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Abstract: The quality of discovered knowledge is highly depending on data quality. 
Unfortunately real data use to contain noise, uncertainty, errors, redundancies or even 
irrelevant information. The more complex is the reality to be analyzed, the higher the risk 
of getting low quality data. Knowledge Discovery from Databases (KDD) offers a global 
framework to prepare data in the right form to perform correct analyses. On the other hand, 
the quality of decisions taken upon KDD results, depend not only on the quality of the 
results themselves, but on the capacity of the system to communicate those results in an 
understandable form. Environmental systems are particularly complex and environmental 
users particularly require clarity in their results. In this paper some details about how this 
can be achieved are provided. The role of the pre and post processing in the whole process 
of Knowledge Discovery in environmental systems is discussed.  
 
Keywords: preprocessing; postprocessing; data mining; knowledge discovery of data; 
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1.  INTRODUCTION 
 
Environmental systems (ES) typically contain many interrelated components and processes, 
which may be biological, physical, geological, climatic, chemical, or social. Whenever we 
attempt to analyze ES and associated problems, we are immediately confronted with 
complexity stemming from various sources. However, there is a great need for data 
analysis, modelling of ES and development of decision support systems in order to improve 
the understanding of ES behaviour and the management of these complex systems 
(specially under abnormal situations). As stated in [Gibert et al.2008], the special features 
of environmental processes demand a new paradigm to improve the analysis and 
consequently its management. 
 
Knowledge Discovery of Data (KDD) appeared in 1989 referring to high level applications 
which include particular methods of Data Mining (DM, see figure 1), oriented to extract 
useful and understandable knowledge from data. KDD processes and the application of DM 
techniques are specifically appealing for environmental data, since activities permitting 
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extraction of maximum useful information  from data bases are per se very important 
although they use to be preparatory for an environmental software system development. 
Also the KDD approach facilitates the integration of different knowledge sources and fields 
of expertise and the involvement of end-user (domain expert) criteria and stakeholders’ 
points of view in algorithm design and result interpretation. Finally, it facilitates the sharing 
and rapid re-use of data and extracted technical knowledge and experiences among domain 
experts. 

 
Figure 1 Outline of the Knowledge Discovery from Data process 

 
Fayyad's proposal marked the beginning of a new paradigm in KDD research, considering 
prior and posterior analysis as important as the application of DM techniques itself: 

 "Most previous work on KDD has focused on [...] DM step. However, the 
other steps are of considerable importance for the successful application of 
KDD in practice". 
 

In fact, prior and posterior analysis requires great effort when dealing with real 
applications. Prior analysis is critical, mainly owing to two reasons: 
 
• Real data sets tend to be imperfect, contains errors, outliers, missing data, extra noise 

and tools either for detecting or correcting it are required. 
 
• Application of a certain data mining technique may require specific conditions for the 

data set (only binary variables, centered data, normality, only qualitative variables, 
etc). In this case, tools for verifying that those conditions hold as well as to 
transforming data in the appropriate way in order that they hold them, are required. 

In environmental data, where errors of measuring (from automatic monitoring), uncertainty, 
imprecision, multi-scalarity, heterogeneity, non-linearities, non stacionariety, non-
normality, are frequent, together with redundant variables, or irrelevant, or even 
contradictory, systematic and objective exploration as well as visualization and 
transformation of data is particularly critical for: 

• better understanding the data set 
• detecting imperfections in the data and managing them in the proper way 
• correctly preparing data for the selected  DM technique/s, if required assumptions do 

not  hold 

In (Witthen et al. 1993) a review of  selected methods of machine learning with an 
emphasis on practical applications is presented, together with suggestions on how they 
might be used to address some important problems in the primary production industries, 
particularly agriculture. 
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Also, particular efforts in post processing the results directly provided by a DM technique 
are important in  this context, in order to make these results directly understandable by an 
environmental scientist, who has to make real decisions upon them, which will surely have 
a real impact to the evironmental system behaviour. In fact, it can be said that the quality of 
the decisions will depend, not only on the quality of the data mining results themselves, but 
also on the capacity of the system to communicate the relevant results to the decision-
maker as understandably as possible. The software tools used for applying  DM techniques 
to a data set usually  produce long listings plenty of results that may be useful in whatever 
particular application is performed. However, given a particular real case, not all this 
information is useful. Thus, it is important to: 

• Identify the relevant information from the software outputs, depending on the aims of 
every particular analysis.  

• Find the best way to present the selected results to the user. 

It can be said that pre and post processing are one of the most important and critical parts of 
the whole KDD process. On the one hand, because data cleaning [Moore et alt, 1993], 
transformation, selection of DM techniques and optimization of parameters (if required) are 
often time consuming and difficult, mainly because the approaches taken should be tailored 
to each specific application, and human interaction is required; on the other hand, because 
the correctness of the DM itself is critically depending on the quality of the data and wrong 
or poor preprocessing may lead to incorrect results. Data miners should become conscious 
of the importance of performing very careful and rigorous preprocessing, and allocate 
sufficient time to this activity. In fact, once those tasks have been accomplished, the 
application of DM algorithms becomes trivial and can be automated, requiring only a small 
proportion of the time devoted to the whole KDD process. Regarding the post processing, 
the results provided by the software implementing the DM techniques,  select of relevant 
information from the automatic outputs produced by the different software applications, 
and choose the proper way of transforming or synthesizing it to make directly 
understandable to the user is also critical to provide good decision support. This task is also 
difficult to standardize and time consuming and has to be designed ad-hoc for every 
particular application, requiring much human guidance. In real applications, the time 
devoted to both pre and post-processing is rarely below 70% of the time for the whole KDD 
process. 

In this paper issues related to pre and post processing in environmental applications will be 
addressed, together with the most popular solutions for the different cases. This paper does 
not pretend to be exhaustive, but to provide tools to environmental scientists for addressing 
the most common problems arisen in pre and post processing, as no clear methodology for 
tackling these two steps of KDD process has no been  established yet. 

 
2. PREPROCESSING IN ENVIRONMENTAL SYSTEMS 

As previously stated, environmental data often includes measurement errors (from 
automatic monitoring, sensors, etc), uncertainty, imprecision, multi-scalarity, heterogeneity, 
non-linearities, non stacionariety, non-normality, and tools are required to: 

• better understand the data set 
• detect imperfections in data sets and manage them in the proper way 
• correctly prepare data for the selected  DM technique/s, if required assumptions do not  

hold 

This section is devoted to providing elements for pre-processing environmental data for 
KDD. Pre-processing ranges from the simplest descriptive techniques to the more 
sophisticated data analysis methods, depending on the nature of data and the goals of the 
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analysis itself. Authors think that most of the operations performed in a pre-processing step 
can be reduced to two main families of techniques: 

• Detection techniques: Those oriented to detect imperfections in data sets or to verify 
the accomplishment of required assumptions for a particular analysis: 

o Outlier detection 
o Missing data detection 
o Influent observations detection 
o Normality assessment 
o Linearity assessment 
o Independence assessment 

• Transforming techniques: Those oriented to perform transformations in the data set in 
order to correct the imperfections detected before, or to achieve the technical 
conditions to apply a certain analysis technique. 

o Outlier treatment 
o Missing data imputation 
o Dimensionality reduction techniques or data projection techniques 
o Creation of new transformed variables 

 Standardization 
 Aggregation 
 Transformation (logarithmic, quadratic) 
 Discretization 
 Recodification 

o Filtering 
o Resampling 

Classically, statistics provided a wide set of possibilities to preprocess data. The global 
process of transforming a raw data set to a correct one ready for analysis is called data 
cleaning [Moore et alt, 1993]. Besides the classical statistical techniques for data cleaning,  
inductive techniques are an alternative for several activities of the environmental scientist, 
when analytical/traditional methods fail, are too slow, or simply do not exist. Finally, 
visualization techniques also play an important role in the correct preprocessing of data. In 
the following sections different situations and possibilities are addressed. 

2.1. Visualization 
 
Visualization is a powerful strategy for leveraging the visual orientation of sighted human 
beings. Sighted humans are extraordinarily good at recognizing visual patterns, trends and 
anomalies; these skills are valuable at all stages of the KD Miller (in press, to appear in 
2007). For example, the presence of outliers, missing values, or errors are typical pre- and 
post-processing KDD tasks where visualization techniques can be valuable.  
 
Graphs commonly used for classical exploratory visualization, like boxplots, histograms, 
time series plots or two-dimensional scatter plots, perform poorly considering the great 
number of variables involved in environmental datasets, along with their complex 
interrelations, and spatial-temporal references. Thus, more sophisticated visualization 
methods are required, as for example:  
 

• Distributional plots, 
• Three, four, and five dimensional plots (color and symbols may be used to 

represent the higher dimensions), 
• Dimension scaling, for example log scales, 
• Rotatable frames, 
• Animation with time and interactive graphs, 
• Geo-referenced visualizations and maps. 

 
Most DM packages, as Weka, include visualization tools, while more advanced features are 
provided with wide-spread tools such as Matlab or a dedicated data language such as IDL 
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or the CommonGIS tool (Andrienko and Andrienko 2004). Reader is also pointed to 
dedicated visualization tools such as XGobi (Swayne et al. 1998). Visual representations 
are extremely effective, and may convey knowledge far better than numerical or analytical 
forms. They should be always considered in environmental KDD.  
 
 
2.2. Outlier Detection 
 
Outliers are objects with very extreme values in one or more variables (Barnett and Lewis 
1978). Graphical techniques were once the most common method for identifying them, but 
increases in database sizes and dimensions have led to a variety of automated techniques. 
The use of standard deviations is possible when and only when considering a single 
variable that has a symmetric distribution, but outliers may also take the form of unusual 
combinations of two or more variables. The data point should be analyzed as a whole to 
understand the nature of the outlier and multivariate approach is required.  
 
The treatment will depend on the nature of the outlier (error, member of another population, 
intrinsic extreme value, etc). The influence of outliers can dramatically affect the results or 
certain methods, a concern which should feature the choice of tools used throughout the rest 
of the process. See Moore and McCabe (1993) for an interesting discussion on the dangers 
of simply eliminating rows with outliers:  

“In 1985 British scientists reported a hole in the ozone layer of the Earth's 
atmosphere over the South Pole. [...] The British report was at first disregarded, 
since it was based on ground instruments looking up. More comprehensive 
observations from satellite instruments looking down had shown nothing unusual. 
Then, examination of the satellite data revealed that the South Pole ozone 
readings were so low that the computer software [...] had automatically 
suppressed these values as erroneous outliers! Readings dating back to 1979 
were reanalyzed and showed a large and growing hole in the ozone layer [...] 
suppressing an outlier without investigating it can keep valuable out of sight.” 
(Moore and McCabe 1993). 

 
 
2.3.  Missing Value Treatment 
 
Sometimes, a number of cells are missing from the data matrix. These cells may be marked 
as a *, ?, NaN (Not a Number), blank space or other special character or special numeric 
code such as 99999. The latter can produce grave mistakes in calculations if not properly 
treated. It is also important to distinguish between random and non-random missing values 
(Allison 2002; Little and Rubin 1987). Non-random missing values are produced by 
identifiable causes that will determine the proper treatment, also influenced by the goals of 
the task. Imputation (see Rubin 1987) is a complex process for converting missing data into 
useful data using estimation techniques. It is important to avoid false assumptions when 
considering imputation methods, which may have a significant effect on the results 
extracted. All the methods have pros and cons, and the choice must be made with care. In 
particular, removing rows with missing cells from a dataset may cause serious problems if 
the missing values are not randomly distributed. It is of utmost importance to report any 
elimination performed.  
 
However, many data-mining algorithms can treat missing values. Such algorithms should 
be preferred, in cases of scarce datasets.  
 
A method proposed in Gibert et al.(2008b) is to perform a previous clustering with 
complete variables and to impute missing values locally to the discovered clusters. Such an 
approach may even help to identify errors in the data set (if some observation places in a 
wrong cluster and the reasons for that are investigated). Another method proposed in 
Athanasiadis and Mitkas (2007) was to use qualitative indicators for substituting missing or 
erroneous air quality measurements. In operational systems, instead of making numerical 
estimates of a missing records,  data-mining techniques may be used for making qualitative 
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estimates (i.e by assigning quality labels instead of predicting values). Similar  work has 
been done for substituting missing or erroneous values with fuzzy sets, probability 
distributions or  confidence intervals. 
 

2.4. Pre-processing imbalanced data sets 

Imbalanced sets appear in many real applications areas, where the number of instances of 
one class (usually the normal class) is much bigger than the number of instances of the 
other classes (usually abnormal classes), which frequently are the most important ones, 
since they are the object of interest in the specific problem. Some applications in which 
imbalanced data sets typically appear are the identification of anomalies in certain systems 
designed to work under steady conditions, such as Water Distribution Systems [Izquierdo et 
al., 2007], the detection of oil spills from satellite images [Kubat et al., 1998], the 
identification of power distribution fault causes [Xu et al., 2007] and the prediction of pre-
term births [Grzymala-Busse et al., 2003]). This issue is growing in importance since it 
appears more and more in most real domains of classification, especially in systems where 
normal data are abundant while abnormal ones are scarce. 

Most classical machine learning algorithms generally perform poorly on imbalanced data-
sets because they are designed to minimize the global error rate [Japkowicz and Stephen, 
2002] and in this manner they are biased toward the majority class, that is to say, they tend 
to classify almost all instances within the majority class, and thus poorly classify the 
minority class examples. 

Two kinds of solutions can be used to cope with imbalanced sets: pre-processing solutions, 
trying to balance data by over-sampling the minority classes, under-sampling the majority 
one or a combination of both (see [Batista et al., 2004; Chawla et al., 2002; Guo and Viktor, 
2004]), and solutions at the algorithmic level, modifying the cost per class [Provost and 
Fawcett, 2001], adjusting the probability estimation by establishing a bias towards the 
minority classes [Weiss and Provost, 2003], etc. 

In [Fernández et al., 2008] different pre-processing mechanisms are used in conjunction 
with a Fuzzy Rule Classification System to deal with imbalanced data sets. 

As an example, in [Izquierdo et al., 2007] a complex hybrid model, which uses a calibrated 
classical model of a Water Supply System and a neuro-fuzzy technique, is used to obtain 
diagnosis of leaks and other anomalies in the system. To train the neural network both 
normal and abnormal data are needed. While normal data are abundant, abnormal ones are 
scarce since only a reduced number or records from reported anomalies are usually 
available. The calibrated classical model of the hydraulic network is used to simulate 
abnormal data, thus producing a data set with enough fuzzy examples to correctly train the 
neural network. 

 
2.5. Uncertainty in environmental data 

Most of the approaches used in KDD assume precise data. They assume that we deal with 
exact measurements. But in most, probably in all real-world scenarios, always imprecise 
measurement is usually obtained. There is always a degree of uncertainty. Even being able 
to measure a magnitude, its exact value will be never known. It can only be known that the 
measurement is somewhere in a certain range, bounded by the precision of the 
measurement instrument or measurement procedure itself. 

The multiplicity of factors involved in environmental processes provokes uncertainty in 
data. A number of issues contribute to this complexity. Among others (i) a huge number of 
sensors are involved, (ii) knowledge related to the spatial structure of these sensors is not 
well known, (iii) different types of variables can affect the same sensor, (iv) one specific 
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variable can exhibit simultaneously different states. In addition, subjectivity is often 
influential and fuzziness becomes important. 

Tracking and reporting of uncertainties related to measurement and other sources of noise is 
an area that is sometimes not treated rigorously, despite the implications. Therefore, the 
minimum theoretically achievable error of any model built on the data cannot be less than 
the error contained in the original data. Models with reported fit greater than this are 
overfitted and their performance measures do not reflect true predictive capacity.  In 
general, as much data as possible should be available, there is less uncertainty, or at least 
that uncertainty can be better quantified. 

To be exact,  all recorded data involves uncertainty in some neighborhood, and the real 
measured values are really somewhere inside a certain interval, with a width depending on 
the accuracy of the measurement procedure. It has to be noted that we are not speaking 
about a probability, but about some kind of likelihood that certain crisp value is being 
obtained [Zadeh, 1995]. Thus, the use of single values (means, for example, or maximum 
and minimum values), although it implies a quick and sometimes convenient way of 
calculation or completion of registers with missing values, it is often simplistic and it 
should be corrected with appropriate safety values. The statistical approach of subjectively 
attributing probabilities to the inaccuracies many times gives the problem an artificial 
character, involving a high degree of randomness and runs the clear risk of inventing 
information about unknown distributions. 

An appropriate conceptual tool for this type of data is the theory of fuzzy sets [Zadeh, 
1965]. Many environmental research works make use of fuzzy logic to model uncertainty 
(see [Bazartseren et al., 2003; Juang, 2003; Oh and Pedrycz, 2004; Kuncheva et al., 2000; 
Faye et al., 2003; Izquierdo et al., 2006], among others). 

 
 
2.6. Transformation and Creation of Variables 
 
Sometimes transformation of variables may assist analysis. For example, normality may be 
forced when using ANOVA or, for ease of interpretation, variables with a large number of 
categorical labels can be grouped according to expert knowledge. Under some 
circumstances, discretization of continuous variables is appropriate (eg Age into Child 
under 18 years, Adult between 18 and 65 years, Elderly over 65 years). In fact, in real 
applications it is quite common to globally discretize any numeric attributes before 
applying learning algorithms to datasets, since a number of them cannot handle numeric 
attributes directly. In these cases prior discretization is essential. Even if it can, prior 
discretization often accelerates induction, and may produce simpler and more accurate 
classifiers. As it is generally done, global discretization denies the learning algorithm any 
chance of taking advantage of the ordering information implicit in numeric attributes. 
However, a simple transformation of discretized data preserves this information in a form 
that learners can use. In (Frank et alt, 99) it is shown that, compared to using the discretized 
data directly, this transformation significantly increases the accuracy of decision trees built 
by C4.5, decision lists built by PART, and decision tables built using the wrapper method, 
on several benchmark datasets. Moreover, it can significantly reduce the size of the 
resulting classifiers. This simple technique makes global discretization an even more useful 
tool for data preprocessing. 

 
Noise is often a critical issue, and especially with environmental data some bias may exist 
that can be removed with a filter. Transformations should always be justified and 
documented, and the biases that may be introduced noted (Gibert and Sonicki 1999). 
Interpretability of transformed variables should be kept.  
 
Creation of additional variables is also used in KDD. Here, expert knowledge is usually the 
guide. Exploratory variable creation without such assistance is almost always prohibitively 
time consuming, and as noted, may obfuscate physical interpretation and exacerbate noise. 
Efficient techniques for data reduction, however, do exist and are well used.  
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 However, avoidance of unnecessary transformations is recommended, especially if the 
transformation decreases interpretability (for example Y = log(streamflow), although Y is 
normal). If transformations are definitely required, some bias may be introduced into the 
results; thus, it is convenient to minimize arbitrariness of the transformation as much as 
possible (in recoding Age, Adult may be defined from 18 to 65 or from 15 to 70), and this 
implies that the goals of the analysis must also be taken into account. For arithmetic 
transformations, imputation of missing data before the transformation is thought to be 
better. Note that where data is numerical and the scales changes between variables, 
normalization may be necessary.  
 
Finally, a good practice is to select a data mining technique that fits well on the target 
phenomenon and the kind of available data, instead of adopting the approach of strongly 
transform the data till it fits on the technical assumptions of the preferred data mining 
technique, in spite of loosing interpretability, or introducing arbitrariness. This means that if 
data is non-normal, it is better to see, first of all, if there exist a data mining technique 
suitable for this purpose which does not requires the normality to be applied; or this means 
that an alternative to ID3 should be used if data is numeric, instead of forcing discretization. 
 
2.7. Data Reduction and Projection  
 
When the number of variables is too high to deal with in a reasonable way, which is not 
unusual in data mining context, a data reduction method can be applied.  Either Data 
Projection or Feature Selection methods are suitable possibilities in these cases. 
 
2.7.1. Data projection 

This may be accomplished by eliminating some variables wholesale, or projecting the 
feature space of the original problem into a reduced fictitious space, with fewer dimensions. 
Principal Components Analysis (PCA) (Dillon and Goldstein 1984) is one of the best 
known techniques used for the latter purpose. Each principal component is a linear 
combination of the original variables, and the aim is to work with a reduced set of these, 
such that the loss of information is not relevant. Thus, Principal Component Analysis is 
suitable for synthesizing an original set of numerical variables into a small number of 
fictitious variables conserving as much information as possible from original dataset. 
Equivalent techniques are available for qualitative data, like multiple correspondence 
analysis (Lebart et al. 1984; Dillon and Goldstein 1984).  However, it has to be taken into 
account that in most cases, interpretation of the new variables (or factors) may not be clear, 
and if this is the case, there will be implications for understandability of the final results.  

 
2.7.2. Feature Selection and Feature Weighting 
 
Datasets may contain irrelevant or redundant variables (Gibert et al. 2008). As previously 
stated, the quality of discovered knowledge is usually dependant on the quality of the data 
that they operate on. Also, the success of some learning schemes, in their attempts to 
construct models of data, hinges on the reliable identification of a small set of highly 
predictive attributes. The inclusion of irrelevant, redundant and noisy attributes in the 
model building process phase can result in poor predictive performance and increased 
computation. 

 

Feature subset selectors are algorithms that attempt to identify and remove as much 
irrelevant and redundant information as possible prior to learning or knowledge discovery. 
Feature subset selection can result in enhanced performance, a reduced hypothesis search 
space, and, in some cases, reduced storage requirement. Automated techniques for 
identifying and removing unhelpful or redundant variables usually take one of two forms: 
direct examination of the relevance of candidate variables, or searching the best 
combination of attributes in terms of model performance and feedback. The former are 
called filters and the latter wrappers (see Hall 1999 for details). For a survey of common 

1944



K. Gibert / On the role of pre and post processing in environmental data mining 
 

 

feature selection techniques, see Molina et al. (2002). Usually, analyzing the feature subset 
selection provides better results than analyzing the complete set of variables (Andrew 
1998). 

 

However, attribute selection generally involves a combination of search and attribute utility 
estimation plus evaluation with respect to specific learning schemes. This leads to a large 
number of possible permutations where very few benchmark studies have been conducted. 
In (Andrew et al. 2003)  a benchmark comparison of several attribute selection methods for 
supervised classification is presented. All the methods produce an attribute ranking, a 
useful devise for isolating the individual merit of an attribute. Attribute selection is 
achieved by cross-validating the attribute rankings with respect to a classification learner to 
find the best attributes. Results are reported for a selection of standard data sets and two 
diverse learning schemes C4.5 and naive Bayes. 

 
Other techniques are based on feature weighting (see for example Aha 1998 and Núñez 
et al. 2003), which is a more general and flexible approach than feature selection. The aim 
is to assign a degree of relevance (a weight) to each attribute. Similarities (or 
dissimilarities) become emphasized according to the relevance of the attribute, and 
irrelevant attributes will not influence the results, so quality of inductive learning improves.  
 
Feature weight assignment is frequently used to denote the relevance of attributes in 
similarity computations. When some attributes are irrelevant for the prediction task, the 
appropriate weight learning could improve the data mining process [Aha, 1998]. Empiric 
works [Wettschereck et al., 1997] and theoretical ones [Langley and Iba, 1993], suggest 
that the learning complexity is exponential regarding the number of irrelevant attributes. 
Therefore, the failures in the data mining process could be related to a similarity model, and 
in particular, with an incorrect weight assignment methodology.  

 

In recent years, a great deal of research research works has been done in feature weight 
assignment. The main goal is to assign high weights to attributes that are identified as 
relevant, and at the same time, to assign low weights to those that are irrelevant. Most of 
the methods of weight assignment use a global scheme, that is, they associate a weight to 
the whole space of the attribute. In [Wettschereck et al., 1997] a conceptual framework for 
the weight assignment methods classification is presented, considering bias from the 
performance algorithm (wrapper) [Kohavi and John, 1998] or not (filter), previous 
transformations of data before analyzing relevance, if the relevance of an attribute is 
invariant or not all along the domain, or if they require domain specific knowledge. A 
comprehensive review of feature weighting algorithms can be found in [Núñez, 2004]. 

 
Although the weight assignment improves the accuracy in classification and retrieval tasks, 
feature selection is vital to reduce the dimensionality in learning tasks, completely 
eliminating irrelevant attributes (Martorell et al.2007). In general, feature weighting is more 
appropriate for tasks where features vary in their relevance, but such methods search larger 
spaces of weight assignments. On the other hand, feature selection algorithms perform 
better when the features used to describe instances are either highly correlated with the 
class label or completely irrelevant. 

 
 
2.8. Hybrid approach 
 
Frequently, data-driven (either stochastic or connectionist, among others) models are 
accused of lack of understandability (black boxes) because of the substantial drawback they 
exhibit: they are synthesized ONLY on the available data, with no detailed information of 
the underlying process. As a consequence, in prediction and extrapolation tasks and 
especially when data are noisy or sparse, they sometimes are inadequate and inaccurate. It 
is thus reasonable to argue that DM techniques should be used not only to replace 
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knowledge-based models but also to complement them and produce so-called hybrid 
models. Integration of both deterministic (numerical) and stochastic (data-driven), or logic 
(qualitative) models presumably should provide more accurate predictions and cope better 
with uncertainty, non-normality, non-linearity, or even with the original nature of data. It 
appears clearly more sensible to use the already available deterministic information given 
by the very well-known theory-driven models than stubbornly starting from the scratch, 
throwing away all knowledge, trying to use a data-driven model alone. Also, it seems better 
to take advantage of the precision of a numerical variable than discretizing all numerical 
ones to use a machine learning method for qualitative variables. This approach should also 
appear more appealing to scientists that have been working for years with theory-driven 
models who will be reluctant to sink all their precious knowledge into oblivion. From a 
conceptual point of view, this approach takes into account that (environmental) complexity 
comes not only from the system but also from outer perturbations producing stochastic 
influences (noise). A number of papers using hybrid modeling in different areas, in 
particular environmental modeling, can be quoted (Espert et al. (1999), Vojinovic et al. 
(2003), Krasnopolsky et al. (2006), Chercassky et al. (2006), Izquierdo et al. (2006), 
Izquierdo et al. (2008)). It can be foreseen that computational intelligence (machine 
learning) will be used not only for building data-driven models, but also for building 
optimal adaptive model structures of such hybrid models. Combining Artificial Intelligence 
techniques with Statistical ones can also improve the quality of discovered knowledge 
(Gibert et al.2005a, Pérez-Bonilla et al.2007, Gibert et al.2007). 
 
 
 
3. THE ROLE OF POST PROCESSING 
 
Apart from the important role of preprocessing, together with the correct selection of the 
data mining technique which will really answer the target questions, there is an important 
job to be done between getting the results of the data mining techniques and using them to 
support decision-making: to understand the results. 
 
Indeed, the quality of decisions taken upon KDD results, depend not only on the quality of 
the results itself, but on the capacity of the system to communicate those results in an 
understandable form to the decision maker. 

The software tools used for applying the DM techniques to a data set use to produce long 
listings plenty of results that may be useful in any particular application. The closer to 
statistical packages the software, the longer and more complex the output with more 
numerical information displayed. However, given a particular real case, not all this 
information is useful. Moreover, the major part is irrelevant. Thus, it is important to: 

• Identify the relevant information from the software outputs, depending on the aims of 
every particular analysis. For example, from a regression analysis, it may be irrelevant 
to the environmental expert to know the exact value of h_i indexes, but from this 
information, the set of influential observations that have to be carefully analyzed 
should be reported. 

• Find the best way to present the selected results to the user in such a way that it 
becomes directly understandable, given that the final user does not know the technical 
details of the Data Mining method used. So, probably, from the results of a logistic 
regression, it is more interesting to provide the interpretation of the estimated 
coefficients rather than the logistic equation itself. 

As an example, consider an application where clustering is applied as the most suitable data 
mining technique, regarding the goals of the analysis. Most of the software implementing 
clustering algorithms provides information about the number of clusters discovered, and the 
set of objects belonging to every one of the clusters. Upon these results, the experts need to 
understand the underlying clustering criteria as well as the meaning of the classes 
themselves. In data mining contexts where the number of classes increases, and the number 
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of variables is high, tools that help the user to postprocess the clustering results till the 
conceptualization of the classes are very useful. In (Gibert et al.2005b) the Class Panel 
Graph (CPG) is presented as an integrated graphical tool that provides a perspective of the 
whole data set regarding the previously discovered classes, in such a way that identification 
of variables with particular behaviours in every class is easy. Figure 2 shows the aspect of a 
CPG which can display either histograms conditioned to the classes, or boxplots (and bar 
charts for qualitative variables). 
 
 
The CPG supports the interpretation of the results as well as the process of conceptualizing 
the classes. The authors are not aware that commercial software offer facilities to show in a 
single integrated graph the behaviour of as many variables as possible. Also, in Pérez-
Bonilla (2007) a methodology that automatically induces concepts from classes is presented 
(CCCS) in such a way that the interpretation of classes performed by the expert becomes 
easier on the basis of some preliminary concepts suggested by the system. Either the CPG 
as the CCCS methodology are implemented in the KLASS software, which will be 
presented below. Also, in a clustering context, it may be useful to display the prototypes of 
the classes in a 2-D or 3-D scatterplot of numerical variables (Gibert et al.2006), as 
implemented in the GESCONDA software, also described below. 
 
 
As another case, let us consider here the classification tasks. Among the algorithms solving 
those taks, those that inductively construct decision trees are found. Other approaches using 
neural networks, evolutionary algorithms or Bayesian networks are also applied to solve the 
classification problem. Most of these algorithms work as black box approaches. As a result, 
it is often difficult to understand the decision model. 
 
Visualization techniques can help to overcome these problems. One of them, for example 
used by SGIs MineSet sytem (Brunk et al., 1997), shows a scheme of the decision tree and 
allows the user to select among important parameters of the model. The user interactively 
can select different attributes and understand the model. In (Ankerst et al., 2000) a more 
sophisticated approach is used:  each attribute value is shown by a colored pixel and all of 
them are arranged in bars; then the pixels corresponding to each attribute bar are sorted 
separately and the attribute exhibiting the purest value distribution is chosen to split the 
decision tree; the process is iteratively repeated until all leaves correspond to pure classes. 
In addition, information like number of training patterns corresponding to one node, purity 
of partitions, etc. can complete the picture. 
 
 
In general, many tools are available to post process the results of many different data 
mining techniques, such as decision trees, neural nets, statistical modelling, etc. This paper 
do not pretends to be exhautive, but to provide an overview of the importance of inserting 
this kind of tools inside the methodology to make knowledge discovery more fruitful. 
 
 
4.1. Weka 

 

The Weka workbench (Witten and Frank 2005) contains a collection of visualization tools 
and algorithms for data analysis and predictive modelling, together with graphical user 
interfaces for easy access to this functionality. A command line interface is also included, 
for larger scale processing. It was originally designed as a tool for analyzing data from 
agricultural domains but is now used in many different application areas, largely for  
educational purposes and research. The main strengths of Weka are that it is (a) freely 
available under the GNU General Public License, (b) very portable because it is fully 
implemented in the Java programming language and thus runs on almost any computing 
platform, (c) contains a comprehensive collection of data preprocessing and modelling 
techniques, and (d) is easy to use by a novice due to the graphical user interfaces it 
contains. 
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Figure 2: Example of CPG where it can be seen that group T7 contains elements with 
lower values on variable Q-E (inflow of a WWTP), group T15 contains elements with 

greater values of DQO-E (chemical organic matter). 
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Pre-processing in Weka is mainly achieved with filters. The idea is to pass data through the 
filter in order to affect some form of transformation. Two general types of filter are 
provided, supervised and unsupervised. Supervised filters use class information to affect the 
transformation while unsupervised filters are class-blind. Beyond that filters work on data 
either at the instance (ie example level) or the attribute level. Thus there are four types of 
filter:  

 

Supervised attribute: providing operations for selecting the attributes more correlated with a 
class (Attribute Selection) or some coercions (Discretize, NominalToBinary) or reordering 
(ClassOrder). Also PLSfilter is a specialised filter particularly useful in spectral 
applications where attribute co-linearity is expected. 

 

Supervised instance: These filters mainly support experimentation or down-sampling of a 
problem (Resample, SpreadSubsample or StratifiesRemoveFolds). They work on the entire 
set of instances in a dataset. 

 

Unsupervised attribute: The bulk of the available filters in Weka are of this type, including 
operations to add columns to the data set, either with a new attribute (Add, Copy, 
ClusterMembership, FirstOrder), an identifier (AddID)  or a new partition (AddCluster) or 
combining existing attributes (AddExpression), or transforming them (Normalize, 
Standardize, Discretize, PKDiscretize, MergeTwoValues, NumericToBinary, 
NumericToNominal, NominalToBinary, NumericTransform, StringtoNominal, 
StringToWordVector, Center, Wavelet, ChangeDateFormat, SwapValues, MathExpression, 
Obfuscate),  to change some of the rows of a given column (NumericCleaner –for extreme 
values, AddNoise, AddValues, ReplaceMissingValues) or to mark some rows of a given 
column (Interquartile Range). Also, operations to eliminate some columns of the data set 
(Remove, RemoveType, RemoveUseless) or operations for creating derivative datasets 
from the original one (KernelFilter, MakeIndicator, PartitioneMultifilter, 
RandomProjection, TimeSeriesDelta, TimeSeriesTranslate, ) 

 

Unsupervised instance: Including filters to Normalize variables, transform to a sparse 
format NonSparseToSparse, produce random subsamples with or without replacement 
Resample,  randomly reorder the set of instances (Randomize), or to remove subsets of 
instances under different criteria (RemoveFrequentValues of a nominal attribute, 
RemovePercentage, RemoveRange, RemoveWithValues, RemoveFolds)  

 
4.2.  Preprocessing with SPSS 
 
Pre-processing techniques in SPSS range from plain detection and correction of data errors 
made at the introduction stage, to sophisticated transformations, including re-codification 
performed on one or several variables or the creation of new variables from other already 
existing ones. SPSS provides the nice possibility of apply transformations and re-
codifications either to the whole set of data or to a predefined subset (by using the select 
cases option)  Also, sometimes it is necessary to change the order, to merge different files 
or to select specific cases for analysis. Another need, which is frequent in the case of 
working with real data bases, comes from the fact that files are not suitably organized. 
SPSS provides tools for all these tasks.  
 
The menu Transform, in the SPSS’s main menu bar, includes a number of options 
allowing a number of transformations: 

Computing variables allows calculating values for a variable based on numeric 
transformations of other variables. 

Count Occurrences creates a variable that counts the occurrences of the same value(s) 
in a list of variables. 
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Recoding values allows data values modifications by recoding them. It is particularly 
useful for collapsing or combining categories. Values can be recoded into existing 
variables or, alternatively, new variables can be created to recode values of 
existing variables. 

Rank cases allows creating new variables containing ranks, normal scores and 
percentile values for numeric variables. The Automatic Recode option allows 
converting string and numeric values into consecutive integer numbers. 

Missing values in functions make it possible to treat missing values in different ways. 
 
Data files are not always organized in the ideal form for some specific needs. A wide range 
of file handling and transformation capabilities is available. Among them: 
Sort cases that sorts rows based on the value or one or more variables. 
Transpose cases and variables creates a new data file with rows into columns and vice 
versa. 
Aggregate data aggregates groups of cases in the active dataset into single cases and 
creates a new file or new variables in the active data set. 
Select subsets of cases allows the analysis to be restricted to a subset of cases or perform 
simultaneous analyses on different subsets. 
Weight data weights cases for analyses based on the value of a weight variable. It is 
particularly useful to build contingency matrices. 
Restructure data can create a single case from multiple cases or create multiple cases from 
a single one. 
 
Some other additional data preparation features can be found in the Data Preparation 
(Data Validation in older versions) module. It allows creating reports, charts and analyses 
without additional preliminary work. Among other tasks, one can determine how certain 
values should be treated by assigning variable properties that describe the data, identify 
anomalies such as missing values, outliers, duplicate information, or create new variables 
with a lower number of categories to represent ranges of values from variables with larger 
number of possible values. 
 
 
4.3. Preprocessing and postprocessing in GESCONDA 

 

GESCONDA (Gibert et al.2006) is the name given to an Intelligent Data Analysis System 
developed with the aim of facilitating Knowledge Discovery (KD) and especially oriented 
to environmental databases. On the basis of previous experiences, it was designed to 
include extensive preprocessing tools: data cleaning, missing data management, outlier 
analysis and treatment, statistical univariate analysis, statistical bivariate analysis, 
visualization tools, attribute or variable transformation facility, including discretizations, 
recodifications and creations of new variables, feature weighting for supervised and 
unsupervised data sets (Gibert et al.2006b). Portability of the software between platforms is 
provided by a common Java platform. 

 

GESCONDA contains a postprocessing module including tools for validation of the results 
of different data mining techniques, such as results from clustering (scatter plot of pairs of 
numerical variables, marked by class and superimposing the position of class prototypes, 
rates of missclassification if a reference partition is available), rule induction (eliminating 
low precision rules, evaluate an inducted rules base over a test set and estimate the quality 
of the rule base), etc. 

integration of different knowledge patterns for a predictive task, or planning, or system 
supervision, together with AI and statistics mixed techniques, consideration of knowledge 
use by end-users. 
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4.4. Pre and post processing in KLASS 

 

KLASS (Gibert et al.2005b) is a software package originally conceived for Knowledge 
Discovery (KD) in real domains with complex structure (Gibert et al.1999). It provides a 
mixture of statistical and artificial intelligence tools to support KD, including basic 
statistics and providing an integrated system to support the whole process of KDD 
including pre and post processing, provided that the main data mining technique to be used 
is related with clustering or rule induction.  
 
Regarding preprocessing, KLASS offers functionalities for basic statistics (simple or by 
groups), histograms, boxplots (side-by-side), (letter)plots, cross-tables. The performance of 
the system is quite high, since the user has control over many parameters of the graphics 
(like the number of classes of a histogram, or the limits of the axis of a plot), providing a 
very flexible tool. It also offers a complete module of data management, including missing 
data treatment, creation of transformed variables either using mathematical expressions or 
via recodification or discretization (here the Boxplot based discretization is provided, which 
discretizes the numerical variable in such a way that the resulting qualitative variable 
maximizes association degree with a previously discovered class variable, Pérez-Bonilla et 
al.2007). Construction of a prior expert knowledge base (which can be non-complete) is 
also available and it can be used to bias a posterior clustering process, by means of the 
Clustering Based on Rules option (Gibert et al.1999), in such a way that the final classes 
hold the semantic constraints expressed by the rules. 
 
Regarding the postprocessing, Klass offers some interesting tools to support the 
interpretation of a clustering results, apart from the classical representation of the 
dendrogram; It also provides the Class Panel Graph (Gibert et al.2005), which is a very 
interesting possibility in clustering contexts to understand better the meaning of the classes. 
It also implements the CCCS methodology (Pérez-Bonilla 2007) for assigning concepts to 
every class, improving even more the support to the understanding of the results. There is 
also a function for visualizing knowledge bases, containing probabilities or not, and 
selecting the rules with degrees of certainty over a certain threshold. 
 
One of the particularities of the system is that it is designed in such a way that the outputs, 
either graphical or numerical or textual, are produced in LaTeX font files, which are 
directly processed by the kernel of KLASS and automatically sent to the LaTeX viewer and 
displayed on the screen. From the final user point of view, this makes no difference with 
other systems, since graphical representations are directly displayed on the screen as well as 
other results. However, as reporting the results of the KDD process is always involved with 
the elaboration of technical papers, KLASS also includes a reporting facility in such a way 
that the user can specify a set of steps to be performed sequentially and a single big LaTeX 
document including all the results is produced. The user only needs to edit this document 
and add personal comments on it to get a complete report of the analysis. KLASS provides 
either standard or personalized reports. It is a flexible possibility since it is possible to 
automatically transform every result of the single steps into PostScript or PDF documents, 
which can be managed as usual, for example, pasting it into a Word document. 
 
If the document to be produced is long, with a complex structure and contains hard 
mathematical notation, LaTeX offers nice advantages and the LaTeX results provided by 
KLASS are really useful. In this case, LaTeX is a widely used text processor, owing to the 
excellent support it provides to the generation of high quality mathematical formulae and 
scientific notation. However, including graphical representations from commercial 
statistical packages in a LaTeX document requires the use of special LaTeX packages to 
deal with graphical formats and makes a little bit more complicate the elaboration of the 
document, which requires transformation to PostScript or PDF to be completely visualized. 
Since the results of KLASS are produced in native LaTex code, inclusion of those graphics 
in the final report becomes trivial. 
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On the other hand, making the native LaTeX code accessible to the user permits the user to 
adjust labels or size of the titles of graphical representations. In this way, the quality of the 
image is maintained to its final use. 
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