
ADAPTIVE MULTI-PATTERN FAST BLOCK-MATCHING ALGORITHM BASED ON
MOTION CLASSIFICATION TECHNIQUES

Ivacn Gonzaclez-Diaz, Manuel de-Frutos-Lopez, Sergio Sanz-Rodriguez, Fernando Diaz-de-Mar[a

Department of Signal Theory and Communications
Universidad Carlos III, Leganes (Madrid), Spain

ABSTRACT

Motion estimation is the most time-consuming subsystem in a video
codec. Thus, more efficient methods of motion estimation should
be investigated. Real video sequences usually exhibit a wide-range
of motion content as well as different degrees of detail, which be-
come particularly difficult to manage by typical block-matching al-
gorithms. Recent developments in the area of motion estimation
have focused on the adaptation to video contents. Adaptive thresh-
olds and multi-pattern search algorithms have shown to achieve good
performance when they success to adjust to motion characteristics.
This paper proposes an adaptive algorithm, called MCS, that makes
use of an especially tailored classifier that detects some motion cues
and chooses the search pattern that best fits to them. Specifically, a
hierarchical structure ofbinary linear classifiers is proposed. Our ex-
perimental results show that MCS notably reduces the computational
cost with respect to an state-of-the-art method while maintaining the
quality.

Index Terms- Block-matching, motion estimation, motion clas-
sification, binary linear classifier

1. INTRODUCTION

Motion estimation is the most time-consuming subsystem in a video
codec. Thus, more efficient methods of motion estimation should be
investigated. In this paper we deal with this problem focusing on
the emerging H.264 standard, that has shown an excellent behaviour
in a broad range of coding applications. Furthermore, H.264 incor-
porates new features such as the variable-size block estimation or
multi-reference coding that make the motion estimation more effec-
tive but also more time-consuming.
Most recent developments in the area of motion estimation have fo-
cused on the adaptation to video contents. Real video sequences
contain a wide-range of motion contents, distributed along spatial
regions whose shape and position change over time. Recognizing
these features can help with the selection of appropriate search pat-
terns that minimize both the number of search points and the distor-
tion.
Initial research on block-matching adaptation made special empha-
sis on the generation of adaptive thresholds: in [1] accumulated costs
of previous blocks on the frame are used to generate adaptive thresh-
olds that lead the search process; in [2] additional spatial region-
alization is applied by computing costs of four spatial neighbours;

This work has been partially supported by PRODYS S.L. and the re-
gional grant UC3M-TEC-05-059. The authors would also like to thank David
Mufioz-Mejias and Jose Carlos Pujol-Alcolado for their inestimable help.

however, the usefulness of these thresholds is still limited to the de-
tection of early stops during the search process. Other developments,
as in [3], employ various search patterns and select the most appro-
priate based on motion classification techniques; the main drawback
of these techniques is that motion classification strongly depends on
previous search results; thus, local minima may affect the next pat-
tern selections, potentially inducing new errors on next blocks. In
[4] this dependence is weaker, since the classification method uses
a dispersion measure over the local vector field. Even when a lo-
cal minimum occurs, dispersion values can be large enough to select
more exhaustive patterns in next blocks. Anyway, this measure by
itself may not be robust enough to successfully classify every case.
Our proposal uses a complete classification scheme that selects the
most appropriate search pattern based on estimated motion charac-
teristics. The objective of this scheme is to reduce computational
complexity on those cases where faster patterns can reach the op-
timal solution, while maintaining more exhaustive search patterns
when needed.
The remainder of this paper is organized as follows. The details of
our motion classification method are given in Section 2. A descrip-
tion of the average cost map used in the algorithm is provided in
Section 3. Section 4 contains a performance comparison between
our algorithm and another solution that has demonstrated good effi-
ciency at any bitrate. Finally, Section 5 summarizes our conclusions
and outlines further work.

2. MOTION CLASSIFICATION-BASED SEARCH (MCS)

The Motion Classification-based Search (MCS) chooses among sev-
eral heterogeneous search patterns one that best fits particular mo-
tion contents. In particular, we pose this search pattern selection as
a multi-class recognition problem that relies on some information
available at coding time in order to characterise the motion and to
select the search pattern that seems to be more robust and efficient
on each case. As in any classification problem, we need to carefully
define the inputs (parameters), the outputs (classes) and the classifier
structure.

2.1. Local motion vector predictions

Motion vector (MV) predictions are used as potential starting points
of posterior refinements of the local search. The H.264 standard
defines a median-based prediction from the MVs of spatially adja-
cent blocks. However, this prediction can be insufficient and usually
other correlated vectors are included to minimize later unnecessary

1-4244-0728-1/07/$20.00 ©2007 IEEE I - 1177 ICASSP 2007

searches around the initial search point. Our particular prediction set
also includes:

1. Compensated MV of the co-located block.
2. Compensated MVs of four neighbouring blocks (left, up, up-

left, up-right) on their best reference frame.
3. Median of compensated neighbouring vectors.
4. Uplayer vector (that resulting from the motion estimation per-

formed for the next larger block size in the same reference).
5. Vector (0,0).

Vector compensation scales vector magnitudes when they have been
coded using different time distances (in visualization order) between
the reference frame and the current frame. This process is explained
in detail in [5].

2.2. Problem parameterization: selected input features

The problem parameterization is a critical issue in any classifier de-
sign. Based on correlation estimates between potential parameters
and desired outputs, we have chosen nine inputs to be considered by
our classifier, namely:

1. Block size: expressed in terms of the number of 4x4 blocks
(1 for 4x4 to 16 for 16x16).

2. Binary input for homogeneous neighbourhood: when the
four spatial neighbouring blocks (left, up, up-left, up-right)
have the same compensated MVs this input is set to 1, other-
wise is set to 0.

3. Time distance: when the time distance (presentation order)
between a frame and its reference is larger, the expected time
correlation between them decreases and more exhaustive
searches are needed.

4. Number of neighbouring INTRA blocks: except in bor-
ders, INTRA coded blocks may indicate non-uniform motion
that has been impossible to detect. Detecting this situation
can prevent from continuously falling in local minima.

5. Absolute cost (Cabs): The cost is measured as a sum of a
distortion term (SAD or Sum of Absolute Differences) and a
term that refers to the differential coding ofthe MV (compund
of a Lagrangian Term A and a difference in bits between the
prediction and the final MV). The absolute cost of the predic-
tion is linearly adapted to 16x16 block-size and, then, made
independent from the A value by means of:

Cabs = Cpred -45A (1)

The value of 45A has been empirically obtained by observing
the evolution of the costs with respect to A.

6. Cost ratio (Cratio): a ratio between predicted MV costs and
the Average Cost Map that will be described in section 3. The
prediction cost is linearly adapted to 16x16 block-size and,
then, the ratio is calculated as:

CCi pred
rcatio - nTTa vg

(2)

7. Prediction MV magnitude: large prediction vectors are less
reliable and usually require more exhaustive search patterns.
The magnitude is calculated as:

Mag =y MVpred (X) + MVpred (Y) (3)

Fig. 1. Classification scheme of MCS. Early Stop 1 uses inputs
{ 1,3,5,6,7,9} while the rest of binary classifiers employ the com-
plete input set

8. Motion Vector Dispersion (MVD): dispersion of temporal
(co-located) and spatial (adjacent) correlated MVs can be use-
ful to characterize the uniformity of the MV field of a block.
Our dispersion measure obeys:

D = N (|MVi() -MVpred(X)|
i=l

+ MV (y) -MVpred (Y) 1) (4)
9. Inverse of A (A-1): In our experiments, A-1 has turned out

to be more suitable to our purposes than A.

2.3. Classification outputs: search patterns

In the MCS, the outputs of the classification are the search patterns
described below:

1. Early Stop (ES): the algorithm considers a prediction as the
optimal solution and avoid any refinement.

2. Small Diamond Search Pattern (SDSP): a diamond pattern
with a 1 pixel step-size is used until a center point of one
iteration is better than the other points.

3. Large Diamond Search Pattern (LDSP): a diamond pattern
with a 2 pixels step-size is used until a center point ofone iter-
ation is better than the other points; afterwards, a refinement
is carried out by means of an SDSP pattern.

4. Exhaustive Logarithmic Search Pattern (ELSP): this pat-
tern extends the well-known TSS [6] with a new stage. Specif-
ically, it comprises 4 stages in which the step size decreases
logarithmically starting from an initial step size of 8 pixels
(sizes of 8, 4, 2, 1). This search pattern tries to emulate the
functionality of the search range dependent predictor set pre-
sented in [5] and overcome difficult situations such as those
when predictions are far from the optimal solution or when
the cost functions are not monotonic towards the optimal so-
lution.

2.4. Classification scheme

Although the block-matching process is most time-consuming sub-
system of the video codec, it is actually due to the high number
of block-matching operations rather than to their individual cost.
Therefore, the block-matching algorithm itself cannot incorporate
complex and expensive classifiers that may take as much time as the

I- 1178

posterior search patterns. Based on this assumption, we have cho-
sen binary linear classifiers as an example of learning machines that
can get accurate results with low computational cost. A binary linear
classifier obeys:

y =wTx+b (5)

where w represents the vector of weights, x is the input vector with
the parameter values (scaled between 0 and 1), y is the output of the
classifier and b is the bias term. This classifier makes soft decisions
that afterwards must be compared with a threshold (0.5 in our case),
providing a hard decision (0 or 1). We use several binary classifiers
to solve the multi-class (multi-pattern) problem. In particular, we
propose a hierarchical structure, illustrated in Fig. 1, that sequen-
tially performs four binary classifications. The output of each binary
classifier is compared with a fix threshold, so that smaller values im-
ply a final classification decision and larger values lead to subsequent
stages. Input values for Early Stop] classifier are related to H.264
standard median predictor. If an early stop is not detected, the full
set of predictors is computed and the best initial vector is chosen,
thus subsequent classifiers use updated information.

2.5. Training and test sets generation

In order to design every binary classifier, a training set and a test
set (to evaluate the solution in terms of classification accuracy) have
been generated by encoding typical video sequences for a thorough
grid ofQP values. These sets have been designed taking into account
two main requirements: 1) they should be representative of the input
space; and 2) they should make special emphasis on those samples
in which selecting erroneous patterns produces unacceptable bitrate
increases. Ignoring the second requirement leads to classifiers that
always select classes with higher prior probability (early stops in
our case). To meet both requirements, we assign to every sample
a probability of being included on the training/test set according to
the cost obtained by every potential search pattern for this particular
sample (in order to compute this probabilities every pattern is tried
for every sample):

P =K (R + E (Ci -Cmin))Gnin i
(6)

more exhaustive patterns) at high QP values (high A values). To
overcome this issue we have trained classifiers that use all input fea-
tures except A-1 and, subsequently, got the optimal value of A-1
weight by means of a cross-validation process.

2.7. Switching among search patterns

Since our algorithm makes some classification errors, switches among
search patterns should be considered for potential error detections.
Although many potential switches have been tested, we have finally
included just one change between ELSP and SDSP, that is taken
when at the end of the second step of the ELSP, the center is the
best point and

(A (7)

where o and 3 have been empirically obtained. Again, when A de-
creases, switches to faster patterns become more likely.

3. AVERAGE COST MAP

In order to achieve a good level of adaptation to several video fea-
tures such as motion nature or background detail, we have developed
an Average Cost Map (ACM). The ACM allows us to adapt the costs
to the region contents (for example: high detailed regions usually
imply high distortion values even when the block-matching process
has reached the optimal solution). The averaging process is made in
two separate domains: space and time. In space, an spatial average
Savg is made for each one macroblock-size region i as a weighted
arithmetic mean of the costs of the macroblock i and its eight spatial
neighbours:

N

St =ci + INoZ i
j=l

(8)

where Ci is the accumulated cost of the MB i, N = 8 represents
the eight adjacent blocks, and o is a weighting factor (0 < o < 1)
that establishes the relative importance of a block with respect to its
neighbours. Then, a time average is performed as follows:

Tn i nlSvi (1 3)Tc-v iTc''g = C S.vg + (I -J13).v
where Ci is the cost achieved by the search pattern i, N is the num-
ber of search patterns, Cmin is the minimum cost (that obtained by
the optimal search pattern), R is a regularization term which ensures
that any sample has a non-zero probability of being included on the
set (even in early stops when Ci = Cmin), and K is a function
that manages the size of the training/test sets and guarantees that
0< P < 1.

2.6. Classifiers training

The training phase, i.e., the optimization of weights, is based on
the minimization of the Mean Square Error (MSE) and LMS (Least
Mean Squares) algorithm is used. However, it has not been possible
to apply this procedure to every parameter. In particular, if we in-
troduce A-1 on the optimization process, its corresponding weight
turns out to be positive. This implies that faster patterns are strength-
ened when working at lower qualities, what generates substantial bi-
trate increases. Therefore, we need to be more conservative (using

(9)

where n is the time instant, 3 is a weighting factor (0 < 3 < 1)
that establishes the relative importance of new data with respect to
previous samples.

4. EXPERIMENTAL RESULTS

The proposed algorithm has been embedded in the H.264/AVC Ref-
erence Software Encoder (v10.2). Simulations have been made using
IBBPBBP pattern, non-optimized RD (for real-time coding applica-
tions), search area of 33x33, 5 references and exhaustive subpel re-
finement. A thorough grid ofQP values (1-51 with two step size) has
been used in order to obtain results at bitrates very closed to those
ones included on the Tables. The results at these particular bitrates
have been obtained by linear interpolation.
Tables 1 and 2 show, respectively, PSNR vs bitrate and computa-
tional complexity (in terms of total search points per block and to-
tal coding time) comparison among Full Search (FS), full EPZS

I- 1179

Table 1. Performance comparison (PSNR) among Full Search (FS),
EPZS and MCS

PSNR and PSNR variation A (dBs) vs Bitrate (Kbps)
128 256 512 1024 1536 2048

FS PSNR 20.20 23.32 26.50 30.26 32.81 34.83
Mobile EPZS A 0.12 -0.06 -0.03 -0.01 0.01 0.01

MCS A 0.10 -0.07 -0.03 -0.02 -0.02 -0.01
FS PSNR 26.89 28.98 31.28 34.07 36.05 37.74

Coastguard EPZS A 0.02 0.01 0.00 0.01 0.04 0.05
MCS A 0.01 -0.01 -0.02 0.00 0.05 0.07
FS PSNR 34.34 37.22 40.17 43.12 44.95 46.28

Container EPZS A 0.13 0.06 0.04 0.04 0.02 0.00
MCS A 0.12 0.07 0.04 0.04 0.04 0.02
FS PSNR 26.11 28.98 31.83 35.07 37.26 39.03

Tempete EPZS A 0.10 0.02 -0.01 -0.01 0.01 0.02
MCS 'A 0.10 0.01 -0.02 -0.01 0.02 0.02

Table 2. Performance comparison (Search Points/Mean Coding
Time per frame in seconds) among Full Search (FS), EPZS and MCS

Sequence FS EPZS MCS
Mobile 1089/ 4.63 10.99/ 0.80 7.96/ 0.73

Coastguard 1089/ 6.44 13.74/ 0.97 8.14/ 0.85
Container 1089/ 4.83 5.48/ 0.74 1.40/ 0.64
Tempete 1089/ 5.08 10.99/ 0.88 4.85/ 0.76

[5] (with extended diamond pattern and fixed, temporal and spatial
memory predictors), and the proposed MCS algorithm. On the one

hand, the FS is included just to provide reference PSNR vs bitrate
results. On the other hand, the EPZS algorithm has shown good per-

formance for a wide-range of motion contents and coding qualities,
while it is computationally much more affordable than FS. However,
it is still computationally expensive since it uses many predictors and
search points with independence of the coding situation.
MCS results in PSNR (see Table 1) are really close to those achieved
by EPZS and FS, with a mean loss of O.OldBs and a benefit of
0.05dBs, respectively. Furthermore, PSNR losses do not increase
at lower qualities, issue that becomes a classical problem for many
block-matching algorithms. Poor FS results on low bitrates are due
to the cost approximation used with the non-optimized RD coding.
On the other hand, MCS algorithm achieves a mean computational
complexity reduction (see Table 2) of 99.5% versus FS and 49.73%
versus EPZS in mean search points per block. This reduction has an

impact on the total coding time, with decreases of 86.6% versus FS
and 12.3% vs EPZS. Complexity comparisons between EPZS and
MCS are also provided in Figure 2.

5. CONCLUSIONS AND FURTHER WORK

The wide range of real-time video coding applications demands al-
gorithms able to work at a wide range of qualities. MCS is intended
to work at any coding quality as well as to follow different types
of motion content. Motion classification techniques, which are the
core of the MCS, can become the basis for the development of adap-

Mobile Coastguard Cortainer Tempete

\Video Sequences

(a) Mean Search Points per block

r' .'F0 t
Mobile Coastguard Cortainer Tempete

Video Sequences

(b) Mean total coding time per frame

Fig. 2. Computational complexity comparison between EPZS and
MCS in mean search points per block (a) and total encoding time (b)

tive algorithms that fulfil these requirements. The reported results
show that MCS obtains similar quality values that known robust al-
gorithms while notably reducing the computational complexity.
Further work mainly focuses on the development of different costs
functions with two aims: the first one is to include A- 1 in the training
phase in the same way that the rest of the input features. The second
is to make special emphasis on difficult cases without modifying the
prior probabilities of the classes.

6. REFERENCES

[1] Xiaoquan Yi and Nam Ling, "Improved partial distortion
search algorithm for rapid block motion estimation via dual-
halfway-stop," in IEEE International Conference on Acoustics,
Speech, and Signal Processing, 2005. Proceedings. (ICASSP
'05)., 2005, vol. 2, pp. ii/917-ii/920 Vol. 2.

[2] Jang-Jer Tsai and Hsin-Chia Chen, "Predictive block-matching
discrepancy based rhombus pattern search for block motion es-

timation," in IEEE International Conference on Image Process-
ing. ICIP 2005., 2005, vol. 1, pp. 1-1073-6.

[3] Shih-Yu Huang, Chuan-Yu Cho, and Jia-Shung Wang, "Adap-
tive fast block-matching algorithm by switching search patterns
for sequences with wide-range motion content," IEEE Transac-
tions on Circuits and Systemsfor Video Technology, vol. 15, no.

1l,pp. 1373-1384, 2005.
[4] I. Ahmad, Weiguo Zheng, Jiancong Luo, and Ming Liou, "A

fast adaptive motion estimation algorithm," IEEE Transactions
on Circuits and Systemsfor Video Technology, vol. 16, no. 3, pp.

420-438, 2006.
[5] A. M. Tourapis, "Fast me in the jm reference software," Joint

Video Team (JVT) of ISO/IEC MPEG ITU-T VCEG (ISO/IEC
JTC1/SC29/WG11 and ITU-T SG16 Q.6) 16th Meeting: 24-29
July 2005, Poznafi. JVT-P026.

[6] T. Koga, K. linuma, A. Hirano, Y. lijima, and T. Ishiguro, "Mo-
tion compensated interframe coding for video conferencing.," in
NTC, 1981, pp. vol. 4, pp G5.3.1-G5.3.5.

I- 1180

14
13

u 12 -

-210 M==-

