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Abstract

H.264/MVC is a standard for supporting the sensation of 3D, based oncoding from 2 (stereo) to N views. H.264/MVC adopts
many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of
processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video
encoding module for stereo sequences. In particular, interprediction and its collaborative execution on a heterogeneous platform.
The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental
results demonstrate the proposed algorithm’s ability to reduce the encoding time for different stereo high definition sequences.
Speed–up values of up to 90x were obtained when compared withthe reference encoder on the same platform. Moreover, the
proposed algorithm also provides a more energy–efficient approach and hence requires less energy than the sequential reference
algorithm.
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1. Introduction

The H.264/MPEG-4 Advanced Video Coding (AVC) stan-
dard [1] and its successor, High Efficiency Video Coding
(HEVC) [2], have demonstrated significant improvements in
video compression capabilities in the past few years [1], and
currently [2], for a wide range of bit–rates and resolutions
[3]. Moreover, since developing the H.264/AVC standard, both
the Joint Video Team (JVT) of the ITU-T Video Coding Ex-
perts Group (VCEG) and the ISO/IEC Moving Picture Experts
Group (MPEG) have also standardized an extension of it, which
is referred to as Multi–view Video Coding (MVC) [4]. The
Joint Collaborative Team on 3D Video (JCT-3V) is currently
working on the 3D extension of HEVC, and on the correspond-
ing 3DV-HTM software. Therefore, the one standard solu-
tion for multi–view / stereo video coding at the moment is the
H.264/MVC implementation.

H.264/MVC can provide users with the impression of com-
plete scene perception by simultaneously transmitting several
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views to the receivers. It can also give users vivid information
about the scene structure. H.264/MVC considers not only the
correlation in the temporal direction for motion-compensated
prediction (MCP), but also in the view direction for dispar-
ity compensated prediction (DCP). MVC adopts many coding
tools used for single view H.264/AVC, such as the variable
block-size Motion Estimation (ME) algorithm (which will be
described in Section 2), among others. This is a very complex
algorithm and, as part of the whole inter prediction algorithm,
it is applied many times in terms of different MacroBlock (MB)
sizes and, in the particular case of multi–view, between differ-
ent views. All these computations involve even higher encoder
complexity than single view H.264/AVC, which makes it nec-
essary to develop a method that can reduce the complexity of
MVC with minimal loss in coding efficiency (bit–rate and qual-
ity). In this area, several approaches are available in the liter-
ature that aim to accelerate this process by using algorithmic
and code optimizations. However, as far as the authors of this
paper know, there are no approaches that make use of hardware
platforms to achieve this goal.

On the hardware side, in the past few years new architectures
have been introduced in high–performance computing. Exam-
ples of such architectures include systems composed of multi–
core CPUs and Graphics Processing Units (GPUs). The het-
erogeneous nature of modern desktop systems imposes addi-
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tional challenges for module parallelization. Several program-
ming frameworks, such as the CUDA (Compute Unified De-
vice Architecture)[5] programming model, already addressthe
programmability issues in CPU+GPU environments by offer-
ing the unification of the execution space for different hetero-
geneous devices. CUDA abstracts both Simple Instruction Mul-
tiple Data (SIMD) and task parallelism into thousands of simul-
taneous threads.

At this point, this paper proposes an algorithm that efficiently
distributes the burden of complexity of the inter prediction algo-
rithm executed in H.264/MVC Stereo High Profile on a GPU-
based heterogeneous platform. This paper is an extension ofthe
one previously presented in [6]. This extension includes a more
accurate and complex way of obtaining the motion information,
surpassing the Rate Distortion (RD) performance obtained in
[6]. Moreover, it includes a more complete evaluation section,
as the proposals are tested against two of the most well–known
inter prediction algorithms implemented in the reference soft-
ware: the full search and UMHexagonS algorithms [7].

The algorithm includes both pixel and sub-pixel accuracy, as
well as temporal and inter-view predictions and different trans-
form sizes. Although the algorithm described in this paper is
evaluated for stereo (2 views), it could easily be extended to n–
views, and it can also provide the capability of 3D perception.
The idea of the proposed algorithm consists in starting withthe
smallest MB sub-partitions, and is able to build the entire tree-
structured ME procedure from bottom to top. In addition, some
structural references have to be broken or adapted when theyare
calculated in parallel. Performance evaluation is carriedout for
full High Definition (HD) stereo video sequences and adapted
for a system composed of an NVidia GTX480 and an Intel Core
i7 processor. The results show a noteworthy time reduction of
up to 98% with only a negligible RD penalty. Moreover, this
work also shows that the GPU-based H.264/MVC encoding al-
gorithm consumes less energy than the baseline algorithms run-
ning on a CPU core. Additionally, the proposed algorithm is
tested against full and UMHexagonS search algorithms. GPU–
based platforms raise the power consumption but the execution
time is much shorter, which leads to a more efficient use of en-
ergy.

There are many potential applications for the algorithms pre-
sented in this paper. Nowadays, GPUs are available in a wide
variety of environments, ranging from small and cheap personal
computers, to large and expensive supercomputers. GPU manu-
facturers provide different GPU solutions to satisfy the require-
ments of all these different environments. As a consequence,
the solutions proposed in this paper can be used by personal
computers when performing a video conference, by more pow-
erful servers dedicated to video streaming or by large high per-
formance computers in the video storage industry.

The rest of the paper is organized as follows. Section II
outlines the technical background. In Section III some related
work is presented. Section IV describes the approach presented
in this paper. In Section V the proposal presented is evaluated.
Finally, conclusions are given in Section VI.

2. Background

2.1. H.264/MVC

The H.264/MVC coding standard was recently finalized by
JVT, and was developed as an extension of H.264/AVC. MVC
mainly uses H.264/AVC while taking advantage of temporal
and inter-view dependencies [8] which are based on Hierarchi-
cal Bidirectional Pictures prediction to exploit both temporal
and inter-view correlations [9]. Moreover, MVC provides other
techniques such as Disparity Estimation (DE), which is usedin
the process of inter-view coding.

H.264/MVC inherits many video coding techniques from
H.264/AVC, such as multiple reference frames, weighted pre-
diction, a de-blocking filter, variable block size and quarter-
pixel precision for motion compensation, which allow this opti-
mum performance to be achieved at the expense of an increase
in the computational complexity of the encoder.

Basically, variable block-size matching ME [3] and DE [8]
are used to reduce the temporal and inter-view redundancies
between frames. In this coding system, variable block-sizeME
is carried out using eight inter prediction modes (SKIP, Inter
16x16, Inter 16x8, Inter 8x16, Inter 8x8, Inter 8x4, Inter 4x8,
and Inter 4x4), which are depicted in Figure 1. MVC deter-
mines which partitions deal with cost as the best MB partition.
This results in a high complexity encoder. Therefore, it is nec-
essary to develop a method that can reduce the execution time
of MVC with minimal loss of image quality.

Figure 1: MB partitions.

2.2. Graphics Processing Units (GPUs)

Recent heterogeneous platforms include GPUs in order to
achieve high-performance computing. Although GPUs come
primarily from interactive applications such as multimedia and
computer or console gaming, they can be used for running gen-
eral purpose applications. In fact, GPUs have recently changed
from being exclusively used in graphics applications to be-
ing used in what is called general purpose computing on GPU
(GPGPU).

The GPU architecture offers a new challenge for engineering
because the programming model must be adapted to the avail-
able hardware to obtain good performance and exploit the full
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potential of the GPU. This problem has been solved by GPU
manufacturers, such as NVIDIA and AMD/ATI, by proposing
new languages or even extensions for the most commonly-used
high-level programming languages. NVIDIA GPUs were cho-
sen since they can be programmed using CUDA C, which is a
C–based high level programming language designed to main-
tain a low learning curve for programmers familiar with stan-
dard C. NVIDIA GPUs can be programmed using other high
level programming languages such as OpenCL or Microsoft’s
C++ Accelerated Massive Parallelism (AMP) library (only for
devices supporting DirectX 11), but CUDA is the best way to
exploit the GPU’s capabilities.

NVIDIA proposes the CUDA parallel computing architec-
ture, which is a software platform for programming mas-
sively parallel high-performance computing applicationson
their company’s powerful GPUs. NVIDIA has seized upon this
opportunity to create a better programming model and to im-
prove the shaders or stream processors. Usually, each stream
processor on an NVIDIA GPU can manage many concurrent
threads, and has its own FPUs (float point units), registers,and
shared local memory [5]. At this point, the programmers do
not write explicitly threaded code. A hardware thread man-
ager handles threading automatically, which is an important
feature of CUDA. Thus, the temporal and inter-view prediction
algorithms proposed in the H.264/MVC encoder fit well in the
GPU philosophy because they perform the same computations
(computed costs) over different data (search area), and offer a
new challenge for the GPUs. The main issue is how to effi-
ciently distribute all the computations over the GPU resources
and avoid sequential dependencies.

3. Related work

As far as the authors know, the algorithm presented in this
paper is the first approach available in the literature that pro-
poses a GPU-based algorithm for reducing the encoding time
spent in MVC. It is true there are approaches which use het-
erogeneous computing to resolve single view inter prediction
in H.264/AVC, and there are also approaches which deal with
MVC inter-view prediction but by using faster (single core)al-
gorithms. However, when using parallel architectures new chal-
lenges appear that need to be solved. The following paragraphs
will provide an insight into the state–of–the–art from these two
points of view.

Solutions for accelerating the H.264/AVC encoding algo-
rithm by making use of Many-Core graphics hardware were
firstly proposed in 2007 byLee et al.[10]. They used a multi-
pass and frame parallel algorithm to accelerate some ME tools
available in an H.264/AVC encoder by using the OPENGL API.
They unroll and rearrange the multiple nested loops by using
a multi–pass method. Full-pixel accuracy ME is implemented
using a two–pass method and sub–pixel ME is implemented us-
ing a six–pass method. The algorithm is implemented using a
multi–pass method because the total number of instructionsis
higher than the GPU instruction limit. However, the algorithm
does not support variable block size ME and it is not integrated
in any H.264/AVC encoder.

In 2008, Ryoo et al. in [11] presented some optimization
principles of a multi-threaded GPU using CUDA. In [12]Chen
and Hangproposed an implementation of the H.264/AVC ME
algorithm using CUDA. The algorithm is based on an effi-
cient block-level parallel algorithm for the variable block size
ME in H.264/AVC. They decompose the H.264/AVC ME al-
gorithm into 5 steps so they can achieve highly parallel com-
putation. However, they use many sequential kernels, thus re-
ducing the parallel computations and increasing the memory
transfers between the GPU and its DRAM memory. Moreover,
they do not deal with the problem of Motion Vector Predictors
(MVPs) in H.264/AVC and the algorithm is not included in any
H.264/AVC encoder, so it is not possible to show any results for
RD performance.

In 2010,Cheung et al.proposed a GPU implementation of
the smpUMHexagonS ME algorithm implemented in JM 14.2
using CUDA [12]. This algorithm uses several techniques in
order to save computation, including MVPs, different search
patterns (cross, hexagon and diamond) and early–out termina-
tion. The authors divide the current frame into multiple tiles,
each tile being processed by a single GPU thread, and differ-
ent tiles are processed concurrently by different independent
threads on the GPU. The number of tiles used affects the al-
gorithm’s performance, both in terms of execution time and in
terms of RD performance. The greater the number of tiles used,
the faster the algorithm is, and the greater the parallelismthat
can be achieved, but the RD performance is worse, and fewer
MBs are predicted using real MVPs. They report significant
bit–rate increments (12%) with a penalty in quality of up to 0.4
dB depending on the sequence and the tile length.

Studies on the reduction of the computational complexity of
MVC have also appeared recently in the literature. As DE is
different from ME in MVC, DE algorithms based on camera
geometry and selective DE algorithms were proposed to reduce
computational complexity in inter-view prediction. In 2007,Lu
et al. in [13] proposed a DE technique to accelerate the dispar-
ity search by using an epipolar geometry. Epipolar geometry
has been widely studied in computer vision and is the only ge-
ometry constraint between a stereo pair of images in a single
scene. The proposed epipolar–geometry–based DE can greatly
reduce the search region and effectively track large and irreg-
ular disparity, which is very common in multi–view scenarios.
Huo et al. in [14] presented a scalable prediction structure for
MVC in which inter–view prediction may be disabled if the
inter–view redundancy can be almost eliminated by temporal
or intra predictions. In this way, the time employed for DE may
be saved by reducing encoder complexity. The authors use a
hierarchical Group of Pictures (GOP) pattern and propose not
to carry out the DE in one or more of the highest temporal lay-
ers of the hierarchical GOP pattern, since they observed that
the percentage of temporal predictions increases with the incre-
ment of the temporal layer index.Ding et al. in [15] proposed
a content–aware prediction algorithm for inter–view mode de-
cisions. The proposed algorithm is able to reduce the unneces-
sary computational load by exploiting the correlation between
the different views in MVC. The MB coding modes and their
corresponding MV may be predicted by using the DE and the
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coding information of neighbouring views. Therefore, the com-
putational complexity of ME can be greatly reduced since some
MBs may be early identified as SKIP, INTRA or as a DE mode,
and therefore it is not necessary to perform the ME.

More recently, in 2010,Zeng et al.[16] presented a fast mode
decision algorithm called MET. First, for each MB the SKIP
mode is evaluated. Then, if the encoding cost of the SKIP
mode is below an adaptive threshold, the other modes do not
need to be checked. The threshold is based on the mode corre-
lation of adjacent MBs in the current view and in neighboring
views. In 2012,Liu et al. in [17] presented a high-speed mode
decision algorithm for the inter–view predictions of multi-view
video sequences. Some candidate modes are disqualified from
being checked to reduce the encoding cost calculations and an
early stop mode decision is made by using multiple parame-
ters related to the estimation of the final optimal mode. These
parameters are: the MB residual and the temporal, spatial and
inter–view correlations.

Finally, there are other approaches that can jointly accelerate
both DE and ME [18, 19, 20]. In 2007,Li et al. in [18] pre-
sented a fast inter prediction algorithm for both ME and DE.
First, the prediction type is selected depending on the refer-
ence frames. Regions with fast motion are best handled by
inter–view prediction (DE). On the other hand, homogeneous
and stationary regions are best handled by temporal prediction
(ME). The reason is that regions with fast motion may be pre-
dicted using small block sizes and large MVs, which decrease
the coding efficiency. Then, some unuseful search regions in
the view direction are discarded from analysis, based on thedis-
placement between the cameras which recorded the 3D scene.
Finally, a fast mode decision is performed based on the predic-
tion type previously determined, applying the ME or DE pro-
cesses only to a subset of the available block modes. In 2009,
Shen et al.in [19] proposed a fast DE and ME algorithm based
on the correlation between the prediction/mode size and on mo-
tion homogeneity. MBs with homogeneous motion usually se-
lect temporal predictions with large block sizes, and MBs with
complex motion usually select inter–view prediction or tempo-
ral prediction with small block sizes. The proposal uses the
spatial properties of the motion field, which is generated byob-
taining the MVs of all 4x4 partitions within a frame. In 2011,
Shen et al.in [20] presented a low complexity mode decision
algorithm to reduce the complexity of ME and DE in MVC.
The proposed algorithm is based on four decision techniques:
early SKIP mode decision, adaptive early–out termination,fast
mode size decision, and selective intra coding in inter frames.
The authors evaluate each technique separately, and as a final
step evaluate the results of the entire algorithm.

As a conclusion for this section, the authors would like to
mention that a fair comparison with the related papers is not
possible for several reasons. Firstly, the number of views used
in the related works affects the algorithm’s performance; this
paper proposes a stereo-based algorithm (2-views) while the
other approaches use n-views, and thus the speed-ups are not
comparable. Secondly, most of the MVC proposals presented in
this section are implemented by using different reference soft-
ware, called JMVM [21]. Nevertheless, the proposal presented

in this paper exhaustively checks all the available ME and DE
modes by using a highly parallel algorithm to exploit the GPUs
capabilities, obtaining large time reductions whilst maintaining
encoding efficiency in comparison with the reference software
[22].

4. Proposed Algorithm

In this section, we describe our proposed GPU-based inter
prediction algorithm, which is optimized for 3D HD video se-
quences. The proposed algorithm is integrated in the well-
known H.264/AVC JM encoder, which offers support for MVC,
version 17.2 [22], so a proper evaluation could be carried out.

During the whole encoding procedure, there is some data that
does not change, such as frame sizes and the search area distri-
bution. This information is located in GPU constant memory
in order to take advantage of its cache. Furthermore, at the be-
ginning of coding each frame, the frame itself and the reference
frame are transferred to GPU texture memory to take advantage
of its access modes.

In what follows, we describe the main parts of our proposed
ME algorithm: full-pixel and sub-pixel inter prediction, inter-
view prediction and a GPU–based 8x8 transform.

4.1. Full-Pixel inter prediction
For each MB in a frame, the reference full-pixel inter pre-

diction sequentially obtains the cost for all positions checked
inside the search area for all possible partitions/sub-partitions
defined by the standard. Our main idea is to generate all this
motion information at the beginning of coding each frame by
using two GPU kernels.

The first GPU kernel uses 256 GPU threads per thread block.
Each thread block takes as input a specific MB and the refer-
ence area for 256 positions of this MB. The MB and the ref-
erence area are stored in multiprocessor shared memory to re-
duce memory traffic and improve data locality at the same time.
Shared memory is organized in a 4-byte data structure (integer
values) in order to avoid shared memory bank conflicts since
this memory is accessed in 4-byte words. Each GPU thread ob-
tains the costs for the sixteen 4x4 blocks in which an MB can
be divided for a specific position (Pst) and stores these costs in
GPU registers for the cost generation step (see Figure 2).

Figure 2 shows how to obtain the motion information for a
specific position (Pst) for all partitions/sub-partitions. In order
to obtain the motion information for the eight 4x8 and for the
eight 8x4 sub-partitions, it is only necessary to add two 4x4
SAD costs for each of them. For instance, by adding #0 and #2
SAD costs from the 4x4 sub-partition, the #0 SAD cost for the
8x4 sub-partition is obtained (see shaded boxes), and to obtain
the four 8x8 partitions it is only necessary to add two 4x8 SAD
costs, and so on. As was done for the first part of the algorithm,
intermediate results are stored in multiprocessor shared mem-
ory using a 4-byte data structure, but in this case this structure is
composed of two unsigned shorts (2 bytes each) which contain
the cost and an associated position.

Finally, this first kernel performs a reduction of the pre-
viously generated information (Figure 3). This kernel has
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Figure 2: Building SAD costs.

generated the motion information of 256 positions for all
partitions/sub-partitions and the aim of the reduction is to ob-
tain the position with the lowest cost for each partition/sub-
partition of the 256 positions. A binary reduction per
partition/sub-partition is carried out (b0 to bN−1 in Figure 3,
where N is the number of partitions/sub-partitions), overwrit-
ing the information previously stored in shared memory. Ini-
tially, the matrix size (S) is 256 (28) positions, and by using
the binary reduction in 8 iterations it is possible to obtainthe
best position of each partition/sub-partition. Note that in order
to avoid shared memory bank conflicts where possible (shared
memory is organized in 16/32 memory banks depending on the
GPU used), the reduction is carried out using strides of halfthe
remaining positions (128, 64, 32, 16, 8, 4, 2 and 1).

Figure 3: Proposed binary reduction.

An independent kernel (second kernel) performs the last re-
duction. Typically, in a search area there are more than 256 po-
sitions, e.g. using 32 as search range there are 4096 positions.
Therefore, an extra kernel is required to perform the final re-
duction. The reduction procedure is the same as that explained
for kernel #1 but using different data, e.g. using 32 as search
range this reduction would be performed using 4096/256= 16
elements per partition/sub-partition.

4.2. Sub-Pixel inter prediction

Before starting with sub-pixel inter prediction, the reference
frame must be sub-sampled to quarter-pixel accuracy because
it was transferred to GPU memory with full-pixel accuracy, i.e.
each full-pixel is converted into sixteen sub-pixels (the frame
size is multiplied by four in each direction, see Figure 4). These

sixteen sub-pixels can be further classified into full-pixels, sub-
pixels with half-pixel accuracy and sub-pixels with quarter-
pixel accuracy.

Half-pixels are obtained by means of a 6-tap filter for which
six full-pixels or six half-pixels are required. Quarter-pixels are
obtained by means of a bilinear filter, for which two half-pixels
are required. Note that there are dependencies in sub-pixelgen-
eration (half-pixels are required to generate other half-pixels
and half-pixels are required to generate the quarter-pixels).
Therefore, in order to avoid these dependencies, sub-pixelgen-
eration is performed using more than one GPU kernel. Three
GPU kernels are configured with as many threads as there are
full-pixels in a frame: the first one obtains two half-pixels, the
second one obtains one half-pixel and the third one obtains all
quarter-pixels.

Figure 4: Sub-pixel generation.

Sub-pixel inter prediction is performed in two steps; half-
pixel refinement and quarter-pixel refinement. The algorithm
for both steps is the same, but applied over different data.
The best full-pixel Motion Vector (MV) (obtained by full-pixel
inter prediction) of each partition/sub-partition becomes the
center point for half-pixel refinement and the best half-pixel
MV (obtained by half-pixel refinement) of each partition/sub-
partition becomes the center point for quarter-pixel refinement
(Figure 5). The best quarter-pixel MV of each partition/sub-
partition is the required output of the proposed algorithm.Nine
positions are evaluated in the half– and quarter–pixel refine-
ment, since each full–pixel is surrounded by nine half–pixels
and each half–pixel is surrounded by nine quarter–pixels.

Figure 5: Sub-pixel MV refinement.

5



The algorithm for sub-pixel inter prediction is similar to the
algorithm used for full-pixel inter prediction: we divide the
MB into sixteen 4x4 blocks and each one takes as its starting
point the appropriate MV (full-pixel MV or half-pixel MV of
each partition/sub-partition). However, in this case, the cost
of the 4x4 sub-partition cannot be used to build the cost of
higher partitions/sub-partitions, and must be recalculated for
each partition/sub-partition. All 4x4 blocks will take the same
MV to perform the 16x16 partition and the final cost will be
obtained using atomic GPU operations, or all 4x4 blocks will
take different MVs to perform the 4x4 sub-partition and no ex-
tra operations will be needed.

4.3. Temporal and inter–view MVP calculation

So far, nothing has been said about the metric used to evalu-
ate which is the best MV, just cost has been mentioned. How-
ever, from this point onward, this will be very important. The
cost calculation is based on Equation 1, which is a standard
equation and the one used in the JM reference encoder.

Cost= S ADcost+ λ ∗ vectorbits (1)

whereS ADcost is the metric used to calculate the differences
(SAD cost for full-pixel inter prediction and Hadamard SAD
cost for sub-pixel inter prediction),λ is an encoder parameter
which depends on the quantization parameters (QP) used and
vectorbits is the number of bits required to encode theMV minus
theMV predictor (MVP).

This equation is very important because it is a big challenge
for parallel programming, since there are dependencies between
adjacent MBs. TheMVP is calculated using the motion infor-
mation previously obtained for neighbouring MBs, as depicted
in Figure 6. It shows an MB and its neighbouring MBs involved
in the MVP calculation. If there is more than one partition in
the neighbouring MBs (in Figure 6, the left and upper MBs are
divided into more than one partition), the nearest partition to the
top–left corner of the current MB is selected in order to calcu-
late the MVP (see A and B partitions in Figure 6). The MVP is
calculated as the median of the three selected partitions (A, B,
and C partitions in Figure 6). Therefore, in order to obtain the
cost for a certain position of each MB, the cost of neighbouring
MBs must be calculated in advance.

At this point we need to eliminate or mitigate these depen-
dencies. An initial solution could be not to use theMVP
in Equation 1. Therefore,vectorbits would be the number of
bits required to encode theMV. However, this initial solution
causes significant RD degradation, so it is necessary to find a
procedure to predict the movement and mitigate these depen-
dencies.

The proposed GPU-based inter prediction algorithm is exe-
cuted concurrently for a complete frame, so the only way to
predict the movement is by extracting some information from
previously coded frames. AsMVP we propose to use theMV
of the MB located in the same position but in the previously
coded frame. However, this proposal only partially solves the
problem. The proposed algorithm in a 3D video encoder is ap-
plied in two different ways: by using a reference frame from

Figure 6: MV predictors.

the same view (temporal prediction) and by using a reference
frame from a different view (inter-view prediction). This pro-
posal solves the problem of RD degradation when the inter pre-
diction algorithm is applied using a reference frame from the
same view, but suffers from high RD degradation when the ME
algorithm is applied using a reference frame from a different
view. In other words, thisMVP is able to predict the move-
ment of a video sequence but is not able to predict the camera’s
distance when the inter–view prediction is applied. In the eval-
uation section, we refer to this proposal as Last PredictionMVP
(LP–MVP). Figure 7 shows how the MVP calculation is carried
out in this method (following the encoding order).

Figure 7: LP–MVP method.

Finally, due to the fact that there are two different ways of ap-
plying the proposed algorithm, we propose to update theMVP
in two different ways. When using a reference frame from the
same view, theMVP is calculated using theMV of the MB
located in the same position but in the previously temporarily
predicted frame. When using a reference frame from a different
view the MVP is calculated using theMV of the MB located
in the same position but in the previously inter-view predicted
frame. In the evaluation section, we refer to this proposal as
Same Kind of Prediction MVP (SKP–MVP). Figure 8 shows
how the MVP calculation is carried out in this method. In com-
parison with the previously described method, the MVPs of the
first frame in the right view of each GOP (inter–view predic-
tion) are not calculated using the motion information of thelast
frame in the right view of the preceding GOP, but are calculated
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using the motion information of the previously inter–view pre-
dicted frame. Similarly, the MVPs of the first P frame in the left
view of each GOP (temporal prediction) are calculated using
the motion information of the previously temporarily predicted
frame (last frame in the right view of the preceding GOP).

Figure 8: SKP–MVP method.

4.4. GPU–based 8x8 transform

As has been stated in the above section, the cost metric used
for sub–pixel inter prediction is Hadamard SAD, which is a
product–free transform. This metric is more complex than the
SAD metric used for full–pixel inter prediction, but improves
the encoding efficiency. This is because after the inter predic-
tion module, the residual data is transformed and quantified.

Originally, the Hadamard SAD is calculated using a 4x4
transform, one for each of the sixteen 4x4 blocks into which
an MB is divided. The cost metric for higher partitions is ob-
tained by adding the output of these 4x4 transforms. However,
by default, the profile used for coding 3D video sequences in
the H.264/AVC JM reference software (Stereo High Profile)
also allows the use of an 8x8 transform to obtain the encod-
ing cost. The cost of the smallest partitions (4x4, 4x8, 8x4 and
8x8) is obtained by adding the output of 4x4 transforms, and
the cost of the biggest partitions (8x8, 8x16, 16x8 and 16x16)
is obtained by adding the output of 8x8 transforms. Note that
the cost of the 8x8 partition can be obtained by using either
4x4 transforms or an 8x8 transform. The 8x8 transform is more
complex than the 4x4 transform, and requires six times more
add/subtract operations.

Initially, the code of the 8x8 transform was not ported to GPU
code, and the encoding cost of all partitions was obtained by
adding the output of 4x4 transforms, introducing some drifter-
rors. This initial solution is evaluated in the performanceeval-
uation section (the SKP–MVP proposal includes this scenario).

Then, the code of the 8x8 transform was ported to GPU code.
However, the parallelism for the biggest partitions (8x8, 8x16,
16x8 and 16x16) is greatly reduced since when using 4x4 trans-
forms, sixteen GPU threads perform one 4x4 transform and
now four threads have to perform one 8x8 transform (an MB
is divided into four 8x8 blocks). As a consequence, there are
fewer GPU threads obtaining the costs, and the GPU execution
time is almost doubled. Moreover, one must remember that the
8x8 transform is more complex.

Fortunately, the 8x8 transform can be carried out in paral-
lel by different GPU threads. In the sub–pixel GPU kernels,

sixteen threads have been configured to handle each one of the
sub–pixel positions. Therefore, the aim of this last improve-
ment is that sixteen GPU threads should cooperate to obtain the
cost of four 8x8 transforms.

The 8x8 transform can be parallelized, but there are some
limitations that affect the final performance:

• Extra synchronization barriers. An 8x8 transform must be
carried out in four steps, and each step is carried out by
four GPU threads in parallel. The first one obtains the
SAD coefficients to which the transform is going to be ap-
plied; the second one, in column fashion, performs the first
part of the 8x8 transform (each thread processes two com-
plete columns); the third one, in row fashion, performs the
second part of the 8x8 transform (each thread processes
two complete rows); and the final one adds the resulting
coefficients after applying the 8x8 transform (the 64 coeffi-
cients are added to find the final cost). Three synchroniza-
tion barriers are required since there are data dependencies
between the four steps.

• Thread divergences. The final step, which was described
above, only needs to be executed on one of the four GPU
threads performing the 8x8 transform. This method is
faster than introducing more synchronization barriers to
obtain partial results (each thread adding the coefficients of
two complete rows or columns of the 8x8 matrix obtained)
and using atomic GPU operations to obtain the final cost.

• Extra shared memory. In order to perform the transform in
parallel, different GPU threads need to communicate with
each other, and the way to do this is through GPU shared
memory. A data structure to store the partition informa-
tion for all positions (the cost for a certain partition is cal-
culated in parallel for all positions) is required. The size
of this structure is 9 KB (1 KB per position), limiting the
number of thread blocks that can be marked as active on
each one of the available GPU processors.

• Algorithm complexity. The 8x8 transform requires six
times more add/subtract operations, so it is six times more
complex than the 4x4 transform. If we compare it with
the previous proposal, one 8x8 transform is going to be
executed instead of executing four 4x4 transforms. How-
ever, the complexity continues to be higher and 50% more
add/subtract operations are required.

This final proposal is evaluated in the next section and is la-
beled as the SKPMVP method plus the GPU–based 8x8 trans-
form (SKP-MVP+ 8x8T).

5. Performance evaluation

In order to evaluate the proposed algorithm, it was imple-
mented in the H.264/AVC JM 17.2 reference software encoder
[22]. The parameters used for the evaluation were those in-
cluded in the Stereo High Profile of the said reference soft-
ware. Only some parameters were changed in the configuration
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file. The number of reference frames was set to 1 and RD-
Optimization was disabled in order to keep the complexity as
low as possible. Different values for these parameters were also
tested, and similar conclusions were obtained. The tests were
carried out using 3D full HD sequences (1080p, 1920 x 1080
pixels), with each view rated at 25 frames per second (25Hz).
The QP was varied between 28, 32, 36 and 40, according to
[23]. The search range was set to 32, which means 4096 search
area positions. The GOP pattern was set as shown in Figure 9.

Figure 9: Configured GOP pattern.

In order to make a proper comparison, an unmodified
H.264/AVC JM 17.2 reference software encoder implementa-
tion was run on the same machine as the proposed algorithm,
with the same configuration and with no calls to the GPU.

5.1. System

To evaluate the performance of the proposed algorithm, the
following development environment was used: the host ma-
chine used was an Intel Core i7 running at 2.80 GHz with 6GB
of DDR3 memory. The GPU used was an NVIDIA GTX480
with an NVIDIA driver and CUDA support (260.19). The op-
erating system for this scheme was Linux Ubuntu 10.4 x64 with
GCC 4.4. Table 1 shows the main GPU features.

Table 1: GTX480 features

Characteristic Value

Compute capability 2.0

Global memory 1.5 GB

Number of multiprocessors 15

Number of cores 480

Constant memory 64 KB

Shared memory per block 48 KB

Registers per block 32,768

Max. active threads per multiprocessor 1,536

Clock rate 1.40 Ghz

5.2. Metrics

The following metrics were used to evaluate the proposal:

5.2.1. RD function

In the definition of the RD function, the PSNR is the distor-
tion for a given bit–rate. The average global PSNR is based
on a standard Equation (Equation 2). The Luminance PSNR is
multiplied by four, since the YUV input files are in the format
4:2:0, which is composed of four 8x8 blocks for the luminance
component and only two 8x8 blocks for the chrominance com-
ponents.

PS NR=
4 ∗ PS NRY + PS NRU + PS NRV

6
(2)

5.2.2. Time Reduction and Speed–up

This is to evaluate the time saved by the proposed algorithm.
Time Reduction (TR) follows Equation 3 and speed–up is based
on Equation 4.

TR(%) =
TJM − TFI

TJM
∗ 100 (3)

S peed−up=
TJM

TFI
(4)

TJM denotes the coding time required by the H.264/AVC JM
17.2 reference software, andTFI is the time taken by JM us-
ing the algorithm proposed in this paper.TFI also includes all
the computational costs for the operations needed in order to
prepare the information required by our proposal.

5.2.3. ∆PSNR and∆bit–rate

The experiments were carried out on the test sequences using
four QPs, namely, 28, 32, 36 and 40. The detailed procedures
for calculating bit–rate and PSNR differences can be found in
the work by Bjøntegaard [23], and make use of Bjøntegaard and
Sullivan’s common test conditions [24]. These procedures have
been recommended by the JVT Test Model Ad Hoc Group. The
YUV files used for comparing the PSNR results are the origi-
nal YUV file at the input of the H.264/AVC JM 17.2 reference
software and the one obtained after decoding the H.264/MVC
video stream using the H.264/AVC JM 17.2 reference software
decoder.

5.2.4. Power and Energy Consumption

It is known that current GPUs suffer from high power con-
sumption requirements. Consequently, power and energy con-
sumption become essential metrics in this kind of studies. With
the aim of sampling the power consumed by the whole system
including the Power Supply Unit (PSU), we developed a data
logger device capable of collecting this data and transmitting it
to a computer. This device analyses the magnetic field produced
by an electric current flowing through a straight conductor and
is capable of sampling and reconstructing the resulting wave,
whatever its form, and processing it in order to obtain an aver-
age value. More details about the profiling system used can be
found in [25].
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5.3. Results
Table 2 shows the∆PSNR and the∆bit–rate results obtained

when coding five 3D 1080p sequences using the LP–MVP
method, the SKP–MVP method and the SKP–MVP+ 8x8T
method, compared with the reference full search ME algorithm.
These results are shown separately for the left view, for theright
view and for both views.

As mentioned above, this ME proposal using the LP–MVP
method obtains an acceptable RD degradation for the left view
(all frames use temporal prediction). On average, the left view
obtains a∆bit–rate of 2.16% and a∆PSNR of−0.048 dB.
However, it obtains unacceptable RD degradation for the right
view (some frames use inter-view prediction and some frames
use temporal prediction. On average, the right view obtains
a ∆bit–rate of 20.53% and a∆PSNR of−0.514 dB. This RD
degradation is due to the fact that the MVPs for inter-view pre-
dicted frames are based on the motion information obtained for
a frame which uses temporal prediction, and there is one of
this kind of frames per GOP. Note that the RD degradation pro-
duced in one frame is propagated to the frames for which it is
the reference.

The ME proposal using the SKP–MVP method obtains an
acceptable RD degradation for both views. On average, the left
view obtains a∆bit–rate of 1.92% and a∆PSNR of−0.043 dB
and the right view obtains a∆bit–rate of 6.12% and a∆PSNR
of −0.147 dB. This drop in RD performance is negligible if
the computational savings are taken into account (Table 3 and
Table 4). If we compare the RD performance obtained by this
SKP–MVP method with the LP–MVP method, the left view ob-
tains slightly better RD results because theMVP for all frames
using temporal prediction is always based on the motion infor-
mation obtained for a frame which uses temporal prediction,
and the right view obtains considerably better RD results be-
cause theMVP for inter-view predicted frames is based on pre-
viously coded inter-view predicted frames.

Finally, the ME proposal using the SKP–MVP+ 8x8T
method improves upon the RD results when using only the
SKP–MVP method, since it is able to obtain more accurate mo-
tion information. On average, both views obtain a∆bit–rate of
2.23% and a∆PSNR of−0.053 dB, which is better than the
results obtained when using only the SKP–MVP method (∆bit–
rate of 3.40% and a∆PSNR of−0.082 dB).

Table 3 and Table 4 show the timing results of our pro-
posed H.264/AVC JM encoders when coding five 3D 1080p
sequences using the SKP–MVP method and using the SKP–
MVP + 8x8T method, compared with the reference full search
ME algorithm. Note that the LP–MVP method is not included
since the timing results are almost the same as the ones ob-
tained when using the SKP–MVP method. The timing results
are shown for the proposed GPU code (ME column) and for
the complete H.264/AVC encoder (Encoder column). Table 3
shows the TR(%) results and Table 4 shows the speed–up re-
sults.

The ME proposal using the LP–MVP method or the SKP–
MVP method shows significant improvements, obtaining a
speed–up of nearly 10x on average, which means a time re-
duction of 89.74% for the complete H.264/AVC JM encoder,

Table 3: TR(%) results for the proposed encoders compared with the full search
algorithm

SKP–MVP SKP–MVP+ 8x8T

Sequence ME Encoder ME Encoder

Beergarden 98.90 92.12 98.41 91.92
Cafe 98.12 87.43 97.28 86.66
CarPark 98.67 90.56 98.07 90.03
Hall 98.19 87.92 97.37 87.16
Street 98.69 90.67 98.09 90.09

Average 98.52 89.74 97.84 89.17

Table 4: Speed–up results for the proposed encoders compared with the full
search algorithm

SKP–MVP SKP–MVP+ 8x8T

Sequence ME Encoder ME Encoder

Beergarden 91.60 12.70 63.00 12.37
Cafe 53.35 7.96 36.74 7.50
CarPark 75.36 10.59 51.87 1.03
Hall 55.23 8.28 38.02 7.79
Street 76.28 10.72 52.36 10.09

Average 67.43 9.75 46.40 9.23

and a speed–up of over 67x on average, which means a time
reduction of 98.52% for the proposed ME algorithm.

Finally, the ME proposal using the SKP–MVP+ 8x8T
method obtains slightly worse results than the ones obtained for
the LP–MVP and SKP–MVP methods, but shows significant
improvements when compared with the reference H.264/AVC
JM encoder and reports better RD results than the ones reported
for the LP–MVP and SKP–MVP methods (see Table 2). As
mentioned in the algorithm description section, the 8x8 trans-
form is six times more complex than the 4x4 transform and
requires more synchronization barriers, thus lowering thealgo-
rithm’s performance. This proposal obtains a speed–up of over
9x on average, which means a time reduction of 89.17% for the
complete H.264/AVC JM encoder, and obtains a speed–up of
over 46x on average, which means a time reduction of 97.84%
for the proposed ME algorithm.

Table 5 shows the∆PSNR and the∆bit–rate results obtained
when coding five 3D 1080p sequences using the LP–MVP
method, the SKP–MVP method and the SKP–MVP+ 8x8T
method compared with the reference UMHexagonS ME algo-
rithm. The UMHexagonS ME algorithm is afastME algorithm
implemented in the JM reference encoder. It is based on not
exploring all available positions within the search area follow-
ing a hexagonal search pattern. Therefore, it introduces certain
RD degradations when compared with full search ME, but it is
considerably faster. These results are shown separately for the
left view, for the right view and for both views.

Experimental results show that the three proposed encoders
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Table 2: RD performance compared with the full search algorithm

LP–MVP SKP–MVP SKP–MVP+ 8x8T

Sequence #frames view ∆bit–rate% ∆PSNR(dB) ∆bit–rate% ∆PSNR(dB) ∆bit–rate% ∆PSNR(dB)

left 1.71 -0.057 1.55 -0.051 0.82 -0.026
Beergarden 150 right 51.04 -1.351 3.66 -0.105 1.60 -0.045

both 20.21 -0.592 2.32 -0.070 1.11 -0.033

left 2.38 -0.053 2.16 -0.048 1.15 -0.026
Cafe 200 right 19.78 -0.500 3.90 -0.094 2.43 -0.059

both 9.55 -0.250 2.82 -0.071 1.64 -0.042

left 0.90 -0.022 0.86 -0.021 0.49 -0.012
CarPark 250 right 21.09 -0.495 14.42 -0.351 12.39 -0.299

both 7.66 -0.188 5.40 -0.135 4.47 -0.111

left 3.88 -0.067 3.42 -0.060 2.10 -0.037
Hall 200 right 6.39 -0.117 4.33 -0.079 2.95 -0.054

both 5.01 -0.095 3.83 -0.073 2.50 -0.047

left 1.91 -0.042 1.63 -0.036 1.30 -0.028
Street 250 right 4.35 -0.108 4.30 -0.106 1.82 -0.046

both 2.80 -0.065 2.64 -0.061 1.42 -0.033

left 2.16 -0.048 1.92 -0.043 1.17 -0.026
Average right 20.53 -0.514 6.12 -0.147 4.24 -0.101

both 9.05 -0.238 3.40 -0.082 2.23 -0.053

Table 5: RD performance compared with the the UMHexagonS algorithm

LP–MVP SKP–MVP SKP–MVP+ 8x8T

Sequence #frames view ∆bit–rate% ∆PSNR(dB) ∆bit–rate% ∆PSNR(dB) ∆bit–rate% ∆PSNR(dB)

left -0.20 0.006 -0.36 0.011 -1.07 0.035
Beergarden 150 right 21.09 -0.638 -16.67 0.575 -18.31 0.634

both 8.80 -0.263 -7.38 0.243 -8.47 0.280

left -2.02 0.046 -2.23 0.051 -3.19 0.072
Cafe 200 right -2.67 0.065 -15.69 0.465 -16.88 0.502

both -2.55 0.062 -8.60 0.219 -9.65 0.246

left -0.41 0.010 -0.45 0.011 -0.81 0.020
CarPark 250 right -6.52 0.169 -11.61 0.318 -13.21 0.366

both -2.91 0.072 -4.94 0.124 -5.77 0.146

left -4.60 0.092 -5.01 0.100 -6.22 0.123
Hall 200 right -10.34 0.227 -12.03 0.265 -13.18 0.290

both -7.58 0.156 -8.60 0.178 -9.77 0.204

left -2.13 0.048 -2.40 0.055 -2.72 0.062
Street 250 right -5.07 0.125 -5.13 0.126 -7.33 0.187

both -3.38 0.087 -3.54 0.091 -4.67 0.119

left -1.87 0.040 -2.09 0.046 -2.80 0.062
Average right -0.70 -0.010 -12.23 0.350 -13.78 0.396

both -1.52 0.023 -6.61 0.171 -7.67 0.199
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surpass the RD performance obtained when compared with the
UMHexagonS ME algorithm for all tested sequences, except
for the right view of the Beergarden sequence using the LP–
MVP method. This behaviour is due to this video sequence hav-
ing a static background, which is the worst scenario for the LP–
MVP method, since the MVPs for inter-view predicted frames
are based on the motion information obtained for a frame which
uses temporal prediction, thus providing a highly inaccurate
MVP.

Table 6 and Table 7 show the timing results of our proposed
H.264/AVC JM encoders when coding five 3D 1080p sequences
using the SKP–MVP method and using the SKP–MVP+ 8x8T
method, compared with the reference UMHexagonS ME algo-
rithm. The timing results are shown for the proposed GPU
code (ME column) and for the complete H.264/AVC encoder
(Encoder column). Table 6 shows the TR(%) results and Ta-
ble 7 shows the speed–up results. As mentioned above, the
UMHexagonS ME algorithm is afastME algorithm and, as ex-
pected, the TR and the speed–up results obtained are smaller
than the ones obtained when compared with the full search ME
algorithm.

Table 6: TR(%) results for the proposed encoders compared with the
UMHexagonS algorithm

SKP–MVP SKP–MVP+ 8x8T

Sequence ME Encoder ME Encoder

Beergarden 78.55 34.18 68.82 32.33
Cafe 73.86 29.65 62.03 25.32
CarPark 75.03 30.06 63.72 26.16
Hall 75.29 31.11 64.12 26.86
Street 75.95 31.11 64.96 26.82

Average 75.74 31.23 64.73 27.50

Table 7: Speed–up results for the proposed encoders compared with the
UMHexagonS algorithm

SKP–MVP SKP–MVP+ 8x8T

Sequence ME Encoder ME Encoder

Beergarden 4.66 1.52 3.21 1.48
Cafe 3.82 1.42 2.63 1.34
CarPark 4.01 1.43 2.76 1.35
Hall 4.05 1.45 2.79 1.37
Street 4.16 1.45 2.85 1.37

Average 4.12 1.45 2.84 1.38

The ME proposal using the SKP–MVP method continues
showing significant improvements, obtaining a speed–up of
nearly 1.5x on average, which means a time reduction of
31.23% for the complete H.264/AVC JM encoder, and a speed–
up of over 4x on average, which means a time reduction of
75.74% for the proposed ME algorithm. The ME proposal us-

ing the SKP–MVP+ 8x8T method obtains a speed–up of nearly
1.4x on average, which means a time reduction of 27.50% for
the complete H.264/AVC JM encoder, and a speed–up of over
2.8x on average, which means a time reduction of 64.73% for
the proposed ME algorithm.

Table 8 shows the average power consumption, the execu-
tion time and the total energy consumed when coding one GOP
(24 frames, 12 frames per view) for the complete test com-
puter when coding five 3D 1080p sequences. The first main
column shows them for the reference H.264/AVC JM encoder
using the full search ME algorithm (without any modification),
the second main column shows them for the H.264/AVC JM
encoder using the SKP–MVP method, and the third one shows
them for the H.264/AVC JM encoder using the SKP–MVP+
8x8T method. Additionally, there is an extra result for the
GPU–based encoders, which shows the ratio between the en-
ergy consumed by the reference H.264/AVC JM encoder and
the proposed H.264/AVC JM encoders. On average, the energy
consumption for the GPU-based encoder using the SKP–MVP
method is 9.61 times better than for the reference encoder, and
the ratio using the SKP–MVP+ 8x8T method is 8.91. This
small drop in energy savings is due to the fact that the proposal
using the GPU–based 8x8 transform is more complex than the
one which uses the 4x4 transform, and the GPU kernels con-
sume more time (see Figure 10 for a graphical analysis). Note
that the average power consumption of the proposed encoders
(248W and 250W) is about 30% greater than when using the
reference encoder (184W). This increase is not much if you
consider that when the GPU is in execution the power consump-
tion is over 350W (almost doubling the power consumption of
the reference encoder), and the reason is that the GPU is in ex-
ecution about 12%-16% of the total average encoding time.

Table 9 shows the average power consumption, the execu-
tion time and the total energy consumed when coding one GOP
(24 frames, 12 frames per view) for the complete test computer
when coding five 3D 1080p sequences. The first main column
shows them for the reference H.264/AVC JM encoder using the
UMHexagonS ME algorithm (without any modification), the
second main column shows them for the H.264/AVC JM en-
coder using the SKP–MVP method, and the third one shows
them for the H.264/AVC JM encoder using the SKP–MVP+
8x8T method. As in the previous table, there is an extra result
for the GPU–based encoders which shows the ratio between the
energy consumed by the reference H.264/AVC JM encoder and
the proposed H.264/AVC JM encoders. This table shows that
the average power consumption when using the UMHexagonS
ME algorithm is very similar to the one obtained when using
the full search ME algorithm (see Table 8), but the execution
time is considerably shorter. Therefore, the total energy con-
sumed by this reference algorithm is significantly smaller.In
fact, the GPU–based encoders are faster but consume more en-
ergy than the reference algorithm and there are no significant
energy savings or energy penalties.

Figure 10 shows an extract from the power consumption
over time (5 seconds) for the complete test computer, when
coding the Beergarden sequence for the reference H.264/AVC
JM encoder using the full search ME algorithm, for the pro-
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Table 8: Energy consumption for coding a GOP compared with the full search algorithm

Reference encoder SKP–MVP SKP–MVP+ 8x8T

Sequence Power Time Energy Power Time Energy Ratio Power Time Energy Ratio
(Watts) (seconds) (Joules) (Watts) (seconds) (Joules) (Watts) (seconds) (Joules)

Beergarden 184.59 613.68 113,279.19 246.69 40.57 10,008.21 11.32 245.24 44.46 10,903.37 10.39
Cafe 184.13 427.17 78,654.81 247.04 40.63 10,037.23 7.84 247.13 43.54 10,760.04 7.31
CarPark 184.65 531.32 98,108.24 248.66 40.98 10,190.09 9.63 248.06 43.58 10,810.45 9.08
Hall 183.82 482.67 88,724.40 249.83 40.30 10,068.15 8.81 250.64 42.76 10,717.37 8.28
Street 183.62 583.45 107,133.09 250.96 40.91 10,266.77 10.43 251.69 43.39 10,920.83 9.81

Average 184.16 527.66 97,179.95 248.64 40.68 10,114.09 9.61 250.35 43.55 10,902.74 8.91

Table 9: Energy consumption for coding a GOP compared with the UMHexagonS algorithm

Reference encoder SKP–MVP SKP–MVP+ 8x8T

Sequence Power Time Energy Power Time Energy Ratio Power Time Energy Ratio
(Watts) (seconds) (Joules) (Watts) (seconds) (Joules) (Watts) (seconds) (Joules)

Beergarden 184.92 60.29 11,148.83 246.69 40.57 10,008.21 1.11 245.24 44.46 10,903.37 1.02
Cafe 182.30 57.44 10,471.31 247.04 40.63 10,037.23 1.04 247.13 43.54 10,760.04 0.97
CarPark 183.93 56.32 10,358.94 248.66 40.98 10,190.09 1.02 248.06 43.58 10,810.45 0.96
Hall 184.77 54.81 10,127.24 249.83 40.30 10,068.15 1.01 250.64 42.76 10,717.37 0.94
Street 184.83 56.38 10,420.72 250.96 40.91 10,266.77 1.02 251.69 43.39 10,920.83 0.95

Average 184.15 57.05 10,505.76 248.64 40.68 10,114.09 1.04 250.35 43.55 10,902.74 0.96

posed GPU–based H.264/AVC JM encoder using the SKP–
MVP method, and for the proposed GPU–based H.264/AVC
JM encoder using the SKP–MVP+ 8x8T method. Note that
the power consumption over time when using the reference
UMHexagonS ME algorithm is not shown in this graph be-
cause it is similar to the one shown when using the reference
full search ME algorithm, but the execution time is shorter (Ta-
ble 8 and Table 9). When the encoder process begins all en-
coders consume the same power (around 180–185 Watts), but
when the GPU starts working the power consumption of the
proposed encoders increases. They have a power consumption
of around 335-350 Watts (see power consumption peaks in Fig-
ure 10). Moreover, if we focus on the first power consumption
peak of the GPU–based encoders, it is clear that it is longer
when using the 8x8 transform since it is more complex and the
GPU consumes more time to perform it. Finally, we should
mention that the power consumption for the CPU code in the
proposed encoders is around 235 Watts, which is higher than
for the reference execution (180–185 Watts) because the GPU
is always active, waiting for new kernels.

6. Conclusions

This paper presents two GPU–based inter prediction ap-
proaches for H.264/MVC. The methods presented try to mit-
igate sequential dependencies when coding adjacent MBs in
parallel in a 3D scene while using a simplified way to obtain
the motion information, and a more accurate but more com-
plex method to obtain the motion information. Both methods

Figure 10: Power consumption.

are tested against two of the most well–known ME algorithms
implemented in the reference H.264/AVC JM encoder.

The proposal using the simplified way of obtaining the
motion information obtains the best timing and energy sav-
ing results, but obtains slightly worse RD results than the
ones obtained by the proposal using the most accurate ap-
proach. It obtains a speed–up of nearly 10x for the complete
H.264/MVC encoder when compared with the full search ME
algorithm and a speed–up of nearly 1.5x when compared with
the UMHexagonS ME algorithm. The energy consumption of
the proposed H.264/MVC encoder is 9.61 times better than that
of the reference H.264/AVC JM encoder when using full search
ME and the energy efficiency is maintained when compared
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with the execution of the UMHexagonS ME algorithm.
The proposal using the accurate approach obtains a speed–

up of over 9x for the complete H.264/MVC encoder when
compared with the full search ME algorithm and a speed–
up of nearly 1.4x when compared with the UMHexagonS
ME algorithm. The energy consumption of the proposed
H.264/MVC encoder is 8.91 times better than that of the ref-
erence H.264/AVC JM encoder when using full search ME and
the energy efficiency is maintained when compared with the ex-
ecution of the UMHexagonS ME algorithm.

Finally, these proposals obtain an acceptable RD degrada-
tion when compared with the execution of the full search ME
algorithm, and an RD improvement when compared with the
execution the UMHexagonS ME algorithm.

Acknowledgments

This work was supported by the Spanish MEC and MICINN
funds, under the grants TIN2009-14475-C04-03 and TIN2012-
38341-C04-04.

References

[1] ISO/IEC International Standard 14496-10:2005. Information technology
Coding of audio-visual objects Part 10: Advanced Video Coding; 2005.

[2] Ohm J-R, Sullivan G J, Schwarz H, Tan T K, Wiegand T. Comparison of
the Coding Efficiency of Video Coding Standards - Including High Effi-
ciency Video Coding (HEVC). IEEE Transactions on Circuits and Sys-
tems for Video Technology 2012; 22(12): 1669-1684.

[3] Wiegand T, Sullivan G J, Bjøntegaard G, Luthra A. Overview of the
H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and
Systems for Video Technology 2003; 13(7): 560-576.

[4] ISO/IEC International Standard 14496-10:2007. Advanced VideoCoding
for Generic Audiovisual Services (MVC extension); 2007.

[5] NVIDIA. NVIDIA CUDA Compute Unified Device Architecture-
Programming Guide Version 3.2; 2010.

[6] Rodrı́guez–Sánchez R, Martı́nez J L, Fernández–Escribano G, Sánchez J
L, Claver J M. A Fast GPU-Based Motion Estimation Algorithm for HD
3D Video Coding. In: 10th IEEE International Symposium on Parallel
and Distributed Processing and Aplications; July 2012. 166-173.

[7] Richardson I E G. The H.264 Advanced Video Compression Standard,
2nd Edition. John Wiley and Sons 2010.

[8] Vetro A, Wiegand T, Sullivan G J. Overview of the Stereo and Multiview
Video Coding Extensions of the H.264/AVC Standard. Proceedings of the
IEEE 2011; 99(4): 626-642.

[9] Merkle P, Smolic A, Muller K, Wiegand T. Efficient prediction structure
for multiview video coding. IEEE Transaction Circuits System for Video
Technology 2007; 17(11): 1461-1473.

[10] Lee C-Y, Lin Y-C, Wu C-L, Chang C-H, Tsao Y-M, Chien S-Y. Multi-
Pass and Frame Parallel Algorithms of Motion Estimation in H.264/AVC
for Generic GPU. In: Proceedings of the IEEE International Conference
on Multimedia and Expo; 2007. 1603-1606.

[11] Ryoo S, Rodrigues C, Baghsorkhi S, Stone S, Kirk D. Hwu W-M. Opti-
mization Principles and Application Performance Evaluation of a Multi-
threaded GPU Using CUDA. In: Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming; February
2008. 73-82.

[12] Chen W-N, Hang H-M. H.264/AVC motion estimation implementation on
Compute Unified Device Architecture (CUDA). In: Proceedings of IEEE
International Conference on Multimedia and Expo(ICME); June 2008.
679-700.

[13] Lu J B, Cai H, Lou J G, Li J. An epipolar geometry-based fast dispar-
ity estimation algorithm for multiview image and video coding. IEEE
Transactions on Circuit and System for Video Technology 2007; 17(6):
737-750.

[14] Huo J Y, Chang Y L, Li M, Ma Y Z. Scalable prediction structure for mul-
tiview video coding. In: Proceedings of IEEE InternationalSymposium
on Circuits and Systems; May 2009. 2593-2596.

[15] Ding L, Tsung P, Chien S, Chen W, Chen L. Content-aware prediction al-
gorithm with inter-view mode decision for multiview video coding. IEEE
Transactions on Multimedia 2008; 10(8): 1553-1563.

[16] Zeng H, Ma K K, Cai C. Mode-correlation-based early termination mode
decision for multi-view video coding. In: 17th IEEE International Con-
ference on Image Processing; September 2010: 34053408.

[17] Liu X, Yang L T, Sohn K. High-speed inter-view frame modedecision
procedure for multi-view video coding. Future Generation Computer Sys-
tems 2012; 28(6): 947956.

[18] Li X M, Zhao D B, Ji X Y, Wang Q, Gao Q. A fast inter frame prediction
algorithm for multi-view video coding. In: Proceedings of IEEE Interna-
tional Conference on Image Processing; September 2007: 417-420.

[19] Shen L, Liu Z, Liu S, Zhang Z, An P. Selective disparity estimation and
variable size motion estimation based on motion homogeneity for multi-
view coding. IEEE Transaction on Broadcast 2009; 55(4): 761-766.

[20] Shen L, Liu Z, An P, Ma R, Zhang Z. Low-Complexity Mode Decision for
MVC. IEEE Transactions on Circuits and Systems for Video Technology
2011; 21(6): 837843.

[21] AHG on Multiview Video Coding, ISO/IEC JTC1/SC29/WG11 Docs:
N6501 N7829; 2007.

[22] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG,
Reference Software to Committee Draft: JVT-F100 JM17.2; 2011.
http://iphome.hhi.de/suehring/tml/.

[23] Bjøntegaard G. Calculation of Average PSNR Differences between RD-
Curves. In: the 13th VCEG-M33 Meeting; April 2001.

[24] Sullivan G, Bjøntegaard G. Recommended Simulation Common Con-
ditions for H.26L Coding Efficiency Experiments on Low-Resolution
Progressive-Scan Source Material. In: ITU-T VCEG Doc. VCEG-N81;
September 2001.

[25] Rodrı́guez-Sánchez R, Martı́nez J L, Fernández-Escribano G, Sánchez J
L, Claver J. M, Dı́az P. Optimizing H.264/AVC Inter Prediction on a GPU-
based Framework. In: Technical Report DIAB–11–01–2, Department of
Computing Systems, University of Castilla-La Mancha; 2011.
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