3,521 research outputs found

    Knowledge representation of remote sensing quantitative retrieval models

    Get PDF
    A large number of quantitative retrieval models have been proposed in recent years, and there is continuous momentum in proposing new ones. Building a model, from design through to implementation stages, involves a process of knowledge collection, organization and transmission. In this paper we introduce the SECI model to manage the conversion of qualitative remote sensing knowledge and propose a mode of knowledge representation on the basis of the ontology for geospatial modeling. We develop a platform based on the above research and demonstrate the efficiency of the knowledge representation mode using this platform

    A Global Human Settlement Layer from optical high resolution imagery - Concept and first results

    Get PDF
    A general framework for processing of high and very-high resolution imagery for creating a Global Human Settlement Layer (GHSL) is presented together with a discussion on the results of the first operational test of the production workflow. The test involved the mapping of 24.3 millions of square kilometres of the Earth surface spread over four continents, corresponding to an estimated population of 1.3 billion of people in 2010. The resolution of the input image data ranges from 0.5 to 10 meters, collected by a heterogeneous set of platforms including satellite SPOT (2 and 5), CBERS-2B, RapidEye (2 and 4), WorldView (1 and 2), GeoEye-1, QuickBird-2, Ikonos-2, and airborne sensors. Several imaging modes were tested including panchromatic, multispectral and pan-sharpened images. A new fully automatic image information extraction, generalization and mosaic workflow is presented that is based on multiscale textural and morphological image features extraction. New image feature compression and optimization are introduced, together with new learning and classification techniques allowing for the processing of HR/VHR image data using low-resolution thematic layers as reference. A new systematic approach for quality control and validation allowing global spatial and thematic consistency checking is proposed and applied. The quality of the results are discussed by sensor, by band, by resolution, and eco-regions. Critical points, lessons learned and next steps are highlighted.JRC.G.2-Global security and crisis managemen

    High-performance time-series quantitative retrieval from satellite images on a GPU cluster

    Get PDF
    The quality and accuracy of remote sensing instruments continue to increase, allowing geoscientists to perform various quantitative retrieval applications to observe the geophysical variables of land, atmosphere, ocean, etc. The explosive growth of time-series remote sensing (RS) data over large-scales poses great challenges on managing, processing, and interpreting RS ‘‘Big Data.’’ To explore these time-series RS data efficiently, in this paper, we design and implement a high-performance framework to address the time-consuming time-series quantitative retrieval issue on a graphics processing unit cluster, taking the aerosol optical depth (AOD) retrieval from satellite images as a study case. The presented framework exploits the multilevel parallelism for time-series quantitative RS retrieval to promote efficiency. At the coarse-grained level of parallelism, the AOD time-series retrieval is represented as multidirected acyclic graph workflows and scheduled based on a list-based heuristic algorithm, heterogeneous earliest finish time, taking the idle slot and priorities of retrieval jobs into account. At the fine-grained level, the parallel strategies for the major remote sensing image processing algorithms divided into three categories, i.e., the point or pixel-based operations, the local operations, and the global or irregular operations have been summarized. The parallel framework was implemented with message passing interface and compute unified device architecture, and experimental results with the AOD retrieval case verify the effectiveness of the presented framework.N/

    Automated and robust geometric and spectral fusion of multi-sensor, multi-spectral satellite images

    Get PDF
    Die in den letzten Jahrzehnten aufgenommenen Satellitenbilder zur Erdbeobachtung bieten eine ideale Grundlage fĂŒr eine genaue LangzeitĂŒberwachung und Kartierung der ErdoberflĂ€che und AtmosphĂ€re. Unterschiedliche Sensoreigenschaften verhindern jedoch oft eine synergetische Nutzung. Daher besteht ein dringender Bedarf heterogene Multisensordaten zu kombinieren und als geometrisch und spektral harmonisierte Zeitreihen nutzbar zu machen. Diese Dissertation liefert einen vorwiegend methodischen Beitrag und stellt zwei neu entwickelte Open-Source-Algorithmen zur Sensorfusion vor, die grĂŒndlich evaluiert, getestet und validiert werden. AROSICS, ein neuer Algorithmus zur Co-Registrierung und geometrischen Harmonisierung von Multisensor-Daten, ermöglicht eine robuste und automatische Erkennung und Korrektur von Lageverschiebungen und richtet die Daten an einem gemeinsamen Koordinatengitter aus. Der zweite Algorithmus, SpecHomo, wurde entwickelt, um unterschiedliche spektrale Sensorcharakteristika zu vereinheitlichen. Auf Basis von materialspezifischen Regressoren fĂŒr verschiedene Landbedeckungsklassen ermöglicht er nicht nur höhere Transformationsgenauigkeiten, sondern auch die AbschĂ€tzung einseitig fehlender SpektralbĂ€nder. Darauf aufbauend wurde in einer dritten Studie untersucht, inwieweit sich die AbschĂ€tzung von BrandschĂ€den aus Landsat mittels synthetischer Red-Edge-BĂ€nder und der Verwendung dichter Zeitreihen, ermöglicht durch Sensorfusion, verbessern lĂ€sst. Die Ergebnisse zeigen die EffektivitĂ€t der entwickelten Algorithmen zur Verringerung von Inkonsistenzen bei Multisensor- und Multitemporaldaten sowie den Mehrwert einer geometrischen und spektralen Harmonisierung fĂŒr nachfolgende Produkte. Synthetische Red-Edge-BĂ€nder erwiesen sich als wertvoll bei der AbschĂ€tzung vegetationsbezogener Parameter wie z. B. Brandschweregraden. Zudem zeigt die Arbeit das große Potenzial zur genaueren Überwachung und Kartierung von sich schnell entwickelnden Umweltprozessen, das sich aus einer Sensorfusion ergibt.Earth observation satellite data acquired in recent years and decades provide an ideal data basis for accurate long-term monitoring and mapping of the Earth's surface and atmosphere. However, the vast diversity of different sensor characteristics often prevents synergetic use. Hence, there is an urgent need to combine heterogeneous multi-sensor data to generate geometrically and spectrally harmonized time series of analysis-ready satellite data. This dissertation provides a mainly methodical contribution by presenting two newly developed, open-source algorithms for sensor fusion, which are both thoroughly evaluated as well as tested and validated in practical applications. AROSICS, a novel algorithm for multi-sensor image co-registration and geometric harmonization, provides a robust and automated detection and correction of positional shifts and aligns the data to a common coordinate grid. The second algorithm, SpecHomo, was developed to unify differing spectral sensor characteristics. It relies on separate material-specific regressors for different land cover classes enabling higher transformation accuracies and the estimation of unilaterally missing spectral bands. Based on these algorithms, a third study investigated the added value of synthesized red edge bands and the use of dense time series, enabled by sensor fusion, for the estimation of burn severity and mapping of fire damage from Landsat. The results illustrate the effectiveness of the developed algorithms to reduce multi-sensor, multi-temporal data inconsistencies and demonstrate the added value of geometric and spectral harmonization for subsequent products. Synthesized red edge information has proven valuable when retrieving vegetation-related parameters such as burn severity. Moreover, using sensor fusion for combining multi-sensor time series was shown to offer great potential for more accurate monitoring and mapping of quickly evolving environmental processes

    Citizen-based sensing of crisis events: sensor web enablement for volunteered geographic information

    Get PDF
    Thanks to recent convergence of greater access to broadband connections, the availability of Global Positioning Systems in small packages at affordable prices and more participative forms of interaction on the Web (Web 2.0), vast numbers of individuals became able to create and share Volunteered Geographic Information (VGI). The potential of up to six billion persons to monitor the state of the environment, validate global models with local knowledge, contribute to crisis situations awareness, and provide information that only humans can capture is vast and has yet to be fully exploited. Integrating VGI into Spatial Data Infrastructures (SDI) is a major challenge, as it is often regarded as insufficiently structured, documented, or validated according to scientific standards. Early instances of SDIs used to have limited ability to manage and process geosensor-based data (beyond remotely sensed imagery), which tend to arrive in continuous streams of real-time information. The current works on standards for Sensor Web Enablement fill this gap. This paper shows how such standards can be applied to VGI, thus converting it in a timely, cost-effective and valuable source of information for SDIs. By doing so, we extend previous efforts describing a workflow for VGI integration into SDI and further advance an initial set of VGI Sensing and event detection techniques. Examples of how such VGI Sensing techniques can support crisis information system are provided. The presented approach serves central building blocks for a Digital Earth’s nervous system, which is required to develop the next generation of (geospatial) information infrastructures

    Gap analysis of research, technology, & development activities

    Get PDF
    Most energy usage of buildings throughout their life cycle is during the operational stage (~80%). The decisions made in the conception and design stages of new buildings, as well as in renovation stages of existing buildings, influence about 80% of the total life cycle energy consumption. The impact of user behaviour and real-time control is in the range of 20%. ICT has been identified as one possible means to design, optimize, regulate and control energy use within existing and future (smart) buildings. This books presents a collection of best practices, gap analysis of current research and technology development activities, a research roadmap, and a series of recommendations for ICT supported energy efficiency in buildings. Key research, technology, and development priorities include: integrated design and production management; intelligent and integrated control; user awareness and decision support; energy management and trading; integration Technologies. The vision for ICT supported energy efficiency of buildings in the short, medium, and long term is advocated as follows: Short term: Buildings meet the energy efficiency requirements of regulations and users; Medium term: The energy performance of buildings is optimised considering the whole life cycle; Long term: New business models are driven by energy efficient “prosumer” buildings at district level – long term

    Heterogeneous sensor database framework for the sensor observation service: integrating remote and in-situ sensor observations at the database backend

    Get PDF
    Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.Environmental monitoring and management systems in most cases deal with models and spatial analytics that involve the integration of in-situ and remote sensor observations. In-situ sensor observations and those gathered by remote sensors are usually provided by different databases and services in real-time dynamic service systems like the Geo-Web Services. Thus, data have to be pulled from different databases and transferred over the web before they are fused and processed on the service middleware. This process is very massive and unnecessary communication and work load on the service, especially when retrieving massive raster coverage data. Thus in this research, we propose a database model for heterogeneous sensortypes that enables geo-scientific processing and spatial analytics involving remote and in-situ sensor observations at the database level of the Sensor Observation Service, SOS. This approach would be used to reduce communication and massive workload on the Geospatial Web Service, as well make query request from the user end a lot more flexible. Hence the challenging task is to develop a heterogeneous sensor database model that enables geoprocessing and spatial analytics at the database level and how this could be integrated with the geo-web services to reduce communication and workload on the service and as well make query request from the client end more flexible through the use of SQL statements

    Quantifying Fundamental Vegetation Traits over Europe Using the Sentinel-3 OLCI Catalogue in Google Earth Engine

    Get PDF
    Thanks to the emergence of cloud-computing platforms and the ability of machine learning methods to solve prediction problems efficiently, this work presents a workflow to automate spatiotemporal mapping of essential vegetation traits from Sentinel-3 (S3) imagery. The traits included leaf chlorophyll content (LCC), leaf area index (LAI), fraction of absorbed photosynthetically active radiation (FAPAR), and fractional vegetation cover (FVC), being fundamental for assessing photosynthetic activity on Earth. The workflow involved Gaussian process regression (GPR) algorithms trained on top-of-atmosphere (TOA) radiance simulations generated by the coupled canopy radiative transfer model (RTM) SCOPE and the atmospheric RTM 6SV. The retrieval models, named to S3-TOA-GPR-1.0, were directly implemented in Google Earth Engine (GEE) to enable the quantification of the traits from TOA data as acquired from the S3 Ocean and Land Colour Instrument (OLCI) sensor. Following good to high theoretical validation results with normalized root mean square error (NRMSE) ranging from 5% (FAPAR) to 19% (LAI), a three fold evaluation approach over diverse sites and land cover types was pursued: (1) temporal comparison against LAI and FAPAR products obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) for the time window 2016–2020, (2) spatial difference mapping with Copernicus Global Land Service (CGLS) estimates, and (3) direct validation using interpolated in situ data from the VALERI network. For all three approaches, promising results were achieved. Selected sites demonstrated coherent seasonal patterns compared to LAI and FAPAR MODIS products, with differences between spatially averaged temporal patterns of only 6.59%. In respect of the spatial mapping comparison, estimates provided by the S3-TOA-GPR-1.0 models indicated highest consistency with FVC and FAPAR CGLS products. Moreover, the direct validation of our S3-TOA-GPR-1.0 models against VALERI estimates indicated good retrieval performance for LAI, FAPAR and FVC. We conclude that our retrieval workflow of spatiotemporal S3 TOA data processing into GEE opens the path towards global monitoring of fundamental vegetation traits, accessible to the whole research community.We gratefully acknowledge the financial support by the European Space Agency (ESA) for airborne data acquisition and data analysis in the frame of the FLEXSense campaign (ESA Contract No. 4000125402/18/NL/NA). The research was also supported by the Action CA17134 SENSECO (Optical synergies for spatiotemporal sensing of scalable ecophysiological traits) funded by COST (European Cooperation in Science and Technology, www.cost.eu, accessed on: 8 January 2022). This publication is also the result of the project implementation: “Scientific support of climate change adaptation in agriculture and mitigation of soil degradation” (ITMS2014+313011W580) supported by the Integrated Infrastructure Operational Programme funded by the ERDF

    Research theme reports from April 1, 2019 - March 31, 2020

    Get PDF
    • 

    corecore