1,618 research outputs found

    On the role of pre and post-processing in environmental data mining

    Get PDF
    The quality of discovered knowledge is highly depending on data quality. Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even irrelevant information. The more complex is the reality to be analyzed, the higher the risk of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global framework to prepare data in the right form to perform correct analyses. On the other hand, the quality of decisions taken upon KDD results, depend not only on the quality of the results themselves, but on the capacity of the system to communicate those results in an understandable form. Environmental systems are particularly complex and environmental users particularly require clarity in their results. In this paper some details about how this can be achieved are provided. The role of the pre and post processing in the whole process of Knowledge Discovery in environmental systems is discussed

    Data Cleaning: Problems and Current Approaches

    Get PDF
    We classify data quality problems that are addressed by data cleaning and provide an overview of the main solution approaches. Data cleaning is especially required when integrating heterogeneous data sources and should be addressed together with schema-related data transformations. In data warehouses, data cleaning is a major part of the so-called ETL process. We also discuss current tool support for data cleaning

    Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review

    Full text link
    Context The International Software Benchmarking Standards Group (ISBSG) maintains a software development repository with over 6000 software projects. This dataset makes it possible to estimate a project s size, effort, duration, and cost. Objective The aim of this study was to determine how and to what extent, ISBSG has been used by researchers from 2000, when the first papers were published, until June of 2012. Method A systematic mapping review was used as the research method, which was applied to over 129 papers obtained after the filtering process. Results The papers were published in 19 journals and 40 conferences. Thirty-five percent of the papers published between years 2000 and 2011 have received at least one citation in journals and only five papers have received six or more citations. Effort variable is the focus of 70.5% of the papers, 22.5% center their research in a variable different from effort and 7% do not consider any target variable. Additionally, in as many as 70.5% of papers, effort estimation is the research topic, followed by dataset properties (36.4%). The more frequent methods are Regression (61.2%), Machine Learning (35.7%), and Estimation by Analogy (22.5%). ISBSG is used as the only support in 55% of the papers while the remaining papers use complementary datasets. The ISBSG release 10 is used most frequently with 32 references. Finally, some benefits and drawbacks of the usage of ISBSG have been highlighted. Conclusion This work presents a snapshot of the existing usage of ISBSG in software development research. ISBSG offers a wealth of information regarding practices from a wide range of organizations, applications, and development types, which constitutes its main potential. However, a data preparation process is required before any analysis. Lastly, the potential of ISBSG to develop new research is also outlined.Fernández Diego, M.; González-Ladrón-De-Guevara, F. (2014). Potential and limitations of the ISBSG dataset in enhancing software engineering research: A mapping review. Information and Software Technology. 56(6):527-544. doi:10.1016/j.infsof.2014.01.003S52754456

    MOMA - A Mapping-based Object Matching System

    Get PDF
    Object matching or object consolidation is a crucial task for data integration and data cleaning. It addresses the problem of identifying object instances in data sources referring to the same real world entity. We propose a flexible framework called MOMA for mapping-based object matching. It allows the construction of matchworkflows combining the results of several matcher algorithms on both attribute values and contextual information. The output of a match task is an instance-level mapping that supports information fusion in P2P data integration systems and can be re-used for other match tasks. MOMA utilizes further semantic mappings of different cardinalities and provides merge and compose operators for mapping combination. We propose and evaluate several strategies for both object matching between different sources as well as for duplicate identification within a single data source

    Big Data - Supply Chain Management Framework for Forecasting: Data Preprocessing and Machine Learning Techniques

    Full text link
    This article intends to systematically identify and comparatively analyze state-of-the-art supply chain (SC) forecasting strategies and technologies. A novel framework has been proposed incorporating Big Data Analytics in SC Management (problem identification, data sources, exploratory data analysis, machine-learning model training, hyperparameter tuning, performance evaluation, and optimization), forecasting effects on human-workforce, inventory, and overall SC. Initially, the need to collect data according to SC strategy and how to collect them has been discussed. The article discusses the need for different types of forecasting according to the period or SC objective. The SC KPIs and the error-measurement systems have been recommended to optimize the top-performing model. The adverse effects of phantom inventory on forecasting and the dependence of managerial decisions on the SC KPIs for determining model performance parameters and improving operations management, transparency, and planning efficiency have been illustrated. The cyclic connection within the framework introduces preprocessing optimization based on the post-process KPIs, optimizing the overall control process (inventory management, workforce determination, cost, production and capacity planning). The contribution of this research lies in the standard SC process framework proposal, recommended forecasting data analysis, forecasting effects on SC performance, machine learning algorithms optimization followed, and in shedding light on future research

    Radar Emitter Classification based on Deep Ensemble

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceElectronic Support Measures (ESM) systems are designed to classify radar signals, providing information about the presence of threats. This function aids in battlefield situational awareness and the commander's decision on which countermeasures to employ. This dissertation aims to develop a deep ensemble model, recognizing the importance of a fast and precise classification based on a deep forest as an alternative to the parameter matching method. Four deep ensemble models and six of its base learners were built and evaluated to classify 52 emitters, using seven train/test datasets and two test datasets with noise, totalling 420 measurements of accuracy and classification speed. After analyzing these results, two deep ensemble models and their base learners were optimized, each for a different dataset, achieving 100% accuracy in a feature-engineered dataset and up to 98.358% in the original dataset. Regarding classification speed, the fastest models can classify 1000 records in 64ms, which may be acceptable in the real world. The experimental results of this approach reveal several advantages, making it a feasible alternative, including reduced dependency on ESM experts, ease of maintenance, quick to update, and high accuracy

    Decision Support Systems

    Get PDF
    Decision support systems (DSS) have evolved over the past four decades from theoretical concepts into real world computerized applications. DSS architecture contains three key components: knowledge base, computerized model, and user interface. DSS simulate cognitive decision-making functions of humans based on artificial intelligence methodologies (including expert systems, data mining, machine learning, connectionism, logistical reasoning, etc.) in order to perform decision support functions. The applications of DSS cover many domains, ranging from aviation monitoring, transportation safety, clinical diagnosis, weather forecast, business management to internet search strategy. By combining knowledge bases with inference rules, DSS are able to provide suggestions to end users to improve decisions and outcomes. This book is written as a textbook so that it can be used in formal courses examining decision support systems. It may be used by both undergraduate and graduate students from diverse computer-related fields. It will also be of value to established professionals as a text for self-study or for reference

    An investigation into inductive parameter learning in complex hierarchical knowledge structures representing clinical expertise

    Get PDF
    This dissertation investigates the very important and current problem of modelling human expertise. This is an apparent issue in any computer system emulating human decision making. It is prominent in Clinical Decision Support Systems (CDSS) due to the complexity of the induction process and the vast number of parameters in most cases. Other issues such as human error and missing or incomplete data present further challenges. In this thesis, the Galatean Risk Screening Tool (GRiST) is used as an example of modelling clinical expertise and parameter elicitation. The tool is a mental health clinical record management system with a top layer of decision support capabilities. It is currently being deployed by several NHS mental health trusts across the UK. The aim of the research is to investigate the problem of parameter elicitation by inducing them from real clinical data rather than from the human experts who provided the decision model. The induced parameters provide an insight into both the data relationships and how experts make decisions themselves. The outcomes help further understand human decision making and, in particular, help GRiST provide more accurate emulations of risk judgements. Although the algorithms and methods presented in this dissertation are applied to GRiST, they can be adopted for other human knowledge engineering domains
    corecore