dominated by the PERMUTE phase.
It does not scale properly with input size because of the varying success
of the SIMPLIFY phase.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Drawings for the contour tree of the flow inside a gas furnace
chamber topologically simplified to 107 branches. (a) HDE-based layout,
note the “wrapping” at the border resulting in overlaps, (b) axis-stress
layout, stuck in a local minimum, (c) dot layout using 50 layers suffering
from some edge crossings, isovalues are not correct, (d) Sugiyama layout,
2 edge crossings, branch hierarchy is hard to discern, (e) orthogonal lay-
out showing branch hierarchy without any edge crossings, contour size
not shown and no resolution improvement occurred, (f) diagonal layout
showing branch hierarchy and allowing smooth movement but suffering
from lots of edge crossings.
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(a)

(b)

(c)

Figure 5.8: Drawings for unsimplified contour tree of the flow inside a
gas furnace chamber (788 branches). (a) HDE-based layout suffering from
many overlaps. (b) Sugiyama layout, 375 edge crossings, branch hierar-
chy is hard to discern. (c) orthogonal layout, 58 edge crossings, using res-
olution improvement, showing varying contour size, and branch hierar-
chy. Note how branches of high volume attract attention and topological
noise is drawn very small.
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(a) (b)

(c) (d)

Figure 5.9: orthogonal drawings for the contour tree of a gas furnace
chamber, 107 branches. (a) No volume shown. (b) average volume is
drawn around each branch. (c) varying contour size is drawn around
each branch. (d) same as (c) but with resolution improvement.

5.7 Summary

We identified five aesthetic criteria for drawing contour trees in the plane.
These are: fixing isovalue, emphasizing branch hierarchy, minimizing
edge crossings, avoiding sharp bending edges, and displaying geometric
properties. We also presented two algorithms conforming to three and
four of these aesthetic criteria.

The orthogonal algorithm is very efficient for drawing contour trees
of up to 200 vertices and computes readable layouts on sizes up to 2000
vertices in a reasonable time (up to 10 minutes). For even larger trees
it is still possible to perform the topological simplification first, before
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(a) (b)

Figure 5.10: orthogonal drawings for contour trees of a flow around a
cuboid. Both trees have been topologically simplified and the varying
contour size is shown. The drawings also use resolution improvement.
(a) pressure, 153 branches, 1.74s, 7 crossings. (b) velocity, 163 branches,
0.32s, 0 crossings.

running the algorithm. The images of the large contour trees are still
hard to read as a whole, but we note that this algorithm preserves the
branch hierarchy, and therefore it is now possible to provide a layout of
the more important branches as an overview and show the fine structures
on demand (e.g. when zooming in) without having to recompute the
layout and therefore preserving the mental map of the image.

In the future, we intend to investigate the challenges of showing mul-
tiple additional branch properties using the orthogonal algorithm. We also
intend to investigate methods to detect subsets of orthogonal edges that
can be replaced by smooth edges.
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method layout number of
name (Fig.) time crossings

gas furnace chamber, 107 branches
HDE (5.7a) 0.136s 143
axis stress (5.7b) 1.05s 625
dot, 50 layers (5.7c) 0.464s 34*
dot, 100 layers 2.16s 12*
dot, 214 layers 22.7s 0*
Sugiyama (5.7d) 5.88s 2
orthogonal (5.7e) 0.948s 0, 0, 0
diagonal (5.7f) 0.108s 438

gas furnace chamber, 788 branches
HDE (5.8a) 3.48s 1025
axis stress 57.4s 5071
dot, 256 layers 150s 831*
dot, 512 layers 4573s 401*
dot, 1556 layers > 7days
Sugiyama (5.8b) 158s 375
orthogonal (5.8c) 322s 58, 66, 116
diagonal 0.288s 4566

Table 5.1: Results for run-time and number of edge crossing for various
algorithms on the gas furnace chamber dataset. (*) Because spline-spline
crossings are hard to compute, we approximated their number by poly-
line crossings to evaluate dot.



6 Visualization of Barrier-Tree
Sequences

Dynamical models that explain the formation of spatial structures of RNA
molecules have reached a complexity that requires novel visualization
methods that help to analyze the validity of these models. Here, we
focus on the visualization of so-called folding landscapes of a growing
RNA molecule. Folding landscapes describe the energy of a molecule
as a function of its spatial configuration; thus they are huge and high-
dimensional. Their most salient features, however, are encapsulated by
their so-called barrier tree that reflects the local minima and their con-
necting saddle points. For each length of the growing RNA chain there
exists a folding landscape. We visualize the sequence of folding land-
scapes by an animation of the corresponding barrier trees.

The animation is created by an adaption of the foresight-layout-with-
tolerance algorithm for dynamic graph layout problems. Since it is very
general, the main ideas for the adaption are presented: construction and
layout of a supergraph, and how to build the final animation from its
layout. We present some new heuristics that improve the readability of
the final animation.

6.1 Biological Background

Ribonucleic acid (RNA) is a linear biopolymer, i.e. a chain of covalently
connected units (nucleotides) of which there are four types: adenine (A),
guanine (G), cytosine (C), and uracil (U). RNA molecules play an im-
portant role in many biological contexts, e.g. protein synthesis. The bi-
ological function of an RNA molecule is determined predominantly by
its spatial structure which in turn is determined by the sequence of nu-

75
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cleotides. When an RNA molecule is produced in the cell, it folds back
to form double helical regions consisting of paired nucleotides. The list
of helices or (equivalently) of base pairs is known as the secondary struc-
ture of the RNA molecule. Since helices stabilize the structure while the
intervening unpaired loops are destabilizing, each secondary structure
can be assigned a free energy equivalent to the energy released when the
molecule folds. To a large extent, the secondary structure already deter-
mines the function of RNA.

Various methods have been proposed to explain and predict the struc-
tures of RNA molecules. Typically, one considers the structure with the
lowest free energy, i.e. the one for which the folding process that starts
from the completely unfolded state releases the maximum amount of en-
ergy. This structure is the most stable one, and according to the laws
of statistical mechanics, the one that is most frequently attained in ther-
modynamic equilibrium. The folding process itself can, however, take
a long time so that the equilibrium state that will be reached after an
infinite waiting time may not be biologically relevant. Instead, the fold-
ing process may pause in metastable structures from which it is hard
to escape due to high energy barriers. The folding process of an RNA
molecule can be modeled as a Markov process whose states are the in-
dividual secondary structures [CHS96]. Transitions are allowed only be-
tween “neighboring configurations”, i.e. those that differ by only one
base pair [FFHS00], and transition rates are proportional to exp(∆E/RT),
where ∆E is the difference in energy, T is the ambient temperature, and
R is a constant. In practice, however, the transition matrix is much too
large to solve the resulting master equation directly.

A refined model transforms the configuration space into a large graph,
whose vertices are secondary structures and whose edges connect neigh-
boring structures. The neighbor graph along with the energy specific to
each configuration can be imagined as a discrete energy landscape. A
folding or refolding process can then be described by a path in the graph
or a walk in the energy landscape. For each such path there exists one
structure of maximal free energy, the maximum of the path. The barrier be-
tween two configurations is the smallest maximum of all paths between
the two configurations. If a structure refolds, it has to overcome at least
this energy barrier. These barriers partition the graph into “basins” that
are centered around local energy minima (secondary structures of which
all neighbors are less stable). An approximate model is now obtained by
considering the basins as effective states of the RNA molecules. Transi-
tion rates between basins can be derived from the more detailed model
under the assumption that the folding process is nearly equilibrated lo-
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cally within each basin [WSSF+04].
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Figure 6.1: A very simple landscape and barrier tree. In contrast to nor-
mal trees, each vertex of a barrier is drawn at a height that reflects the
free energy of the folding configuration it represents. To determine the
energy barrier between two local minima, one has to find the barrier-tree
vertex that has both leaves representing the local minima as descendants
and the greatest topological distance to the root of the tree.

The relevant information can now be stored in the so-called barrier
tree T of the landscape. The leaves of T correspond to the local minima
of the energy landscape together with their basins of attraction, while
inner vertices represent the barriers (also called saddle-points) between
the basins. Figure 6.1 shows an example of a barrier tree for a very sim-
ple landscape. This example is just for illustrative purposes; we consider
mainly landscapes where individual points do have a high and varying
number of neighbors, making the landscape a high-dimensional object.
Barrier trees are constructed by successively “flooding” the basins of the
landscape. A barrier is found at the point where the lakes of two basins
would join. These two joined basins are considered to be one when the
“flooding” is continued. See Flamm et al. [FHSW02] for a detailed de-
scription.

In reality, however, RNA molecules are not “born” as a whole. Rather,
they are “transcribed” nucleotide by nucleotide from their DNA tem-
plate, so that the molecule is still growing while it already starts to fold
[MM04]. The structures that are formed are thus dependent upon the
relative rates of folding and transcription. Similar effects are observed
when an RNA molecule travels through a narrow pore, where it must
unfold on one side and refold on the other [GBH04]. Again the kinet-
ics of folding is coupled to the speed with which the molecule is pulled
through the pore. Instead of single static energy landscape, we thus have
to deal with a situation where the energy landscape, and hence the rules
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of folding, changes with each step of the second dynamical process. Since
the latter proceeds in small steps, it only causes moderate changes in the
energy landscape. Thus, there is a natural correspondence between a lo-
cal energy minimum x before and a (unique) local minimum x′ after a
step of the second dynamics: Structure x is modified to some structure
x∗ i.e. by appending a single unpaired nucleotide. Then x∗ relaxes to the
local minimum x′ to whose basin it belongs to. Note that multiple local
minima can map to the same local minimum in the next step, and that
local minima might arise that are not mapped from any local minimum
of the previous step.

From the biophysical point of view, the problem is thus to under-
stand the dynamics of folding combined with another process such as
transcription or pore traversal. As in the static case, this can be done by
approximating the folding energy landscape at each step by its barrier
tree. The second dynamics is then represented by transitions between
corresponding local minima. While the folding process in the static case
is relatively easy to interpreted as a movement on the barrier tree, we
now have to consider a movement on a series of barrier trees whose ver-
tices are connected in a specific way.

In numerical simulations, one observes, that for some RNAs the frac-
tion of folding trajectories that reach the ground state of a certain fully
grown chain depends in a non-trivial way on the relative speed of tran-
scription. Both for very slow and very fast transcription the molecule
reaches the ground state quickly, while in an intermediate regime most
of the trajectories become trapped in a metastable, very different, sec-
ondary structure. In order to understand this phenomenon it is neces-
sary to compare the trajectories in the barrier-tree sequence and to pin-
point the step(s) in which escape from local minima occurs at the same
time scales as chain elongation. The same type of questions naturally
arise in other settings where the folding energy changes, i.e., whenever
the temperature or salt concentration changes.

6.2 Visualization Problem

Without an appropriate visualization tool it is virtually impossible to find
the time steps and transition at which timescale differences have a drastic
effect, as there is little or no a priori coherence between the layouts of the
individual barrier trees in a series. It is thus very tedious to actually fol-
low a trajectory through a series and to determine the likely transitions.
The mapping of local minima, however provides information that, as we
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shall see, can be utilized to enhance the coherence of adjacent trees in a
series.

The barrier trees thus share common information that should be pre-
sented accordingly, i.e. it should not attract more attention than the parts
that differ. Instead of visualizing a sequence of barrier trees that have
some redundancy, one can also say that there is just one barrier tree that
changes with time in a way that the barrier trees of the sequence are
snapshots of the dynamic tree at certain points of time. In this work, we
will thus view this problem as a dynamic graph drawing problem. As an
abstraction, we define the problem as follows: Given a sequence of barrier
trees and leaf mappings, where leaves of one tree are mapped on leaves of the
following tree, determine the layout of all trees such that in a presentation the
mental map is retained.

To solve the visualization problem, our algorithm is split in several
parts, which we will describe in sections Section 6.4 to Section 6.6. Given
the barrier trees Ti = (Vi, Ei, ei), (ei : Vi → R is a function that gives the
energy of each vertex) and the leaf mappings fi : Vi−1 → Vi between
them, we first find equivalent vertices. These vertices are then arranged
in an order that minimizes an objective function which is mainly deter-
mined by the number of visible edge crossings for the whole sequence
at presentation time. We use simulated annealing to determine this or-
der. Given this order, we directly derive the layout of the single trees
that make up the barrier-tree sequence and present them in an animation
with transitions that help to communicate the changes.

6.3 Related Work on Dynamic Graph Drawing

The first attempts toward dynamic graph drawing were very specific.
Moen [Moe90] presents an algorithm that shows a part of an ordered tree.
Although the tree itself stays the same, the selected subset may change
through replacement of subtrees by leaves and vice versa. Cohen et al.
[CBT+92] gives detailed algorithms and data structures for a number of
dynamic graph classes. These allow visualizing popular data structures,
e.g. AVL trees, and adjusting the layout of a graph, if it is being edited or
browsed. Both approaches share a common motivation: they reduce the
computation time of the layout by reusing information about the previ-
ous layout. This has the side effect of making the layout of the changed
graph similar to the unchanged, but accumulation of many elementary
changes can result in an aesthetically unpleasing drawing.

North [Nor95] measures the quality of an algorithm to make good
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dynamic drawings based on incremental or dynamic stability, i.e. the prop-
erty of an algorithm to produce very similar layouts for graphs that differ
only slightly. He applies his concepts to the drawing of dynamic directed
acyclic graphs. Misue et al. [MELS95] introduce the concept of mental dis-
tance. It formally describes the difference of two layouts and can be used
to measure the perceived stability of a dynamic graph layout. They de-
fine the aesthetic criterion “preserving the mental map” for any dynamic
graph drawing problem, and refine it to three models. In the orthogonal
ordering the left-to-right, and up-down order of vertices stays the same.
Proximity relations are preserved, if the relative distances of vertices and
edges do not change. The topology is preserved, if vertices and groups
of vertices of one region stay in that region. The mental distance of two
layouts is the number of times or the amount by which a rule is broken.
Frishman and Tal [FT04] present an algorithm that draws dynamic clus-
tered general graphs using an incremental force-directed method. Their
algorithm generally preserves the mental map by reusing the earlier lay-
out, but improves the layout slightly, if a static graph drawing aesthetic
criteria is not met any more. They recently generalized their method to
unclustered graphs ([FT07b]).

If the layout process cannot be formulated to minimize the mental
distance between successive layouts, a local transition or morphing of the
layouts has to take place. Friedrich and Eades [FE02] describe a method
to make sure that the transition preserves the mental map. To do that,
an affine transformation that registers both layouts is determined and
performed. Using a force-directed approach, vertices are moved to their
final positions while avoiding occlusions and other visual artifacts linear
interpolation would bring forth. Fortunately, our algorithm produces
layouts that are stable enough not to require these forms of transition.

Erten et al. [EHK+03] describe a method to layout general dynamic
graphs using a force-directed method. Vertices of the evolving graph
that are equivalent are connected by virtual springs that contract in the
force-directed method. As a result, vertices referring to the same instance
at different times are positioned closely together. This ensures a good
stability of the dynamic layout. We do not use this general approach,
because we feel that the final animation should at least resemble the look
and feel of barrier trees.

Diehl and Görg [DG02] propose a general scheme to layout dynamic
graphs when all graphs of the sequence are known prior to layout cre-
ation. This scheme is independent of the class of the graphs and the lay-
out algorithm used. Their foresight-layout-with-tolerance algorithm makes
a trade-off between static and dynamic graph drawing aesthetic crite-
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ria based on a tolerance parameter. In a first phase a supergraph is con-
structed that contains all graphs of the sequence as subgraphs. Then the
layout of this (static) supergraph is determined and used as a blueprint
for the layout of the subgraphs. The layout of the subgraphs can be fur-
ther improved with respect to static graph drawing aesthetic criteria, but
its mental distance may not differ by more than the tolerance parame-
ter from the blueprint layout. Presentation of the sequence can be done
using morphing geometry information between the single subgraphs.
Görg et al. [GBPD04] further improve the scheme with the notion of the
importance of a vertex or edge. This importance is a measure for the num-
ber of times a vertex or edge is present in the graph sequence and is used
to improve the visual quality of the layouts.

A similar idea is presented by Gaertler and Wagner [GW05]. Instead
of an animation, a 21

2D visualization, i.e. a 3D view of a stack of static
2D layouts – each showing the graph at a certain point of time – is gen-
erated. Brandes et al. [BDS03] also use 21

2D visualization to show a set
of similar metabolic pathways. They create the layouts of the acyclic di-
rected graphs representing the pathways using a layout of an union of
all graphs, and also determine the optimal ordering of layouts. Both ap-
proaches share the notion of the supergraph, local adjustments like in
the foresight-layout-with-tolerance algorithm are not performed. Dwyer
and Schreiber [DS04] also use 21

2D to visualize a set of similar phylo-
genetic trees. Phylogenetic trees are very similar in structure to barrier
trees. In contrast to the other two approaches instead of a supergraph
only a minimal leaf ordering is determined. This neglects the identification
of equivalent inner vertices, which becomes necessary, if transitions are
to be shown between key frames. It also requires each inner vertex to
have exactly two children, a property which barrier trees do not have in
general.

In this chapter we adapted the foresight-layout-with-tolerance algo-
rithm. Since it is very general, we optimized each of the phases to fit our
dynamic barrier-tree application.

The layouts of the subgraphs that is generated from the supergraph
layout can also be used in a 21

2D visualization. However, we found this
to be inappropriate, because the barrier-tree sequences under considera-
tion were highly dynamic. In our datasets we observed that almost any
tree at time t has nearly nothing in common with the tree at time t + 5. A
21

2D visualization would therefore exhibit much visual clutter. Also, the
energy of a vertex, and thus its vertical position, can change between sub-
graphs. In a 21

2D visualization one would have to indicate such events
with visual links between slices; we found it more natural to indicate that
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in an animation with a movement of the vertex. In general, we think that
the animation of transitions between subgraph layouts can be efficiently
used to communicate the changes the barrier-tree topology to the user.

6.4 Supergraph Construction
In the following, pathG(u, v) shall be true, if and only if there exists a di-
rected path in G starting at u and ending at v. odegG(v) denotes the num-
ber of edges of G, whose tail is v. Ti = (Vi, Ei) is a rooted tree and also a
directed acyclic graph, where all edges are oriented to point away from
the root toward the leaves. Note that each leaf v satisfies odegTi(v) = 0.
Li denotes the set of leaves of the tree Ti and Fi an arbitrary subset of
Li. LG(v) is the set of all vertices w that satisfy both pathG(v, w) and
odegG(w) = 0. In a tree, these vertices are leaves, in a directed acyclic
graph, they are sinks. Thus LG(v) assigns the set of leaves/ sinks that
can be reached from v to each vertex v. 2M denotes the set of all subsets
of M.

6.4.1 Problem Definition

The problem of the supergraph of a sequence of trees with leaf mappings
is: given a sequence of rooted trees T0, . . . , Tn with

∀0 ≤ i, j ≤ n :
(
i 6= j→ Vi ∩Vj = ∅

)
and

∀0 ≤ i ≤ n : ∀v ∈ Vi : odegTi
(v) 6= 1

and a sequence of leaf mappings f1, . . . , fn with fi : Fi−1 → Li, find the
smallest graph G = (V, E) and a global mapping of tree vertices on su-
pergraph vertices k =

⋃n
i=0 ki, ki : Vi → V, ki injective, such that

1. G contains all trees:

∀0 ≤ i ≤ n : (ki(Vi) ⊆ G ∧ ∀(u, v) ∈ Ei : pathG(ki(u), ki(v)))

and each path from u to v does not visit vertices from ki(Vi) except
u and v.

2. G conforms to the leaf mapping:

∀1 ≤ i ≤ n : ∀u, v ∈ Vi−1 : ( fi(u) 6= fi(v)→ ki( fi(u)) 6= ki( fi(v)))

3. G conforms to the topological properties of all trees:

∀0 ≤ i ≤ n : ∀u, v ∈ Vi : ¬ pathTi
(u, v)→ ¬ pathG(ki(u), ki(v))
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6.4.2 Motivation

The first step of the foresight-layout-with-tolerance algorithm [DG02] is
to construct a supergraph of all the graphs in a sequence. The super-
graph is the smallest graph that contains all graphs of the sequence as
subgraphs. To accomplish this, it is necessary to know which vertices
of the graphs should be considered equivalent. Leaf mappings between
successive trees are used as a base for this process, however, this can only
be applied directly to some of the leaves of the trees. The identification
of equivalent inner vertices and leaves that result from merging leaves
in the previous tree is non-trivial. We did not motivate this identifica-
tion by graph-theoretic minimization, but decided that the supergraph
should reflect properties of the corresponding landscapes. This has the
advantage, that the supergraph may be used as an alternative and static
representation of the barrier-tree sequence.

A barrier tree not only stores energy barriers between local minima, it
also gives a rough and abstract view on the topology of a landscape. The
shape of the barrier tree illustrates the order of the unification of basins.
This unification order will be used to identify equivalent inner vertices.
If, for instance, an inner vertex u has two leaves as its children that are
mapped to two different leaves of the following tree having the same
parent v, the inner vertex u and the parent v can be seen as topologically
equivalent. If the leaf mapping is extended by this new information, fur-
ther parts of the trees can be processed to further identify inner vertices
as equivalent, and to quickly identify isomorphic structures between the
barrier trees that conform to the leaf mapping. This takes only the topol-
ogy of the barrier tree into account. The energy information about each
vertex is neglected.

This procedure ends abruptly, as soon as there is the slightest topolog-
ical difference in a barrier tree. In practice, this strict behavior results in
a large number of vertices that are not considered to be equivalent. This
can be avoided by identifying equivalent inner vertices based on the set
of local minima that can be reached from the corresponding barrier by
descending in the landscape. In Figure 6.2a, vertex e and j are considered
to be equivalent, because the sets of leaves that can be reached from them
are equal considering the leaf mapping. Vertices d and i are not consid-
ered to be equivalent because the set of leaves that can be reached from
them, {a, b} and {g, h} respectively, are not equal considering the leaf
mapping. Such cases are very common and are generated mostly, when
the height of barriers between successive trees change. The supergraph
is in that case no longer a tree, but a directed acyclic graph (DAG). This
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is unavoidable, but the supergraph will always be at most a DAG.
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Figure 6.2: Examples of elementary landscape and barrier-tree changes.
Each figure shows, how the energy landscape changes, illustrates the bar-
rier trees (only the topology is shown) and the leaf mappings and shows,
how the supergraph should look like in the cases: barrier swap (a), leaf
merging (b), leaf vanishing (c), leaf creation (d).

Imagine, that the barrier swap from Figure 6.2a is reverted at time
t + 2. The tree at time t + 2 conveys exactly the same information as the
tree at time t + 0. It contains an inner vertex that is not equivalent to any
vertex of tree t + 1, but equivalent to vertex d. This vertex should not be
inserted in the supergraph, as it does not represent “new” information.
But this fact cannot be concluded by looking at tree t + 1 alone. Consid-
ering all past trees can get quite complicated, it is much easier to just look
into the supergraph for the past trees. The supergraph can and will be
used as a data structure to quickly identify equivalent inner vertices of
the barrier trees. It is efficient to construct the supergraph iteratively. To
determine the supergraph for the trees T0 to Tn+1, we use the supergraph
of the trees T0 to Tn for identification of equal vertices and add any new
information we gain from tree Tn+1.
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Figure 6.2b shows another common case of change in the energy land-
scape. Often barriers disappear, and local minima get merged. Obvi-
ously our “set of leaves” approach fails in this case, the vertices c and d
would not be considered equivalent ({a, b} vs. {d}). The solution is to
temporarily add the mirror vertices a′ and b′ as children to d and modify
the leaf mapping. This methodology is a must, if more than two leaves
merge or the merging leaves do not share the same parent. Merged leaves
must be marked as inactive in the supergraph, so they will not be con-
sidered for the “set of leaves” of other inner vertices.

In Figure 6.2c a leaf vanishes, i.e. it is not part of the leaf mapping.
This may happen, because the number of leaves is usually reduced to the
most relevant ones, and a relevant leaf may have a non-relevant succes-
sor. In such a case the leaf (d) is marked as inactive and is not considered
for the set of leaves. This leaves us with the problem, that the vertices c
and e of tree t + 0 have the same set of leaves ({a, b}), and thus vertex j
is considered equivalent to both vertices. In that case, the vertex farthest
from the root (c) is selected. What becomes apparent now is, that the tree
t + 1 is not really a subgraph of the supergraph, because it lacks an edge
from g, i to c, j. The supergraph is still an expansion of tree t + 1.

In Figure 6.2d a leaf is added to the tree. This is the inverse of the
previous case. The edge from e to c is replaced by a path (i, j, h) and the
new leaf is added at the appropriate location. Again the supergraph is
an expansion of tree t + 0. The removal of transitive edges has little to
no effect on the quality of the final presentation, but reduces the size of
the supergraph and greatly improves the performance, when the layout
of the supergraph is determined.

These four operations are considered elementary and are the only op-
erations we observed in our datasets. However, it is expected that mul-
tiple elementary operations take place between successive trees of the
sequence. Because creation, deletion, and merging cannot happen to the
same leaf of a tree simultaneously, these operations and the supergraph
modifications they imply do not affect each other. Also creation, dele-
tion, and merging happen at or near the leaves, while barrier swaps only
add inner vertices. So these operations also do not affect each other and
can be done separately.

6.4.3 Construction

For each directed graph G = (V, E) define the function markG as:

markG : 2V → 2V
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M 7→
{

v| LG(v) ⊆
⋃

u∈M
LG(u)

}
The operation of this function may be described as this: Starting from
the vertices of M, all incoming edges are marked. If all outgoing edges
of a vertex get marked in that process, that vertex is added to M and the
process continues. The process ends, if no more vertices can be added to
M. Figure 6.3 illustrates this. Obviously M ⊆ markG(M) and M = ∅,
if and only if markG(M) = ∅. Unlike the example, M does not have to
contain leaves/ sinks only.
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Figure 6.3: Example for the markG function The result is illustrated by
vertices with thick circles. top left to right: markG(∅), markG({1}),
markG({2}), markG({3}). bottom left to right: markG({1, 2}),
markG({1, 3}), markG({2, 3}), markG({1, 2, 3}).

The function matchG reduces a mark to the topmost layer:

matchG : 2V → 2V

M 7→ markG(M) ∩ {v| ∀(u, v) ∈ E : u /∈ markG(M)}
For the example in Figure 6.3: matchG(∅) = ∅, matchG({1}) = {1},
matchG({3}) = {5}, matchG({1, 2}) = {4}, matchG({2, 3}) = {2, 5},
matchG({1, 2, 3}) = {6}.

Construct G iteratively: G0 = T0, ∀v ∈ V0 : k0(v) = v. Construct Gi =
(V′i , E′i) and ki : Vi → V′i from Gi−1 = (V′i−1, E′i−1), ki−1 : Vi−1 → V′i−1,
Ti = (Vi, Ei) and fi as follows:

Determine the active part of the supergraph Gi−1, this is much easier
than tracking inactive (deleted or merged) parts of the supergraph:

G′i = (Ai, Ki)
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Ai =
{

v| v ∈ V′i−1 ∧ ∃l ∈ Li : pathGi−1
(v, ki−1(l))

}
Ki = E′i−1 ∩ Ai × Ai

For each vertex of the tree Ti determine the set of leaves of Ti that can
be reached from that vertex:

Mi : Vi → 2Li

u 7→
{

v| v ∈ Li ∧ pathTi
(u, v)

}
For each vertex of the tree determine its leaf set, i.e. the set of vertices of
the active part of the supergraph, that map on a leaf in Mi because of the
leaf mapping:

Bi : Vi → 2Vi

v 7→ {ki−1(w)| fi(w) ∈ Mi(v)}

Using the matchG function find vertices of the active part of the super-
graph with the most similar set of leaves:

li(v) = matchG′i
(Bi(v))

Determine all children of a tree vertex that have an empty leaf set.
These children are vertices that are created in the current barrier tree.
Note that, if all children of a tree vertex have an empty leaf set, that vertex
will also have an empty leaf set also and is thus a newly created inner
vertex of the barrier tree.

ni(v) = {w| (v, w) ∈ Ei ∧ Bi(w) = ∅}

Barrier-tree vertices can now be categorized:

• f resh(v), iff li(v) = ∅. v is a new vertex in the current barrier tree.

• matching(v), iff |li(v)| = 1 ∧ ni(v) = ∅. In that case an equivalent
vertex has been found in the supergraph. This vertex is the one
element of li(v) and no child of v is fresh.

• match f resh(v), iff |li(v)| = 1∧ ni(v) 6= ∅. An equivalent vertex has
been found in the supergraph. At least one child of v is fresh.

• recomb(v), iff |li(v)| > 1. An equivalent vertex could not be found.
li(v) contains the most similar vertices.
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Each vertex of the tree must be inserted in the supergraph, unless an
equivalent vertex had been found.

V′i = V′i−1 ∪ {v| v ∈ Vi ∧ ¬matching(v)}

ki(v) =
{

u li(v) = {u} ∧ ni(v) = ∅
v li(v) = {u} ∧ ni(v) 6= ∅

The inserted edges are:

E′′i = E′i−1 ∪
{
(u, v)| v ∈ Vi ∧ (u, w) ∈ E′i−1 ∧matchfresh(v)

}
∪ { (v, w)| v ∈ Vi ∧ li(v) = {w} ∧ ni(v) 6= ∅}
∪ { (ki(v), w)| v ∈ Vi ∧ w ∈ l(v) ∧ ¬matching(v)}
∪ { (ki(u), ki(v))| (u, v) ∈ Ei}

Transitive edges may be removed:

E′i =
{
(u, v)| (u, v) ∈ E′′i ∧ ¬∃ path(V′i ,E′′i )

(u, w) 6= (u, w)
}

The final supergraph G is equal to the supergraph Gn, i.e. the super-
graph after inserting each tree of the sequence.

6.4.4 Example

Figure 6.4 shows a nontrivial example for one iteration of the supergraph
construction process. It has been chosen to show all four elementary
operations that can modify barrier trees. ki, mapping the vertices of Ti
to vertices of Gi is:

ki = {(a, 1), (b, 2), (c, 3), (d, 4), (e, 5), ( f , 6), (g, 8), (h, 7), (i, 10)}
Ti is thus very similar to Gi, only the edge (i, h) of the tree is repre-
sented by the path (10, 9, 7) in Gi. The vertex f does not occur in the
leaf mapping, i.e. it is deleted. The active part of Gi is thus: Ai+1 =
{1, 2, 3, 4, 5, 7, 8, 9, 10}. Because of the leaf mapping the leaf sets of the ver-
tices of Ti+1 are:

Bi+1 = {(j, ∅), (k, ∅), (l, {1}), (m, {2, 4}), (n, {7})}
∪ {(o, ∅), (p, {1, 2, 4}), (q, {7}), (r, {1, 2, 4, 7})}

After mark(Ai+1,Ki+1)
and match(Ai+1,Ki+1)

have been determined, li+1 and
ni+1 result to:

li+1 = {(j, ∅), (k, ∅), (l, {1}), (m, {2, 4}), (n, {9})}
∪ {(o, ∅), (p, {5}), (q, {9}), (r, {10})}

ni+1 = {(j, ∅), (k, ∅), (l, ∅), (m, ∅)}
∪ {(n, ∅), (o, {j, k}), (p, ∅), (q, {o}), (r, ∅)}
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Figure 6.4: Example construction of the supergraph of two trees. Left
to right: the supergraph Gi, the tree Ti, the tree Ti+1, and the supergraph
Gi+1. Arrows between Ti and Ti+1 indicate the leaf mapping. The dashed
lines in Gi+1 indicate edges that can be replaced by a path. The exact
description, how the trees are embedded in the supergraph and how the
supergraph is modified in this iteration, are found in the main text.

The vertices of Ti+1 are categorized as follows: f resh(j), f resh(k), match(l),
recomb(m), match(n), f resh(o), matching(p), match f resh(q), matching(r).
Therefore the following vertices have to be added to the supergraph, and
ki+1 results to:

Vi+1 = Vi ∪ {j, k, m, o, q}

ki+1 = {(j, j), (k, k), (l, 1), (m, m), (n, 9), (o, o), (p, 5), (q, q), (r, 10)}
Insertion of the edges is left as an exercise to the reader. Some transitive
edges may be removed.

6.4.5 Postprocessing

Unfortunately, the use of the supergraph as a data structure to find sim-
ilar leaf sets often requires the insertion of edges that are not needed for
the final solution. Some edges are inserted to ensure correct results for
the match and mark functions, but are not required for the supergraph
to be an expansion of all trees. Removal of these edges decreases both
the possibility of edge crossings in and the running time of the layout
process.

These edges are identified as a side-product in a postprocessing phase.
In this phase each edge of the supergraph is annotated with the set of all
trees it occurs in. The motivation for this will be explained in the next
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section. Usually a tree edge corresponds to a path in the supergraph.
Therefore, each edge of the path is annotated with the tree. Quite fre-
quently, there are multiple possible paths for one tree edge. In such cases
only the edges of the longest path are annotated. After annotation, there
will be many edges which do not belong to any tree. These can be re-
moved safely. Choosing the longest path is a simple and quick heuristic
that favors edges with a high probability of reuse. In practice this re-
moves 5–20 percent of all edges of the supergraph plus any transitive
edges. However, a proper problem definition for this phase would be:
find the largest set of edges that can be removed without violating the
constraint, that the supergraph is an expansion of each tree.

6.5 Supergraph and Subgraph Layout
The second step of the foresight-layout-with-tolerance algorithm creates
the layout of the supergraph. In general, the supergraph will be a DAG.
Because of the special nature of the supergraph, we benefit from using a
special supergraph layout, that reflects properties of the resulting tree
layouts, rather than employing known layout algorithms suitable for
DAGs. The routing of edges is not relevant for the layout of the super-
graph. The edges will be routed only in the subgraphs.

6.5.1 Supergraph Layout

We use the barrier trees directly as an input for the supergraph layout.
We try to find an order σ of the equivalence classes such that the sum
of all edge crossings in all trees is minimized, if the barrier-tree vertices
were drawn using this order as the horizontal order.

σ = argmin
O

N

∑
i=1

(
α · crossings(Ti, OVi) + β · localorder(Ti, OVi)

)
where

• Ti = (Vi, Ei, ei) is the i-th tree in the sequence,

• G = (V, E) is the supergraph of the tree sequence,

• V is the set of equivalence classes,

• k :
⋃N

i=1 Vi → V maps each tree vertex to its equivalence class,
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• O ⊂ V ×V is an ordering relation,

• OVi is that ordering relation restricted to Vi and satisfies (u, v) ∈
OVi , if and only if (k(u), k(v)) ∈ O for all u, v ∈ Vi,

• crossings(Ti, OVi) denotes the number of edge crossings if the tree
Ti was drawn with the horizontal order of the vertices given by OVi ,

• localorder(Ti, OVi) names approximately the number of times a par-
ent vertex is not drawn between its children, and

• α, β constants, which we set to 1 and 5, respectively.

At first we minimized the above function only considering minimiz-
ing the number of edge crossings and used simulated annealing [KGV83]
to that end. We were surprised that it is possible to draw the simplest se-
quence (ATT) with a total of 27 edge crossings for the whole sequence. We
were quickly disappointed by the images themselves, as it was apparent
that we neglected to encourage the father of two vertices to be drawn
between them. Because of that, the use of our orthogonal drawing style
resulted in hardly readable images. So we added the second term to our
objective function to avoid this particular effect. It accumulates the dif-
ference of the number of vertices that are drawn to the left of their parent
and the number of vertices that are drawn to the right of their parent
for each vertex. If each vertex is always between its two successors, the
contribution of this term to the objective function is always zero. We ex-
perimentally determined α = 1 and β = 5 to give good final layouts.
It roughly means that we rather allow 5 edge crossings than one parent
that is not between its children.

There are multiple possibilities to implement the simulated annealing
strategy for this particular objective function. We tested several of them,
and found the following to behave the best. We start with a random
order of equivalence classes and iteratively improve this order. At each
iteration, we pick a random equivalence class and insert it at a random
position between two other equivalence classes. Then we reevaluate the
objective function for all trees and compare it to the old value. If we
improved, we keep the new order, otherwise we only keep it with the
probability

p =
1

1 + exp(∆C T−1
t )

Tt =
nt − t

t
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with ∆C being the cost increase and Tt being a temperature which de-
creases linearly with each iteration t. We stop the process after a fixed
number of iterations nt.

Instead of recalculating the total number of edge crossings, we just
calculate ∆C by considering only adjacent and incident edges on all ver-
tices v with h(v) being the equivalence class currently moved. We can
do this similarly for the localorder term of the objective function. This
greatly decreases the time per iteration and makes the process very fast.

In an earlier implementation we computed the layout of the super-
graph using the dot algorithm by Gansner et al. [GKNV93]. In this algo-
rithm most of the time is spend minimizing edge crossings in a repeated
heuristic two-layer edge crossing minimization which had a time com-
plexity of O(N4), where N is the maximum number of vertices on one
layer. Although the algorithm seldom runs in that order for real world
examples, it takes a very long time to find the minimal number of edge
crossings for our barrier-tree sequences. Not only because we observed
that there was at least one layer where one eighth of all supergraph ver-
tices resided in, but also because the swapping of vertices often did not
change the number of edge crossings directly, but a few iterations later
might have allowed improvements.

Our current method has much faster iterations because the number of
operations per iteration is in the order of

O

 ∑
i∈{1,...,N}

deg(Ti)|Ei|

 = O

 ∑
i∈{1,...,N}

deg(Ti)|Vi|


where deg(T) is the degree of T, i.e. the maximum number of incident
and adjacent edges on any vertex v of T. So one iteration roughly scales
linearly with the total number of vertices of the whole sequence, as the
degree of our trees is 2 or 3 in almost all cases, i.e. a very small con-
stant. So one iteration lies in O(N), but we require many more iterations
to achieve the same quality improvement of one iteration of the dot algo-
rithm.

6.5.2 Tree Layout

Until now, the energy of a vertex has been ignored. Since a vertex of
the supergraph may represent multiple vertices of the tree sequence and
each of these vertices may have a different energy, a supergraph vertex
may not have a single energy value. Because we want one of the co-
ordinates to indicate the energy, it is impossible to perform coordinate
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assignment for the supergraph vertices. Instead it is performed for each
tree separately, respecting the order generated in the ordering phase. This
constraint preserves the mental map, specifically the orthogonal ordering.
Positioning each tree separately allows us to locally improve the layout
of the subgraphs. This corresponds to the third phase of the foresight-
layout-with-tolerance algorithm.

Initially the horizontal position of a tree vertex v is directly gained
from the number of equivalence classes smaller than h(v) with respect to
the global ordering relation O. The vertical position of v directly reflects
its energy.

After the vertices have been positioned, edges must be routed. For
simplicity, each tree edges consist of just one horizontal and one vertical
line segment that directly connect the two adjacent vertices. In general,
it is not always possible to draw the trees without edge crossings. We
sacrificed this property for the preservation of the mental map. Drawing
the edges as orthogonal line segments conforms to the style barrier trees
are usually drawn. We also found that a straight-line drawing does not
necessarily reduce the number of edge crossings and additionally makes
tracing the edges harder than an orthogonal drawing.

Positioning each tree separately allows us to locally improve the lay-
out of the subgraphs. This corresponds to the third phase of the foresight-
layout-with-tolerance algorithm. It is trivially possible to generate the
horizontal position of a tree vertex v from the number of vertices of the
same tree that are smaller than v with respect to OVi . It would make a
better visual impression if the key frames were studied by themselves,
but it destroys a lot of the mental map; so we decided not use this option
for our animations.

6.6 Animation

After the layout for each tree has been generated, the single trees could
be presented using the generated layout. In practice, there can be quite
a number of changes between consecutive trees. Vertices and edges may
appear or disappear, and whole subtrees can change the energy of their
vertices. We created methods to make the transition smooth and to indi-
cate the type of change. Vertices that experience a change of energy are
moved accordingly in the drawing area using linear interpolation of the
coordinates. Barriers that appear or disappear are presented using blend-
ing. Edges are modified based on the changes of their adjacent vertices.
Subtrees that are created or merged “grow” out of or into the vertices,
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where they are created or merged into, again using linear interpolation
of their coordinates.

Usually the huge number of changes would require each change to
be visualized separately. In our proof-of-concept implementation, all
changes are shown simultaneously using the following scheme: Each
transition is given a time interval [ti, ti + ∆t). Vertices that change their
energy are moved during [ti +

3
8 ∆t, ti +

7
8 ∆t). Subtrees that grow into

a vertex because of merging are scaled during [ti +
2
8 ∆t, ti +

5
8 ∆t), sub-

trees that grow out of a vertex, do so during [ti +
5
8 ∆t, ti +

8
8 ∆t). Fading

out of barriers takes place during [ti +
2
8 ∆t, ti +

6
8 ∆t) and fading in dur-

ing [ti +
4
8 ∆t, ti +

8
8 ∆t). The remaining interval [ti, ti +

2
8 ∆t) is used for a

static presentation of tree Ti. The segments overlap intentionally. In the
datasets we observed we found that using non-overlapping sections re-
sulted in large parts of the tree simply disappear and appear and destroy
the mental map of the user.

6.7 Highlighting

One common question for a domain expert that analyzes the barrier-tree
sequence is “which of two given structures is the winner”, i.e. which one
is more probable to be found in nature. It is typically found when the
folding process starts in one part of the energy landscape and, later on, a
new part of the energy landscape is created which is separated by a very
high barrier from the rest. Regardless of how optimal the local minima
of the new part of the landscape are, it is unlikely that the molecule will
fold into one of them, because the barrier is too high and the probability
that it will be overcome is very low on the timescale for folding reactions.

Using a simple technique, some elements of the animation can be
highlighted to emphasize such observations. We split the last tree at the
root and look for the leaf of lowest energy in the left subtree and the leaf
of lowest energy in the right subtree. The first one is marked blue and
the later one red. When the animation is shown, predecessors of these
two leaves will be drawn with the appropriate color. The predecessors
are given by the leaf mapping, i.e. they are local minima that will refold
into the two final configurations during the process. We also found that
drawing the path from the root to the actual leaf with the highlight color
is visually more attracting that just coloring the leaf and its one adjacent
edge. This is the default color scheme, but the user can also select other
leaves, not necessarily in the last tree, to be highlighted using colors.
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6.8 Results

We evaluated our algorithm on three datasets. The ATT dataset consists
of 20 barrier trees, with at most 25 leaves per tree and a total of 894 ver-
tices in all trees. It represents a small RNA molecule, with sequence
length growing from 40 to 74 nucleotides with varying step size. The
LEPTO dataset consists of 47 barrier trees, with a maximum of 50 leaves
per tree and a total of 3727 vertices in all trees. The sequence length of the
molecule increases from 10 to 56 nucleotides. The largest example, the
HOK dataset, consists of 65 trees with a maximum of 100 leaves and a to-
tal of 8635 vertices. The sequence length grows from 10 to 74 nucleotides.
The inner vertices of all trees of these datasets satisfy odeg(v) = 2, i.e.,
all inner vertices have exactly two children. All datasets represent rather
short RNA molecules.

One way to determine the quality of the algorithm is to look at prop-
erties of the supergraph. The number of vertices in the supergraph of the
ATT, LEPTO, and HOK datasets are 392, 1874 and 4594 respectively. This
means that only about half of the vertices of the trees were identified as
redundant. This results from a property of the sequences that we have
not yet mentioned. In each new tree of a sequence, leaves get deleted,
merged, and added. The average number of leaves that are added is 5.00,
7.20, and 16.16 respectively. That means that up to 20 percent of each tree
changes on average. It can be shown, however, that a graph-theoretic
minimum supergraph would not be smaller than approximately half to
one third of the size of our supergraphs.

More critical to the perceived quality of the layout is the number of
edges. If this number is near the number of vertices, the supergraph is
very similar to a tree and can thus be drawn with few edge crossings and
(horizontally) short edges. Horizontally long edges in the supergraph
layout are undesirable, because each edge is shown at least once. The
amount of edges divided by the amount of vertices for the three datasets
are 1.52, 1.69, and 1.61, respectively. Although these numbers seem to
be close, the LEPTO and HOK datasets have a significantly larger number
of edge crossings and long edges than the ATT dataset. This is because
the edges are unevenly distributed among the layers of the supergraph
layout. The animation suffers from long edges that are close together and
are notoriously difficult to track.

Two preprocessing methods have been tested to determine, if a subset
of the data still results in bad layouts. Surely, we do not want to reduce
the number of trees, since we want to visualize the whole process.There
are a number of barriers that are connected by an edge in the barrier
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tree, and whose energy differs only slightly. Such barriers are merged
in a preprocessing step. This process reduces the probability of barrier
swaps and the supergraph will have less vertices. In the LEPTO and HOK
datasets, the merging of barriers that differ by 0.5 or less (which is ap-
proximately two percent of the overall energy range) reduced the total
number of tree vertices to 2419 and 5863, respectively, and the number of
supergraph vertices to 853 and 2493, respectively. This means, that now
nearly two third of the vertices were identified as redundant. Unfortu-
nately, this method does not reduce the number of edges as much as the
number of vertices, thus the supergraph suffers from a huge number of
edge crossings and long horizontal edges. After applying this method,
the supergraph span less layers and the edges got distributed more equal
over the layers. In the final animation long edges are still visible, but they
are no longer close together, so it is easier to track them.

The second method is the reduction of leaves in the barrier trees. Lo-
cal minima with a low energy are generally more stable and have a high
probability of being present in the next barrier tree. They are also more
interesting than local minima of higher energy. For each leaf that is re-
moved, the one barrier connecting it to the rest of the tree is removed as
well. By reducing the number of leaves in the LEPTO and HOK datasets
to a maximum of 31 and 66 leaves per tree, respectively, the total number
of tree vertices was reduced to 2409 and 5875, respectively. The number
of supergraph vertices was reduced to 732 and 2528, so again almost two
third of the tree vertices have been identified as redundant. This prepro-
cessing method removed substantially more edges than vertices, and in
the LEPTO and HOK datasets the number of edges divided by the num-
ber of vertices decreased to 1.50 and 1.44, respectively, which greatly im-
proved the supergraph layout. There were a lot less edge crossings and
only a few long edges. This directly resulted in a better layout of the
barrier trees.

We found our simulated-annealing-based supergraph layout, which
effectively only determines an optimal vertex order for the supergraph
vertices, to perform very well. We feared that most of the apparently ran-
dom permutations do not improve the tree layout at all or only slowly.
Indeed, we require a huge number of iterations until the images pro-
duced were useful. Whereas the dot-based algorithm used 1000 layer
sweep iterations the simulated-annealing-based algorithm uses at least
100.000 iterations to generate readable animations. But because each iter-
ation, being of a lower order of complexity, requires much less time, the
new implementation is still faster. On an AMD Opteron with 2.0GHz,
the dot-based algorithm with 1000 iterations required approximately 37,
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3462, and 16790 seconds for the ATT, LEPTO, and HOK dataset with 381,
1531, and 3793 equivalence classes respectively. The simulated-annealing-
based method using 1.000.000 iterations required approximately 27, 79,
and 182 seconds, respectively.

The visual output of the two radically different methods is not di-
rectly comparable. There is one thing directly observable for all datasets.
The simulated-annealing-based algorithm distributes vertices more evenly
across the drawing area. But this is rather a nice side effect of the method
and was not originally intended. While the ATT sequence does not im-
prove much visually if compared to the dot-based method, it benefits
from the reduced computation time. The visual quality of the LEPTO and
HOK sequences improves greatly with the simulated-annealing-method,
because it considers only relevant edge crossings, i.e. those that will
show up in the barrier-tree layouts.

Figure 6.5 shows the key frames for the ATT data set. Terminator/anti-
terminators are small RNA structure elements occurring in bacterial mes-
senger RNAs (mRNAs) that modulate the translation of mRNA into a
protein. They are switch-like elements that can form alternative struc-
tures with drastically different physiological function. In one state, the
mRNA is translated and protein is produced, while the alternative RNA
conformation suppresses this process. The speed of transcription deter-
mined, which of these two states is reached. The barrier-tree sequence
of the growing RNA element can be used to understand the molecular
mechanism for this behavior.

The panels in Figure 6.5 show the leader sequence of the pheS-pheP
operon of E. coli [FMS+83]. In the first stages, i.e., when only the 5’ (left)
part of the molecule has been transcribed, the folding landscape is dom-
inated by a single conformation (visible as the lowest-energy subtree in
panels 1 through 5. As the molecule grows, an alternative basin of attrac-
tion (left subtree in rows 4 and 5) appears. In the first stages, this class of
conformation is less stable than the l.h.s. subtree, which is initially pop-
ulated as it corresponds to the stable conformations in the first folding
stages. In the full-size element, however, a different conformation class
is thermodynamically favored, which appears as the r.h.s. subtree in the
last 3 panels. The important observation is that this class of conforma-
tions is reachable only by transversing a sizable energy barrier; hence
the transition into this conformation is slow. The speed of translation
thus determines, whether the growing chain has sufficient time to switch
into the optimal subtree (approximately in panels 13-15), or whether it
remains trapped in the l.h.s. subtree, as the barrier height (and hence the
necessary transition time) increases with the chain length (panels 16-18).
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Figure 6.5: 18 subgraph layouts of the ATT sequence.
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6.9 Summary

We have shown that it is possible to generate readable layouts for se-
quences of barrier trees using the foresight-layout-with-tolerance algo-
rithm. For larger datasets, preprocessing may need to be applied to
the sequence. While reducing barriers decreases the height of the su-
pergraph layout, a reduction of leaves decreases the width and greatly
improves the perceived quality of the layout.

We also showed, that construction of a supergraph may sometimes
lead to suboptimal results if the supergraph does not use all informa-
tion from the graphs it is constructed for. Our naive implementation
of a combination of supergraph construction and layout clearly outper-
formed the version where these two were separate, both quality and
run-time-complexity wise. The number of iterations needed for a given
dataset seems to scale with its size, but we are yet uncertain exactly how.
We are looking for methods that automatically determine the optimal
number of iterations.

From the viewpoint of folding landscapes, often only a small number
of leaves are of interest. These leaves and their history can be highlighted
using colors. The layout of the single trees may be combined with ad-
ditional information. The simulation of the folding process during the
growing of the molecule under various temperatures and growing rates
results in distribution functions for local minima. Because the anima-
tion of the barrier trees preserves the orthogonal ordering, annotating the
barrier-tree leaves with the density of the corresponding structure con-
figurations preserves the mental map for the annotations. The change in
the densities could additionally be indicated by a flow of liquid along the
tree edges. Methods that combine tree layout and additional information
are also investigated.

The current methods to generate the animation leave room for further
improvements. Different strategies for edge removal during the postpro-
cessing of the supergraph construction can result in an improved layout,
because fewer edges generally result in fewer edge crossings. Rather
than overproducing the edges of the supergraph and reducing them af-
terward, a more constructive method could be proposed. In this chapter
we did not pay much attention to local improvement of the subgraph
layout. Especially in larger datasets this would be beneficial, because
each subgraph uses only a small part of the drawing area and requires
high resolution. A local improvement based on a force-directed strategy
is could achieve the desired distribution.

As a transition from one tree to the next consists of many elementary
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operations, instead of showing them simultaneously, it might be better
to break the leaf mappings in elementary operations and show them in
sequence.

The constructed supergraph is a static visualization of the whole se-
quence, and presentation forms other than an animation, may be inves-
tigated. An alternative would be to synthesize a 2D landscape from all
barrier trees, where the folding process is visualized as a walk.



7 Conclusions and Future Work

In this thesis we examined some point designs on the boundary of infor-
mation visualization, graph drawing, and Euler diagrams. It is clear that
there is a large body of knowledge in these fields that can and should
be transferred between the fields and at some point combined into larger
theory of visualization.

Euler diagrams can benefit from the model of retinal variables, i.e. it
can use colors and textures to improve perception of contours especially
in the regions of overlap ([War04]). Chapter 3 discussed the drawing of
Euler diagrams using blobs – a technique well known from computer
graphics – which deliver smooth contours and are visually stable when
elements’ positions change. The chapter focused on an interactive visu-
alization process which enabled the user to move items and, while doing
so, changing their grouping. To achieve interactive frame rates for small
datasets, a method to exploit the duality of DAGs and abstract Euler di-
agrams was presented that computes in quad-tree-fashion for each pixel
which clusters it belongs to and was applied to manual refinement of
clustering results. Although there is much research in the area of Eu-
ler diagrams, most of it is geared towards static set relations and static
display. The work in this chapter remains to-date the only approach for
dynamic set relations and enabling the user to arbitrarily position the
elements.

For larger set relations, the method was improved in Chapter 4 in
terms of visual discriminability of sets when they overlap and rendering
speed. The use of textures as a visual channel that supports discrimina-
tion in addition to colors was employed successfully to compare cluster-
ing results of small document collections with different clustering gran-
ularity. Here the duality of DAGs and Euler diagrams was exploited
to generate a representation of the cluster hierarchies’ union. We stud-
ied the appearance of multiple GPU-accelerated contour interpolators
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and gave a recommendation for the optimum. However, for the sake of
fast rendering some wellformedness criteria of Euler diagrams had to be
sacrificed. New computational architectures providing faster execution
times allow for new and more complex interpolators in our framework.
The study of base textures that allow a large number of overlapping sets
remains a challenge and open question.

In Chapter 5 we outlined the design space of contour tree represen-
tations in the form of five drawing criteria and gave two example point
designs: one academic and one for real-world use. The later respects
four of the criteria, and is a mix of information visualization and graph
drawing design. While single branches are reminiscent of traditional line
graphs, drawn vertically and without axes, the branches were arranged
horizontally according to minimizing edge crossings – a graph drawing
aesthetic. The method extends trivially to the more general class of Reeb
graphs, although for this class of graphs, additional drawing criteria may
be applicable. Future work would focus on removing the impact of long
horizontal edges that dominate the drawings for very large contour trees.

In Chapter 6, we presented an algorithm that constructs an anima-
tion for a sequence of barrier trees that are compaction of so-called fold-
ing landscapes, i.e. fitness landscapes in which the structure of RNA
molecules is predicted. A major part of the work was constructing the
dynamic tree from tree snapshots at given points in time. The animations
help to explain why certain spatial configurations that are not energy-
minimal are found in nature: because of the distinct reshaping of the
landscape during the RNA transcription process. The method was ap-
plied successfully for more use cases by Hofacker et al. [HFH+10]: the
traveling of an RNA molecule through a pore, unfolding at one side and
refolding at the other, and a shift in environment temperature.

Lessons learned from these four designs is that when the percep-
tual operation of judging nesting and inclusion relations between items
should be supported by the diagram, an Euler representation is preferred
over a node-link diagram. The later are more useful if graphical node
properties are expressed with information visualization techniques that
highlight data associated with the feature a node represents, and rela-
tions between feature are secondary. Applying the Gestalt principle of
closure is more effective in conveying grouping relations than the prin-
ciple of proximity as the items can be distributed more uniformly on the
screen and thereby allow a higher data density as we have seen in Chap-
ter 4.

The work on barrier trees and the work on contour trees can be com-
bined. For time-varying scalar fields the contour tree becomes dynamic
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and principles of the dynamic barrier trees carry over. Although it is pos-
sible to reconstruct a dynamic contour tree from time snapshots using
the barrier method, a direct computation considering the correct inter-
polation will increase the resolution with respect to time. A dedicated
time-varying contour tree algorithm does not yet exist, but an algorithm
for the more general case of Reeb graphs does ([EHM+08]), providing an
alternative vantage point.

Another upcoming topic is the analysis of the topology of multiple
scalar fields [SHCS12]. The relationship of contour tree drawings and
tree map algorithms was established by [HW10]. As Euler diagrams can
be seen as a generalization of tree maps, they could be used to show the
overlapping regions of representative contours as indicated by the con-
tour trees of the single fields. Area-proportional Euler diagrams ([Wil12])
could highlight interesting topological overlaps from the mass of over-
laps that are likely to result due to noise in the dataset. A very long-
term goal could be to combine concepts of all three methods to show
time-varying multifield topology using animations of dynamic Euler di-
agrams.
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with a potential-field-based multilevel algorithm. In Pach
[Pac04], pages 285–295.

[HJ05] Stefan Hachul and Michael Jünger. An experimental
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[JM04] Micheal Jünger and Petra Mutzel, editors. Graph Drawing
Software. Mathematics and Visualization. Springer, 2004.

[JS91] B. Johnson and Ben Shneiderman. Tree maps: A space-
filling approach to the visualization of hierarchical infor-
mation structures. In IEEE Visualization, pages 284–291,
1991.

[JTP+95] J.A.Wise, J.J. Thomas, K. Pennock, D. Lantrip, M.Pottier,
A. Schur, and V. Crow. Visualizing the non-visual: Spatial
analysis and interaction from text documents. In IEEE In-
formation Visualization 2005 Proceedings, pages 51–58. IEEE
CS, 1995.

[KCT08] Mikko Kurimo, Mathias Creutz, and Ville Turunen. Mor-
pho Challenge evaluation by IR experiments. In Proceed-
ings of the CLEF 2007 Workshop, Lecture Notes in Computer
Science. Springer, 2008.



114 BIBLIOGRAPHY

[KG06] Gautam Kumar and Michael Garland. Visual exploration
of complex time-varying graphs. IEEE Transactions on Visu-
alization and Computer Graphics, 12(5):805–812, 2006.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
by simulated annealing. Science, 220(4598):671–680, 1983.

[KH03] Yehuda Koren and David Harel. Axis-by-axis stress mini-
mization. In Liotta [Lio04], pages 450–459.

[KK89] T. Kamada and S. Kawai. An algorithm for drawing general
undirected graphs. Information Processing Letters, 31(1):7–
15, 1989.

[KW01] Michael Kaufmann and Dorothea Wagner, editors. Drawing
Graphs: Methods and Models, volume 2025 of Lecture Notes in
Computer Science. Springer, 2001.

[Lam08] Heidi Lam. A framework of interaction costs in informa-
tion visualization. IEEE Transactions on Visualization and
Computer Graphics, 14(6):1149–1156, 2008.

[Lio04] Giuseppe Liotta, editor. Graph Drawing, 11th International
Symposium, GD 2003, Perugia, Italy, September 21-24, 2003,
Revised Papers, volume 2912 of Lecture Notes in Computer Sci-
ence. Springer, 2004.

[LS87] Jill H. Larkin and Herbert A. Simon. Why a diagram is
(sometimes) worth ten thousand words. Cognitive Science,
11(1):65–100, 1987.

[LSM91] X. Lin, D. Soergel, and G. Marchionini. A self-organizing
semantic map for information retrieval. In Proceedings of
the 14th annual international ACM SIGIR conference on Re-
search and development in information retrieval, pages 262–
269. ACM, 1991.

[Mac86] Jock D. Mackinlay. Automating the design of graphical pre-
sentations of relational information. ACM Transactions on
Graphics, 5(2):110–141, 1986.

[Mar91] Joseph William Marks. Automating the Design of Network
Diagrams. PhD thesis, Harvard University, 1991.



BIBLIOGRAPHY 115

[Maz09] Riccardo Mazza. Introduction to Information Visualization.
Springer, 2009.

[MELS95] K. Misue, P. Eades, W. Lai, and K. Sugiyama. Layout ad-
justment and the mental map. Journal of Visual Languages
and Computing, 6(2):183–210, 1995.

[Mil56] George A. Miller. The magical number seven, plus or mi-
nus two: Some limits on our capacity for processing infor-
mation. Psychological Review, 63(2):81–97, 1956.

[Mil63] John Willard Milnor. Morse Theory. Princeton University
Press, 1963.

[MM04] Irmtraud M. Meyer and Istvan Miklos. Co-transcriptional
folding is encoded within RNA genes. BMC Molecular Biol-
ogy, 5(10), 2004.

[MM08] Chris Muelder and Kwan-Liu Ma. Rapid graph layout us-
ing space filling curves. IEEE Transactions on Visualization
and Computer Graphics, 14(6):1301–1308, 2008.
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