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Abstract — Motion Estimation (ME) is the most 

computationally intensive part of video compression and video 
enhancement systems. For the recently available High 
Definition (HD) video formats, the computational complexity of 
full search (FS) ME algorithm is prohibitively high, whereas the 
PSNR obtained by fast search ME algorithms is low. Therefore, 
in this paper, we present Dynamically Variable Step Search 
(DVSS) ME algorithm for processing high definition video 
formats and a dynamically reconfigurable hardware 
architecture for efficiently implementing DVSS algorithm. The 
simulation results showed that DVSS algorithm performs very 
close to FS algorithm by searching much fewer search locations 
than FS algorithm and it outperforms successful fast search ME 
algorithms by searching more search locations than these 
algorithms. The proposed hardware is implemented in VHDL 
and is capable of processing high definition video formats in 
real time. Therefore, it can be used in consumer electronics 
products for video compression, frame rate up-conversion and 
de-interlacing. 1 
 

Index Terms — Motion Estimation, Video Compression, 
Video Enhancement, Hardware Implementation, FPGA. 

I. INTRODUCTION 
Motion Estimation (ME) is the most computationally 

intensive part of video compression and video enhancement 
systems. ME is used to reduce the bit-rate in video 
compression systems by exploiting the temporal redundancy 
between successive frames, and it is used to enhance the 
quality of displayed images in video enhancement systems by 
extracting the true motion information. ME is used in video 
compression standards such as MPEG4 and H.264 [1], and it 
is used in video enhancement algorithms such as frame rate 
conversion [2-3] and de-interlacing [4-5]. Therefore, ME 
hardware is used in consumer electronics products such as 
digital camcorders, DVD players and recorders, set-top boxes, 
LCD televisions, and video conferencing devices. 

Block Matching (BM) is the most preferred method for ME. 

 
1 O. Tasdizen is with Department of Electronics Engineering, Sabancı 

University, Tuzla 34956, Istanbul, Turkey and with Vestek Electronic 
Research & Development Corp., Maslak 34469, Istanbul, Turkey (e-mail: 
tasdizen@su.sabanciuniv.edu, ozgur.tasdizen@vestel.com.tr) 

 

A. Akin, H. Kukner and I. Hamzaoglu are with Department of Electronics 
Engineering, Sabancı University, Tuzla 34956, Istanbul, Turkey (e-mail: 
abdulkadir@su.sabanciuniv.edu,shalil@su.sabanciuniv.edu, 
hamzaoglu@sabanciuniv.edu). 

BM partitions current frame into non-overlapping NxN 
rectangular blocks and tries to find a block from a reference 
frame in a given search range that best matches the current 
block. Sum of Absolute Differences (SAD) is the most 
preferred block matching criterion because of its suitability for 
hardware implementation. The SAD value of a search location 
defined by the motion vector d(dx,dy) is calculated as in (1) 
where c is the current frame, r is the reference frame, and the 
coordinate (i, j) is the location of current and reference blocks 
of size NxN in current and reference frames respectively. 
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Among the BM algorithms, Full Search (FS) algorithm 
achieves the best performance since it searches all search 
locations in a given search range. However, the computational 
complexity of FS algorithm is very high, especially for the 
recently available High Definition (HD) video formats. 

Several fast search ME algorithms have been developed for 
low bit-rate applications which use small frame sizes and 
require small search ranges. These algorithms try to approach 
the PSNR of FS algorithm by computing the SAD values for 
fewer search locations in a given search range. The most 
successful fast search algorithms are Orthogonal Search (OS) 
[6], New Three Step Search (NTSS) [7], Four Step Search 
(FSS) [8], Block-Based Gradient Descent Search (BBGDS) 
[9], Diamond Search (DS) [10], Hexagon-Based Search 
(HEXBS) [11], Adaptive Rood Pattern Search (ARPS) [12], 
Adaptive Dual Cross Search (ADCS) [13] and Flexible 
Triangle Search (FTS) [14]. 

Fast search ME algorithms perform very well for low bit-
rate applications such as video phone and video conferencing, 
because fast and complex motion are seldom in these 
applications. However, fast search algorithms do not produce 
satisfactory results for the recently available consumer 
electronics devices such as high frame rate HD flat panel 
displays, because there are fast and complex motion between 
successive frames in these applications. 

Therefore, in this paper, we propose Dynamically Variable 
Step Search (DVSS) ME algorithm for processing HD video 
formats and a dynamically reconfigurable systolic ME 
hardware architecture for efficiently implementing DVSS 
algorithm. The simulation results showed that DVSS 
algorithm performs very close to FS algorithm by searching 
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much fewer search locations than FS algorithm and it 
outperforms successful fast search ME algorithms by 
searching more search locations than these algorithms. 

DVSS algorithm has a maximum of three different 
granularity search steps. First, the entire search window is 
searched with a coarse granularity search step. Then, two finer 
granularity search steps are performed around the search 
locations with minimum SAD. The number of steps and the 
search range of each step are determined for the current block 
based on the size and SAD value of previously found Motion 
Vector (MV) for the left neighboring block.  

Therefore, for each block, the proposed ME hardware can 
be dynamically reconfigured to execute different number of 
steps and different search ranges for each step. The proposed 
hardware is implemented in VHDL and mapped to an 
XC3S1500-5 FPGA. It consumes 9128 slices (2282 CLBs) 
and 16 BRAMs. It works at 130MHz and is capable of 
processing HD video formats in real time. Therefore, it can be 
used in consumer electronics products for video compression, 
frame rate conversion and de-interlacing. 

A small number of hardware architectures for fast search ME 
algorithms are proposed in the literature [14-16]. The proposed 
hardware consumes less area than the implementation of one of 
the best performing fast search ME algorithms in the same 
FPGA [14] and it has higher throughput than the fast search ME 
hardware presented in [15]. 

We proposed a ME algorithm for processing HD video 
formats and a systolic ME hardware architecture for 
efficiently implementing this ME algorithm in [16]. We 
proposed another ME algorithm for processing HD video 
formats and a reconfigurable systolic ME hardware 
architecture for efficiently implementing this ME algorithm in 
[17]. This ME algorithm obtains similar performance results 
by searching fewer locations than the ME algorithm in [16].  

In this paper, we propose DVSS algorithm in order to 
obtain a performance very close to FS algorithm by searching 
even fewer search locations than the ME algorithms in [16, 
17]. The dynamically reconfigurable systolic ME hardware 
architecture proposed in this paper is based on the systolic ME 
hardware architectures proposed in [16, 17]. The major 
differences between them are the proposed hardware is 
dynamically reconfigurable and it implements DVSS 
algorithm.  

Many hardware architectures for FS ME algorithm are 
proposed in the literature [18-21]. The proposed ME hardware 
has a much higher throughput than these FS hardware. In 
addition, since it is searching a larger search range than these 
FS hardware, the proposed ME hardware obtains better PSNR 
results for HD video formats than these FS hardware. Larger 
search ranges are necessary for HD video formats, since there 
are fast and complex motions in them. 

The rest of the paper is organized as follows. Section II 
explains the proposed DVSS algorithm and presents a 
performance comparison between DVSS algorithm and the 
other ME algorithms. The proposed dynamically 

reconfigurable systolic ME hardware architecture is described 
in Section III. Section IV concludes the paper. 

II. PROPOSED DYNAMICALLY VARIABLE STEP SEARCH 
MOTION ESTIMATION ALGORITHM 

We proposed a ME algorithm for processing HD video 
formats in [16]. This ME algorithm is a generalization of the 
HEXBS ME algorithm and it checks all the search locations 
that can be checked by HEXBS algorithm during its iterations 
in a given search range. For the 32x16 search pattern shown in 
Fig. 1, this ME algorithm checks all the search locations that 
can be checked by HEXBS algorithm during 16 iterations in 
the horizontal direction and 8 iterations in the vertical 
direction in a (±32, ±16) pixel search range. The numbers seen 
in Fig.1 represent iterations in which these search locations 
would be checked by HEXBS algorithm. 

This ME algorithm can be used with other search patterns 
as well depending on the application requirements such as 
10x9 and 14x15 patterns [16]. The difference between these 
patterns and 32x16 pattern is that they have a gap of two 
pixels in the vertical direction compared to the one pixel gap 
of 32x16 pattern and these patterns have a search range of 
(±10, ±9) and (±14, ±15) respectively. Therefore, they have 
less computational complexity than 32x16 search pattern. 

We proposed another ME algorithm for processing HD video 
formats in [17]. This ME algorithm can be seen as a 
generalization of NTSS algorithm. It has a maximum of 3 
different granularity search steps; coarse, medium and fine. 
First, the entire search window is searched with a coarse 
granularity search step. Then, two finer granularity search steps 
are performed around the search locations with minimum SAD. 
In these steps, horizontal and vertical distances between search 
locations are 4, 2 and 1 pixels. The number of steps and the 
search range of each step used in this ME algorithm are 
determined based on the application requirements.   

 

 

Fig. 1. Some of the Search Locations of 32x16 Search Pattern 
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 In this paper, we propose DVSS algorithm in order to obtain a 
performance very close to FS algorithm by searching even fewer 
search locations than the ME algorithms proposed in [16, 17]. 
DVSS algorithm is based on the ME algorithm proposed in [17] 
and improves its performance by determining the number of 
steps and the search range of each step for the current block 
based on the size and SAD value of previously found Motion 
Vector (MV) for the left neighboring block. It is possible to use 
one of many different search patterns for a given block. Some of 
these search patterns, named as A1 [17], A2, A3, B and C, and 
the search patterns used in [16] are shown in Table I. As shown 
in the table, skipping the coarse and medium steps and doing the 
fine step on the entire search range is identical to FS algorithm. 

The search pattern A1, as shown in Fig. 2, has 3 steps and 
the search ranges (SR) of coarse, medium, and fine steps are 
(±48,±24), (±6,±6), (±3,±3) pixels respectively. In Fig. 2, 
numbers represent the steps and shaded numbers show the 
search locations with minimum SAD for these steps. The 
search pattern A2 is the same as A1 except that the search 
range of its first step is (±24, ±12) pixels. The search pattern 
A3, as shown in Fig. 3, has only medium and fine steps.  

The number of steps and sizes of search ranges for each step 
determine the computational complexity of a search pattern and 
Mean Absolute Difference (MAD) performance obtained by it. 
DVSS algorithm decreases the computational complexity by 
adaptively changing between search patterns A1, A2, A3 for 
each block based on the size and SAD value of the previously 
found MV for the left neighboring block, which is called as Left 
Neighboring Motion Vector (LNMV). As shown below, it uses 
FS, A3, A2, and A1 search patterns for small, medium, 
medium-to-large and large motions respectively. 

 
If there is no left neighboring block 
 Do Pattern A1 
Else if SAD value of LNMV exceeds the threshold (τ) 
 Switch to next coarser pattern 
Else  

If LNMV is within (±8, ±4) pixels 
  Do FS in (±10, ±5) search range 
 Else if LNMV is within (±16, ±8) pixels 
  Do Pattern A3 

Else if LNMV is within (±24, ±12) pixels 
  Do Pattern A2 
 Else 
  Do Pattern A1 
 
If LNMV falls within a smaller search range, it decreases the 

search granularity and search range size, because for small 
motions doing the search in a smaller search range is sufficient 
and doing a finer granularity search in a smaller search range 
can give better MAD results. If the SAD value for LNMV is 
higher than a pre-determined threshold level (τ), it increases the 
search granularity and search range size. τ is set to 256 and to 
1024 in our simulations. By setting τ to a higher value, many 
search locations can be skipped and higher processing speeds 
can be achieved with a slight decrease in MAD performance. 

DVSS algorithm reduces the computational complexity of ME 
by adaptively changing the number of search locations searched 
for each block. Similar techniques are proposed in the literature 
[22, 23]. In [22], some of the candidate search locations are 
eliminated adaptively if their partial SAD value exceeds a 
dynamically modified threshold level. In [23], the size and SAD 
values of the MVs of the previous blocks are used to adaptively 
change the search window size of FS algorithm for each block. 

 

TABLE I 
SEVERAL SEARCH PATTERNS 

Search 
Pattern 

SR of 
First Step 

SR of 
Second 

Step 

SR of 
Third 
Step 

Number 
of Search 
Locations 

10x9 [16] - ±10, ±9 ±3, ±3 73 
14x15 [16] - ±14, ±15 ±3, ±3 159 

A1 [17] ±48, ±24 ±6, ±6 ±3, ±3 405 
A2 ±24, ±12 ±6, ±6 ±3, ±3 161 
A3 - ±18, ±10 ±3, ±3 249 

32x16 [16] - ±32, ±16 ±3, ±3 553 
B ±48, ±24 ±12, ±12 ±6, ±6 565 
C ±48, ±24 ±24, ±12 ±12, ±6 793 

48x24 [16] - ±48, ±24 ±3, ±3 1221 
FS - - ±48, ±24 4753 

 

 
Fig. 2. Search Pattern A1 

 

 
Fig. 3. Search Pattern A3 
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TABLE II 
MAD SIMULATION RESULTS FOR FAST SEARCH ALGORITHMS 

Video Sequence 
(Frame Size & Rate) 

FS 
±48,±24 

FS 
±16,±16 

OS 
[6] 

NTSS 
[7] 

FSS 
[8] 

BBGDS 
[9] 

DS   
[10] 

HEXBS 
[11] 

ARPS 
[12] 

ADCS 
[13] 

FTS    
[14] 

Spiderman 
(720x576, 25fps) 4.2086 6.9686 6.6708 10.7152 10.8176 7.4789 7.2072 7.3777 6.0776 6.2421 6.8786 

Gladiator 
(720x576, 25fps) 2.8370 5.3812 5.2161 8.6823 8.7966 5.6802 5.4301 5.6132 3.9364 3.7342 6.0059 

IRobot 
(720x576, 25fps) 2.9264 3.7108 4.7796 5.4830 5.5572 4.5329 4.3990 4.5108 3.8864 4.0393 4.8717 

Susie 
(704x480, 15fps) 3.2262 3.421 4.2313 4.05 4.0861 3.8182 3.632 3.7153 3.6256 3.6241 3.9267 

Flowers 
(704x480, 15fps) 8.3955 8.418 12.412 10.476 11.125 10.636 10.318 10.976 8.7037 8.9538 13.118 

Table Tennis 
(704x480, 15fps) 3.4842 3.5824 3.9371 3.9738 4.0129 3.8621 3.8011 3.8367 3.7324 3.7478 3.8891 

Foreman 
(352x288, 15fps) 4.1783 4.2327 6.013 4.8124 4.8613 4.5136 4.5664 5.0804 4.5463 4.6925 5.6903 

 
TABLE III 

MAD SIMULATION RESULTS FOR PROPOSED SEARCH ALGORITHMS 
Video Sequence (Frame Size 

& Rate) 
10x9 
[16] 

14x15 
[16] 

32x16 
[16] 

48x24 
[16] 

A1 
[17] B C DVSS  

τ = 256 
DVSS  
τ = 1024 

Spiderman  
(720x576, 25fps) 9.3473 7.4848 5.5317 4.2296 4.2771 4.2657 4.2584 4.3990 4.5449 

Gladiator  
(720x576, 25fps) 7,2923 5,8438 3,3246 2.8858 2.9797 2.9349 2.9207 3.1451 3.2622 

IRobot  
(720x576, 25fps) 7.6989 6.9352 5.7265 3.0872 3.2350 3.1505 3.1045 3.2937 3.3346 

Susie  
(704x480, 15fps) 3.9229 3.7203 3.4004 3.3334 3.4138 3.3482 3.3291 3.2979 3.2928 

Flowers  
(704x480, 15fps) 8.898 8.7982 8.6225 8.6106 9.2686 9.065 8.9511 8.514 8.4891 

Table Tennis  
(704x480, 15fps) 3.7986 3.6634 3.5656 3.517 3.572 3.5531 3.5409 3.554 3.5714 

Foreman  
(352x288, 15fps) 5.0247 4.9595 4.6724 4.6626 4.8714 4.7015 4.6006 4.5191 4.3929 

 
  The performances of DVSS algorithm and the search 
patterns shown in Table I are compared with the performances 
of successful fast ME algorithms with respect to MAD 
criterion (2) and the results are shown in Table II and Table 
III. 
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Seven 100 frame long video sequences are used for the 

comparison. “Spiderman”, “Gladiator”, and “Irobot” 
video sequences are taken from “Spiderman II”, 
“Gladiator” and “Irobot” movies where there are fast and 
complex motions. “Susie”, “Flowers”, and “Table Tennis” 
video sequences are up-scaled versions of the commonly 
used CIF (352x288) sized benchmark videos. The up-
scaling is done using the biqubic interpolation technique.  

In our simulations, among the previously proposed fast 
search algorithms only NTSS and FSS have a search 
range of (±16, ±16) pixels and OS algorithm has a search 
range of (±24, ±24) pixels. The other fast search 
algorithms have a search range of (±48, ±24) pixels. FS is 
performed for both of the search ranges (±16, ±16) and 
(±48, ±24) pixels.  

 
As it can be seen in Table II and Table III, DVSS algorithm 

clearly outperforms successful fast search ME algorithms and 
it performs very close to FS algorithm by searching much 
fewer search locations. For example, even though, FS 
algorithm with (±48, ±24) search range checks 4753 search 
locations in comparison to 405 search locations checked by 
the search pattern A1, its MAD performance is only 7.5% 
better than the performance of the search pattern A1 on the 
average. It can also be seen that the performance of FS 
algorithm with (±16, ±16) search range is very low for videos 
with large motion content. 

The performance gap between other fast search algorithms 
and proposed search algorithms increase with increased video 
resolution and increased motion between consecutive frames. 
On the other hand, as it can be seen from “Foreman” video, 
when the resolution is very low and the motion can be 
detected within a search range of (±16, ±16) pixels, the 
performance gap decreases. 

DVSS algorithm decreases the computational complexity 
significantly with a small decrease in the MAD performance. 
It even sometimes gives better MAD results than the pattern 
A1. The reason for this improvement is that search patterns 
with finer granularities perform better for small motions and 
DVSS algorithm dynamically decreases its granularity when 
small MVs are found for the previous blocks.  
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III. PROPOSED RECONFIGURABLE ME HARDWARE 
Top-level block diagram of the proposed ME hardware 

architecture is shown in Fig. 4. This ME hardware is based on 
the ME hardware we proposed in [17]. The hardware is highly 
pipelined and its latency is eight clock cycles; one cycle for 
synchronous read from memory, one cycle for shift registers, two 
cycles for the reconfigurable systolic Processing Element (PE) 
array and four cycles for the adder tree.  

The proposed ME hardware finds a MV for a 16x16 MB based 
on the minimum SAD criterion in a maximum search range of 
(±48, ±24) pixels using the luminance data. The top-level controller 
takes the threshold level (τ) as an input and determines the number 
of search steps and their search ranges for each block adaptively. 
The control unit finds the MV for each block by generating 
required address and control signals to compute the SAD values of 
the search locations in the search window determined by the top-
level controller for each step. On the other hand, the ME hardware 
proposed in [17] takes the number of search steps and their search 
ranges as input and performs same number of steps with same size 
search ranges for all blocks. 

The search locations in a search window are searched line by 
line. First, SAD values of the search locations in the top line of 
the search window are calculated starting from the right most 
search location in the top line. Then, SAD values of the search 
locations in the next line of the search window are calculated 
starting from the right most search location in the next line. The 
first step ends after SAD values of the search locations in the 
bottom line of the search window are calculated. The next step 
around the search location with the minimum SAD is done in the 
same way.  

16 BlockRAMs (BRAM) in the FPGA are used to store the 
search window. BRAMs are configured as dual port memories 
for overlapping ME of the current MB with loading of the search 
window of the next MB. The vertical rotator is used to align the 
outputs of the BRAMs and it has 32 identical rotators each 16 bit 
long. The reference MB data read from BRAMs must be 
matched with the current MB data, which is loaded into the PE 
array previously, by rotating the data lines. For example, for the 
search locations in the fourth line of the search window, the 
rotate amount will be four so that first line of reference data will 
be read from the fourth BRAM.  

The SAD value for a search location is calculated by summing 
the outputs of all 256 PEs in the reconfigurable PE array by an 
adder tree. The adder tree has four pipeline stages; SAD values 
of 4x4 blocks are calculated in the first two clock cycles, in the 
third clock cycle SAD values of 8x8 blocks are calculated and in 
the fourth clock cycle SAD value of 16x16 MB is calculated. 

A. Reconfigurable Systolic PE Array 
The reconfigurable systolic PE array is shown in Fig. 5. This 

PE array is based on the PE array we proposed in [17]. 256 PEs 
are used to calculate the SAD of a 16x16 MB. A PE is used to 
calculate the absolute difference between a current pixel and the 
corresponding reference pixel. The latency of the PE array is two 

clock cycles, since reference and current pixel inputs and the 
absolute difference output are registered. 

The reconfiguration of the PE array is achieved with the 
multiplexers placed between the PEs that process the same line in 
a MB. Since the PE array in [16] is not reconfigurable, these 
multiplexers bring a slight area overhead in comparison to the PE 
array in [16], but they do not affect the clock frequency since 
they are not placed on the critical path. In Fig. 5, interconnects 
used for implementing 4, 2 and 1 shift amounts are illustrated 
with dashed, thin and bold lines respectively. Interconnects 
marked with “m” are connected to the memory. 

The reference pixels for the first search location in a line of the 
search window are loaded in 4 clock cycles. After the SAD value 
of the first search location is calculated, the SAD value of the 
next search location is calculated in 1 cycle. After the SAD value 
of the first search location is calculated, reference data is shifted 
to the right in the PE array in each consecutive clock cycle and 
shift amount can be 4, 2 or 1 pixels depending on the type of the 
step; coarse, medium or fine respectively. 

 

 
Fig. 4. Top-level Block Diagram  

 

 
Fig. 5. Reconfigurable Systolic PE Array 
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TABLE IV 
DATAFLOW THROUGH RECONFIGURABLE SYSTOLIC PE ARRAY 

Processing Elements 

Clock 

Cycle 

(0,0) 

to 

(0,15

) 

(1,0) 

to 

(1,15

) 

(2,0) 

to 

(2,15

) 

(3,0) 

to 

(3,15

) 

(4,0) 

to 

(4,15

) 

(5,0) 

to 

(5,15

) 

(6,0) 

to 

(6,15

) 

(7,0) 

to 

(7,15

) 

(8,0) 

to 

(8,15

) 

(9,0) 

to 

(9,15

) 

(10,0) 

to 

(10,15

) 

(11,0) 

to 

(11,15

) 

(12,0) 

to 

(12,15

) 

(13,0) 

to 

(13,15

) 

(14,0) 

to 

(14,15

) 

(15,0) 

to 

(15,15

) 

1 D C B A             

2 H G F E D C B A         

3 L K J I H G F E D C B A     

4 P O N M L K J I H G F E D C B A 

5 R Q P O N M L K J I H G F E D C 

6 T S R Q P O N M L K J I H G F E 

7 V U T S R Q P O N M L K J I H G 

 
The data flow through the reconfigurable systolic PE array is 

shown in Table IV. Let A – Z shown in Fig. 2 denote all pixels 
in these columns respectively. Assuming that “P” is the first 
search location, 4 clock cycles will be required to feed the 
reference data for this search location to the PE array, because 
regardless of the search pattern during loading of reference 
pixels for the first search location multiplexing unit feeds first 
four columns of the PE array. Assuming that after “P”, the 
search pattern continues with search locations “R, T and V” 
(two pixel gap between consecutive search locations), 
multiplexing unit will feed only first two columns of the PE 
array. Therefore, reference pixels for these search locations will 
be in the PE array in 5th, 6th and 7th clock cycles respectively. 

B. Memory Organization 
In order to calculate the SAD values of search locations at 

the rate of one SAD value per clock cycle, pixels for a 
particular search location must be brought to the PE array in 
one clock cycle, and this requires many accesses to the 
memory in the same clock cycle. This memory requirement 
cannot be satisfied by an FPGA without data-reuse. The ME 
hardware proposed in [16] reduces the internal memory 
bandwidth by applying data-reuse and it uses only 16 
BRAMs for storing the reference pixels of a search window 
for a search range of (±32, ±16) pixels. BRAMs are 
configured as 16 bit wide because of the 2 pixel distance 
between consecutive search locations.  

The ME hardware proposed in this paper also applies data-
reuse. However, it uses only 16 BRAMs for storing the 
reference pixels of a search window for a search range of 
(±48, ±24) pixels same as the ME hardware proposed in [17]. 
The proposed ME hardware further reduces the internal 
memory bandwidth by feeding only 64 PEs from BRAMs, 
the remaining PEs receive reference pixels from neighboring 
PEs. BRAMs are configured as 32 bit wide and they are 
connected to the four left end columns of the PE array. 
Therefore, loading the reference pixels for the first search 
location into the PE array takes four clock cycles.  

Each BRAM stores four lines of reference pixels. Storing 
a line of reference pixels uses 28 address locations; 

therefore, addresses 0-111 are occupied to store four lines 
of reference pixels. Fig. 6 shows the layout of the reference 
pixels in the first BRAM, which stores 0th, 16th, 32th and 
48th lines of the reference pixels in four distinct regions. 
The remaining BRAMs have the same organization. 

Multiplexing unit shown in Fig. 7 is used to feed the 
correct data to the PE array. In order to support horizontal 
distances of 1, 2 and 4 between consecutive search 
locations, multiplexing unit is designed to feed first one, 
two or four left end columns of the PE array. Independent 
from the search pattern, reference pixels for the first search 
location are loaded by feeding the four columns. Therefore, 
four clock cycles are required to fill the PE array with the 
reference pixels for the first search location. The reference 
pixels for the next search location will be available in the 
next clock cycle.  

 

 
Fig. 6. Memory Organization 
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Fig. 7. Multiplexing Unit 

 
The data received from the vertical rotator is captured in 

a 56 bit long shift register. If the enable signal of the shift 
register is high, it shifts its content 32 bits to right. If the 
distance between two search locations is four pixels, “4 
select” multiplexers otherwise “2 select” multiplexers are 
used to select the corresponding reference pixels from the 
shift register. 

C. Implementation Results 
The proposed hardware architecture is implemented in 

VHDL, verified by simulation using Modelsim 6.3c, and 
mapped to an XC3S1500-5 FPGA using Synplify Pro 8.9 
and ISE 10.1. The proposed hardware works at 130MHz 
and consumes 9128 slices (2282 CLBs) and 16 BRAMs. 
The reconfigurable systolic PE array with the adder tree 
consumes 7510 slices.  

The number of clock cycles per MB required by the 
proposed hardware depends on the search pattern. Starting 
a step has a start-up cost of 15 clock cycles, which is called 
step latency, and starting the search on a line has a start-up 
cost of 8 clock cycles, which is called line latency. The total 
number of clock cycles per MB required to complete a 
search pattern is given by (3). The performance of proposed 
ME hardware for several search patterns are calculated 
based on (3) and shown in Table V.  

 

  ( ) ( )( )∑ ×−+×−+
sn

linelinelinesads nnn
1

11 ττ         (3) 

  In (3), “ns, nsad, nline” are the number of steps, 
search locations per line and lines per step respectively. 
“τs” and “τline” are step and line latencies respectively. 
Based on this equation, for the coarse, medium and fine 
steps the start-up latency is 45 clock cycles. For these 
three steps, there is 192 clock cycles of line latency and 
396 clock cycles are required for remaining search 
locations. Therefore, pattern A1 requires 633 clock 
cycles to find the MV of a MB. Patterns A2 and A3 
requires 357 and 380 clock cycles, respectively. FS 
with a search range of (±10, ±5) pixels requires 304 
clock cycles. 

The performance of DVSS algorithm on the proposed 
ME hardware for different threshold values is shown in 
Table VI. DVSS algorithm achieves much better real-
time performance, with a small decrease in the MAD 
performance, since it adaptively changes the search 
patterns and uses pattern A1 only for large motions, 
patterns A2 and A3 for medium motions and FS only 
for small motions. As it can be seen in the table, 
increasing the threshold value increases the supported 
frame rate.  

 
TABLE V 

PERFORMANCE OF PROPOSED HARDWARE FOR SEVERAL PATTERNS 

Search 
Pattern 

Required 
Clock 

Cycles per 
MB 

Processed 
MBs per 
Second 

Supported Frame Size 
& Rate 

A1 [17] 633 205371 1920x1080, 25.3 fps 
B 957 135841 1366x768, 33.1 fps 
C 1221 106470 1366x768, 25.9 fps 

10x9 [16] 122 1180327 1920x1080, 145.7 fps 
14x15 [16] 236 610169 1920x1080, 75.3 fps 
32x16 [16] 672 214285 1920x1080, 26.4 fps 
48x24 [16] 1425 101052 1366x768, 24.6 fps 

FS 5103 25475 720x576, 15.7 fps 
 

TABLE VI 
PERFORMANCE OF PROPOSED HARDWARE FOR DVSS ALGORITHM 

Video 
Sequence 

Threshold 
(τ) 

Required 
Cycles for 

100 Frames 

MBs 
per 

Frame 

Average 
Cycles 

per MB 

Supported 
1920x1080 

fps 

Spider 256 96094246 1620 594 27.0 
Spider 1024 90284377 1620 558 28.7 

Gladiator 256 87299334 1620 539 29.7 
Gladiator 1024 80952068 1620 500 32.1 

Irobot 256 77966499 1620 482 33.3 
Irobot 1024 74177157 1620 458 35.0 
Susie 256 59212520 1320 449 35.7 
Susie 1024 51666864 1320 392 41.0 

Flowers 256 52181938 1320 396 40.5 
Flowers 1024 49586582 1320 376 42.7 

TableTennis 256 53382291 1320 405 39.6 
TableTennis 1024 47136775 1320 358 44.9 

Foreman 256 15926153 396 403 39.9 
Foreman 1024 14250681 396 360 44.5 
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TABLE VII 
COMPARISON OF ME HARDWARE ARCHITECTURES 

Architecture Algorithm Technology MB size Number 
of PEs 

Search 
Range 

Area 
 

Speed 
[MHz] 

Cycles per 
16x16 MB 

Supported 
1920x1080 

[fps] 

Proposed DVSS XC3S1500-5 
FPGA 16x16 256 (±48, ±24) 2282 

CLBs 130 467 
(τ = 256) 

34.3 
(τ = 256) 

[14] FTS XC3S5000 
FPGA 16x16 16 (±16, ±16) 6142 

CLBs 74 202 45.2 

[15]  FS & DS Unknown 8x8, 16x16 Dedicated 
HW 

(-16, +15) in 
both axis 

9K 
gates 50 2879 

(average) 2.1 

[16] 32x16 [16] XC3E1200E-5 
FPGA 16x16 256 (±32, ±16) 1692 

CLBs 144 672 26.4 

[17] A1 [17] XC3S1500-5 
FPGA 16x16 256 (±48, ±24) 2271 

CLBs 130 633 25.3 

[18] FS 0.25μm CMOS 
1P5M 16x16 256 (-16, +15) in 

both axis 
16.07 

mm
2

 
36 1421 3.1 

[19] FS 0.6μm SPTM 
CMOS 

8x8, 16x16, 
32x32 64 (±32, ±32) 267K 

gates 60 4209 1.7 

[20] FS XC4VLX100 
FPGA 16x16 Dedicated 

HW (±16, ±16) 380 
LUTs 221 1111 24.5 

AS1 [21] FS XC40250 
FPGA 16x16 33 (±16, ±16) 1214 

CLBs 24 25344 0.1 

AB2 [21] FS XC40250 
FPGA 16x16 256 (±16, ±16) 948 

CLBs 30 1584 2.3 

AS2 [21] FS XC40250 
FPGA 16x16 528 (±16, ±16) 3732 

CLBs 22 768 3.5 

 
The proposed ME hardware is compared with several 

ME hardware implementations presented in the literature in 
Table VII. A small number of hardware architectures for 
fast search ME algorithms are proposed in the literature 
[14-17]. The proposed ME hardware consumes less area 
than the implementation of one of the best performing fast 
search ME algorithms in the same FPGA [14]. The MAD 
performance of this hardware is lower than the MAD 
performance of the proposed ME hardware, since it 
implements FTS algorithm. In [15], a hybrid architecture 
supporting both FS and DS is presented. This architecture 
speeds up FS by successively eliminating some of the 
search locations. In addition, it is suitable for the irregular 
data flow of fast search algorithms and it consumes less 
area than the dedicated FS systolic array implementations. 
However, it has lower throughput than the proposed ME 
hardware. 

The proposed ME hardware is based on the systolic ME 
hardware proposed in [16, 17]. The major differences 
between them are the proposed hardware is dynamically 
reconfigurable and it implements DVSS algorithm. Because 
of the overhead of reconfigurability and additional 
complexity of the control unit, the proposed ME hardware 
consumes 2363 slices more than the ME hardware proposed 
in [16] in the same FPGA. 1136 slices are used by the 
multiplexing unit, 836 additional slices are used by the 
multiplexers in the PE array and the remaining additional 
slices are used by additional complexity of the control unit. 
Because of the overhead of the dynamic reconfigurability, 
which is implemented in the top-level controller, the 
proposed ME hardware consumes slightly more area than 
the ME hardware proposed in [17] in the same FPGA. 

 
Many hardware architectures for FS algorithm are 

proposed in the literature [18-21]. The throughput of the 
proposed ME hardware is much higher than the FS 
hardware implementations in [18-19]. An ASIC 
implementation of FS algorithm utilizing 256 PEs in 
0.25μm CMOS technology is given in [18]. This 
architecture is a modified version of the AB2 type systolic 
array. Another ASIC implementation of FS algorithm is 
given in [19]. The throughput of this architecture is low, 
because it has only 64 PEs, it is optimized for low power 
consumption and it is implemented in an older technology. 

A real-time ME hardware implementing FS algorithm for 
HD video is given in [20]. However, since this hardware is 
implemented on a high-end FPGA, it is not suitable for 
consumer electronics products. The FPGA implementations 
of the systolic architectures AS1, AB2, AS2 are presented 
in [21]. Despite using large number of PEs, the throughputs 
of these ME hardware are much lower than the throughput 
of the proposed ME hardware, since they are implementing 
FS algorithm. The area results presented in [21] include 
only the datapath and do not include the control unit and 
memory. 

IV. CONCLUSION 
In this paper, DVSS ME algorithm for processing HD 

video formats and a dynamically reconfigurable systolic 
ME hardware architecture for efficiently implementing 
DVSS algorithm are proposed. For each block, the 
proposed ME hardware is dynamically reconfigured to 
execute different number of steps and different search 
ranges for each step based on the previously found MV for 
the left neighboring block. The simulation results showed 
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that DVSS algorithm performs very close to FS algorithm 
by searching much fewer search locations than FS 
algorithm and it outperforms successful fast search ME 
algorithms by searching more search locations than these 
algorithms. The proposed ME hardware consumes less area 
than the implementation of one of the best performing fast 
search ME algorithms in the same FPGA. The proposed 
ME hardware is capable of processing HD video formats in 
real time and its throughput is much higher than the FS 
hardware implementations reported in the literature. 
Therefore, DVSS ME algorithm and the proposed 
dynamically reconfigurable ME hardware can be used in 
consumer electronics products for video compression, 
frame rate conversion and de-interlacing.  
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