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Abstract. In this paper, we propose a new low complexity video com-
pression method based on detecting blocks containing moving edges us-
ing only DCT coefficients. The detection, whilst being very efficient, also
allows efficient motion estimation by constraining the search process to
moving macro-blocks only. The encoders PSNR is degraded by 2dB com-
pared to H.264/AVC inter for such scenarios, whilst requiring only 5%
of the execution time. The computational complexity of our approach
is comparable to that of the DISCOVER codec which is the state of
the art low complexity distributed video coding. The proposed method
finds blocks with moving edge blocks and processes only selected blocks.
The approach is particularly suited to surveillance type scenarios with a
static camera.

Low complexity video compression, Moving edge, DCT

1 Introduction

New digital video applications have recently emerged such as private internet
broadcasting and wireless multimedia sensor networks. These kinds of applica-
tions fundamentally need a low power and low complexity encoder in order to
operate on power limited devices such as wireless video phones, personal digital
assistants (PDA) and sensor platforms. Of course, apart from coding computa-
tional complexity, the coding gain of a compression algorithm plays a vital role
in determining its practical usefulness. Therefore, much research has targeted
reasonable coding gains whilst keeping complexity low. However, the challenge
comes in finding the optimum trade-off as the dual requirements of coding gains
and low complexity are not comfortable bed-fellows.

H.264/AVC has been standardized with a target for coding gains regardless
of complexity [1]. Although the power of digital devices has increased steadily,
it is still hard to realize real-time operation on power limited devices. Recently,
much research for achieving low complexity with reasonable coding gains has
been performed using H.264/AVC [2–4]. In hybrid coding, such as the standard-
ization efforts of ITU-T and MPEG, two main coding tools are used to obtain
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reasonable coding gains: transform and prediction. The most time consuming
functions of H.264/AVC are motion estimation, compensation and prediction.
Therefore low complexity algorithms based on H.264/AVC typically attempt to
reduce the complexity of these three functions. In [2, 3], the authors’ approaches
focus on reducing the complexity needed to find motion vectors and make mode
decisions as required by the variable block size feature of H.264/AVC. Many fast
algorithms are reviewed in [4]. As an example of other approaches investigated
to obtain low complexity, Hiratsuka et al. proposed adaptive tree based video
coding where their approach has similarity to 3D DCT based coding [5]. How-
ever, its drawback is low coding gains even though low complexity is achieved
compared to standard codecs. Perhaps the most popular approach to obtain cod-
ing gains is region of interest (ROI) based coding. However this approach needs
an additional step of object or region segmentation that requires significant
computational overhead. In the case of low motion video such as surveillance,
low complex algorithms are possible such as that proposed in [6]. Sriram S et
al. proposed foveation based low complexity video coding [7]. Their approach
uses human visual system (HVS) modeling to obtain coding gains whereby a
DCT based foveation filter is used to reduce complexity for detecting foveation
regions.

For implementing low complexity encoders, a coding paradigm named dis-
tributed video coded (DVC) based on Wyner-Ziv [8] and Slepian-Wolf [9] infor-
mation theory has recently emerged. The basic concept is that the complexity
shifts from the encoder to the decoder by using error correction codes (ECC).
The distributed probability between the current frame and the previous frame
is defined similar to a channel in communication theory and only parity bits
of ECC are sent to the decoder. The decoder decodes the current frame with
parity bits and a reference frame sent as side information. In this approach,
the encoder only performs the matrix multiplications between the parity ma-
trix and data bits, whilst the decoder requires more complexity to decode the
ECC. Puri and Ramchandran proposed the PRISM codec for multimedia trans-
missions on wireless networks using syndromes [10]. Aaron and Girod proposed
a video coding framework using intraframe encoding as side information with
turbo codes named Stanford DVC and transform based coding [11, 12]. Recently,
X.Artigas et al. proposed the DISCOVER codec including more advanced tools
to obtain coding gains such as a rate-distortion module and virtual channel
modeling. Despite their efforts, however, coding quality still suffers degradation
compared to H.264/AVC [13].

We propose very low complexity video compression in a similar vein to ROI
based coding. The proposed method does not perform object or region segmen-
tation which can introduce computational complexity but rather detects moving
edges using only DCT coefficients. The approach can be adapted from low mo-
tion to high motion sequences. The motivation for the research is presented in
the next section. The proposed approach is explained in Section 3. The perfor-
mance of the proposed method is compared to H.264/AVC and the DISCOVER
codec in Section 4. Finally, concluding remarks are made in Section 5.



2 Motivation

The computational complexity of video coding comes from the motion estima-
tion, compensation and prediction block. As mentioned in Section 1, many re-
searchers focus on reducing motion estimation time to obtain low complexity in
hybrid coding. A motion search algorithm has the role of finding matched blocks
without any prior knowledge of the image. If prior knowledge of image contents
was available, this would enable us to perform better motion estimation, but
focusing on the regions that really need it, thereby satisfying the requirements
of high coding gains and low complexity at the same time. A ROI-based en-
coder effectively attempts to predict the content of the scene to achieve coding
gains. However, it usually requires an additional segmentation block and pre-
/post-processing of the video which means significant computational cost [14].
We propose a ROI-based scheme that detects only moving edges and not com-
plete moving objects. This facilitates low complexity encoding, particularly as
this detection can be done using the DCT directly. Static edges give a hint for
the boundary of object and moving edges give information of on which area has
motion. Using this knowledge of moving regions then allows us to perform low
complexity motion estimation. Moving edges are detected through classification
of edges using DCT coefficients in a 4 × 4 sub block. An algorithm for reduc-
ing falsely detected moving edges is also suggested in this paper. Block based
moving edge classification is more adaptable for video compression than a frame
based approach since a frame based approach needs to find the block position
and edge types which requires additional computational complexity.

3 Proposed Approach

The proposed video compression approach can use a modified standard H.264/AVC
encoder to generate the necessary information corresponding to the edge direc-
tion number (ED) and the standard deviation of the AC DCT coefficients (SD)
as well as to generate the required intra coded frame. However, in this paper,
our previously proposed intra coding method is used as the intra encoder [15].
The encoder proposed in this paper consists of the moving edge detection and
video compression functional blocks as shown in Fig. 1. The moving edge detec-
tion function block detects not only moving edges but also removes false moving
edges via a reduction function block (RFME). Both processes are performed
using 4× 4 DCT coefficients.

After moving edge detection, video compression in our method is performed
with a similar approach to a standard H.264/AVC codec. However, in order
to obtain low complexity, our video compression method does not use variable
block size (only 4 × 4 blocks are used in this paper), 1

4 pel motion estima-
tion/compensation or rate distortion optimization as used in H.264/AVC. Of
course, this causes degradation of video quality, however, since our ROIs corre-
spond to only moving edge blocks the slight degradation of video quality is offset
by the bit savings obtained. Therefore, the overall rate-distortion performance
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Fig. 1. The proposed video compression functional blocks, bold italics indicate abbre-
viations used in the paper.

is not severely degraded compared to H.264/AVC (see Fig. 6 and the discussion
in the results section). The detailed functionalities of the proposed method are
explained in the following.

3.1 Moving Edge Detection

Moving edge detection If the current 4× 4 block has a specific edge feature
(such as horizontal, vertical, diagonal or texture as shown in Fig. 2(a)), the
standard deviation (SD) of AC coefficients as calculated in equation (1) indicates
whether edge or non-edge information is present [16]. As an object moves in the
scene it covers and uncovers background around its borders. Also, the object
may deform, changing its shape. Both of these phenomena result in a change
of the edge characteristics within blocks on the object’s boundary. This can be
used to detect moving edge blocks from frame to frame. There are 3 possibilities:

– An edge block changes to a non-edge block;
– A non-edge block changes to an edge block;
– The edge direction within the block changes to another one of directions

depicted in Fig. 2(b).

σac =
∑15

i=1 C2
i

15
− (

∑15
i=1 Ci

15
)2 (1)

Where σac is a standard deviation of all AC coefficients in a 4x4 block, Ci is the
ith DCT coefficient as depicted in Fig. 2(a). If the current block is a non-edge
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Fig. 2. (a) Edges related to DCT coefficients; (b) Edge direction classification as num-
bers from 1 to 8.

block, we set the edge strength measure to a pre-defined threshold value(TH).
Then the edge strength value of a non-edge block at the same spatial position in
the previous frame is examined. If the difference of edge strength value is zero
between two blocks, this means that there is no change between blocks, so this
block is not a candidate for a moving edge. If the difference of edge strength
value is more than zero, there is a transition from an edge to a non-edge or
a non-edge to an edge. We consider both cases as moving edges. Algorithm 1
shows a simple procedure for obtaining a moving edge. Whilst straightforward
to implement, this algorithm means that moving edges are easily affected by the
threshold value so that many false edges are introduced as shown in Fig. 3(b).
Thus, we need to reduce these false moving edges. This algorithm, based on edge
direction modeling, is explained in the next section.

Algorithm 1 Moving edge detection
1: if σsd < TH then
2: set non-edge, SD = TH, save SD value to SDn

3: else
4: edge, save SD value to SDn

5: end if
6: if current frame 6= intra frame then
7: if | SDn − SDn−1 |> 0 then
8: moving edge
9: else

10: static edge
11: end if
12: end if
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Fig. 3. (a) An edge image for 50th frame of Hall Monitor, qp =10, Ces = 8: (a) an edge
frame considering edge directions; (b) After moving edge detection, with false moving
edges indicated; (c) After false moving edge reduction – moving macro blocks decrease
by 20%, PSNR = -1.1dB, required bits = -28% compared to (a).

Reducing false moving edges A false moving edge arises from image noise
and an incorrect threshold value for deciding moving edges with the SD of DCT
coefficients. The image noise could be eliminated by a pre-processing filter; how-
ever, this inevitably generates more computational complexity. We cannot simply
increase the threshold used, since real moving edges are also removed when a
strong threshold value is applied. Therefore we should select real moving edges
out of the total suggested moving edges whilst keeping a reasonable threshold
value by observing critical variation of the edge direction (more than 45◦) be-
tween the current block and the reference block. Our reduction block for false
moving edges (RFME) can select real moving edges by defining edge directions
and measuring the edge direction difference. Edge directions can be obtained as
following:

θ = arctan〈
∑3

i=1 Ci∑3
i=1 C4i

〉 (2)



Where Ci is the ith DCT coefficient of a 4 × 4 sub-block. We consider edge
directions , 0◦,±45◦, 90◦,±26.5◦,±63.4◦ shown in Fig. 2(b), which are used in
H.264/AVC intra prediction. The obtained edge map by classifying edge direc-
tions is depicted in Fig. 3(a). We allocated numbers from one to eight each of
these directions by equation (2). The difference of an edge direction number
(ED) between the current block and the reference block is defined as a distance
(D) as in equation (3).

D = |[(M + shift)%8)]− 4| if[(N + shift)%8] == 4 (3)

Where [n] is a near integer number n, % is a remainder, M and N are EDs
of the reference block and the current block respectively. When D is greater
than a pre-defined threshold value, usually set to two, we consider this block
as a moving block since the edge direction has changed more than 45◦. The
maximum difference value of ED occurs between ED1 and ED8 as shown in
Fig. 2(b). However, the difference edge direction between ED1 and ED8 is only
26.5◦ even though the difference between them is generated as the maximum
value (7). Therefore a compensation routine should be applied. If the ED of the
current block and the reference block are N , M respectively, the edge difference is
not calculated as |N−M | but as in equation (3). First, the shift value is found as
a pre-condition of equation (3). The ED of the current block shifts to the centre
number (which is 4 since eight numbers are allocated for all directions), therefore
the total difference between them is calculated as a shifted value of ED of the
current block. For instance, let the current ED is one (horizontal direction) and
a reference ED is eight(−26.5◦), the shift value is three and the distance (D)
is not seven but one. This case is then not a candidate for a moving edge by
setting the threshold to two(45◦). Fig. 3(b)(c) shows the result of a moving edge
detection and false moving edge reduction blocks. Although PSNR is ultimately
degraded 1.1dB compared to considering all moving edges, the required encoder
bits are also reduced by 28%. Also the number of macro blocks required to
process is decreased dramatically, significantly reducing the processing time. In
the example shown in Fig. 3(c), Only 41 macro blocks are considered for further
processing out of all 118 macro blocks if false moving edges are not removed.

3.2 Video Compression Block

The video compression block consists of four blocks: motion estimation and com-
pensation (ME), DCT/Quantization, IDCT/Dequantization and content adap-
tive variable length coding (CAVLC). The ME block is performed only for macro
blocks which have the moving edge flag (MEF) from the MED block as shown
in Fig. 1. The flag is set for each macroblock by considering neighboring blocks
near moving edges as shown in Fig. 4. For example, if a 4 × 4 moving block is
located in the 6th sub-block of a macro block in the raster scan order, we select
the search area so that the moving edge sub-block is located in the centre. The
resulting overlapping areas with neighboring macro blocks are depicted in grey
in Fig. 4. The moving edge flag (MEF) is also set for these macro blocks.
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After deciding the macro blocks that require processing, ME is then per-
formed with full search with a 16 × 16 search range, no variable size blocks
(i.e. one motion vector per a 4 × 4 sub block), no sub-pel compensation and
no motion prediction to guarantee low complexity. The IDCT/Dequantization
is performed for reconstructing the current image. After ME, content adaptive
variable length coding (CAVLC) is performed in the same way as in H.264/AVC.
The in-loop-filter (de-blocking filter) is not used in the proposed method.

4 Implementation and Experimental Results

This section verifies the performance of the proposed low complex video compres-
sion framework. The performance is compared to H.264/AVC reference software
KTA 1.6 based on JM 11.0 with baseline profile released in Jan. 20081, H.263+
based on TMN code2 and the DISCOVER codec [13]. The KTA reference has
more advanced features than H.264/AVC such as an adaptive quantization ma-
trix selection, a 1

8 pel motion compensated prediction, an adaptive prediction
error etc. H.263+ is designed as a low bitrate compression by adding several an-
nexes which can substantially improve coding efficiency. The DISCOVER codec
is the state of the art in distributed video coding, focusing on low complexity
encoder3. Only luminance coefficients are considered in this paper, so U and V
coefficients and the de-blocking filter are disabled in the reference software.

Hall monitor with QCIF and CIF resolution, Camera and Foreman sequences
at QCIF resolution, down-sampled to 15Hz are selected as test sequences. The
Hall Monitor and Camera sequence have no global motion and they are rep-
resentative of surveillance applications. Foreman has significant global motion,
leading PSNR saturation explained in Chapter 4.1. All tests are performed with
GOP size 8 and one I-frame per every seven P-frames (IPPPPPPPI). Our low
complex video compression framework is written in ANSI C++ and a Intel In-
tegrated Performance Primitive 5.3 library. All tests are performed on an Intel
1 The source code is available at http://iphome.hhi.de/suehring/tml/download/KTA
2 The source code is available at http://whkong.myrice.com/download/src/vcomp
3 The executable DISCOVER codec is available at http://www.discoverdvc.org/



Core(TM)2 Duo 3.6GHz with 2GB RAM using Window XP version 2002 with
service pack 2.
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Fig. 5. (a) Edge images (b) Moving edge macro blocks: regions classified as non-edges
but that have motion are not detected properly as shown by the area within the blue
line (c) Decoded frames: accumulated errors are displayed within the red line

4.1 Rate-Distortion performance

Fig. 6 depicts the compression results compared to the H.264/AVC, H.263+ and
the DISCOVER codecs. The proposed method shows good compression, albeit
degraded by 2dB compared to H.264/AVC. However, this constitutes an increase
of almost 4dB and 1.5dB compared to the DISCOVER codec and H.263+ for
the Hall Monitor and Camera sequence as shown in Fig. 6(a),(b)&(c). However,
PSNR saturation occurred for the Foreman sequence as shown in Fig. 6(d). This
problem arises from detecting non-edge blocks that actually exhibit motion. For
example, when the camera is constantly moving, this generates moving edges
near the object boundary. If there are non-edge regions with motion inside the
object, this is not detected by our approach. Fig. 5 shows the block artifacts
in the decoded frame. Regions classified as non-edges but that have motion are
not detected properly as shown by the area within the blue line. This generates
block artifacts due to the difference in DC values of the current and reference sub
blocks. This error is accumulated (red lines) until an intra frame is encountered.
Therefore, our application is particularly suited to surveillance-type applications
without global motion or non-edge regions with motion.
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Fig. 6. Rate-Distortion – (a)(c) QCIF (b) CIF resolution: These sequences have no-
edge regions without motion; (d) This sequence has no-edge regions with motion. For
(a)(b)(c) the PSNR of the proposed method is degraded by maximum 2dB compared
to H.264, for (d) PSNR saturation has occurred

4.2 Execution Time

Fig. 7(a) shows execution time for 30 frames at hall monitor and foreman se-
quence according to coding methods. Our approach is almost the same or better
than DISCOVER codec well known as a very low complexity encoder. Additional
DCT is introduced to obtain moving edges, but it does not generate severe com-
putational complexity due to its integer transform that occupies less than 3% of
whole complexity in H.264 [17]. Moving edges give which macro blocks should
be treated as motion estimation block. Typically, the moving edges are less than
one of tenth of the whole macro blocks, sometimes the number of moving edges
goes to zero (no needed any processing) as shown in Fig. 7(b). The execution
time is less than 5% compared to H.264/AVC intra coding since our approach
does not use advanced coding tools introduced in H.264 and whole macro blocks.

5 Conclusion and Future Considerations

In this paper, a low complexity video compression algorithm based on detect-
ing moving edges in the compressed domain is suggested. In terms of coding
gains, PSNR is degraded by 2dB and enhanced by 1.5dB and 4dB compared to
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H.264/AVC, H263+ and the DISCOVER codec respectively. In terms of com-
putational complexity, it shows almost the same complexity as the DISCOVER
codec which is the state of the art in low complexity distributed video coding.
However, error accumulation occurs in non-edge areas with motion. Clearly, in
the future we need to consider not only moving edges but also the entire moving
object in order to overcome this drawback. We would also like to investigate
integrating our approach into a DVC framework.
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