57,522 research outputs found

    Fast Mode Decision on H.264/AVC Baseline Profile for real-time performance

    Get PDF
    In this paper a new fast mode decision (FMD) algorithm is proposed for the recent H.264/AVC video coding standard, aiming to reduce its computational load without loosing coding efficiency. This algorithm identifies redundancy and selects the minimum sub-set of modes for each macroblock (MB) required to provide high rate-distortion (RD) efficiency. It is based on a fast analysis of the histogram of the difference image between frames which classifies the areas of each frame as active or non-active by means of an adaptive thresholding technique. More coding effort is devoted to active areas with the selection of a large sub-set of Modes, as these areas are expected to be the most relevant in terms of RD cost. Results show reduction values around 35–65% of motion estimation (ME) time, preserving the RD cost for the Baseline Profile, by using P-Slices and without needing B-Slices. Moreover, the strategy works as an intelligent tool for real-time applications with constrained number of operations per frame: it wisely uses the given operational resources distributing them among those MBs that need it

    Efficient Motion Estimation and Mode Decision Algorithms for Advanced Video Coding

    Get PDF
    H.264/AVC video compression standard achieved significant improvements in coding efficiency, but the computational complexity of the H.264/AVC encoder is drastically high. The main complexity of encoder comes from variable block size motion estimation (ME) and rate-distortion optimized (RDO) mode decision methods. This dissertation proposes three different methods to reduce computation of motion estimation. Firstly, the computation of each distortion measure is reduced by proposing a novel two step edge based partial distortion search (TS-EPDS) algorithm. In this algorithm, the entire macroblock is divided into different sub-blocks and the calculation order of partial distortion is determined based on the edge strength of the sub-blocks. Secondly, we have developed an early termination algorithm that features an adaptive threshold based on the statistical characteristics of rate-distortion (RD) cost regarding current block and previously processed blocks and modes. Thirdly, this dissertation presents a novel adaptive search area selection method by utilizing the information of the previously computed motion vector differences (MVDs). In H.264/AVC intra coding, DC mode is used to predict regions with no unified direction and the predicted pixel values are same and thus smooth varying regions are not well de-correlated. This dissertation proposes an improved DC prediction (IDCP) mode based on the distance between the predicted and reference pixels. On the other hand, using the nine prediction modes in intra 4x4 and 8x8 block units needs a lot of overhead bits. In order to reduce the number of overhead bits, an intra mode bit rate reduction method is suggested. This dissertation also proposes an enhanced algorithm to estimate the most probable mode (MPM) of each block. The MPM is derived from the prediction mode direction of neighboring blocks which have different weights according to their positions. This dissertation also suggests a fast enhanced cost function for mode decision of intra encoder. The enhanced cost function uses sum of absolute Hadamard-transformed differences (SATD) and mean absolute deviation of the residual block to estimate distortion part of the cost function. A threshold based large coefficients count is also used for estimating the bit-rate part

    An Efficient Mode Decision Algorithm Based on Dynamic Grouping and Adaptive Adjustment for H.264/AVC

    Get PDF
    “This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." “Copyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.”The rate distortion optimization (RDO) enabled mode decision (MD) is one of the most important techniques introduced by H.264/AVC. By adopting the exhaustive calculation of rate distortion, the optimal MD enhances the video encoding quality. However, the computational complexity is significantly increased, which is a key challenge for real-time and low power consumption applications. This paper presents a new fast MD algorithm for highly efficient H.264/AVC encoder. The proposed algorithm employs a dynamic group of candidate inter/intra modes to reduce the computational cost. In order to minimize the performance loss incurred by improper mode selection for the previously encoded frames, an adaptive adjustment scheme based on the undulation of bitrate and PSNR is suggested. Experimental results show that the proposed algorithm reduces the encoding time by 35% on average, and the loss of PSNR is usually limited in 0.1 dB with less than 1% increase of bitrate

    Motion estimation and CABAC VLSI co-processors for real-time high-quality H.264/AVC video coding

    Get PDF
    Real-time and high-quality video coding is gaining a wide interest in the research and industrial community for different applications. H.264/AVC, a recent standard for high performance video coding, can be successfully exploited in several scenarios including digital video broadcasting, high-definition TV and DVD-based systems, which require to sustain up to tens of Mbits/s. To that purpose this paper proposes optimized architectures for H.264/AVC most critical tasks, Motion estimation and context adaptive binary arithmetic coding. Post synthesis results on sub-micron CMOS standard-cells technologies show that the proposed architectures can actually process in real-time 720 × 480 video sequences at 30 frames/s and grant more than 50 Mbits/s. The achieved circuit complexity and power consumption budgets are suitable for their integration in complex VLSI multimedia systems based either on AHB bus centric on-chip communication system or on novel Network-on-Chip (NoC) infrastructures for MPSoC (Multi-Processor System on Chip

    Low complexity video compression using moving edge detection based on DCT coefficients

    Get PDF
    In this paper, we propose a new low complexity video compression method based on detecting blocks containing moving edges us- ing only DCT coe±cients. The detection, whilst being very e±cient, also allows e±cient motion estimation by constraining the search process to moving macro-blocks only. The encoders PSNR is degraded by 2dB com- pared to H.264/AVC inter for such scenarios, whilst requiring only 5% of the execution time. The computational complexity of our approach is comparable to that of the DISCOVER codec which is the state of the art low complexity distributed video coding. The proposed method ¯nds blocks with moving edge blocks and processes only selected blocks. The approach is particularly suited to surveillance type scenarios with a static camera

    Reducing the complexity of a multiview H.264/AVC and HEVC hybrid architecture

    Get PDF
    With the advent of 3D displays, an efficient encoder is required to compress the video information needed by them. Moreover, for gradual market acceptance of this new technology, it is advisable to offer backward compatibility with existing devices. Thus, a multiview H.264/Advance Video Coding (AVC) and High Efficiency Video Coding (HEVC) hybrid architecture was proposed in the standardization process of HEVC. However, it requires long encoding times due to the use of HEVC. With the aim of tackling this problem, this paper presents an algorithm that reduces the complexity of this hybrid architecture by reducing the encoding complexity of the HEVC views. By using Na < ve-Bayes classifiers, the proposed technique exploits the information gathered in the encoding of the H.264/AVC view to make decisions on the splitting of coding units in HEVC side views. Given the novelty of the proposal, the only similar work found in the literature is an unoptimized version of the algorithm presented here. Experimental results show that the proposed algorithm can achieve a good tradeoff between coding efficiency and complexity

    Dynamically variable step search motion estimation algorithm and a dynamically reconfigurable hardware for its implementation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. For the recently available High Definition (HD) video formats, the computational complexity of De full search (FS) ME algorithm is prohibitively high, whereas the PSNR obtained by fast search ME algorithms is low. Therefore, ill this paper, we present Dynamically Variable Step Search (DVSS) ME algorithm for Processing high definition video formats and a dynamically reconfigurable hardware efficiently implementing DVSS algorithm. The architecture for efficiently implementing DVSS algorithm. The simulation results showed that DVSS algorithm performs very close to FS algorithm by searching much fewer search locations than FS algorithm and it outperforms successful past search ME algorithms by searching more search locations than these algorithms. The proposed hardware is implemented in VHDL and is capable, of processing high definition video formats in real time. Therefore, it can be used in consumer electronics products for video compression, frame rate up-conversion and de-interlacing(1)

    Semi-hierarchical based motion estimation algorithm for the dirac video encoder

    Get PDF
    Having fast and efficient motion estimation is crucial in today’s advance video compression technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith

    Adaptive Multi-Pattern Fast Block-Matching Algorithm Based on Motion Classification Techniques

    Get PDF
    Motion estimation is the most time-consuming subsystem in a video codec. Thus, more efficient methods of motion estimation should be investigated. Real video sequences usually exhibit a wide-range of motion content as well as different degrees of detail, which become particularly difficult to manage by typical block-matching algorithms. Recent developments in the area of motion estimation have focused on the adaptation to video contents. Adaptive thresholds and multi-pattern search algorithms have shown to achieve good performance when they success to adjust to motion characteristics. This paper proposes an adaptive algorithm, called MCS, that makes use of an especially tailored classifier that detects some motion cues and chooses the search pattern that best fits to them. Specifically, a hierarchical structure of binary linear classifiers is proposed. Our experimental results show that MCS notably reduces the computational cost with respect to an state-of-the-art method while maintaining the qualityPublicad
    • 

    corecore