
i

Master Degree Program in

Information Management

Radar Emitter Classification based on Deep Ensemble

Tiago Pedro Giesta Martins

Dissertation

 presented as partial requirement for obtaining the Master Degree Program in Information Management

NOVA Information Management School
Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

MGI

i

NOVA Information Management School

Instituto Superior de Estatística e Gestão de Informação

Universidade Nova de Lisboa

RADAR EMITTER CLASSIFICATION BASED ON DEEP ENSEMBLE

By

Tiago Pedro Giesta Martins

Master Thesis presented as partial requirement for obtaining the Master’s degree in Information

Management, with a specialization in Business Intelligence.

Supervisor: Roberto André Pereira Henriques

 July 2023

ii

STATEMENT OF INTEGRITY

I hereby declare having conducted this academic work with integrity. I confirm that I have not used

plagiarism or any form of undue use of information or falsification of results along the process leading

to its elaboration. I further declare that I have fully acknowledge the Rules of Conduct and Code of

Honor from the NOVA Information Management School.

Lisboa, July 05, 2023

iii

DEDICATION

To my family, who has always supported me and without them nothing could be accomplished.
Thank You!

iv

ACKNOWLEDGEMENTS

I would like to start by thanking the Portuguese Navy for giving me the chance to complete a master

program in Information Management. Focusing the present project, a big thank you to Eng. Michiel

Poel (Royal Netherlands Navy), who have provided all the data used, and Eng. Adam Leitch (Thales UK)

for giving me all the necessary explanations about Electronic Support Measurement. Finally, I would

like to express gratitude to my supervisor.

v

ABSTRACT

Electronic Support Measures (ESM) systems are designed to classify radar signals, providing

information about the presence of threats. This function aids in battlefield situational awareness and

the commander's decision on which countermeasures to employ. This dissertation aims to develop a

deep ensemble model, recognizing the importance of a fast and precise classification based on a deep

forest as an alternative to the parameter matching method. Four deep ensemble models and six of its

base learners were built and evaluated to classify 52 emitters, using seven train/test datasets and two

test datasets with noise, totalling 420 measurements of accuracy and classification speed. After

analyzing these results, two deep ensemble models and their base learners were optimized, each for

a different dataset, achieving 100% accuracy in a feature-engineered dataset and up to 98.358% in the

original dataset. Regarding classification speed, the fastest models can classify 1000 records in 64ms,

which may be acceptable in the real world. The experimental results of this approach reveal several

advantages, making it a feasible alternative, including reduced dependency on ESM experts, ease of

maintenance, quick to update, and high accuracy.

KEYWORDS

Ensemble methods; Deep architecture; Electronic Support Measures; Classification

Sustainable Development Goals (SDG):

vi

INDEX

1. Introduction .. 1

2. Literature review .. 6

2.1. Cascade Generalization ... 6

2.2. Deep Super Learner ... 6

2.2.1. Base Learner ... 6

2.2.2. Deep model .. 8

2.2.3. Application example ... 10

2.3. Deep SVM .. 10

2.4. Deep Forest ... 12

2.4.1. New versions .. 13

2.4.2. Application example ... 18

3. Methodology .. 19

3.1. Design Science Research ... 19

3.2. Design Science Research Methodology... 23

3.2.1. Dataset and resources .. 25

4. Empirical Study ... 26

4.1. Dataset preparation .. 26

4.2. Data exploration and data cleaning .. 26

4.2.1. Data exploration ... 26

4.2.2. Data cleaning .. 28

4.3. Feature engineering .. 29

4.4. Model build and optimization ... 32

4.4.1. Model optimization .. 33

4.5. Evaluate and compare ... 34

4.5.1. Evaluate optimization ... 36

4.6. Resources... 39

5. Results and discussion .. 40

6. Conclusions and future works .. 45

Bibliographical References .. 47

Appendix.. 52

A.1. PDW dataset - violin plots of continuous features by emitter 52

A.2. PDW dataset - categorical features relation with emitter 56

A.3. Optimized DF-SL confusion matrix .. 57

vii

A.4. Optimized super learner confusion matrix ... 60

A.5. Models’ performance across all datasets ... 63

viii

LIST OF FIGURES

Figure 1.1 - Ground radar and its environment (Meikle, 2008, p. 1) ... 1

Figure 1.2 - Illustration of transmission of a pulse (Sebastian, 2017, p. 9) 1

Figure 1.3 - Examples of different PRI modulations (Revillon, 2019, p. 55) 2

Figure 1.4 - Electronic Warfare divisions (Aldossary, 2017, p. 8) .. 3

Figure 1.5 - General block diagram of radar ESM data processing .. 4

Figure 2.1 - Overall procedure of Super Learner (Laan et al., 2007) ... 7

Figure 2.2 - Overall procedure of Deep Super Learner (Young et al., 2018, p. 87).................... 9

Figure 2.3 - Ensemble of D-SVM (Abdullah et al., 2009, p. 303) .. 11

Figure 2.4 - Structure of deep SVM (Kim et al., 2015, p. 23) ... 11

Figure 2.5 - Overall procedure of Deep Forest (Z.-H. Zhou & Feng, 2017, p. 3555) 13

Figure 2.6 - Overall procedure of BCDForest (Guo et al., 2018, p. 6) 14

Figure 2.7 - Illustration of gcForestCS (Pang et al., 2018, p. 1195) .. 15

Figure 2.8 - Overall procedure of PSForest (Ni & Kao, 2020, p. 775) 15

Figure 2.9 - Illustration of hiDF (Y.-H. Chen et al., 2021, p. 1031) ... 16

Figure 2.10 - Illustration of DBC-Forest (Ma, Wu, Li, Guo, & Li, 2022, p. 115) 16

Figure 2.11 - Overall procedure of HW-Forest (Ma, Wu, Li, Guo, Jiang, et al., 2022, p. 10) ... 17

Figure 2.12 - Overall procedure of gcForestS (Pang et al., 2022, p. 4303) 17

Figure 3.1 - IS research framework (Hevner et al., 2004, p. 80) .. 19

Figure 3.2 - DSRM process model (Peffers et al., 2007, p. 54) ... 21

Figure 3.3 - DS research knowledge contribution framework (Gregor & Hevner, 2013, p. 345)

 .. 22

Figure 4.1 - PDW dataset descriptive statistics .. 27

Figure 4.2 - Continuous features evolution overtime .. 28

Figure 4.3 - Continuous features distribution .. 29

Figure 4.4 - Datasets produced .. 32

Figure 5.1 - Models' performance on the test dataset .. 40

Figure 5.2 - Models' performance on Gaussian noise dataset .. 40

Figure 5.3 - Models' performance on Uniform noise dataset .. 41

Figure 5.4 - Comparison of models’ performance ... 42

ix

LIST OF TABLES

Table 2.1 - Comparison of accuracy between models on six datasets 18

Table 3.1 - DSRM activities relation with chapters .. 23

Table 4.1 - List of features .. 30

Table 4.2 - Datasets shape ... 33

Table 4.3 - Models’ performance on train/test dataset .. 34

Table 4.4 - Models’ performance on Gaussian noise dataset .. 35

Table 4.5 - Models’ performance on Uniform noise dataset ... 35

Table 4.6 - DF and base learners’ performance with four features ... 37

Table 4.7 - DF-SL and super learner performance with five features 37

Table 4.8 - DF-SL and super learner performance with three features 37

Table 4.9 - Super Learner accuracy over fold and loss function .. 38

Table 4.10 - DF-SL accuracy over base learner quantity .. 38

Table 4.11 - Optimized models performance .. 38

Table 4.12 - Summary of software ... 39

Table 5.1 - Average model prediction time .. 41

Table 5.2 - Accuracy of previous research ... 43

x

LIST OF ABBREVIATIONS AND ACRONYMS

AMOP Amplitude MOP

ANN Artificial Neural Network

CNN Convolutional Neural Network

CPON Class Probability Output Network

CRISP-DM Cross Industry Standard Process for Data Mining

CW Continuous Wave

D-SVM Deep Support Vector Machine

DOA Direction of Arrival

DS Design Science

DSRM Design Science Research Methodology

EA Electronic Attack

EP Electronic Protection

ES Electronic Support

ESM Electronic Support Measures

EW Electronic Warfare

ExTrees Extremely Randomized Trees

FMOP Frequency MOP

GBDT Gradient Boost Decision Tree

GMM Gaussian Mixture Model

HRRP High-resolution range profile

IS Information System

KDD Knowledge Discovery in Databases

KNN K-Nearest Neighbor

LASSO Least Absolute Shrinkage and Selection Operator

LPI Low Probability of Intercepts

LSTM Long Short-Term Memory

xi

MARS Multivariate Adaptive Regression Splines

MLP Multi-layer Perceptron

MOP Modulation on Pulse

PCA Principal Component Analysis

PDW Pulse Descriptor Word

PMOP Phase MOP

POP Pulse On Pulse

POPed Pulse On Pulse, interrupted pulse

PRF Pulse Repetition Frequency

PRI Pulse Repetition Interval

PRT Pulse Repetition Time

PW Pulse Width

RADAR Radio Detecting and Ranging

RESM Radar ESM

RF Radiofrequency

RFE Recursive Feature Elimination

RNN Recurrent Neural Network

SAR Synthetic Aperture Radar

SDG Sustainable Development Goals

SEMMA Sampling, Exploring, Modifying, Modelling, and Assessing

SGD Stochastic Gradient Descent

SIGINT Signal Intelligence

SMOTE Synthetic Minority Oversampling Technique

SOM Self Organizing Maps

SVM Support Vector Machine

TOA Time of Arrival

XGBoost Extreme Gradient Boost

1

1. INTRODUCTION

A radar (radio detecting and ranging) illuminates its surroundings, like a searchlight, and picks up part

of the energy scattered by the objects it illuminates, as shown in Figure 1.1 (Meikle, 2008).

Considering a pulse radar, the energy is transmitted by short pulses of electromagnetic energy in the

radiofrequency (RF) spectrum, which are reflected when it hits an object. The reflected pulses are used

to determine the direction and distance of that object (Sebastian, 2017).

Figure 1.1 - Ground radar and its environment (Meikle, 2008, p. 1)

The time between two consecutive transmitted pulses is named Pulse Repetition Time (PRT) or Pulse

Repetition Interval (PRI), and the number of pulses transmitted per second is called Pulse Repetition

Frequency (PRF). Another essential characteristic of radar is each transmission's Pulse Width (PW), as

represented in Figure 1.2 (Sebastian, 2017). Furthermore, the energy delivered to a target is

determined by the product of PW with the transmitter output power (height of a pulse) (Revillon,

2019).

Figure 1.2 - Illustration of transmission of a pulse (Sebastian, 2017, p. 9)

2

These characteristics, mainly RF and PRI, can be fixed or modulated pulse-to-pulse; that is, they can

have the same parameter overtime or change from one pulse to another. When a radar can change

RF, it is said to have frequency agility or hopping. A radar is frequency agile if its modulation varies

within fixed bounds around a central frequency; in the case of frequency hopping, the frequency has

a systematic variation on a set of different frequencies. Regarding PRI, it can have the following

modulations, as shown in Figure 1.3: Constant, when it has a fixed value; Slide, when the value is

linearly sliding; Dwell and Switch, when the value is fixed for a number n of pulses and then changes;

Stagger, when an n number of pulses, with different values, have a periodic sequence; Wobble, when

the values have a periodic pattern, usually a sinus or a triangular wave; or Jitter, when the value is

randomly generated, usually with a normal distribution (Revillon, 2019).

Figure 1.3 - Examples of different PRI modulations (Revillon, 2019, p. 55)

Typically, a radar signal is conceived as a pulse-to-pulse modulation to perform a specific role, such as

missile guidance, surveillance, short-range tracking or other. Besides pulse radars, Continuous Wave

(CW) radars also play significant roles. The main difference is that a CW radar continuously transmits

a (fixed) high-frequency signal while processing the received echoes. As there are no pulses, it can only

measure the target speed and not its distance. Though frequency-modulated CW radars can measure

distance, as transmitting frequency is constantly shifting, the frequency can be extracted from the echo

and, knowing when that particular frequency was sent out in the past, distance can be calculated

(Revillon, 2019).

Electronic Warfare (EW) aims to react to threats detected in the electromagnetic spectrum. EW can be

divided into three sectors: Electronic Attack (EA), Electronic Support (ES), and Electronic Protection

(EP). While the aim of attack and protection is implied, support requires further detail – it comprises

actions to search, intercept, identify and locate emitters. ES can be divided into Signal Intelligence

(SIGINT) and Electronic Support Measures (ESM) (Aldossary, 2017).

3

Figure 1.4 - Electronic Warfare divisions (Aldossary, 2017, p. 8)

ESM is the focus of this dissertation, specifically Radar ESM (RESM), whose ultimate goal is to classify

radar emitters (Aslan, 2006). To achieve it, ESM systems must intercept pulses, characterize them, and

record their characteristics in a Pulse Descriptor Word file (PDW). Some of those characteristics can be

measured based on one pulse, called monopulse parameters: RF, PW, power, direction of arrival

(DOA), and time of arrival (TOA). While others can be derived from it, such as PRI (Bildøy, 2006). In

addition, modulation on pulse (MOP) is another parameter that becomes common in the current

construction of the PDW and can be represented by a flag (Aslan, 2006). As seen previously, this

modulation can be present in frequency (FMOP) but can also be in amplitude (AMOP), phase (PMOP)

or even denote the presence of CW and other characteristics.

Before proceeding to classification, pulses are deinterleaved; this is, pulses are sorted to form pulse

cells that are assumed to belong to a specific emitter designated as a track (Gençol, 2015). The accuracy

of deinterleaving can have a significant impact on threat assessment and operations on the battlefield.

Deinterleaving algorithms can be categorized into three groups: clustering algorithms, time-based

algorithms, and combined algorithms, each with many algorithms (Aldossary, 2017). Still, as radars get

more complex, for instance, with Low Probability of Intercepts (LPI) radars, detection gets more

complicated and, consequently, the deinterleaving task.

The two main methods to classify radar emitters are the expert system method and the parameter

matching method. The expert system method develops radar signal rules based on the experts'

knowledge of radar properties. This method is known to have a low classification accuracy and a slow

classification speed. In parameter matching method, which is widely used, pulse characteristics are

directly compared with a radar parameter database, as in Figure 1.5. Although it has the advantage of

being simpler to implement and having a fast classification speed, this method is too dependent on

prior knowledge/records (J. Wang et al., 2022).

4

Receiver
Parameter

measurement

Radar signal

PDW

Deinterleaver

PDW, PRI &
Tracks

Source
classification

Radar
parameter
database

Figure 1.5 - General block diagram of radar ESM data processing

In ideal scenarios, emitters and signals are properly isolated from one another in time, frequency, and

space, allowing PDW-based classification to work well. In congested scenarios, numerous emitters are

degraded by noise, interference, fading, clutter, multipath and pulse overlap (Aslan, 2006; Buchenroth,

2015). In addition to environment and propagation degradations, the receiver has limitations, such as

instantaneous band-width, automatic gain control and sensitivity (Aldossary, 2017; Meikle, 2008).

Following these harsh conditions, several researchers have developed and applied cutting-edge

machine learning and deep learning techniques to radar classification in the last decade. Some of those

techniques are Feedforward Neural Networks (Petrov et al., 2013), Fuzzy Logic (Y. M. Chen et al., 2013),

Weighted Extreme Gradient Boost (W. Chen et al., 2017), Support Vector Machine (SVM) (Sebastian,

2017), Unidimensional Convolutional Neural Network (CNN) (Sun et al., 2018), Deep Forest (Y. Wang

et al., 2019; Zhang et al., 2020), Gaussian Mixture Model (GMM) (Revillon, 2019), Recurrent Neural

Network (RNN) and Long Short-Term Memory (LSTM) (Notaro et al., 2019), Naïve Bayes (Kvasnov,

2020; Xiao & Yan, 2020), LSTM and Markov Chain (Apfeld & Charlish, 2021), Hybrid Deep Neural

Network with dynamic CNN and LSTM (Feng et al., 2021), and Intuitionistic Fuzzy Information Tri-

training (J. Wang et al., 2022). To validate the effectiveness of previous proposed models, Relevant

Vector Machine, Deep Belief Network, Gradient Boost Decision Tree (GBDT), Extreme Gradient Boost

(XGBoost), Random Forest, Extremely Randomized Trees (ExTrees), and K-Nearest Neighbor (KNN)

have also been used. As machine learning is a data-driven discipline that comprises two essential steps,

feature extraction and model training, some studies have also proposed different feature engineering

approaches (Ahmed et al., 2018; W. Chen et al., 2017; Gençol, 2015; Notaro et al., 2019; Petrov et al.,

2013; Sun et al., 2018; Y. Zhou et al., 2020).

Deep learning is a machine learning category that employs multiple layers of processing units, where

each layer input comes from the previous layer output. Deep neural networks, an architecture of deep

learning, have been successfully applied in several fields and achieved high accuracy rates (Young et

al., 2018). Nevertheless, it also has some drawbacks: it requires large amounts of data to train, does

not converge as fast as traditional machine learning algorithms, are complicated models, requires

powerful computational facilities, has numerous hyperparameters, and the learning performance

depends seriously on careful tuning (Young et al., 2018; Z.-H. Zhou & Feng, 2017).

Zhou & Feng (2017) argue that learning models will undoubtedly need to go deep to handle complex

learning problems; however, deep models are always neural networks, with the disadvantages already

known. As traditional machine learning algorithms are relatively simple to tune and their output may

5

provide interpretable results, novel deep ensemble models based on deep learning and using machine

learning algorithms have recently been proposed (Qi et al., 2016; Young et al., 2018; Z.-H. Zhou & Feng,

2017). Moreover, following the research of Grinsztajn et al. (2022), when these algorithms are tree-

based and used on medium-sized tabular data, with and without categorical features, it outperforms

neural networks.

“Reliable and real-time identification of radar signals is of crucial importance for timely threat

detection, threat avoidance, general situation awareness and timely deployment of counter-measures”

(Petrov et al., 2013, p. 1194). Recognizing the importance of ESM classification, the novelty of deep

ensemble models, and its performance, the following research gap is considered: Classification of

emitters in PDW using a deep ensemble model. Accordingly, this study aims to develop a deep

ensemble model based on deep forest, to classify radar emitters in PDW as an alternative to standard

classification methods. Therefore, the following research question is: How can a deep ensemble model,

based on deep forest, be used to classify radar emitters in PDW of ESM systems?

Since this investigation aims to design an artifact – a deep ensemble model – a proper methodology is

required, leading to the adoption of design science research methodology (DSRM). This methodology

has six activities – problem identification and motivation, the definition of objectives for a solution,

design and development (of the artifact), demonstration, evaluation, and communication, developed

along the dissertation. In general, deep ensemble models and their base learners presented such a

competitive performance that a practical implementation may accurately classify emitters degraded

by noise while achieving the main goal – being an alternative to standard classification methods,

among other benefits and contributions.

This dissertation is divided into six chapters, beginning with the presentation of the context, main

objective and research question, a summary of the methodology, results, and contributions, and ends

with a brief description of its structure. Then, a review of deep ensemble models, pertinent base

learners, and some application studies are presented. The third chapter describes the methodology,

and the fourth chapter outlines the procedures followed from data collection to model evaluation on

different datasets. The results are then presented and analyzed, in the fifth chapter, along with a

comparison to earlier research and an evaluation of effectiveness. The final chapter summarizes

conclusions and limitations before restating the most relevant contributions and suggesting future

developments.

6

2. LITERATURE REVIEW

This chapter aims to enhance the knowledge of deep ensemble models and gain a perspective on

previous research organized chronologically.

2.1. CASCADE GENERALIZATION

The ability of an algorithm to induce a good generalization depends on the appropriateness of its

representation to express generalizations for a given task. This can be achieved in two ways: selecting

the most appropriate algorithm or combining predictions of algorithms with different search

heuristics, for instance, stacked generalization (Gama & Brazdil, 2000).

Stacked generalization refers to any scheme of forwarding information from one layer of models to

another before forming the final prediction. This is a suitable method for correcting the constituent

models' biases towards a learning set (Wolpert, 1992). In this sense, Gama & Brazdil (2000) proposed

a family of algorithms under the generic name of cascade generalization, which is considered a

particular case of stacking generalization. The basic idea of cascade generalization is to use learning

algorithms in sequence and perform the following two-step process at each iteration: first, a model is

built using base classifiers, and then the original data is extended by inserting new attributes. This is,

all classifiers have access to the original attributes (independent variables) and produce new

continuous attributes with the class probability (dependent variable), which are appended to the

original data and used on the next iteration/layer (Gama & Brazdil, 2000).

The research concluded that these models could improve the accuracy of the base classifiers but could

not state why it occurred, how many base classifiers are needed, or what classifiers to combine. It was

also concluded that in some datasets, these models could not improve the accuracy (Gama & Brazdil,

2000). In short, the authors could not predict under what circumstances cascade generalization would

improve performance.

2.2. DEEP SUPER LEARNER

The deep super learner model uses a super learning ensemble on each layer. Thus, the super learner

must be introduced prior to its cascade version.

2.2.1. Base Learner

The super learner is a stacking ensemble learner of heterogeneous base learners that uses v-fold cross-

validation to protect against overfitting and optimizes the weights of the base learners by minimizing

a loss function (Laan et al., 2007). As represented in Figure 2.1, this model works as follows:

1. Split data in equal size v-fold blocks, mutually exclusive.

2. Build and train each m-base learning algorithm on each training block.

3. Predict the class probability of the validation block for each base learner, and get a Z

matrix of v*m shape.

4. Build the minimum cross-validated risk predictor, for instance, a linear regression to find

the linear combination of the Z predictions that minimize the error against true values

Y. This function provides the weights to apply at each base learners.

7

5. Re-train each base learning algorithm on the entire dataset, represented as step 0 in

Figure 2.1, and combine their predictions by applying the cross-validated risk minimizer.

Figure 2.1 - Overall procedure of Super Learner (Laan et al., 2007)

Previous developments have shown that the super learner would theoreticaly perform asymptotically

as well or better than any of its base learners, which was verified in practice by Laan et al. (2007) –

when applied to generated dataset the super learner was able to outperform its base learner, but

when applied to diabetes dataset and to HIV-1 drug resistance dataset it wasn’t able to outperform its

base learners but also did not any worse; which prompted the researchers to claim that when a base

learner makes accurate predictions it leaves little room for the super learner to improve. Additionally,

as it is “unlikely to know apriori which candidate learner will work best, the super learner is a natural

choice for prediction” (Laan et al., 2007, p. 17).

Naimi & Balzer (2018) demonstrate the implementation of the super learner to estimate a dose-

response curve and to build a classifier for a binary outcome. Within this study, a few essential

considerations were highlighted:

▪ The number of v-fold cross-validation is critical for the super learner, and its choice is

not always clear. So, increasing the number of folds as the sample size decreases is

recommended.

▪ A wide variety of base learners can be included in the super learner, and it is

recommended to include standard parametric models along with more complex data-

adaptative models.

8

▪ Since hyperparameter tunning is a critical step in optimizing machine learning

algorithms, it is recommended to replicate the same algorithm with different parameter

values.

▪ As it is possible to choose any loss functions to determine the optimal combination of

predictions directly impacting performance, it is recommended to choose that function

based on the analysis objective.

Although this model appears large and complex, the computation cost does not exceed the

computation required to train each base learner on v-folds and the full dataset (Laan et al., 2007).

2.2.1.1. Application example

Taghizadeh-Mehrjardi et al. (2021) used the super learner to predict several soil properties, typically

obtained by measuring soil samples from related environmental covariates (groundwater data, terrain

attributes, geomorphic map, and remote sensing data). A major challenge is quantifying each

environmental covariate's importance to the final prediction. To address this issue, a model-agnostic

interpretation tool was used. Furthermore, permutation feature importance analysis was selected

mainly for its ability to rank features considering the interaction with other features.

Before modeling, to test accuracy, the dataset was randomly partitioned into two sets – 80% for

training and 20% for testing. The training dataset was then split in five-fold (step 1 of the procedure)

to train 12 base learners of the super learner: least absolute shrinkage and selection operator (LASSO),

KNN, genetic programming, adaptive-network-based fuzzy inference systems, multi-linear regression,

multivariate adaptive regression splines (MARS), support vector regression, artificial neural network

(ANN), cubist, random forest, ExTrees, and XGBoost. The selected cross-validated risk minimizer, a

meta-learner that uses the cross-validation predictions, was a generalized linear model (step 4 of the

procedure). Moreover, to compare the results, an equal-weight combiner was used (1/12).

The super learner was consistently the best model to predict all soil properties, and the equal-weight

combiner was the second. The researchers concluded that no single algorithm could be the ‘best’ for

every region and soil property. Another interesting conclusion relates to base learners’

contribution/weights for final prediction. Although the performance of most base learners varies from

one soil property to another, the multi-linear regression was consistently the worst, but it still

contributed to super learner predictions. This led researchers to conclude that super learner is

exceptionally flexible in incorporating different base learners and evaluating their individual

contributions to the final prediction.

2.2.2. Deep model

The deep super learner is an extension of the super learner ensemble, using a super learner on each

layer, with some nuances. The initial four steps are similar to the super learner, the fifth is changed,

and two additional steps are implemented (Young et al., 2018). As represented in Figure 2.2, this model

works as follows:

1. Split data in equal size k-fold blocks, mutually exclusive.

2. Build and train each m-base learning algorithm on each training block, and save the k*m

trained models.

9

3. Predict (j) classes probability of the validation block for each base learner.

4. Build and minimize a loss function on cross-validated predictions, and save the loss

function weights.

5. (Option1, as proposed in super learner) Re-train each base learning algorithm on the

entire dataset and combine their predictions. Then save the m-trained models.

(Option 2, a novel approach) Calculate the weighted average of the cross-validated

predictions for each record.

6. Append the overall predictions to the original training data.

7. Repeat the previous steps with the augmented data until the loss function value no

longer decreases and save the number of iterations.

Figure 2.2 - Overall procedure of Deep Super Learner (Young et al., 2018, p. 87)

The unseen data must pass through a similar process (of the training), using the models and weights

of each iteration to make predictions. If the base learners are trained on the entire training dataset

(option 1 of step 5), use those models to make the predictions. If the base learners are trained on k-

folds (option 2 of step 5), use each model trained on each fold to make the predictions.

Young et al. (2018) implemented a new approach in step 5, arguing that with sufficient cross-validation

folds the base learners will have enough data to train, and additional data does not improve the

goodness of fit. However, authors recommend the original approach when using few folds or when

making predictions is computationally more expensive than training, as with KNN.

In this research, Young et al. (2018) tested the deep super learner on the IMDB movie review sentiment

classification dataset and MNIST handwritten digits dataset. Deep super learner was built on three-

fold cross-validation with five heterogeneous base learners: logistic regression, KNN, random forest,

ExTrees, and XGBoost. For loss function or cross-validated risk minimizer, log loss was chosen. To

compare results, the five base learners are also tested individually, as well as three ensembles – a

stacked ensemble where the output of the base learners is fed into XGBoost, an equal-weighted

10

average of the base learners, and a super learner; plus two deep neural network architectures – multi-

layer perceptron (MLP) and a CNN. Regarding results, on the IMDB dataset, the deep super learner

finished training after the third iteration and outperformed all other models. On MNIST, the deep super

learner finished training after the fifth iteration and could not perform better than CNN. As a runtime

reference, on the IMDB dataset, deep super learner took 50 minutes to converge; 46 of those were

spent by KNN, and on MNIST took 86 minutes, where 70 of those were spent by KNN.

2.2.3. Application example

A WebShell file is an executable program written with web scripts, such as PHP, to be used as a website

backdoor. These malicious files allow attackers to obtain database information. Consequently, finding

website backdoors is essential for data security. In this sense, Ai et al. (2020) propose to use deep

super learner to detect WebShell.

This application's dataset comprises PHP files with instructions or fields for a computer program. Thus,

in data preprocessing, some feature extraction operations are executed and feature vectorization,

using Word2Vec. Then, to remove irrelevant or redundant features and keep the most effective ones,

feature selection is performed based on a genetic algorithm. Moreover, to fix dataset class imbalance,

data sampling with the synthetic minority oversampling technique (SMOTE) was implemented. The

modeling of deep super learner uses logistic regression, MLP and random forest as base learners and

sequential least squares programming to calculate the models' weight value (Ai et al., 2020).

As noted by Naimi & Balzer (2018), the value of k-fold is a parameter of utmost importance in the

(deep) super learner; therefore, Ai et al. (2020) tested different values, from three to ten-fold cross-

validation, achieving the best performance on seven-fold.

To verify and compare the deep super learner performance, two base learners are used – logistic

regression and random forest, complemented with XGBoost, LightGBM, Adaboost and a stacking

ensemble model. Deep super learner achieved the best performance, yet, in terms of time efficiency

on the test dataset, was the second slowest model, with 2.89 seconds, close to XGBoost, with 2.47

seconds, and far from the slowest model – LightGBM, with 8.43 seconds.

2.3. DEEP SVM

Deep learning is a sophisticated machine learning method that identifies lower-level features and

inputs them to the next layer to identify higher-level features, improving overall classification

performance (Young et al., 2018). These architectural designs have succeeded in various applications,

particularly visual and speech information (Pang et al., 2022).

Inspired by deep belief networks, Abdullah et al. (2009) presented a deep support vector machine (D-

SVM) and an ensemble of D-SVM for image categorization. The D-SVM is obtained through training

one SVM in the standard way, and creating a new training dataset with labels and kernel activations,

to be used on the next layer SVM. Concerning the proposed ensemble (see Figure 2.3), this calculates

probability estimates for each class using a set of D-SVM, each receiving a distinct set of features as

input. Then, class probabilities are combined with the product rule, multiplying each class probability

and using the highest probability as the final class label. Experiments with Corel and Caltech-101

datasets revealed that D-SVM has a higher accuracy than standard SVM, but not quite significant.

11

Moreover, regarding the ensemble a similar result was obtained – the ensemble of D-SVM performed

slightly better than an ensemble of SVMs.

Figure 2.3 - Ensemble of D-SVM (Abdullah et al., 2009, p. 303)

As the work of Abdullah et al. (2009) and other researchers had a fixed structure of just two layers of

SVMs and actually did not have a deep structure, Kim et al. (2015) proposed a new deep network

model. This new structure consists of (k) SVMs layers to perform k-class classification, selecting the

label with the maximum output as the final prediction (see Figure 2.4). At each layer, a class probability

output network (CPON) measures uncertainty when the classification decision is made. If the required

certainty is met, the classification is performed in that layer; if not, the CPON output continues for the

next layer. Experiments with four datasets from the UCI Machine Learning and the MNIST dataset,

comparing the proposed model with Naïve Bayes, single-layer SVM, single-layer SVM with CPON, and

deep belief networks, showed its competitiveness – outperforming the other models in all datasets,

except in Ionosphere.

Figure 2.4 - Structure of deep SVM (Kim et al., 2015, p. 23)

Later, Qi et al. (2016) proposed a new deep support vector machine called DeepSVM. This model has

a multi-layer architecture and extracts features via Adaboost (Ex-Adaboost) on each layer. This Ex-

12

Adaboost can adjust kernel parameters, classifier weight coefficients and feature’s weight for the next

layer. Experiments on eight UCI Machine Learning datasets, comparing the proposed model with a

version of himself without Ex-Adaboost, showed that DeepSVM achieves a slightly better performance,

which proves that Ex-Adaboost promotes data representation. When comparing DeepSVM accuracy

with the model proposed by Kim et al. (2015), DeepSVM underperformed in all three common

datasets.

2.4. DEEP FOREST

As in other research above, Zhou & Feng (2017) presented a deep ensemble model intending to endow

deep learning properties without shortcomings. The proposed model, gcForest (multi-Grained Cascade

Forest), comprises two parts – multi-grained scanning and cascade forest. The first part seeks to

facilitate spatial or sequential interpretation, while the second does representation learning. To

encourage diversity gcForest uses two types of forest – random forest and completely-random tree

forest. This last forest contains a defined number of completely-random trees produced with randomly

selected features at each node and growing until each leaf becomes pure.

As represented in Figure 2.5, this model works as follows:

 Multi-Grained Scanning:

1. Take d-dimension raw input features and slide multiple-size windows (suggested [d/16],

[d/8] and [d/4]) to generate feature vectors. If d=400 and window=100, a total of 301

feature vectors are produced.

2. Each forest produces a probabilistic estimate of class distribution for each feature

vector. Considering the previous 301 feature vectors, if the dataset has three classes,

each forest will produce 301 three-dimensional class vectors (leading to a 903-

dimensional transformed feature vector).

Cascade Forest:

3. The transformed feature vector will then be used to train the first layer of the cascade

forest and produce class estimates generated by k-fold cross-validation using k-1 folds.

Considering a layer with four forests and the previous dataset with three classes, a 12-

dimension class vector is produced.

4. The generated class vector, augmented alternately with the transformed feature

vectors, is then used to train the next layer.

5. After adding a new level, the holdout fold (validation set) is used to estimate the

performance of the entire cascade, and if there is no significant improvement in

performance, the training procedure ends.

6. Reaching the last layer, an average class vector is produced, and the class with the

highest value is taken as the final prediction.

13

Figure 2.5 - Overall procedure of Deep Forest (Z.-H. Zhou & Feng, 2017, p. 3555)

Data must pass a similar process, starting with the multi-grained scanning procedure to obtain the

corresponding transformed feature representation and proceed with the cascade until the final

prediction is obtained.

Zhou & Feng (2017) compared gcForest with deep neural networks and several other popular learning

algorithms on five different datasets for music classification (GTZAN), image categorization (MNIST),

hand movement recognition (sEMG), face recognition (ORL), and sentiment classification (IMDB), plus

three low dimensional datasets (LETTER, ADULT, YEAST). The proposed model achieved a highly

competitive performance obtaining the best accuracy in all experiments. Besides having fewer

hyperparameters than deep neural networks, this model can get excellent performance across various

domains with default settings. Moreover, to exemplify the runtime efficiency, gcForest took 40

minutes to converge on the IMDB dataset, while MLP required 77 minutes.

2.4.1. New versions

Since the introduction of gcForest numerous researchers have suggested new deep forest

configurations to address a specific purpose or a specific challenge. Guo et al. (2018) proposed

BCDForest (boosting cascade deep forest) to be suitable for small-scale class-imbalanced biology data.

This model has a multi-class-grained scanning approach (instead of multi-grained scanning) to

encourage the diversity of ensemble forests and an additional output feature in each forest of the

cascade (the standard deviation of the top-k most important features) to boost important features. As

result, BCDForest consistently outperformed gcForest on most cancer datasets, demonstrating that

the proposed boosting strategy has improved the models’ classification ability.

14

Figure 2.6 - Overall procedure of BCDForest (Guo et al., 2018, p. 6)

In essence, gcForest can automatically determine its complexity and perform well across various tasks,

but it can also be computationally expensive. This happens because the transformed feature vector

can be significantly bigger than the original input feature vector, and all instances must pass through

all cascade layers. Consequently, multi-grained scanning demands time and memory while cascade

forest linearly increases time with the number of layers in the cascade. Even though users can balance

this by choosing the number of grains, forests, and trees, Pang et al. (2018) introduced a confidence

screening mechanism to reduce time and memory costs. This new model, called gcForestCS, has the

following modifications (subsampling multi-grained scanning, confidence screening mechanism, and

variable model complexity):

1. Feature vectors formed by sliding windows in multi-grained scanning are randomly

sampled (10%) before being used to produce class estimates.

2. Measure prediction confidence on each cascade layer, and if an instance requires a

higher level of learning, it is pushed to the next layer; otherwise, it is predicted using the

model at the current layer.

3. As the instances that reach higher cascade layers are harder to predict, forests must

increase complexity, requiring more trees in each forest.

The proposed model was compared to gcForest, and instead of using the same model on all datasets,

dependent if datasets held spatial or sequential relationships, the models were tested with or without

multi-grained scanning. With the results, it is possible to conclude that gcForestCS uses an order of

magnitude less memory than gcForest while achieving comparable or better accuracy and faster

runtime.

15

Figure 2.7 - Illustration of gcForestCS (Pang et al., 2018, p. 1195)

Attempting to improve the efficiency and performance of gcForest, Ni & Kao (2020) proposed a

PSForest model consisting of two parts – multi-grained pooling and gate-cascade forest. In multi-

grained pooling, the output of each sliding window is filtered to keep the feature with the higher value.

Then, all class vectors generated are concatenated with the raw feature vector and delivered to a gate-

cascade forest. In this part, instead of using all class vectors in all cascade layers, some class vectors

are filtered out at each layer based on the out-of-bag error of each forest. Thus, the input vector of

each layer is made of the initial transformed feature vector concatenated with the filtered output of

the preceding layer. Experiments on various datasets demonstrate that PSForest achieves comparable

or higher accuracy than gcForest while using less memory and time.

Figure 2.8 - Overall procedure of PSForest (Ni & Kao, 2020, p. 775)

Y.-H. Chen et al. (2021) argue that gcForest requires a large amount of memory to store multi-layered

forest models, and it is very time-consuming to make predictions. Moreover, as forests are stable

models, an ensemble of forests may produce similar predictions, resulting in redundant feature

representation and reduced diversity. With this drive, researchers proposed a novel (cascade) model

named high-order interaction deep forest (hiDF). This model operates in three steps: it starts by

extracting decision rules from random forests, which are then processed by generalized random

intersection trees to select the features with better generalization. Secondly, a new feature is

generated by activated linear combinations, concatenated to input features, and moved to the next

layer. Then (third step), the current structure is evaluated on a validation set to avoid overfitting,

meaning the training stops if there is no performance improvement. The result of experiments on ten

benchmark datasets, comparing the proposed model to gcForest, gcForestCS, random forest, XGBoost,

16

GBDT, and SVM, demonstrates a superior accuracy performance of hiDF on all datasets. Additionally,

hiDF requires less time on the test dataset and about one order of magnitude less memory.

Figure 2.9 - Illustration of hiDF (Y.-H. Chen et al., 2021, p. 1031)

Ma et al. (2022) claim that gcForestCS, with default hyperparameters, achieves lower prediction

accuracy than the original deep forest model, and mis-partitioned instances cause that. To overcome

this issue, the authors proposed a new deep binning confidence screening forest (DBC-Forest) model.

The difference between this model and gcForestCS resides in the strategy used to comply with the

confidence threshold. The new model groups the instances into bins based on their confidence values

and determines the bins' accuracy to select which will move to the final prediction and which will

continue for the next layer. Experimental results on nine datasets, comparing DBC-Forest with gcForest

and gcForestCS provide the basis for the following remarks: DBC-Forest is more robust to

hyperparameter settings; DBC-Forest generally achieves higher accuracy; on low-dimensional

datasets, the results between models are not very different. Regarding time efficiency, on training,

DBC-Forest was the fastest on seven datasets, gcForestCS was the fastest on the EMNIST dataset, and

gcForest was the fastest on YEAST dataset.

Figure 2.10 - Illustration of DBC-Forest (Ma, Wu, Li, Guo, & Li, 2022, p. 115)

Likewise, Ma, Wu, Li, Guo, Jiang, et al. (2022) argue that gcForestCS produces redundant feature

vectors in multi-grained scanning and that confidence screening depends on hyperparameter tuning.

The authors propose an HW-Forest to improve its performance, which adopts two screening

mechanisms – window screening and hashing screening. This last uses perceptual hashing to evaluate

the similarity between feature vectors, then removes the redundant vectors generated in multi-grain

scanning. Window screening is an improvement to the DBC-Forest strategy that uses windows with

17

variable sizes to calculate the confidence threshold. For the performance evaluation of HW-Forest, the

authors compared ten benchmark datasets with four analogous models – gcForest, gcForestCS, DBC-

Forest, and AWDF (adaptive weighted deep forest). Experiments show that HW-Forest achieves higher

accuracy than DBC-Forest and the other models. Concerning time cost, gcForestCS was the fastest

model on seven datasets and HW-Forest on three.

Figure 2.11 - Overall procedure of HW-Forest (Ma, Wu, Li, Guo, Jiang, et al., 2022, p. 10)

To further improve the previous model (gcForestCS), Pang et al. (2022) propose replacing the multi-

grained scanning with a new version designated completely-random forest transformation, which uses

a completely-random forest to get a smaller transformed feature vector. This new proposed model,

gcForestS, keeps the cascade modifications of gcForestCS (variable model complexity and confidence

screening) and adds a feature screening to select features that are significant for performance

improvement at each level. Experiments with and without multi-grained scanning on eight different

datasets demonstrate that gcForestS improves accuracy while reducing runtime and memory usage.

Also, experiments with and without completely-random forest transformation on gcForest and

gcForestCS enabled those models to achieve better accuracy in 2 (out of 3) datasets.

Figure 2.12 - Overall procedure of gcForestS (Pang et al., 2022, p. 4303)

Although some standard datasets and models haven been used in the research mentioned above,

mainly for comparison, the accuracy they presented has variations. Table 2.1 presents the difference

in accuracy to gcForest to understand the performance between models.

18

Table 2.1 - Comparison of accuracy between models on six datasets

sEMG MNIST CIFAR10 LETTER ADULT IMDB

gcForestCS +1.29 0 +0.84 0* +0.05* +0.37*

PSForest - +0.28 +0.05 - - -

hiDF - - - - +0.73 -

DBC-Forest - +0.26 +1.30 +0.05 +0.12 +0.58

HW-Forest - +0.30 +1.64 +0.17* +0.19* +0.77*

gcForestS +6.11 +0.06 +4.43 +0.01* +0.24* +0.36*

 *: without multi-grained scanning

2.4.2. Application example

Radars have become an extremely important sensor in various applications, including unmanned aerial

vehicle detection, perimeter surveillance, and autonomous driving, which requires methods for target

recognition. Towards this objective, a radar high-resolution range profile (HRRP) is a one-dimensional

feature used to characterize a target. In this context, Y. Wang et al. (2019) tested deep forest (gcForest)

for HRRP recognition. Without multi-grained scanning, the model consists of two random forests, two

ExTree, two XGBoost, and two GBDT. Although raw HRRP has one dimension, the authors could extract

36-dimensional features and input them into the model. The performance of deep forest was

compared with one SVM and all base learners, which are ensembles. As a result, deep forest reached

the highest accuracy, and the second best was XGBoost (2.44% less accuracy).

Accordingly, this research demonstrates the added value of deep forest in the context of radar

recognition. The results show a significant improvement over the traditional approach, which is not

surprising given the forementioned research.

19

3. METHODOLOGY

This chapter is divided into two sections, with the first portion providing a theoretical overview of

design science (DS) research to ease the comprehension of its application in the following section.

3.1. DESIGN SCIENCE RESEARCH

Science and Technology have different goals, processes, and drives, but both advance and evolve in

complex interactions. While science aims to grow descriptive knowledge based on the natural world

and human behavior, technology aims to grow prescriptive knowledge based on purposefully designed

theories and artifacts (methods, models, constructs, or instantiations). The interactions between

science and technology happen in two ways: science informs technology via solid foundations in

domain knowledge, and technology informs science via innovative solutions to practical problems

(Baskerville et al., 2018; Hevner et al., 2004).

“New technologies are driven and enabled by science, but, more often, scientific advances are driven

and enabled by the emerging use of technology” (Baskerville et al., 2018, p. 361).

DS paradigm has its roots in engineering and is oriented to solve problems. When applied to

information systems (IS), build and evaluate artifacts intended to solve organizational problems. Due

to the science-technology complementary relation, Hevner et al. (2004) proposed a framework to

position IS research within that relation (see Figure 3.1).

Figure 3.1 - IS research framework (Hevner et al., 2004, p. 80)

Several researchers have promoted the use of DS in IS since the early 1990s; however, 15 years later,

few research has been published with a DS approach. Peffers et al. (2006) have proposed a DS research

process for production and presentation of DS research in IS to address this issue. This was latter

enhanced to be designated as a design science research methodology (DSRM) process, presented by

20

Peffers et al. (2007), incorporating principles, practices, and procedures. DSRM was developed using a

consensus-building strategy combining seven representative papers on DS. The result, as represented

in Figure 3.2, is a process model made up of six activities in sequential order, with four possible entry

points and an iterative process to improve the artifact (Peffers et al., 2007):

1. Problem identification and motivation – Define the research problem, capturing its

complexity and the importance of a solution. This activity requires knowledge of the

problems’ nature and the value of a solution.

2. Define the objectives for a solution – Establish the objectives of a solution (either

quantitative or qualitative) from the problem description and an assessment of what is

appropriate. Resources required for this activity include knowledge of problems’ current

state and existing solutions.

3. Design and development – Determine the required functionality and architecture of the

artifact and then build it. Resources required for this activity include knowledge of

theories that can be applied to a solution.

4. Demonstration – Identify how the artifact can solve the problem or some of its

instances. Resources required include an adequate understanding of the artifact and its

use.

5. Evaluation – Compare the objectives from activity 2 to the observed results of the

artifact in activity 4. Depending on the nature of the problem, this activity could take

many forms, such as satisfaction surveys, client feedback, response time, availability,

simulations, system performance, and empirical evidence or logical proof. At the end of

this activity, the researchers can decide whether to iterate back to design and

development or continue for the next activity and leave further improvement to

subsequent projects. Resources required for this activity include knowledge of relevant

metrics and analysis.

6. Communication – Describe the problem and its importance, the design of the proposed

artifact and its effectiveness, novelty, and utility.

As referred, there are four possible entry points in the DSRM process:

1. In activity 1, problem-centered approach – If the inspiration for the research came from

the observation of a problem or a suggestion made in a previous project.

2. In activity 2, objective-centered solution – If an industry or a research need triggers the

research.

3. In activity 3, design- and development-centered approach – If the research uses an

artifact developed for a different problem.

4. In activity 4, client-/context-initiated solution – If the research seeks to improve the

process of a solution already developed.

21

Figure 3.2 - DSRM process model (Peffers et al., 2007, p. 54)

As seen in Figure 3.1, DS research has two main outcomes: design artifacts and design theories. The

first can be categorized as (Baskerville et al., 2018):

▪ Construct – Establish the basic concepts and language used to describe and

communicate problems and solutions.

▪ Model – Use constructs to represent real-world contexts (problems and solutions).

▪ Method – Define processes such as solution algorithms.

▪ Instantiation – Embodies methods, models and constructs in a working system, enabling

concrete assessment.

Designing artifacts allow researchers to learn about the real-world and how it is affected, leading to

the development of design theories. Consequently, it is expected that some reflection of the form and

functions of an artifact but not a fully formed theory on any project or article (Baskerville et al., 2018).

Gregor & Hevner (2013) analyzed DS research development and its different contributions to

knowledge, urging the proposal of a DS research knowledge contribution framework (see Figure 3.3).

This framework focuses attention on the start-point knowledge. It has two dimensions – the existing

maturity of the problem (x-axis) and the existing maturity of potentially usable artifact (y-axis) for the

research question, producing a 2x2 matrix with the following quadrants (Brendel et al., 2021; Gregor

& Hevner, 2013):

▪ Invention – Proving new solutions for new problems. Projects in this quadrant are rare

and involve research on novel applications where the problem is poorly understood and

there are no effective artifacts available.

▪ Improvement – Presenting new solutions for known problems. The intention is to

develop improved solutions, which can be in the form of more effective and efficient

technologies, products, services, processes, or ideas.

▪ Exaptation – Extending known solutions to new problems. In this quadrant, knowledge

that already exists in one field is extended or refined to another.

22

▪ Routine design – Proving known solution for known problems. In this quadrant no major

knowledge is expected, but some research opportunities may arise when the application

of existing knowledge in a routine way leads to surprises and discoveries, requiring the

research to move to another quadrant.

Figure 3.3 - DS research knowledge contribution framework (Gregor & Hevner, 2013, p. 345)

Gregor & Hevner (2013) also argue that prior guidelines for presenting DS research do not offer enough

guidance to researchers and propose a publication schema in comparison to a conventional behavioral

science paper:

1. Introduction – Contents are similar but should also include the goals for the artifact,

specifying the scope and purpose.

2. Literature review – Should include relevant literature on knowledge or artifacts related

to the problem at hand.

3. Method – The adopted research approach should be described and supported with

reference to existing authorities.

4. Artifact description – This section differs markedly from conventional articles in the

behavioral science. It is expected to have a description of the artifact and (may also

include) the development process, at the appropriate level of abstraction.

5. Evaluation – Reports any evidence that the artifact does what it is meant to do, in

accordance with the goals established.

6. Discussion – Presents an interpretation of the results, the novelty of the artifact and its

contributions to knowledge.

7. Conclusions – Restates the main contributions to knowledge and why they are

important.

23

3.2. DESIGN SCIENCE RESEARCH METHODOLOGY

Relating DSRM activities to the publication schema and the present dissertation structure, it’s possible

to understand how to comply with DS research.

Table 3.1 - DSRM activities relation with chapters

DSRM activity: Publication schema: Dissertation structure:

Problem identification and motivation
Introduction Introduction

Define the objectives for a solution
Literature review Literature review

- Method Methodology

Design and development Artifact description Empirical study

Demonstration Evaluation
Results and discussion

Evaluation Discussion

Communication Conclusions Conclusions and future works

It is clear at this point what to expect from each activity and where it is described. Still, a brief review

of the first two activities is provided to ensure clarity.

Problem identification – Current radar classification methods heavily rely on the knowledge of experts

to label records performed by ESM systems (e.g. PDW), to build rules of radar attributes when using

the expert system method, or to characterize and input radar parameters in databases, when using

the parameter matching method. Then, a system expert should test and tune these rules or

parameters. It should be noticed that due to sensitivity, congestion management, and other system-

specific characteristics, any record created by an ESM system and used to develop rules or parameters

may not be suitable for another ESM system.

Objectives for a solution – The primary objective is to create a machine learning model, specifically a

deep ensemble, that can classify radar emitters. To be an alternative, it must comply with three

requirements:

▪ Be quick – As most radars can transmit thousands of pulses per second and may be

traveling fast (more than 1000km/h in case of missiles or fighters), the classification

process is required to be as quick as possible.

▪ Highly precise – Errors in classification can lead to higher threat assessment processing

time, hampering timely reactions. Therefore, precision is required for better and faster

responses.

▪ And robust – ESM operates in harsh conditions, affected by several environment,

system, and propagation degradation, with impact on performance. To sustain the

precision of classification and lessen this issue, the proposed machine learning model

should be robust, this is, should be noise resistant.

24

To be presented in the next chapter, the design and development activity follows a set of steps adapted

from Ferreira (2020) – the six phases of the data science loop.

1. Data exploration: A general assessment of the dataset is performed in this initial step. It enables

familiarization with the data, verifying its quality, checking features correlation, and any issue to be

solved in the data cleaning step. The following features are available in the dataset: TOA, DOA, RF,

power, AMOP, FMOP, PMOP, CW, POP (Pulse On Pulse, interrupting pulse), POPed (Pulse On Pulse,

interrupted pulse), and label.

2. Data cleaning: As in CRISP-DM (Cross Industry Standard Process for Data Mining), SEMMA (Sampling,

Exploring, Modifying, Modelling, and Assessing) or KDD (Knowledge Discovery in Databases), this step

aims to perform noise removal and transformations on data.

3. Feature engineering: This step creates new features from original data and transformations to

enhance models’ performance.

New Features:

▪ PRI, using the first difference of TOA between sequential pulses of each emitter1.

▪ The second difference of TOA, based on Ahmed et al. (2018).

▪ The minimum, maximum and mean values of RF, PW and PRI, based on W. Chen et al.

(2017) and Petrov et al. (2013).

▪ Rolling minimum, maximum, and mean values of RF, PW and PRI, based on the sequence

normalization of Notaro et al. (2019).

▪ Binning RF, PW and PRI, based on Sun et al. (2018).

Transformations:

▪ Normalization with Min-Max scaling [0,1], based on W. Chen et al. (2017) and Petrov et

al. (2013).

▪ Standardization scaling, based on Petrov et al. (2013).

▪ Normalization scaling [-1,1], based on Notaro et al. (2019).

▪ Sequence/rolling normalization [-1,1], based on Notaro et al. (2019).

▪ Principal Component Analysis (PCA), based on Gençol (2015) and Y. Zhou et al. (2020).

4. Model build: Deep forest is the foundation to build several deep ensemble models that replicate

some research mentioned in the Literature review. Additionally, to compare results across datasets,

their base learners must be built separately.

5. Hyperparameter optimization: This step aims to finetune each model for superior performance.

Models can also be tested with different features, following a feature selection procedure.

1 The use of labels in preprocessing shouldn’t be considered data leakage because deinterleaving occurs

before classification, grouping pulses of the same emitter to produce tracks.

25

6. Evaluate and compare: The evaluation and comparison of models’ performance in all datasets must

score time and accuracy to value the first two requirements – be quick and highly precise. The third

requirement, the models’ robustness, is evaluated through the performance of noisy data.

3.2.1. Dataset and resources

The dataset (PDW) was produced with a virtual EW simulator from Leonardo DRS. This software can

simulate different radar characteristics, including antenna patterns and external interference,

resembling a real-world scenario. In total, 52 different emitters were simulated, from simple

navigation radars to multifunction radars, including fixed frequency and RF agility, a wide variety of

PW, several PRI modulations, and different types of antenna polarization.

The algorithms used to develop the artifact were implemented in Python, and the experiments were

performed using a computer with an Intel® Core™ i5-8265U processor and 16GB of memory.

26

4. EMPIRICAL STUDY

This chapter describes the design and development of the proposed artifact, following the procedures

described in 3.2.

4.1. DATASET PREPARATION

The dataset includes the PDW of 52 emitters generated separately using the virtual EW simulator from

Leonardo DRS. To use this data in supervised learning, all PDWs were concatenated and labeled with

an alphanumeric label2 (one letter for each type of radar and a sequential number). Within this

preparation, a few changes to features’ names and measurement units were performed, ending as

TOA(ns), DOA(deg), RF(kHz), PW(ns), POWER(dB), AMOP, FMOP, PMOP, POP, POPed, CW.

Two noisy datasets were produced using 20% of the pulses from each emitter to evaluate the models’

robustness:

1. Gaussian noise on continuous features:

Revillon (2019) have noised continuous features applying a multivariate Gaussian noise

with a diagonal covariance matrix comprising RF, PW, PRI = [1MHz, 50ns, 1µs]. Using

identical approach the following matrix was taken into consideration – TOA(ns), RF(Khz),

PW(ns), POWER(dB) = [1000, 1000, 50, 0.1]. TOA was used instead of PRI because this

last is not available in the original dataset and TOA will be used to determine PRI.

Furthermore, to affect all available continuous features, power was also noised.

2. Uniform noise on categorical features:

Y.-H. Chen et al. (2021) used uniform random noise on 25% of the synthetic test data in

order to evaluate the hiDF model (presented in the Literature review). Similarly, all flag

features (AMOP, FMOP, PMOP, POP, POPed and CW) were uniform random noised.

4.2. DATA EXPLORATION AND DATA CLEANING

4.2.1. Data exploration

6.740.247 records/pulses in the PDW dataset are available without missing data. Checking the

descriptive statistics, as Figure 4.1 shows, no incoherent values exist in any feature. On the other hand,

TOA(ns), DOA(deg), POP, and POPed are environment-related features and should not be used to build

the models, consequently, can be dropped. Thou, as PRI is determined with the difference in TOA

between sequential pulses, this feature can only be dropped in the Feature engineering phase.

Spearman's correlation was calculated to test for feature correlation and revealed a high negative

correlation between TOA(ns) and DOA(deg), which makes no logic because the time when a certain

pulse arrives at an ESM system has no relation with the direction from where it arrives; besides, both

features will be dropped and will not impact the models.

2 A second label feature must also be created because XGBoost, since version 1.3.2, requires it to start

from 0.

27

Figure 4.1 - PDW dataset descriptive statistics

To enhance the familiarization with the PDW dataset3, Figure 4.2 displays the three main continuous

features overtime, colored by the emitter.

3 More figures are included in Appendix A.1 and A.2.

28

Figure 4.2 - Continuous features evolution overtime

4.2.2. Data cleaning

Over time, a radar transmits pulses with the same characteristics, even when they have the agility and

change their parameters for a certain period. So, it is expected to have a substantial number of

duplicate records (6.737.766). Nevertheless, as some new features will be based on rolling windows

and sequential pulses (reducing that number), duplicate values can only be dropped in the Feature

engineering phase before transformations are performed.

From Figure 4.2 and Figure 4.3, it is difficult to identify which records could be considered outliers. On

the other hand, since the base model (deep forest) is designed to cope with raw data, there is no place

for outliers’ removal. Additionally, the exclusion of records may altogether remove emitters from the

dataset.

29

Figure 4.3 - Continuous features distribution

The train-test split of the PDW dataset follows what previous research on deep forest and super learner

have implemented (80-20% split), as in Z.-H. Zhou & Feng (2017), Naimi & Balzer (2018), Y. Wang et al.

(2019) and Taghizadeh-Mehrjardi et al. (2021).

4.3. FEATURE ENGINEERING

The Feature engineering phase mainly implements what earlier research has proposed and tested

regarding new features and transformations. The first new feature is PRI, using the first difference of

TOA(ns). This is the primary feature to determine the emitters' modulation in time. Following Ahmed

et al. (2018), a second difference of TOA(ns) is also implemented.

In the research of Petrov et al. (2013), the dataset has pulse trains, and this is a summary of the emitter

characteristics, which includes the minimum and maximum values of RF, PW and PRI. On the other

hand, W. Chen et al. (2017) also have the mean value of the same features. Based on this earlier

research, the minimum, maximum, and mean values of RF(kHz), PW(ns) and PRI of all recorded pulses

per emitter were determined and included in the dataset. Considering these new features and one of

the transformations presented below, the sequence normalization of Notaro et al. (2019), rolling

minimum, maximum, and mean values of RF(kHz), PW(ns) and PRI were also included, using a window

of 20 pulses.

The next new set of features apply binning to RF, PW and PRI, resembling Sun et al. (2018). This last

have implemented a (binary) sequence encoding method dividing the range of each feature in bins. If

a bin range is within the minimum and maximum value of a specific feature, this bin will have the value

30

1 and 0 otherwise. The authors have used RF, PW, PRI = [700, 800, 600] bins and get 2100 features per

observation: {RF1, …, RF700, PRI1, …, PRI600, PW1, …, PW800}. Instead of implementing such a vast

number of features, each RF, PW and PRI feature already available (original record, overall minimum,

maximum and mean, as well as rolling versions) were characterized by a bin. While Sun et al. (2018)

have detailed the range applicable to RF, from 200 to 10000 MHz, PW and PRI have not. Consequently,

it is possible to replicate the RF bin width in the considered RF range (500 to 18000 MHz), obtaining

1250 bins, but not for the remaining features. PW was defined to use 1501 bins, considering a range

from 0 to 75000ns and a bin from this last to infinite (due to CW emitters). Moreover, PRI uses 1000

bins, considering a range from 0 to 3996000ns and a bin from this last to infinite.

Although these new features were based on several individual research, they were combined in the

same dataset and will go through feature selection later.

The dataset currently has the following features, excluding labels:

Table 4.1 - List of features

Feature name: Short description:

RF(kHz) Frequency of the pulse, in kilohertz

PW(ns) Duration of the pulse, in nanoseconds

POWER(DB) Power amplitude of the transmission, in decibel

AMOP Amplitude modulation detection flag

FMOP Frequency modulation detection flag

PMOP Phase modulation detection flag

CW Continuous wave emitter detection flag

PRI_1 Pulse repetition interval (time lapse between sequential pulses)

PRI_2 Second difference of TOA (the difference of PRI)

RF_min Minimum RF(khz) value of the emitter

RF_max Maximum RF(khz) value of the emitter

RF_mean Average RF(khz) value of the emitter

PRI_min Minimum PRI_1 value of the emitter

PRI_max Maximum PRI_1 value of the emitter

PRI_mean Average PRI_1 value of the emitter

PW_min Minimum PW(ns) value of the emitter

PW_max Maximum PW(ns) value of the emitter

PW_mean Average PW(ns) value of the emitter

RF_rolmin Rolling minimum RF(khz) value of the emitter

RF_rolmax Rolling maximum RF(khz) value of the emitter

RF_rolmean Rolling average RF(khz) value of the emitter

PRI_rolmin Rolling minimum PRI_1 value of the emitter

PRI_rolmax Rolling maximum PRI_1 value of the emitter

PRI_rolmean Rolling average PRI_1 value of the emitter

PW_rolmin Rolling minimum PW(ns) value of the emitter

PW_rolmax Rolling maximum PW(ns) value of the emitter

PW_rolmean Rolling average PW(ns) value of the emitter

31

RF_bin Binning of the RF(khz) value

RF_min_bin Binning of the RF_min value

RF_max_bin Binning of the RF_max value

RF_mean_bin Binning of the RF_mean value

RF_rolmin_bin Binning of the RF_rolmin value

RF_rolmax_bin Binning of the RF_rolmax value

RF_rolmean_bin Binning of the RF_rolmean value

PW_bin Binning of the PW(ns) value

PW_min_bin Binning of the PW_min value

PW_max_bin Binning of the PW_max value

PW_mean_bin Binning of the PW_mean value

PW_rolmin_bin Binning of the PW_rolmin value

PW_rolmax_bin Binning of the PW_rolmax value

PW_rolmean_bin Binning of the PW_rolmean value

PRI_bin Binning of the PRI_1 value

PRI_min_bin Binning of the PRI_min value

PRI_max_bin Binning of the PRI_max value

PRI_mean_bin Binning of the PRI_mean value

PRI_rolmin_bin Binning of the PRI_rolmin value

PRI_rolmax_bin Binning of the PRI_rolmax value

PRI_rolmean_bin Binning of the PRI_rolmean value

Now, having the PDW dataset enhanced with new features, new datasets can be generated by applying

different transformations.

W. Chen et al. (2017) preprocess data by scaling continuous features with Min-Max scaling, ranging

those features on [0,1]. Likewise, Petrov et al. (2013) have experimented with three different scaling

forms: without scaling, Min-Max scaling, and standardization scaling. These three forms, which create

three datasets, are also used in this dissertation.

Another couple of transformations are based on the research of Notaro et al. (2019): normalization

scaling with range [-1,1] and the sequence/rolling normalization by the emitter, also with range [-1,1],

using a window of 20 pulses. Similarly to Petrov et al. (2013), these authors have experimented with

three different forms: without scaling, normalization scaling [-1,1], and concatenating this last with

sequence normalization. Following this approach, two new datasets are generated.

The last transformation is based on the research of Gençol (2015) and Y. Zhou et al. (2020), which uses

PCA to reduce the dimensionality of Self Organizing Maps (SOM) and images, respectively. Five

components accounted for 80% of the variance in the present context were created.

Figure 4.4 depicts a high-level workflow used to gather all (9) datasets and subsequent steps to

facilitate understanding and provide status.

32

PDW

Build new Features

Rank features, build models, and evaluate

Apply Transformations

Train/Test
PDW

(original)

Test GN
(gaussian)

Test UN
(uniform)

Train/Test ST
(standard.)

Train/Test WT
(no transf.)

Train/Test N1
[0,1]

Train/Test N2
[-1,1]

Train/Test RN2
(rolling)

Train/Test PC
(PCA)

PCA

Select best models, tune, and evaluate

Generate noisy dataset

Replicate preprocessing
(new features & transformations)

Figure 4.4 - Datasets produced

Feature selection was performed using the wrapper method with recursive feature elimination (RFE)

and the filter method with mutual information. The goal was to avoid a single perspective over feature

importance and take a more robust approach. Then, cross-referencing the top common features of

both methods, the following set of features was obtained: RF_mean_bin, PRI_max, RF_mean,

RF_min_bin, PRI_mean, RF_max_bin, RF_rolmin, PRI_min_bin, RF_max, PRI_rolmin, RF_rolmean,

PW_mean, RF_min, PW_max, RF_rolmax, PRI_min, RF_rolmax_bin, RF_rolmin_bin. These features are

considered in Model optimization.

4.4. MODEL BUILD AND OPTIMIZATION

With datasets already created, it is time to build the models. As previously stated, these models use

the deep forest as the foundation and follow some of the research mentioned in the Literature review:

1. Deep forest cascade with default parameters, following Z.-H. Zhou & Feng (2017)

implements four random forests and four ExTrees on each layer. This model will be

designated as DF from now on.

2. Deep forest cascade with two XGBoost, two random forests, two ExTrees, and two GBDT

on each layer, following Y. Wang et al. (2019). This model will be designated as DF-Stack

from now on.

3. Deep forest cascade with two SVM, based on Kim et al. (2015). This model will be

designated as DF-SVM from now on.

4. Deep forest cascade with two super learners, each with one logistic regression, one

KNN, one random forest, one ExTrees, and one XGBoost, following Young et al. (2018),

and a linear model as meta-learner (cross-validated risk minimizer), based on Laan et al.

(2007). This model will be designated as DF-SL from now on.

To improve the comparison of results, deep models’ base learners are also built separately: random

forest, ExTrees, XGBoost, GBDT, SVM and super learner.

33

All (10) models are trained and tested with each dataset (Train/Test PDW, Train/Test WT, Train/Test

ST, Train/Test N1, Train/Test N2, Train/Test RN2, Train/Test PC) and then evaluated on noisy datasets

(Test GN, Test UN). The performance of the models across all datasets is presented in Table 4.3, Table

4.4 and Table 4.5.

Since the shape of the dataset varies with the feature engineering step it comprises, Table 4.2 states

the number of records and features present in each test dataset.

Table 4.2 - Datasets shape

Train Dataset Train PDW Train WT Train ST Train N1 Train N2 Train RN2 Train PC

Test Dataset Test PDW Test WT Test ST Test N1 Test N2 Test RN2 Test PC

Records 4933 33830 33830 33830 33830 33830 33830

Features 7 48 48 48 48 96 5

Test Dataset
Test GN-

PDW
Test GN-

WT
Test GN-

ST
Test GN-

N1
Test GN-

N2
Test GN-

RN2
Test GN-

PC

Records 1348052 1347948 1347948 1347948 1347948 1347948 1347948

Features 7 48 48 48 48 96 5

Test Dataset
Test UN-

PDW
Test UN-

WT
Test UN-

ST
Test UN-

N1
Test UN-

N2
Test UN-

RN2
Test UN-

PC

Records 143249 294253 294253 294253 294253 294253 294253

Features 7 48 48 48 48 96 5

4.4.1. Model optimization

As the best models already achieve 100% accuracy in primary and noisy datasets, improving them

through feature selection and hyperparameter optimization is impossible. Tough, two developments

can be made:

1. Reduce the number of features the deep model uses to achieve 100% accuracy. In this

sense, and to increase efficiency, only datasets without transformation should be used.

2. Improve the performance of a deep model using raw data (dataset without feature

engineering).

The first line of development makes use of DF, whereas the second makes use of DF-SL. This decision

is based on the models’ performance for the specific development context (accuracy and prediction

time with or without new features, respectively). As previously, deep models’ base learners are also

built in separately to promote the comparison of results.

DF optimization:

Recalling the feature selection previously performed; it was confirmed that DF only requires the first

four features (RF_mean_bin, PRI_max, RF_mean, RF_min_bin) to maintain 100% accuracy in Test WT,

Test GN and Test UN dataset.

DF-SL optimization:

34

To start, as the dataset for this optimization contains a different set of features, a new rank of features

is obtained: RF(kHz), PW(ns), POWER(dB), FMOP, PMOP, CW, and AMOP. The performance of DF-SL

and DF-SL base learners are tested over different sets of features in all three datasets and reported in

Table 4.7 and Table 4.8. Falling the choice only to use the three continuous features.

The hyperparameter optimization procedure is based on Zhang et al. (2020), for deep forest cascade

optimization, and Ai et al. (2020) for the super learner, comprising the following steps:

1. Test and select the best parameters for the base learner (super learner).

a. Test and select the best number of v-fold cross-validation [2,10].

b. Test and select the best loss function (cross-validated risk minimizer).

2. Test and select the best number of base learners [2,4].

All accuracies reached in these tests are registered in Table 4.9 and Table 4.10, allowing to set of an

optimized version of DF-SL which implements three super learners, with 7-fold cross-validation and

stochastic gradient descent (SGD) loss function, on each cascade layer.

The performance of the optimized DF-SL and its base learner across the three datasets is recorded in

Table 4.11. In order to further detail the accuracy here achieved, the confusion matrix of both models,

in all datasets, are available in Appendix A.3 and A.4.

4.5. EVALUATE AND COMPARE

The models’ performance must be evaluated to compare the models and determine whether the

problem can be solved. In this context, and following the latest deep forest research, the accuracy, in

percentage, and the test prediction time, in seconds, are both considered (Pang et al., 2018, 2022).

The models performed for all train/test datasets as shown in Table 4.3. Then, these models were

evaluated using both noisy datasets, performing as shown in Table 4.4 and Table 4.5.

Table 4.3 - Models’ performance on train/test dataset

Train Dataset Train PDW Train WT Train ST Train N1 Train N2 Train RN2 Train PC

Test Dataset Test PDW Test WT Test ST Test N1 Test N2 Test RN2 Test PC

Model: Accuracy:

DF 98.358% 100% 100% 100% 100% 100% 99.985%

DF-Stack 97.203% 100% 100% 100% 100% 100% 99.988%

DF-SVM 86.621% 99.693% 99.693% 99.693% 97.351% 95.516% 98.696%

DF-SL 96.757% 100% 100% 100% 100% 100% 99.988%

RandForest 94.567% 100% 100% 100% 100% 100% 99.991%

ExTrees 94.263% 100% 100% 100% 100% 100% 99.994%

XGBoost 94.952% 100% 100% 100% 100% 100% 99.982%

GBDT 92.601% 100% 100% 100% 100% 100% 95.998%

SVM 45.713% 70.183% 99.985% 98.424% 98.424% 97.824% 95.936%

SuperLearner 97.567% 100% 100% 100% 1000% 100% 99.994%

Model: Prediction time (seconds):

DF 4.700 10.400 13.300 19.600 16.900 13.900 28.600

DF-Stack 17.500 12.200 17.200 12.100 14.500 27.600 12.100

35

DF-SVM 35.700 315.000 313.000 310.000 313.000 1280.000 250.000

DF-SL 4.060 159.000 152.000 160.000 163.000 216.000 8.870

RandForest 0.318 1.090 1.050 1.070 1.080 1.580 1.100

ExTrees 0.336 1.090 1.080 1.090 1.060 1.660 1.200

XGBoost 0.042 0.208 0.200 0.160 0.167 0.216 0.248

GBDT 0.149 5.500 3.580 3.370 3.370 201.000 0.630

SVM 21.000 559.000 121.000 178.000 179.000 253.000 162.000

SuperLearner 0.843 10.600 10.900 10.600 10.800 16.300 2.050

Table 4.4 - Models’ performance on Gaussian noise dataset

Train Dataset Train PDW Train WT Train ST Train N1 Train N2 Train RN2 Train PC

Test Dataset
Test GN-

PDW
Test GN-

WT
Test GN-

ST
Test GN-

N1
Test GN-

N2
Test GN-

RN2
Test GN-

PC

Model: Accuracy:

DF 90.277% 100% 100% 100% 100% 100% 99.995%

DF-Stack 89.673% 99.989% 99.989% 99.989% 99.987% 97.071% 99.998%

DF-SVM 79.075% 97.017% 97.017% 97.017% 98.058% 89.236% 99.748%

DF-SL 91.621% 100% 100% 100% 100% 99.998% 99.996%

RandForest 94.432% 100% 100% 100% 100% 100% 99.892%

ExTrees 94.028% 100% 100% 100% 100% 100% 99.999%

XGBoost 92.744% 98.413% 98.413% 98.413% 78.136% 75.756% 99.191%

GBDT 87.049% 99.565% 99.565% 99.565% 80.368% 77.282% 98.107%

SVM 39.637% 17.143% 99.997% 84.822% 84.827% 69.464% 97.301%

SuperLearner 94.433% 100% 100% 100% 100% 100% 99.997%

Model: Prediction time (seconds):

DF 1387.000 525.000 360.000 544.000 406.000 749.000 1187.000

DF-Stack 3120.000 645.000 470.000 692.000 487.000 981.000 596.000

DF-SVM 10050.000 13799.00 12488.00 13080.00 12643.00 19424.00 11465.00

DF-SL 733.000 8108.000 6073.000 6439.000 6437.000 6623.000 270.000

RandForest 99.000 38.800 36.800 36.700 40.000 51.800 39.200

ExTrees 702.000 37.700 37.800 37.200 40.100 53.500 40.700

XGBoost 8.960 4.970 5.310 4.850 4.810 10.300 6.680

GBDT 22.100 129.000 123.000 114.000 120.000 127.000 21.400

SVM 5553.000 22602.00 4727.000 7072.000 7137.000 7922.000 7400.000

SuperLearner 85.000 415.000 418.000 405.000 407.000 617.000 65.000

Table 4.5 - Models’ performance on Uniform noise dataset

Train Dataset Train PDW Train WT Train ST Train N1 Train N2 Train RN2 Train PC

Test Dataset
Test UN-

PDW
Test UN-

WT
Test UN-

ST
Test UN-

N1
Test UN-

N2
Test UN-

RN2
Test UN-

PC

Model: Accuracy:

DF 73.843% 100% 100% 100% 100% 100% 62.818%

DF-Stack 77.397% 100% 100% 100% 86.364% 91.280% 61.729%

DF-SVM 87.915% 99.909% 99.909% 99.909% 99.900% 98.487% 61.733%

36

DF-SL 89.031% 100% 100% 100% 100% 100% 64.374%

RandForest 69.829% 100% 100% 100% 100% 100% 56.661%

ExTrees 41.954% 100% 100% 100% 100% 100% 63.178%

XGBoost 86.635% 74.234% 74.234% 74.393% 60.415% 59.297% 63.584%

GBDT 49.109% 99.049% 99.049% 99.049% 74.567% 74.710% 45.903%

SVM 48.095% 39.587% 92.386% 39.161% 39.577% 56.889% 65.876%

SuperLearner 93.066% 100% 99.500% 83.126% 82.551% 91.239% 72.918%

Model: Prediction time (seconds):

DF 134.000 123.000 72.000 83.000 86.000 102.000 197.000

DF-Stack 332.000 146.000 101.000 101.000 106.000 147.000 104.000

DF-SVM 1053.000 5005.000 3743.000 2711.000 3907.000 6474.000 2209.000

DF-SL 39.200 2848.000 1830000 1399.000 1935.000 1942.000 63.000

RandForest 6.450 18.600 11.400 7.950 12.200 11.200 8.460

ExTrees 6.640 18.800 12.300 8.050 12.400 11.800 8.890

XGBoost 1.080 1.190 1.400 1.070 1.380 1.410 1.360

GBDT 2.160 34.400 30.500 26.100 36.600 29.200 4.940

SVM 905.000 7298.000 1534.000 1546.000 1979.000 2244.000 1354.000

SuperLearner 15.300 86.000 87.000 88.000 91.000 128.000 17.800

The following considerations can be taken by analyzing and comparing the models’ performance:

▪ Models’ accuracy increased with new features (created in feature engineering).

▪ In general, the models had better accuracy with the normalization scaling [-1,1] dataset

(N2) than the concatenation of normalization scaling [-1,1] with the sequence

normalization (RN2).

▪ Deep models, random forest, ExTrees, XGBoost and GBDT had the same accuracy

whether the dataset had no transformation (WT), Min-Max scaling (N1) or

standardization scaling (ST).

▪ DF-SVM improved the accuracy of its base learner (SVM).

▪ DF-SL improved the accuracy of its base learner (super learner) when using datasets with

transformation and underperformed when using original data (PDW) and principal

components (PC).

▪ While DF-SL had the best overall accuracy, DF had the second-best accuracy and the

best time performance within the deep forest models (almost eight times faster than

DF-SL).

Since DF only employs random forests and ExTrees as base learners, its performance may be justified

by the same top performance of its base learners.

4.5.1. Evaluate optimization

The optimization of DF is obtained through feature selection, which requires evaluating its

performance over a reduced sequence of features previously ranked. As presented in Table 4.6, DF

maintained 100% accuracy in all test datasets using four features.

37

Table 4.6 - DF and base learners’ performance with four features

Train Dataset Train WT Train WT Train WT

Test Dataset Test WT Test GN-WT Test UN-WT

Features RF_mean_bin, PRI_max, RF_mean, RF_min_bin

Model: Accuracy:

DF 100% 100% 100%

RandForest 100% 100% 100%

ExTrees 100% 100% 100%

Model: Prediction time (seconds):

DF 21.900 746.000 165.000

RandForest 2.530 86.000 19.300

ExTrees 2.430 85.000 19.100

Regarding prediction time, DF increased 42% while random forest and ExTrees increased 84%, yet DF

is still eight times slower.

The DF-SL optimization includes feature selection and hyperparameter optimization. The first

optimization is executed as in DF, which records the performance over different sets of features, as

follows.

Table 4.7 - DF-SL and super learner performance with five features

Train Dataset Train PDW Train PDW Train PDW

Test Dataset Test PDW Test GN-PDW Test UN-PDW

Features RF(kHz), PW(ns), POWER(dB), FMOP, PMOP

Model: Accuracy:

DF-SL 96.777% 91.618% 90.123%

SuperLearner 97.588% 94.423% 93.392%

Model: Prediction time (seconds):

DF-SL 2.860 351.000 38.200

SuperLearner 0.806 88.000 9.160

Table 4.8 - DF-SL and super learner performance with three features

Train Dataset Train PDW Train PDW Train PDW

Test Dataset Test PDW Test GN-PDW Test UN-PDW

Features RF(kHz), PW(ns), POWER(dB)

Model: Accuracy:

DF-SL 96.817% 91.610% 96.179%

SuperLearner 97.567% 94.357% 96.112%

Model: Prediction time (seconds):

DF-SL 3.180 284.000 38.100

SuperLearner 1.080 67.000 7.750

38

Comparing both tables, using three features improves the accuracy of Test UN4 in both models.

Furthermore, the overall prediction time is faster. Consequently, this set of features should be selected

and continued for hyperparameter optimization.

The first step of hyperparameter optimization requires testing and selecting the best parameters for

the base learner. Table 4.9 comprises the accuracy of the super learner (DF-SL base learner) over a

different number of v-fold cross-validation and loss functions.

Table 4.9 - Super Learner accuracy over fold and loss function

Loss Function Logistic Regression Ridge Classifier SGD Classifier

Folds: Train/Test PDW accuracy: Train/Test PDW accuracy: Train/Test PDW accuracy:

2-folds 96.751% / 97.567% 96.766% / 97.790% 96.563% / 97.810%

3-folds 96.563% / 98.135% 96.619% / 97.993% 96.345% / 98.317%

4-folds 96.436% / 98.297% 96.512% / 98.135% 96.543% / 98.317%

5-folds 96.401% / 98.378% 96.467% / 98.256% 96.264% / 98.439%

6-folds 96.447% / 98.276% 96.502% / 98.216% 96.507% / 98.317%

7-folds 96.340% / 98.398% 96.447% / 98.317% 96.071% / 98.439%

8-folds 96.365% / 98.357% 96.472% / 98.216% 96.431% / 98.357%

9-folds 96.355% / 98.378% 96.457% / 98.256% 96.021% / 98.337%

10-folds 96.381% / 98.378% 96.477% / 98.236% 96.330% / 98.357%

The second step requires testing and selecting the best number of (optimized) base learners – 7-fold

cross-validation super learner with SGD loss function; to be used in each layer of the deep forest

cascade. The accuracy achieved with 2, 3 and 4 base learners is recorded in Table 4.10.

Table 4.10 - DF-SL accuracy over base learner quantity

Models qt: Train/Test PDW accuracy:

2 SL 96.928% / 97.121%

3 SL 96.923% / 97.182%

4 SL 96.913% / 97.161%

After finding the best number of base learners (3) it is possible to re-evaluate the models over the

three datasets and compare it with the initial performance, as follows.

Table 4.11 - Optimized models performance

Train Dataset Train PDW Train PDW Train PDW

Test Dataset Test PDW Test GN-PDW Test UN-PDW

Model: Accuracy:

DF-SL 97.182% 90.310% 95.999%

SuperLearner 98.358% 94.532% 96.073%

Model: Prediction time (seconds):

4 As the models aren’t using categorical features, the noise introduced in Test UN doesn’t affect the

models’ accuracy.

39

DF-SL 4.890 786.000 69.000

SuperLearner 0.906 135.000 15.400

The optimized version of DF-SL improved by 2% accuracy on average while the optimized version of

super learner improved by 1.29%; however, this last still achieved higher accuracy in all three datasets.

DF-SL also worsen by 1.31% accuracy in Test GN, revealing less generalization capability. Regarding

prediction time, DF-SL increased by 11%, and super learner increased by 50%, yet DF-SL is still five

times slower.

4.6. RESOURCES

Table 4.12 lists the main Python packages and software used to develop the artifact.

Table 4.12 - Summary of software

Software/package: Version: Software/package: Version:

Jupyter Notebook 6.3.0 matplotlib 3.3.4

phyton 3.8.8 seaborn 0.12.0

pandas 1.4.2 deep-forest 0.1.7

numpy 1.23.4 xgboost 1.6.0

scikit-learn 1.1.3 mlens 0.2.3

40

5. RESULTS AND DISCUSSION

The main objective of this dissertation is to develop a deep ensemble model based on deep forest that

can classify radar emitters in PDW. In this sense, four deep ensemble models and six of its base learners

were built and tested on several datasets. Figure 5.1 plots the models’ performance, measured in

accuracy and time, on each test dataset. It is possible to see that XGBoost is the fastest model, DF-SVM

is the slowest, and almost every model achieved 100% accuracy (except SVM and DF-SVM). All models

underperformed on Test PC and Test PDW (trained on Train PC and Train PDW, respectively), meaning

they performed better on datasets with engineered features regardless of the transformation applied.

Figure 5.1 - Models' performance on the test dataset

Figure 5.2 plots the models’ performance on the Gaussian noise test dataset, where the prediction

time increased because this dataset is much bigger. Looking to the right side of the figure, it is possible

to see that DF-SVM achieved a higher accuracy than its base learner (SVM).

Figure 5.2 - Models' performance on Gaussian noise dataset

41

Figure 5.3 plots the models’ performance5 on the Uniform noise test dataset, where it is possible to

see that DF-SL had lower accuracy than its base learner (super learner) on Test PDW but better on

other datasets, as Test N1, Test ST, Test N2 and Test RN2.

Figure 5.3 - Models' performance on Uniform noise dataset

Given that datasets have a different number of records and models may perform differently on each,

Table 5.1 presents the average prediction time of each model per 1000 records, confirming that

XGBoost, random forest and ExTrees are significantly faster than the remaining.

Table 5.1 - Average model prediction time

Average prediction time per 1000 records (seconds):

DF DF-Stack DF-SVM DF-SL RandForest

0.524 0.775 11.785 4.107 0.038

ExTrees XGBoost GBDT SVM SuperLearner

0.061 0.005 0.358 7.334 0.265

Since the best models already achieve 100% accuracy in primary and noisy datasets, improving them

through feature selection and hyperparameter optimization is impossible. Tough, it is possible to seek

efficiency by reducing the number of features the model uses on datasets without transformation. This

DF implementation concluded that using four features (RF_mean_bin, PRI_max, RF_mean,

RF_min_bin) was enough to maintain 100% accuracy on Test WT, Test GN and Test UN datasets.

However, different from what was expected, the models become substantially slower, especially

random forest and ExTrees, with an increase of 84%.

Another interesting approach is to improve a deep model using the PDW dataset, which has not any

transformation or feature engineering. This implementation on DF-SL and its base learner increased

5 Appendix A.5. presents the models’ performance on test dataset, Gaussian noise dataset, and Uniform

noise dataset with linear time scale and accuracy between 0 and 100%.

42

the accuracy by 2.027% and 1.299%, respectively. Nevertheless, as presented in Figure 5.4, the super

learner still achieves higher accuracy in all three datasets and is five times faster.

For both approaches, it was impossible to determine why prediction time increased. While the number

of layers in both deep ensembles has remained constant, the training times for all models have

increased.

Figure 5.4 - Comparison of models’ performance

The accuracy reached in this dissertation appears to be good, but how does it compare to previous

research? The answer to this important question is complicated since each research employs its

dataset, ranging from a few thousand records to some hundred thousand records, containing different

numbers of agile emitters and varying the number of labels from a dozen to a hundred. So, this

comparison is only possible with many assumptions.

As expected, the super learner performed asymptotically or better than any of its base learners6. The

only down performance was observed in classifying the Uniform noise dataset using a model trained

with transformations (Train ST, Train N1, Train N2 and Train RN2 dataset). In these occurrences, the

deep model (DF-SL) improved the accuracy of the base learner, confirming what Young et al. (2018)

concluded – augmented features add depth to the learning and improve accuracy. Likewise, SVM's

accuracy increased significantly on the deep model, going from an average of 70.536% to 94.390%,

similar to what Kim et al. (2015) and Qi et al. (2016) had verified.

According to Z.-H. Zhou & Feng (2017) deep forest has few hyperparameters and can perform

excellently with default settings. In applying this model to classify synthetic aperture radar (SAR)

targets, the authors had the same conclusion but also stated that an appropriate selection of

hyperparameters would improve the accuracy for a specific classification task (Zhang et al., 2020).

Considering the results of this dissertation, it is possible to confirm both statements.

6 This conclusion comes from Literature review and considers the use of train/test dataset compared to

random forest, ExTrees and XGBoost.

43

In the context of HRRP recognition, as presented in the Literature review, deep forest achieved 94.81%

accuracy (Y. Wang et al., 2019). That model was replicated on DF-Stack and, using the PDW dataset,

achieved 97.203% accuracy.

Some previous research on radar classification was referred to in Introduction, and the corresponding

accuracies are now presented for comparison (see Table 5.2).

Table 5.2 - Accuracy of previous research

Research: Model: Highest accuracy:

Petrov et al., 2013 Feedforward Neural Networks 84.3%

W. Chen et al., 2017 Weighted XGBoost 98.30%

Sun et al., 2018 Unidimensional CNN 97.5%

Notaro et al., 2019 RNN and LSTM 64.98%

Xiao & Yan, 2020 Naïve Bayes 99.50%

Feng et al., 2021 Hybrid Deep Neural Network with dynamic CNN and LSTM 96.24%

J. Wang et al., 2022 Intuitionistic Fuzzy Information Tri-training 99.91%

Regarding prediction time, just a few previous research have measured it, and from those, some

comparisons could be made solely for SVM, following Sun et al., 2018 and Xiao & Yan, 2020. Even still,

the impact of different hardware and datasets would have to be considered in that comparison.

Some models evaluated are highly competitive in accuracy, but are they appropriate to solve the

problem? Considering the use case of accessing data after deinterleave (with cluster labels), it is

possible to engineer the four features that enable DF to accomplish 100% accuracy on datasets without

transformation. This leads to the conclusion that DF complies with the requirements of precision and

robustness. Regarding classification speed, the conclusion is complex – radars can transmit between a

few hundred and several hundred thousand pulses per second, and how many are unique to be used

in classification is unclear. In this context, on average, DF can classify 1000 records in 557ms (after

optimization), which may be acceptable. It is also worth noticing that random forest and ExTrees

accomplish the same accuracy and can be eight times faster than DF.

In the use case of working with raw data, the super learner (after optimization) matched the accuracy

of DF on Test PDW (98.358%) but can be considered the best performant model due to its superiority

on noisy datasets. Though, it cannot be considered to meet the required precision and robustness due

to a lack of quantitative requirements. Regarding classification speed, in this context, can classify 1000

records in 101ms, which may be acceptable.

The contributions of this dissertation are summarized as follows:

▪ For the first time, using a super learner as the deep forest's base learner and using these

models separately is proposed to classify emitters in PDW.

▪ It is verified that transformations do not impact deep forest accuracy.

▪ A new set of features has been proposed and tested – rolling minimum, maximum, and

mean values of RF(kHz), PW(ns) and PRI, have risen to the top of feature selection.

44

Focusing on the practical implementation of this work, some of the benefits and contributions could

be:

▪ Less dependency on experts to build and tune radar parameters databases, considering

future model training with ESM PDW records.

▪ The robustness to noise is intrinsic to the models’ behavior instead of database

parameters.

▪ The four features required to achieve 100% accuracy can be obtained from pulse trains.

▪ The model's classification process is not human-readable, protecting such classified

information.

45

6. CONCLUSIONS AND FUTURE WORKS

Modern warfare employs information from numerous sources to conduct operations, including ESM

systems that intercept, locate, and classify radar emitters to support the battlefield’s situational

awareness. These systems use the parameter matching method7 to perform classification, which

heavily relies on several experts to update, maintain, tune, and deploy radar parameters databases.

Therefore, the present dissertation fosters an alternative – How can a deep ensemble model, based

on deep forest, be used to classify radar emitters in PDW of ESM systems? Given the impact of

misclassification and the conditions of operation, this model must be quick, highly precise, and robust

to noise.

The most suitable methodology was found to be DSRM, complemented by the six phases of the data

science loop from Ferreira (2020), and the (PDW) dataset was produced with a virtual EW simulator

from Leonardo DRS, totaling 52 different emitters. This dataset started with 11 features and after

feature engineering, ended with 48. Then, several transformations took place, producing seven

datasets to train and test the models, plus two datasets to assess the models' robustness to noise –

one is dedicated to Gaussian noise on continuous features and another to Uniform noise on categorical

features.

Based on previous research, four deep ensemble models and six of its base learners were built and

evaluated on all datasets, counting 420 measurements of accuracy and classification speed (also

designated as prediction time). In overall accuracy, DF-SL was the best model (97.227%), and DF was

the second-best (96.442%), but regarding speed, DF was almost eight times faster than DF-SL, making

it the best performant model. Both models achieved 100% accuracy in datasets with feature

engineering, but with raw data, DF-SL achieved 92.470%, and DF achieved 87.493%, on average. Hence,

model optimization followed two distinct paths:

1. Improve the efficiency of DF, reducing the number of features used by the model

through feature selection while maintaining 100% accuracy in primary and noisy

datasets.

2. Improve the performance of DF-SL through feature selection and hyperparameter

optimization using raw data.

These developments were compared in deep ensemble models and their base learners. In the first line

of development, DF and its base learners were able to maintain the accuracy using four features

(RF_mean_bin, PRI_max, RF_mean, RF_min_bin) but became much slower – DF increased prediction

time by 42% while base learners increased 84%. Nevertheless, the base learners (random forest and

ExTrees) were still eight times faster than DF.

Regarding the second line of development, feature selection leads DF-SL and super learner to use three

features (RF(kHz), PW(ns), POWER(dB)), and after hyperparameter optimization, the accuracy has

increased 2.027% and 1.299% respectively. However, the super learner achieves higher accuracy in all

three datasets and is five times faster than DF-SL.

7 As the expert system method has a low recognition efficiency and a slow recognition speed, it’s not very

common.

46

Further conclusions can be taken from the results:

▪ Models achieved higher accuracy on datasets with engineered features, regardless of

their transformation.

▪ DF have exceptional performance with default settings.

▪ DF-SVM improved the accuracy of its base learner (SVM).

▪ DF-SL improved the accuracy of its base learner (super learner) on datasets with

transformation.

▪ XGBoost, random forest and ExTrees are significantly faster than the remaining models.

Compared with previous research, some of the models evaluated are highly competitive in accuracy –

100% when using datasets with feature engineering and an average of 96.321%8 using raw data –

which may be considered to meet the requirements of precision and robustness. Regarding

classification speed, the optimized models can classify 1000 records from 64ms (in the case of random

forest and ExTrees) up to 575ms (in the case of DF-SL), which may be acceptable. However, as these

models support parallelism, hardware can speed up their prediction time.

Bearing models’ performances in mind, the effort required to train them, and recalling the research

objective, this can be used as an alternative to the parameter matching method since it is less

dependent on experts, easy to maintain, fast to update (train the model on new emitters), and highly

accurate.

This dissertation contributed to the knowledge on deep forest and its usage with customized base

learners, on classification. It also introduced some novelty by combining deep forest with super

learner, and the rolling minimum, maximum, and mean values of RF(kHz), PW(ns) and PRI. Even so,

many limitations are also present and should be addressed in future works, such as:

▪ Perform hyperparameter optimization of the super learner’s base learners, including

new base learners, and evaluate DF-SL with this newly optimized super learner (as its

base learner).

▪ Evaluate the models on datasets with an incremental margin of error in all records and

features (continuous and categorical).

▪ Evaluate the models on datasets with errors in deinterleaver and cluster label errors.

▪ Evaluate the models on datasets with more complex scenarios and actual PDW

recordings.

▪ Fix dataset class imbalance with SMOTE, as performed by Ai et al. (2020).

▪ Grant the proper open-set procedure, such as the classification of unknown emitters,

following Apfeld & Charlish (2021).

▪ Build a super learner that implements deep forest as one of the base learners.

8 Average accuracy of super learner after optimization, in accordance with Table 4.11.

47

BIBLIOGRAPHICAL REFERENCES

Abdullah, A., Veltkamp, R. C., & Wiering, M. A. (2009). An Ensemble of Deep Support Vector

Machines for Image Categorization. 2009 International Conference of Soft Computing and

Pattern Recognition, 301–306. https://doi.org/10.1109/SoCPaR.2009.67

Ahmed, U. I., Rehman, T. ur, Baqar, S., Hussain, I., & Adnan, M. (2018). Robust pulse repetition

interval (PRI) classification scheme under complex multi emitter scenario. 2018 22nd

International Microwave and Radar Conference (MIKON), 597–600.

https://doi.org/10.23919/MIKON.2018.8405297

Ai, Z., Luktarhan, N., Zhou, A., & Lv, D. (2020). WebShell Attack Detection Based on a Deep Super

Learner. Symmetry, 12(9), 1406. https://doi.org/10.3390/sym12091406

Aldossary, M. (2017). De-interleaving of Radar pulses for EW receivers with an ELINT application.

University of Cape Town.

Apfeld, S., & Charlish, A. (2021). Recognition of Unknown Radar Emitters With Machine Learning.

IEEE Transactions on Aerospace and Electronic Systems, 57(6), 4433–4447.

https://doi.org/10.1109/TAES.2021.3098125

Aslan, M. K. (2006). Emitter Identification Techniques. Middle East Technical University.

Baskerville, R., Baiyere, A., Gergor, S., Hevner, A., & Rossi, M. (2018). Design Science Research

Contributions: Finding a Balance between Artifact and Theory. Journal of the Association for

Information Systems, 19(5), 358–376. https://doi.org/10.17705/1jais.00495

Bildøy, B. E. S. (2006). Satellite Cluster Consepts, A system evaluation with emphasis on deinterleaving

and emitter recognition. Norwegian University of Science and Technology.

Brendel, A. B., Lembcke, T.-B., Muntermann, J., & Kolbe, L. M. (2021). Toward replication study types

for design science research. Journal of Information Technology, 36(3), 198–215.

https://doi.org/10.1177/02683962211006429

Buchenroth, A. (2015). Ambiguity-Based Classification of Phase Modulated Waveforms. Wright State

University.

48

Chen, W., Fu, K., Zuo, J., Zheng, X., Huang, T., & Ren, W. (2017). Radar Emitter Classification for large

data set based on weighted‐xgboost. IET Radar, Sonar & Navigation, 11(8), 1203–1207.

https://doi.org/10.1049/iet-rsn.2016.0632

Chen, Y. M., Lin, C.-M., & Hsueh, C.-S. (2013). Identification of Highly Jittered Radar Emitters Signals

based on Fuzzy Classification. IOSR Journal of Engineering, 3(10), 53–59.

https://doi.org/10.9790/3021-031015359

Chen, Y.-H., Lyu, S.-H., & Jiang, Y. (2021). Improving Deep Forest by Exploiting High-order

Interactions. 2021 IEEE International Conference on Data Mining (ICDM), 1030–1035.

https://doi.org/10.1109/ICDM51629.2021.00118

Feng, Y., Wang, G., Liu, Z., Cui, B., Yang, Y., Xu, X., & Han, H. (2021). Recognition of Radar Emitters

with Agile Waveform Based on Hybrid Deep Neural Network and Attention Mechanism.

Radioengineering, 30(4), 704–712. https://doi.org/10.13164/re.2021.0704

Ferreira, J. (2020, março 26). Machine Learning: The Data Science Loop. Feedzai.

https://feedzai.com/blog/machine-learning-the-data-science-loop/

Gama, J., & Brazdil, P. (2000). Cascade Generalization. Machine Learning, 41, 315–343.

https://doi.org/10.1023/A:1007652114878

Gençol, K. (2015). New Methods For Radar Emitter Identification. Anadolu University.

Gregor, S., & Hevner, A. R. (2013). Positioning and Presenting Design Science Research for Maximum

Impact. MIS Quarterly, 37(2), 337–355. https://doi.org/10.25300/MISQ/2013/37.2.01

Grinsztajn, L., Oyallon, E., & Varoquaux, G. (2022). Why do tree-based models still outperform deep

learning on tabular data? 33. https://doi.org/10.48550/arXiv.2207.08815

Guo, Y., Liu, S., Li, Z., & Shang, X. (2018). BCDForest: A boosting cascade deep forest model towards

the classification of cancer subtypes based on gene expression data. BMC Bioinformatics,

19(S5), 118. https://doi.org/10.1186/s12859-018-2095-4

Hevner, A. R., March, S. T., Park, J., & Ram, S. (2004). Design Science in Information Systems

Research. MIS Quarterly, 28(1), 75–105. https://doi.org/10.2307/25148625

49

Kim, S., Yu, Z., Kil, R. M., & Lee, M. (2015). Deep learning of support vector machines with class

probability output networks. Neural Networks, 64, 19–28.

https://doi.org/10.1016/j.neunet.2014.09.007

Kvasnov, A. V. (2020). Methodology of classification and recognition of the radar emission sources

based on Bayesian programming. IET Radar, Sonar & Navigation, 14(8), 1175–1182.

https://doi.org/10.1049/iet-rsn.2019.0380

Laan, M. J. van der, Polley, E. C., & Hubbard, A. E. (2007). Super Learner. The Berkeley Electronic

Press, 22.

Ma, P., Wu, Y., Li, Y., Guo, L., Jiang, H., Zhu, X., & Wu, X. (2022). HW-Forest: Deep Forest with Hashing

Screening and Window Screening. ACM Transactions on Knowledge Discovery from Data,

16(6), 1–24. https://doi.org/10.1145/3532193

Ma, P., Wu, Y., Li, Y., Guo, L., & Li, Z. (2022). DBC-Forest: Deep forest with binning confidence

screening. Neurocomputing, 475, 112–122. https://doi.org/10.1016/j.neucom.2021.12.075

Meikle, H. (2008). Modern Radar Systems (2.a ed.). Artech House.

Naimi, A. I., & Balzer, L. B. (2018). Stacked generalization: An introduction to super learning.

European Journal of Epidemiology, 33(5), 459–464. https://doi.org/10.1007/s10654-018-

0390-z

Ni, S., & Kao, H.-Y. (2020). PSForest: Improving Deep Forest via Feature Pooling and Error Screening.

129, 769–781. https://proceedings.mlr.press/v129/ni20a.html

Notaro, P., Paschali, M., Hopke, C., Wittmann, D., & Navab, N. (2019). Radar Emitter Classification

with Attribute-specific Recurrent Neural Networks (arXiv:1911.07683). arXiv.

http://arxiv.org/abs/1911.07683

Pang, M., Ting, K. M., Zhao, P., & Zhou, Z.-H. (2022). Improving Deep Forest by Screening. IEEE

Transactions on Knowledge and Data Engineering, 34(9), 4298–4312.

https://doi.org/10.1109/TKDE.2020.3038799

50

Pang, M., Ting, K.-M., Zhao, P., & Zhou, Z.-H. (2018). Improving Deep Forest by Confidence Screening.

2018 IEEE International Conference on Data Mining (ICDM), 1194–1199.

https://doi.org/10.1109/ICDM.2018.00158

Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., & Hui, W. (2006). The Design Science Research

Process: A Model for Producing and Presenting Information Systems Research. 83–106.

http://urn.fi/URN:NBN:fi:jyu-201904092111

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A Design Science Research

Methodology for Information Systems Research. Journal of Management Information

Systems, 24(3), 45–77. https://doi.org/10.2753/MIS0742-1222240302

Petrov, N., Jordanov, I., & Roe, J. (2013). Radar Emitter Signals Recognition and Classification with

Feedforward Networks. Procedia Computer Science, 22, 1192–1200.

https://doi.org/10.1016/j.procs.2013.09.206

Qi, Z., Wang, B., Tian, Y., & Zhang, P. (2016). When Ensemble Learning Meets Deep Learning: A New

Deep Support Vector Machine for Classification. Knowledge-Based Systems, 107, 54–60.

https://doi.org/10.1016/j.knosys.2016.05.055

Revillon, G. (2019). Uncertainty in radar emitter classification and clustering. Université Paris-Saclay.

Sebastian, E. (2017). Radar target classification using Support Vector Machines and Mel Frequency

Cepstral Coefficients. KTH Royal Institute of Technology.

Sun, J., Xu, G., Ren, W., & Yan, Z. (2018). Radar Emitter Classification based on unidimensional

convolutional neural network. IET Radar, Sonar & Navigation, 12(8), 862–867.

https://doi.org/10.1049/iet-rsn.2017.0547

Taghizadeh-Mehrjardi, R., Hamzehpour, N., Hassanzadeh, M., Heung, B., Ghebleh Goydaragh, M.,

Schmidt, K., & Scholten, T. (2021). Enhancing the accuracy of machine learning models using

the super learner technique in digital soil mapping. Geoderma, 399, 115108.

https://doi.org/10.1016/j.geoderma.2021.115108

51

Wang, J., Wang, X., Tian, Y., Chen, Z., & Chen, Y. (2022). A Radar Emitter Recognition Mechanism

Based on IFS-Tri-Training Classification Processing. Electronics, 11(7), 1078.

https://doi.org/10.3390/electronics11071078

Wang, Y., Bi, X., Chen, W., Li, Y., Chen, Q., & Long, T. (2019). Deep Forest for radar HRRP recognition.

The Journal of Engineering, 2019(21), 8018–8021. https://doi.org/10.1049/joe.2019.0723

Wolpert, D. H. (1992). Stacked Generalization. Neural Networks, 5(2), 241–259.

https://doi.org/10.1016/S0893-6080(05)80023-1

Xiao, Z., & Yan, Z. (2020). Radar Emitter Identification Based on Naive Bayesian Algorithm. 2020 IEEE

5th Information Technology and Mechatronics Engineering Conference (ITOEC), 1242–1244.

https://doi.org/10.1109/ITOEC49072.2020.9141663

Young, S., Abdou, T., & Bener, A. (2018). Deep Super Learner: A Deep Ensemble for Classification

Problems. Advances in Artificial Intelligence, 84–95. https://doi.org/10.1007/978-3-319-

89656-4_7

Zhang, J., Song, H., & Zhou, B. (2020). SAR Target Classification Based on Deep Forest Model. Remote

Sensing, 12(1), 128. https://doi.org/10.3390/rs12010128

Zhou, Y., Wang, X., Chen, Y., & Tian, Y. (2020). Specific Emitter Identification via Bispectrum-Radon

Transform and Hybrid Deep Model. Mathematical Problems in Engineering, 2020, 1–17.

https://doi.org/10.1155/2020/7646527

Zhou, Z.-H., & Feng, J. (2017). Deep Forest: Towards An Alternative to Deep Neural Networks.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,

3553–3559. https://doi.org/10.24963/ijcai.2017/497

52

APPENDIX

A.1. PDW DATASET - VIOLIN PLOTS OF CONTINUOUS FEATURES BY EMITTER

53

54

55

56

A.2. PDW DATASET - CATEGORICAL FEATURES RELATION WITH EMITTER

57

A.3. OPTIMIZED DF-SL CONFUSION MATRIX

58

59

60

A.4. OPTIMIZED SUPER LEARNER CONFUSION MATRIX

61

62

63

A.5. MODELS’ PERFORMANCE ACROSS ALL DATASETS

