
O. Tasdizen et al.: Dynamically Variable Step Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation

Contributed Paper
Manuscript received July 15, 2009 0098 3063/09/$20.00 © 2009 IEEE

1645

Dynamically Variable Step Search Motion Estimation Algorithm
and a Dynamically Reconfigurable Hardware

for Its Implementation
Ozgur Tasdizen, Student Member, IEEE, Abdulkadir Akin, Halil Kukner,

and Ilker Hamzaoglu, Member, IEEE

Abstract — Motion Estimation (ME) is the most

computationally intensive part of video compression and video
enhancement systems. For the recently available High
Definition (HD) video formats, the computational complexity of
full search (FS) ME algorithm is prohibitively high, whereas the
PSNR obtained by fast search ME algorithms is low. Therefore,
in this paper, we present Dynamically Variable Step Search
(DVSS) ME algorithm for processing high definition video
formats and a dynamically reconfigurable hardware
architecture for efficiently implementing DVSS algorithm. The
simulation results showed that DVSS algorithm performs very
close to FS algorithm by searching much fewer search locations
than FS algorithm and it outperforms successful fast search ME
algorithms by searching more search locations than these
algorithms. The proposed hardware is implemented in VHDL
and is capable of processing high definition video formats in
real time. Therefore, it can be used in consumer electronics
products for video compression, frame rate up-conversion and
de-interlacing. 1

Index Terms — Motion Estimation, Video Compression,
Video Enhancement, Hardware Implementation, FPGA.

I. INTRODUCTION
Motion Estimation (ME) is the most computationally

intensive part of video compression and video enhancement
systems. ME is used to reduce the bit-rate in video
compression systems by exploiting the temporal redundancy
between successive frames, and it is used to enhance the
quality of displayed images in video enhancement systems by
extracting the true motion information. ME is used in video
compression standards such as MPEG4 and H.264 [1], and it
is used in video enhancement algorithms such as frame rate
conversion [2-3] and de-interlacing [4-5]. Therefore, ME
hardware is used in consumer electronics products such as
digital camcorders, DVD players and recorders, set-top boxes,
LCD televisions, and video conferencing devices.

Block Matching (BM) is the most preferred method for ME.

1 O. Tasdizen is with Department of Electronics Engineering, Sabancı

University, Tuzla 34956, Istanbul, Turkey and with Vestek Electronic
Research & Development Corp., Maslak 34469, Istanbul, Turkey (e-mail:
tasdizen@su.sabanciuniv.edu, ozgur.tasdizen@vestel.com.tr)

A. Akin, H. Kukner and I. Hamzaoglu are with Department of Electronics
Engineering, Sabancı University, Tuzla 34956, Istanbul, Turkey (e-mail:
abdulkadir@su.sabanciuniv.edu,shalil@su.sabanciuniv.edu,
hamzaoglu@sabanciuniv.edu).

BM partitions current frame into non-overlapping NxN
rectangular blocks and tries to find a block from a reference
frame in a given search range that best matches the current
block. Sum of Absolute Differences (SAD) is the most
preferred block matching criterion because of its suitability for
hardware implementation. The SAD value of a search location
defined by the motion vector d(dx,dy) is calculated as in (1)
where c is the current frame, r is the reference frame, and the
coordinate (i, j) is the location of current and reference blocks
of size NxN in current and reference frames respectively.

 ∑∑
−

=

−

=

→

++++−++=
1

0

1

0
),(),()(

N

x

N

y
yx djydixrjyixcdSAD (1)

Among the BM algorithms, Full Search (FS) algorithm
achieves the best performance since it searches all search
locations in a given search range. However, the computational
complexity of FS algorithm is very high, especially for the
recently available High Definition (HD) video formats.

Several fast search ME algorithms have been developed for
low bit-rate applications which use small frame sizes and
require small search ranges. These algorithms try to approach
the PSNR of FS algorithm by computing the SAD values for
fewer search locations in a given search range. The most
successful fast search algorithms are Orthogonal Search (OS)
[6], New Three Step Search (NTSS) [7], Four Step Search
(FSS) [8], Block-Based Gradient Descent Search (BBGDS)
[9], Diamond Search (DS) [10], Hexagon-Based Search
(HEXBS) [11], Adaptive Rood Pattern Search (ARPS) [12],
Adaptive Dual Cross Search (ADCS) [13] and Flexible
Triangle Search (FTS) [14].

Fast search ME algorithms perform very well for low bit-
rate applications such as video phone and video conferencing,
because fast and complex motion are seldom in these
applications. However, fast search algorithms do not produce
satisfactory results for the recently available consumer
electronics devices such as high frame rate HD flat panel
displays, because there are fast and complex motion between
successive frames in these applications.

Therefore, in this paper, we propose Dynamically Variable
Step Search (DVSS) ME algorithm for processing HD video
formats and a dynamically reconfigurable systolic ME
hardware architecture for efficiently implementing DVSS
algorithm. The simulation results showed that DVSS
algorithm performs very close to FS algorithm by searching

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11741054?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1646

much fewer search locations than FS algorithm and it
outperforms successful fast search ME algorithms by
searching more search locations than these algorithms.

DVSS algorithm has a maximum of three different
granularity search steps. First, the entire search window is
searched with a coarse granularity search step. Then, two finer
granularity search steps are performed around the search
locations with minimum SAD. The number of steps and the
search range of each step are determined for the current block
based on the size and SAD value of previously found Motion
Vector (MV) for the left neighboring block.

Therefore, for each block, the proposed ME hardware can
be dynamically reconfigured to execute different number of
steps and different search ranges for each step. The proposed
hardware is implemented in VHDL and mapped to an
XC3S1500-5 FPGA. It consumes 9128 slices (2282 CLBs)
and 16 BRAMs. It works at 130MHz and is capable of
processing HD video formats in real time. Therefore, it can be
used in consumer electronics products for video compression,
frame rate conversion and de-interlacing.

A small number of hardware architectures for fast search ME
algorithms are proposed in the literature [14-16]. The proposed
hardware consumes less area than the implementation of one of
the best performing fast search ME algorithms in the same
FPGA [14] and it has higher throughput than the fast search ME
hardware presented in [15].

We proposed a ME algorithm for processing HD video
formats and a systolic ME hardware architecture for
efficiently implementing this ME algorithm in [16]. We
proposed another ME algorithm for processing HD video
formats and a reconfigurable systolic ME hardware
architecture for efficiently implementing this ME algorithm in
[17]. This ME algorithm obtains similar performance results
by searching fewer locations than the ME algorithm in [16].

In this paper, we propose DVSS algorithm in order to
obtain a performance very close to FS algorithm by searching
even fewer search locations than the ME algorithms in [16,
17]. The dynamically reconfigurable systolic ME hardware
architecture proposed in this paper is based on the systolic ME
hardware architectures proposed in [16, 17]. The major
differences between them are the proposed hardware is
dynamically reconfigurable and it implements DVSS
algorithm.

Many hardware architectures for FS ME algorithm are
proposed in the literature [18-21]. The proposed ME hardware
has a much higher throughput than these FS hardware. In
addition, since it is searching a larger search range than these
FS hardware, the proposed ME hardware obtains better PSNR
results for HD video formats than these FS hardware. Larger
search ranges are necessary for HD video formats, since there
are fast and complex motions in them.

The rest of the paper is organized as follows. Section II
explains the proposed DVSS algorithm and presents a
performance comparison between DVSS algorithm and the
other ME algorithms. The proposed dynamically

reconfigurable systolic ME hardware architecture is described
in Section III. Section IV concludes the paper.

II. PROPOSED DYNAMICALLY VARIABLE STEP SEARCH
MOTION ESTIMATION ALGORITHM

We proposed a ME algorithm for processing HD video
formats in [16]. This ME algorithm is a generalization of the
HEXBS ME algorithm and it checks all the search locations
that can be checked by HEXBS algorithm during its iterations
in a given search range. For the 32x16 search pattern shown in
Fig. 1, this ME algorithm checks all the search locations that
can be checked by HEXBS algorithm during 16 iterations in
the horizontal direction and 8 iterations in the vertical
direction in a (±32, ±16) pixel search range. The numbers seen
in Fig.1 represent iterations in which these search locations
would be checked by HEXBS algorithm.

This ME algorithm can be used with other search patterns
as well depending on the application requirements such as
10x9 and 14x15 patterns [16]. The difference between these
patterns and 32x16 pattern is that they have a gap of two
pixels in the vertical direction compared to the one pixel gap
of 32x16 pattern and these patterns have a search range of
(±10, ±9) and (±14, ±15) respectively. Therefore, they have
less computational complexity than 32x16 search pattern.

We proposed another ME algorithm for processing HD video
formats in [17]. This ME algorithm can be seen as a
generalization of NTSS algorithm. It has a maximum of 3
different granularity search steps; coarse, medium and fine.
First, the entire search window is searched with a coarse
granularity search step. Then, two finer granularity search steps
are performed around the search locations with minimum SAD.
In these steps, horizontal and vertical distances between search
locations are 4, 2 and 1 pixels. The number of steps and the
search range of each step used in this ME algorithm are
determined based on the application requirements.

Fig. 1. Some of the Search Locations of 32x16 Search Pattern

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

O. Tasdizen et al.: Dynamically Variable Step Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation

1647

 In this paper, we propose DVSS algorithm in order to obtain a
performance very close to FS algorithm by searching even fewer
search locations than the ME algorithms proposed in [16, 17].
DVSS algorithm is based on the ME algorithm proposed in [17]
and improves its performance by determining the number of
steps and the search range of each step for the current block
based on the size and SAD value of previously found Motion
Vector (MV) for the left neighboring block. It is possible to use
one of many different search patterns for a given block. Some of
these search patterns, named as A1 [17], A2, A3, B and C, and
the search patterns used in [16] are shown in Table I. As shown
in the table, skipping the coarse and medium steps and doing the
fine step on the entire search range is identical to FS algorithm.

The search pattern A1, as shown in Fig. 2, has 3 steps and
the search ranges (SR) of coarse, medium, and fine steps are
(±48,±24), (±6,±6), (±3,±3) pixels respectively. In Fig. 2,
numbers represent the steps and shaded numbers show the
search locations with minimum SAD for these steps. The
search pattern A2 is the same as A1 except that the search
range of its first step is (±24, ±12) pixels. The search pattern
A3, as shown in Fig. 3, has only medium and fine steps.

The number of steps and sizes of search ranges for each step
determine the computational complexity of a search pattern and
Mean Absolute Difference (MAD) performance obtained by it.
DVSS algorithm decreases the computational complexity by
adaptively changing between search patterns A1, A2, A3 for
each block based on the size and SAD value of the previously
found MV for the left neighboring block, which is called as Left
Neighboring Motion Vector (LNMV). As shown below, it uses
FS, A3, A2, and A1 search patterns for small, medium,
medium-to-large and large motions respectively.

If there is no left neighboring block
 Do Pattern A1
Else if SAD value of LNMV exceeds the threshold (τ)
 Switch to next coarser pattern
Else

If LNMV is within (±8, ±4) pixels
 Do FS in (±10, ±5) search range
 Else if LNMV is within (±16, ±8) pixels
 Do Pattern A3

Else if LNMV is within (±24, ±12) pixels
 Do Pattern A2
 Else
 Do Pattern A1

If LNMV falls within a smaller search range, it decreases the

search granularity and search range size, because for small
motions doing the search in a smaller search range is sufficient
and doing a finer granularity search in a smaller search range
can give better MAD results. If the SAD value for LNMV is
higher than a pre-determined threshold level (τ), it increases the
search granularity and search range size. τ is set to 256 and to
1024 in our simulations. By setting τ to a higher value, many
search locations can be skipped and higher processing speeds
can be achieved with a slight decrease in MAD performance.

DVSS algorithm reduces the computational complexity of ME
by adaptively changing the number of search locations searched
for each block. Similar techniques are proposed in the literature
[22, 23]. In [22], some of the candidate search locations are
eliminated adaptively if their partial SAD value exceeds a
dynamically modified threshold level. In [23], the size and SAD
values of the MVs of the previous blocks are used to adaptively
change the search window size of FS algorithm for each block.

TABLE I
SEVERAL SEARCH PATTERNS

Search
Pattern

SR of
First Step

SR of
Second

Step

SR of
Third
Step

Number
of Search
Locations

10x9 [16] - ±10, ±9 ±3, ±3 73
14x15 [16] - ±14, ±15 ±3, ±3 159

A1 [17] ±48, ±24 ±6, ±6 ±3, ±3 405
A2 ±24, ±12 ±6, ±6 ±3, ±3 161
A3 - ±18, ±10 ±3, ±3 249

32x16 [16] - ±32, ±16 ±3, ±3 553
B ±48, ±24 ±12, ±12 ±6, ±6 565
C ±48, ±24 ±24, ±12 ±12, ±6 793

48x24 [16] - ±48, ±24 ±3, ±3 1221
FS - - ±48, ±24 4753

Fig. 2. Search Pattern A1

Fig. 3. Search Pattern A3

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1648

TABLE II
MAD SIMULATION RESULTS FOR FAST SEARCH ALGORITHMS

Video Sequence
(Frame Size & Rate)

FS
±48,±24

FS
±16,±16

OS
[6]

NTSS
[7]

FSS
[8]

BBGDS
[9]

DS
[10]

HEXBS
[11]

ARPS
[12]

ADCS
[13]

FTS
[14]

Spiderman
(720x576, 25fps) 4.2086 6.9686 6.6708 10.7152 10.8176 7.4789 7.2072 7.3777 6.0776 6.2421 6.8786

Gladiator
(720x576, 25fps) 2.8370 5.3812 5.2161 8.6823 8.7966 5.6802 5.4301 5.6132 3.9364 3.7342 6.0059

IRobot
(720x576, 25fps) 2.9264 3.7108 4.7796 5.4830 5.5572 4.5329 4.3990 4.5108 3.8864 4.0393 4.8717

Susie
(704x480, 15fps) 3.2262 3.421 4.2313 4.05 4.0861 3.8182 3.632 3.7153 3.6256 3.6241 3.9267

Flowers
(704x480, 15fps) 8.3955 8.418 12.412 10.476 11.125 10.636 10.318 10.976 8.7037 8.9538 13.118

Table Tennis
(704x480, 15fps) 3.4842 3.5824 3.9371 3.9738 4.0129 3.8621 3.8011 3.8367 3.7324 3.7478 3.8891

Foreman
(352x288, 15fps) 4.1783 4.2327 6.013 4.8124 4.8613 4.5136 4.5664 5.0804 4.5463 4.6925 5.6903

TABLE III

MAD SIMULATION RESULTS FOR PROPOSED SEARCH ALGORITHMS
Video Sequence (Frame Size

& Rate)
10x9
[16]

14x15
[16]

32x16
[16]

48x24
[16]

A1
[17] B C DVSS

τ = 256
DVSS
τ = 1024

Spiderman
(720x576, 25fps) 9.3473 7.4848 5.5317 4.2296 4.2771 4.2657 4.2584 4.3990 4.5449

Gladiator
(720x576, 25fps) 7,2923 5,8438 3,3246 2.8858 2.9797 2.9349 2.9207 3.1451 3.2622

IRobot
(720x576, 25fps) 7.6989 6.9352 5.7265 3.0872 3.2350 3.1505 3.1045 3.2937 3.3346

Susie
(704x480, 15fps) 3.9229 3.7203 3.4004 3.3334 3.4138 3.3482 3.3291 3.2979 3.2928

Flowers
(704x480, 15fps) 8.898 8.7982 8.6225 8.6106 9.2686 9.065 8.9511 8.514 8.4891

Table Tennis
(704x480, 15fps) 3.7986 3.6634 3.5656 3.517 3.572 3.5531 3.5409 3.554 3.5714

Foreman
(352x288, 15fps) 5.0247 4.9595 4.6724 4.6626 4.8714 4.7015 4.6006 4.5191 4.3929

 The performances of DVSS algorithm and the search
patterns shown in Table I are compared with the performances
of successful fast ME algorithms with respect to MAD
criterion (2) and the results are shown in Table II and Table
III.

)(
→

dMAD = ∑∑
−

=

−

=

++−
1

0

1

0
2),(),(1 N

y

N

x
yx dydxryxc

N
 (2)

Seven 100 frame long video sequences are used for the

comparison. “Spiderman”, “Gladiator”, and “Irobot”
video sequences are taken from “Spiderman II”,
“Gladiator” and “Irobot” movies where there are fast and
complex motions. “Susie”, “Flowers”, and “Table Tennis”
video sequences are up-scaled versions of the commonly
used CIF (352x288) sized benchmark videos. The up-
scaling is done using the biqubic interpolation technique.

In our simulations, among the previously proposed fast
search algorithms only NTSS and FSS have a search
range of (±16, ±16) pixels and OS algorithm has a search
range of (±24, ±24) pixels. The other fast search
algorithms have a search range of (±48, ±24) pixels. FS is
performed for both of the search ranges (±16, ±16) and
(±48, ±24) pixels.

As it can be seen in Table II and Table III, DVSS algorithm

clearly outperforms successful fast search ME algorithms and
it performs very close to FS algorithm by searching much
fewer search locations. For example, even though, FS
algorithm with (±48, ±24) search range checks 4753 search
locations in comparison to 405 search locations checked by
the search pattern A1, its MAD performance is only 7.5%
better than the performance of the search pattern A1 on the
average. It can also be seen that the performance of FS
algorithm with (±16, ±16) search range is very low for videos
with large motion content.

The performance gap between other fast search algorithms
and proposed search algorithms increase with increased video
resolution and increased motion between consecutive frames.
On the other hand, as it can be seen from “Foreman” video,
when the resolution is very low and the motion can be
detected within a search range of (±16, ±16) pixels, the
performance gap decreases.

DVSS algorithm decreases the computational complexity
significantly with a small decrease in the MAD performance.
It even sometimes gives better MAD results than the pattern
A1. The reason for this improvement is that search patterns
with finer granularities perform better for small motions and
DVSS algorithm dynamically decreases its granularity when
small MVs are found for the previous blocks.

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

O. Tasdizen et al.: Dynamically Variable Step Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation

1649

III. PROPOSED RECONFIGURABLE ME HARDWARE
Top-level block diagram of the proposed ME hardware

architecture is shown in Fig. 4. This ME hardware is based on
the ME hardware we proposed in [17]. The hardware is highly
pipelined and its latency is eight clock cycles; one cycle for
synchronous read from memory, one cycle for shift registers, two
cycles for the reconfigurable systolic Processing Element (PE)
array and four cycles for the adder tree.

The proposed ME hardware finds a MV for a 16x16 MB based
on the minimum SAD criterion in a maximum search range of
(±48, ±24) pixels using the luminance data. The top-level controller
takes the threshold level (τ) as an input and determines the number
of search steps and their search ranges for each block adaptively.
The control unit finds the MV for each block by generating
required address and control signals to compute the SAD values of
the search locations in the search window determined by the top-
level controller for each step. On the other hand, the ME hardware
proposed in [17] takes the number of search steps and their search
ranges as input and performs same number of steps with same size
search ranges for all blocks.

The search locations in a search window are searched line by
line. First, SAD values of the search locations in the top line of
the search window are calculated starting from the right most
search location in the top line. Then, SAD values of the search
locations in the next line of the search window are calculated
starting from the right most search location in the next line. The
first step ends after SAD values of the search locations in the
bottom line of the search window are calculated. The next step
around the search location with the minimum SAD is done in the
same way.

16 BlockRAMs (BRAM) in the FPGA are used to store the
search window. BRAMs are configured as dual port memories
for overlapping ME of the current MB with loading of the search
window of the next MB. The vertical rotator is used to align the
outputs of the BRAMs and it has 32 identical rotators each 16 bit
long. The reference MB data read from BRAMs must be
matched with the current MB data, which is loaded into the PE
array previously, by rotating the data lines. For example, for the
search locations in the fourth line of the search window, the
rotate amount will be four so that first line of reference data will
be read from the fourth BRAM.

The SAD value for a search location is calculated by summing
the outputs of all 256 PEs in the reconfigurable PE array by an
adder tree. The adder tree has four pipeline stages; SAD values
of 4x4 blocks are calculated in the first two clock cycles, in the
third clock cycle SAD values of 8x8 blocks are calculated and in
the fourth clock cycle SAD value of 16x16 MB is calculated.

A. Reconfigurable Systolic PE Array
The reconfigurable systolic PE array is shown in Fig. 5. This

PE array is based on the PE array we proposed in [17]. 256 PEs
are used to calculate the SAD of a 16x16 MB. A PE is used to
calculate the absolute difference between a current pixel and the
corresponding reference pixel. The latency of the PE array is two

clock cycles, since reference and current pixel inputs and the
absolute difference output are registered.

The reconfiguration of the PE array is achieved with the
multiplexers placed between the PEs that process the same line in
a MB. Since the PE array in [16] is not reconfigurable, these
multiplexers bring a slight area overhead in comparison to the PE
array in [16], but they do not affect the clock frequency since
they are not placed on the critical path. In Fig. 5, interconnects
used for implementing 4, 2 and 1 shift amounts are illustrated
with dashed, thin and bold lines respectively. Interconnects
marked with “m” are connected to the memory.

The reference pixels for the first search location in a line of the
search window are loaded in 4 clock cycles. After the SAD value
of the first search location is calculated, the SAD value of the
next search location is calculated in 1 cycle. After the SAD value
of the first search location is calculated, reference data is shifted
to the right in the PE array in each consecutive clock cycle and
shift amount can be 4, 2 or 1 pixels depending on the type of the
step; coarse, medium or fine respectively.

Fig. 4. Top-level Block Diagram

Fig. 5. Reconfigurable Systolic PE Array

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1650

TABLE IV
DATAFLOW THROUGH RECONFIGURABLE SYSTOLIC PE ARRAY

Processing Elements

Clock

Cycle

(0,0)

to

(0,15

)

(1,0)

to

(1,15

)

(2,0)

to

(2,15

)

(3,0)

to

(3,15

)

(4,0)

to

(4,15

)

(5,0)

to

(5,15

)

(6,0)

to

(6,15

)

(7,0)

to

(7,15

)

(8,0)

to

(8,15

)

(9,0)

to

(9,15

)

(10,0)

to

(10,15

)

(11,0)

to

(11,15

)

(12,0)

to

(12,15

)

(13,0)

to

(13,15

)

(14,0)

to

(14,15

)

(15,0)

to

(15,15

)

1 D C B A

2 H G F E D C B A

3 L K J I H G F E D C B A

4 P O N M L K J I H G F E D C B A

5 R Q P O N M L K J I H G F E D C

6 T S R Q P O N M L K J I H G F E

7 V U T S R Q P O N M L K J I H G

The data flow through the reconfigurable systolic PE array is

shown in Table IV. Let A – Z shown in Fig. 2 denote all pixels
in these columns respectively. Assuming that “P” is the first
search location, 4 clock cycles will be required to feed the
reference data for this search location to the PE array, because
regardless of the search pattern during loading of reference
pixels for the first search location multiplexing unit feeds first
four columns of the PE array. Assuming that after “P”, the
search pattern continues with search locations “R, T and V”
(two pixel gap between consecutive search locations),
multiplexing unit will feed only first two columns of the PE
array. Therefore, reference pixels for these search locations will
be in the PE array in 5th, 6th and 7th clock cycles respectively.

B. Memory Organization
In order to calculate the SAD values of search locations at

the rate of one SAD value per clock cycle, pixels for a
particular search location must be brought to the PE array in
one clock cycle, and this requires many accesses to the
memory in the same clock cycle. This memory requirement
cannot be satisfied by an FPGA without data-reuse. The ME
hardware proposed in [16] reduces the internal memory
bandwidth by applying data-reuse and it uses only 16
BRAMs for storing the reference pixels of a search window
for a search range of (±32, ±16) pixels. BRAMs are
configured as 16 bit wide because of the 2 pixel distance
between consecutive search locations.

The ME hardware proposed in this paper also applies data-
reuse. However, it uses only 16 BRAMs for storing the
reference pixels of a search window for a search range of
(±48, ±24) pixels same as the ME hardware proposed in [17].
The proposed ME hardware further reduces the internal
memory bandwidth by feeding only 64 PEs from BRAMs,
the remaining PEs receive reference pixels from neighboring
PEs. BRAMs are configured as 32 bit wide and they are
connected to the four left end columns of the PE array.
Therefore, loading the reference pixels for the first search
location into the PE array takes four clock cycles.

Each BRAM stores four lines of reference pixels. Storing
a line of reference pixels uses 28 address locations;

therefore, addresses 0-111 are occupied to store four lines
of reference pixels. Fig. 6 shows the layout of the reference
pixels in the first BRAM, which stores 0th, 16th, 32th and
48th lines of the reference pixels in four distinct regions.
The remaining BRAMs have the same organization.

Multiplexing unit shown in Fig. 7 is used to feed the
correct data to the PE array. In order to support horizontal
distances of 1, 2 and 4 between consecutive search
locations, multiplexing unit is designed to feed first one,
two or four left end columns of the PE array. Independent
from the search pattern, reference pixels for the first search
location are loaded by feeding the four columns. Therefore,
four clock cycles are required to fill the PE array with the
reference pixels for the first search location. The reference
pixels for the next search location will be available in the
next clock cycle.

Fig. 6. Memory Organization

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

O. Tasdizen et al.: Dynamically Variable Step Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation

1651

Fig. 7. Multiplexing Unit

The data received from the vertical rotator is captured in

a 56 bit long shift register. If the enable signal of the shift
register is high, it shifts its content 32 bits to right. If the
distance between two search locations is four pixels, “4
select” multiplexers otherwise “2 select” multiplexers are
used to select the corresponding reference pixels from the
shift register.

C. Implementation Results
The proposed hardware architecture is implemented in

VHDL, verified by simulation using Modelsim 6.3c, and
mapped to an XC3S1500-5 FPGA using Synplify Pro 8.9
and ISE 10.1. The proposed hardware works at 130MHz
and consumes 9128 slices (2282 CLBs) and 16 BRAMs.
The reconfigurable systolic PE array with the adder tree
consumes 7510 slices.

The number of clock cycles per MB required by the
proposed hardware depends on the search pattern. Starting
a step has a start-up cost of 15 clock cycles, which is called
step latency, and starting the search on a line has a start-up
cost of 8 clock cycles, which is called line latency. The total
number of clock cycles per MB required to complete a
search pattern is given by (3). The performance of proposed
ME hardware for several search patterns are calculated
based on (3) and shown in Table V.

 () ()()∑ ×−+×−+
sn

linelinelinesads nnn
1

11 ττ (3)

 In (3), “ns, nsad, nline” are the number of steps,
search locations per line and lines per step respectively.
“τs” and “τline” are step and line latencies respectively.
Based on this equation, for the coarse, medium and fine
steps the start-up latency is 45 clock cycles. For these
three steps, there is 192 clock cycles of line latency and
396 clock cycles are required for remaining search
locations. Therefore, pattern A1 requires 633 clock
cycles to find the MV of a MB. Patterns A2 and A3
requires 357 and 380 clock cycles, respectively. FS
with a search range of (±10, ±5) pixels requires 304
clock cycles.

The performance of DVSS algorithm on the proposed
ME hardware for different threshold values is shown in
Table VI. DVSS algorithm achieves much better real-
time performance, with a small decrease in the MAD
performance, since it adaptively changes the search
patterns and uses pattern A1 only for large motions,
patterns A2 and A3 for medium motions and FS only
for small motions. As it can be seen in the table,
increasing the threshold value increases the supported
frame rate.

TABLE V

PERFORMANCE OF PROPOSED HARDWARE FOR SEVERAL PATTERNS

Search
Pattern

Required
Clock

Cycles per
MB

Processed
MBs per
Second

Supported Frame Size
& Rate

A1 [17] 633 205371 1920x1080, 25.3 fps
B 957 135841 1366x768, 33.1 fps
C 1221 106470 1366x768, 25.9 fps

10x9 [16] 122 1180327 1920x1080, 145.7 fps
14x15 [16] 236 610169 1920x1080, 75.3 fps
32x16 [16] 672 214285 1920x1080, 26.4 fps
48x24 [16] 1425 101052 1366x768, 24.6 fps

FS 5103 25475 720x576, 15.7 fps

TABLE VI
PERFORMANCE OF PROPOSED HARDWARE FOR DVSS ALGORITHM

Video
Sequence

Threshold
(τ)

Required
Cycles for

100 Frames

MBs
per

Frame

Average
Cycles

per MB

Supported
1920x1080

fps

Spider 256 96094246 1620 594 27.0
Spider 1024 90284377 1620 558 28.7

Gladiator 256 87299334 1620 539 29.7
Gladiator 1024 80952068 1620 500 32.1

Irobot 256 77966499 1620 482 33.3
Irobot 1024 74177157 1620 458 35.0
Susie 256 59212520 1320 449 35.7
Susie 1024 51666864 1320 392 41.0

Flowers 256 52181938 1320 396 40.5
Flowers 1024 49586582 1320 376 42.7

TableTennis 256 53382291 1320 405 39.6
TableTennis 1024 47136775 1320 358 44.9

Foreman 256 15926153 396 403 39.9
Foreman 1024 14250681 396 360 44.5

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

IEEE Transactions on Consumer Electronics, Vol. 55, No. 3, AUGUST 2009 1652

TABLE VII
COMPARISON OF ME HARDWARE ARCHITECTURES

Architecture Algorithm Technology MB size Number
of PEs

Search
Range

Area

Speed
[MHz]

Cycles per
16x16 MB

Supported
1920x1080

[fps]

Proposed DVSS XC3S1500-5
FPGA 16x16 256 (±48, ±24) 2282

CLBs 130 467
(τ = 256)

34.3
(τ = 256)

[14] FTS XC3S5000
FPGA 16x16 16 (±16, ±16) 6142

CLBs 74 202 45.2

[15] FS & DS Unknown 8x8, 16x16 Dedicated
HW

(-16, +15) in
both axis

9K
gates 50 2879

(average) 2.1

[16] 32x16 [16] XC3E1200E-5
FPGA 16x16 256 (±32, ±16) 1692

CLBs 144 672 26.4

[17] A1 [17] XC3S1500-5
FPGA 16x16 256 (±48, ±24) 2271

CLBs 130 633 25.3

[18] FS 0.25μm CMOS
1P5M 16x16 256 (-16, +15) in

both axis
16.07

mm
2

36 1421 3.1

[19] FS 0.6μm SPTM
CMOS

8x8, 16x16,
32x32 64 (±32, ±32) 267K

gates 60 4209 1.7

[20] FS XC4VLX100
FPGA 16x16 Dedicated

HW (±16, ±16) 380
LUTs 221 1111 24.5

AS1 [21] FS XC40250
FPGA 16x16 33 (±16, ±16) 1214

CLBs 24 25344 0.1

AB2 [21] FS XC40250
FPGA 16x16 256 (±16, ±16) 948

CLBs 30 1584 2.3

AS2 [21] FS XC40250
FPGA 16x16 528 (±16, ±16) 3732

CLBs 22 768 3.5

The proposed ME hardware is compared with several

ME hardware implementations presented in the literature in
Table VII. A small number of hardware architectures for
fast search ME algorithms are proposed in the literature
[14-17]. The proposed ME hardware consumes less area
than the implementation of one of the best performing fast
search ME algorithms in the same FPGA [14]. The MAD
performance of this hardware is lower than the MAD
performance of the proposed ME hardware, since it
implements FTS algorithm. In [15], a hybrid architecture
supporting both FS and DS is presented. This architecture
speeds up FS by successively eliminating some of the
search locations. In addition, it is suitable for the irregular
data flow of fast search algorithms and it consumes less
area than the dedicated FS systolic array implementations.
However, it has lower throughput than the proposed ME
hardware.

The proposed ME hardware is based on the systolic ME
hardware proposed in [16, 17]. The major differences
between them are the proposed hardware is dynamically
reconfigurable and it implements DVSS algorithm. Because
of the overhead of reconfigurability and additional
complexity of the control unit, the proposed ME hardware
consumes 2363 slices more than the ME hardware proposed
in [16] in the same FPGA. 1136 slices are used by the
multiplexing unit, 836 additional slices are used by the
multiplexers in the PE array and the remaining additional
slices are used by additional complexity of the control unit.
Because of the overhead of the dynamic reconfigurability,
which is implemented in the top-level controller, the
proposed ME hardware consumes slightly more area than
the ME hardware proposed in [17] in the same FPGA.

Many hardware architectures for FS algorithm are

proposed in the literature [18-21]. The throughput of the
proposed ME hardware is much higher than the FS
hardware implementations in [18-19]. An ASIC
implementation of FS algorithm utilizing 256 PEs in
0.25μm CMOS technology is given in [18]. This
architecture is a modified version of the AB2 type systolic
array. Another ASIC implementation of FS algorithm is
given in [19]. The throughput of this architecture is low,
because it has only 64 PEs, it is optimized for low power
consumption and it is implemented in an older technology.

A real-time ME hardware implementing FS algorithm for
HD video is given in [20]. However, since this hardware is
implemented on a high-end FPGA, it is not suitable for
consumer electronics products. The FPGA implementations
of the systolic architectures AS1, AB2, AS2 are presented
in [21]. Despite using large number of PEs, the throughputs
of these ME hardware are much lower than the throughput
of the proposed ME hardware, since they are implementing
FS algorithm. The area results presented in [21] include
only the datapath and do not include the control unit and
memory.

IV. CONCLUSION
In this paper, DVSS ME algorithm for processing HD

video formats and a dynamically reconfigurable systolic
ME hardware architecture for efficiently implementing
DVSS algorithm are proposed. For each block, the
proposed ME hardware is dynamically reconfigured to
execute different number of steps and different search
ranges for each step based on the previously found MV for
the left neighboring block. The simulation results showed

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

O. Tasdizen et al.: Dynamically Variable Step Search Motion Estimation Algorithm and a Dynamically Reconfigurable Hardware for Its Implementation

1653

that DVSS algorithm performs very close to FS algorithm
by searching much fewer search locations than FS
algorithm and it outperforms successful fast search ME
algorithms by searching more search locations than these
algorithms. The proposed ME hardware consumes less area
than the implementation of one of the best performing fast
search ME algorithms in the same FPGA. The proposed
ME hardware is capable of processing HD video formats in
real time and its throughput is much higher than the FS
hardware implementations reported in the literature.
Therefore, DVSS ME algorithm and the proposed
dynamically reconfigurable ME hardware can be used in
consumer electronics products for video compression,
frame rate conversion and de-interlacing.

REFERENCES
[1] I. Richardson, H.264 and MPEG-4 Video Compression, Wiley, 2003.
[2] S.-J. Kang, K.-R. Cho, and Y. H. Kim, “Motion compensated frame

rate up-conversion using extended bilateral motion estimation,” IEEE
Trans. Consumer Electronics, vol. 53, no.4, pp. 1759-1767, Nov.
2007.

[3] Y. Ling, J. Wang, Y. Liu, and W. Zhang, “A novel spatial and
temporal correlation integrated based motion-compensated
interpolation for frame rate up-conversion,” IEEE Trans. Consumer
Electronics, vol. 54, no.2, pp. 863-869, May 2008.

[4] Y.-Y. Jung, S. Yang, and P. Yu, “An effective de-interlacing
technique using two types of motion information,” IEEE Trans.
Consumer Electronics, vol. 49, no.3, pp. 493-498, Aug. 2003.

[5] S.-G. Lee and D.-H. Lee, “A motion-adaptive de-interlacing method
using an efficient spatial and temporal interpolation,” IEEE Trans.
Consumer Electronics, vol. 49, no.4, pp. 1266-1271, Nov. 2003.

[6] A. Puri, H. M. Hang, and D. L. Schilling, “An efficient block
matching algorithm for motion compensated coding,” ICASSP, pp.
1063-1066, April 1987.

[7] R. Li, B. Zeng, and M.L. Liou, “A new three-step search algorithm
for block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 4, no.4, pp. 438–442, Aug. 1994.

[8] L. M. Po and W. C. Ma, “A novel four-step search algorithm for fast
block motion estimation,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 6, no.3, pp. 313–317, Jun. 1996.

[9] L. K., Liu and E. Feig, “A block-based gradient descent search
algorithm for fast block-matching motion estimation in video
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 6, no.4, pp.
419–422, Aug. 1996.

[10] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast
block matching motion estimation,” IEEE Trans. on Image
Processing, vol. 9, no.2, pp. 287–290, Feb. 2000.

[11] C. Zhu, X. Lin, and L. P. Chau, “Hexagon-based search pattern for
fast block motion estimation,” IEEE Trans. Circuits Syst. Video
Technol., vol. 12, no.5, pp. 349–355, May 2002.

[12] Y. Nie and K.-K. Ma, “Adaptive rood pattern search for fast block-
matching motion estimation,” IEEE Trans. on Image Processing, vol.
11, no. 12, pp. 1442–1449, Dec. 2002.

[13] X.-Q. Banh and Y.-P. Tan, “Adaptive dual-cross search algorithm for
block-matching motion estimation,” IEEE Trans. on Consumer
Electronics, vol. 50, no. 2, pp. 766-775, May 2004.

[14] M. Rehan, M. W. El-Kharashi, P. Agathoklis, and F. Gebali, “An
FPGA implementation of the flexible triangle search algorithm for
block based motion estimation,” IEEE ISCAS, Greece, May 2006.

[15] W. M. Chao, C. W. Hsu, Y. C. Chang, and L. G. Chen, “A novel
motion estimator supporting diamond search and fast full search,”
IEEE ISCAS, Arizona, U.S.A., May 2002.

[16] O. Tasdizen, A. Akin, H. Kukner, I. Hamzaoglu, and H. F. Ugurdag,
“High performance hardware architectures for a hexagon-based

motion estimation algorithm,” 16th IEEE / IFIP International
Conference on VLSI - SoC, Rhodes, Greece, Oct. 2008.

[17] O. Tasdizen, H. Kukner, A. Akin, and I. Hamzaoglu, “A high
performance reconfigurable motion estimation hardware
architecture”, IEEE DATE Conference, Nice, France, Apr. 2009.

[18] N. Roma and L. Sousa, “Efficient and configurable full-search block-
matching processors,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 12, no. 12, pp. 1160-1167, Dec. 2002.

[19] J.-F. Shen, T.-Chich Wang, and L.-G. Chen, “A novel low-power
full-search block-matching motion-estimation design for H.263+,”
IEEE Trans. Circuits Syst. Video Technol., vol. 11, no.7, pp. 890–
897, Jul. 2001.

[20] A. Saha and S. Ghosh, “A speed-area optimization of full search
block matching hardware with applications in high-definition TVs
(HDTV),” HiPC 2007, LNCS 4873, pp. 83-94, 2007.

[21] A. Ryszko, K. Wiatr, “An assesment of FPGA suitability for
implementation of real-time motion estimation,” EUROMICRO
Conference on DSD, Warsaw, Poland, pp. 364-367, Sep. 2001.

[22] V. G. Moshnyaga, “A New computationally adaptive formulation of
block-matching motion estimation,” IEEE Trans.Circuits Syst. Video
Technol., vol. 11, no. 1, pp. 118–124, Jan 2001.

[23] S. Saponara and L. Fanucci, “Data-adaptive motion estimation
algorithm and VLSI architecture design for low-power video
systems,” IEE Proceedings - Computers and Digital Techniques, vol.
151, no 1, pp. 51-59, Jan. 2004.

Özgür Taşdizen received B.S. degree in Electrical
and Electronics Engineering from Istanbul Technical
University, Istanbul, Turkey, in June 2003. He
received M.S. degree in Electronics Engineering from
Sabanci University, Istanbul, Turkey, in August 2005.
From September 2005 to August 2006 he worked in
TUBITAK-UEKAE, Izmit, Turkey, as a Digital

Design Engineer. In September 2006, he joined Vestek Electronic R&D
Corp., Istanbul, Turkey, where he is currently working as a Senior Digital
Design Engineer. He is currently also studying towards a Ph.D. degree in
Electronics Engineering at Sabanci University, Istanbul, Turkey. His
research interests include ASIC and FPGA design for video compression
and video enhancement, and low power digital design.

Abdülkadir Akın received B.S. degree in Electronics
Engineering from Sabanci University, Istanbul,
Turkey in July 2008. He is currently working towards
an M.S. degree in Electronics Engineering at Sabancı
University, Istanbul, Turkey. His research interests
include digital hardware design for video
compression and video enhancement.

 Halil Kükner received B.S. degree in Electronics
Engineering from Sabanci University, Istanbul,
Turkey in July 2008. He is currently working towards
an M.S. degree in Electronics Engineering at Delft
University of Technology, Netherlands. His research
interests include digital hardware design for video
compression and video enhancement.

İlker Hamzaoğlu (M’00) received B.S. and M.S.
degrees in Computer Engineering from Bogazici
University, Istanbul, Turkey in 1991 and 1993
respectively. He received Ph.D. degree in Computer
Science from University of Illinois at Urbana-
Champaign, IL, USA in 1999. He worked as a Senior
and Principle Staff Engineer at Multimedia

Architecture Lab, Motorola Inc. in Schaumburg, IL, USA between August
1999 and August 2003. He is working as an Assistant Professor at Sabanci
University, Istanbul, Turkey since September 2003. His research interests
include SoC ASIC and FPGA design for digital video processing and
coding, low power digital SoC design, digital SoC verification and testing.

Authorized licensed use limited to: ULAKBIM UASL - SABANCI UNIVERSITY. Downloaded on November 1, 2009 at 10:55 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

