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ABSTRACT
Environmental monitoring and management systems in most cases deal with models and

spatial analytics that involve the integration of in-situ and remote sensor observations. In-situ
sensor observations and those gathered by remote sensors are usually provided by different
databases and services in real-time dynamic service systems like the Geo-Web Services. Thus,
data have to be pulled from different databases and transferred over the web before they are
fused and processed on the service middleware. This process is very massive and unnecessary
communication and work load on the service, especially when retrieving massive raster
coverage data. Thus in this research, we propose a database model for heterogeneous sensor-
types that enables geo-scientific processing and spatial analytics involving remote and in-situ
sensor observations at the database level of the Sensor Observation Service, SOS. This
approach would be used to reduce communication and massive workload on the Geospatial
Web Service, as well make query request from the user end a lot more flexible. Hence the
challenging task is to develop a heterogeneous sensor database model that enables geo-
processing and spatial analytics at the database level and how this could be integrated with the
geo-web services to reduce communication and workload on the service and as well make

guery request from the client end more flexible through the use of SQL statements.
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CHAPTER 1

1.0 INTRODUCTION

Geo-sensors gathering data to the geospatial sensor web can be classified into remote sensors
and in-situ sensors. Remote sensors include satellite sensors, UAV, LIDAR, Aerial Digital Sensors
(ADS) and so on measuring environmental phenomena remotely. These sensors acquire data in
raster format at larger scales and extent. In-situ sensors are spatially distributed sensors over a
region used to monitor and observe environmental conditions such as temperature, sound
intensity, pressure, pollution, vibration, motion etc. These sensors are measuring phenomena

in their direct environment and could be said to acquire data in vector or feature data format.

Most environmental monitoring and management systems combine these diverse datasets
from heterogeneous sensors for environmental modeling and analysis. For example monitoring
and estimating of actual Evapotranspiration at a particular location involves the fusion of
different sensor data. This involves the aggregation of fraction of vegetation cover which is
derived from Normalised Difference Vegetation Index, NDVI generated from coverage data and
the gridded reference Evapotranspiration map derived from automatic weather stations.
Remote and in-situ sensor data aggregation is also needed in dynamic web mapping services for
vegetation productivity (1) or in marine information system (2) .

Meanwhile the fusion and aggregation of these sensor data on the web service currently
involves massive data retrieval from different sensor databases, most especially from the raster
databases, geo-processing and spatial analytics on service middleware. For web services this is
massive work and communication load over the network and on the service. A sensor database
management system combining remote and in-situ observations would be of high benefit for
environmental monitoring and management systems. Having these disparate data on one
database schema would leverage geospatial web services from excessive work load or data
transfer through the network. Most of the data fusion, aggregations and processing done by
web services can now be carried out at the database backend and the results retrieved through
the appropriate web services to user end. Geo-scientific queries involving information from

raster and vector data is possible with such a database. For example a scenario where a geo-



scientist want to compare for example the surface temperature value of a particular location
from satellite observation and from in-situ temperature observations can easily be realized
with this approach at the database backend without having to retrieve the massive raster data.

Developing the database model that integrates remote sensor and in-situ sensor observations
to leverage some of the above mentioned geo-scientific scenarios on the geospatial web

services is the challenge and the essence of this research.

Sensor Observation
Service

SOS

uer
Query Dataset

Integration
and fusion

Figure 1 : The Conceptual Diagram

Figure 1 describes the research concept diagrammatically, showing the in-situ and remote
sensor data passed to the heterogeneous sensor database where data integration , fusion and
processing are carried out within the Sensor Observation Service, SOS.



1.1 Research Problem:
The research problem for this thesis is the development of a heterogeneous sensor database

model that enables Geo-scientific queries involving remote and in-situ sensor data aggregation
at the database level and how this can be leveraged to reduced excessive work and

communication load for relevant Geospatial Web Services.

1.2 Research Hypothesis:
If remote and in-situ sensor observations can be effectively integrated at the database

backend, then communication and work load on the service middleware of the Geo-Web

Services can be drastically reduced and query requests from the users would be more flexible.

1.3 Research Questions:
e What are the methods that can be adopted for modeling heterogeneous sensor

observations for databases?

e What are the capabilities of existing DBMS in handling spatio-temporal and
heterogeneous data models?

e What are the specific constraints in implementing database schema that can be used for
heterogeneous spatio-temporal observations?

e How can geo-spatial web services leverage this solution in reducing excessive work and

communication load on the service?

1.4 Methodology
To answer the above mentioned research questions towards solving the research problem and

evaluate the research hypothesis, we approached this research in the following systematic
sequence.

To examine the current methods of storing and managing

State-of-the-art survey

remote and in-situ-sensor observations in sensor databases.

) ] To find out the challenges of storing spatial-temporal remote

Requirement Analysis . . .
and in-situ-sensor observations in a common database,

concentuallv and oracticallv.

To address those challenges and develop a heterogeneous sensor

database model and a model of the proposed integration with the

OGC web services.

Conceptual Design

Scenario Description To describe the scenarios or use cases and geo-scientific queries that
can be leveraged on this kind of database.




Prototypical And finally is the development of a prototypical
Implementation and —) implementation of this database model to evaluate and

Ere demonstrate the approach.

1.5 Thesis Structure Overview
The rest of this thesis is organised as follows: Chapter 2 provides the background work of

existing studies and projects involving in-situ sensor observation database, raster database,
integration of remote and in-situ sensor observations and also the OGC Sensor Web
Enablement and some its specifications. Chapter 3 provides the database system requirement
analysis for the seamless integration of in-situ and remote sensor observations at the database
backend. Chapter 4 provides the conceptual and logical models of the proposed
heterogeneous sensor database model and explains how the entities of the database schema
relate. It also provides and discusses the conceptual model of how the heterogeneous database
model can be integrated with other geo-web services for effectively services to the clients.
Chapter 5 describes some of the scenarios and use cases where this type sensor database can
be efficiently leveraged for geo-scientific analysis and processes. Chapter 6 provides the
PostGIS-based prototypical implementation of the proposed heterogeneous sensor database
model and provides the performance analysis of this prototypical implementation. In this
section also is the discussion and evaluation of the research hypothesis based on the
performance and results. Chapter 7 summarises this research and discusses the future work

which will lead to more appreciation of this research work.



CHAPTER 2

2.0 BACKGROUND:

Existing works and studies in in-situ sensor observations database and in remote sensor (raster)
database provide insight into the possibility of developing a database models to integrate the
two disparate data types. These studies offer a theoretical background for this.

The literature review or background to this thesis can be divided into the following categories;
studies related to in-situ sensor observations databases, studies related to remote sensor
observations (raster) databases, studies related to the integration of remote and In-situ sensor
observations and finally OGC Sensor Web Enablement (SWE), Sensor Observation Service (SOS),

Web Coverage Service WCS and Web Coverage Processing Service WCPS.

2.1 Studies dealing on In-Situ Sensor Databases:
The current Sensor Observation Service SOS of 52 North organization is an in-situ sensor

observation service implemented as a servlet and can be deployed in any servlet container,
such as Apache Tomcat. In-situ sensor observations are stored in the PostgresSQL database.
Users can create customized SQL query tables with new data and metadata. On the client side,
the OX-Framework provides the access to SWE SOS and subsequent visualization of the queried
data from the database. The 52 North in-situ sensor observation data service can be
implemented in a broad environmental monitoring and management areas. For example, it has
been used in the implementation in the AFIS (Advanced Fire Information System) (3). However
the shortcoming of this approach is that is a single type sensor database service, optimized for
In-situ sensors. When dealing with a project that requires integration with coverage data, the
coverage data will have to be pulled from a different raster database, e.g. implemented by a
Web Coverage Service (4). This is not optimal for an application using these data because
usually the coverage data retrieval and processing is very massive over the network.

The SOS of the organization known as Deegree is another in-situ observation data service that is
designed and implemented to connect to PostGIS, Oracle Spatial, or any database management
system supporting JDBC. This supports the GetCapabilities, DescribeSensor, DescribePlatform

and GetObservation operations.



Deegree SOS is very configurable enabling existing relational databases to be connected. On the
client side, iGeoPortal is the web-based portal framework and offers visualization of geodata
through a standard web browser (3). This is another in-situ sensor data type SOS without the

possibility of coverage and feature data aggregation at the database backend.

2.2 Studies dealing on Remote Sensor (Raster) Databases:
Why Raster Databases?

Peter Baumann et al. (5) stressed the importance of efficient raster data storage and retrieval,
as raster data acquisition is increasingly becoming easier and less expensive. Currency and large
area coverage of raster imageries are substantially higher when compared to vector data.
Hence raster data competes and complements favorably with vector data in most geo-
application. Consequently the need for efficient, flexible large scale raster data storage coupled
with remote access and retrieval is very paramount.

The authors (5) also pointed out the advantages of a database system for raster data retrieval
and transaction services. “Aside the flexibility in task definition, query languages allow the
definition of complex tasks to the server better than atomic steps in procedural APIs” (5). Query
optimizers gain a lot more freedom in rephrasing the query optimally for different situations.
The paper also rightly mentioned that “application integration is much higher because one
central instance is in charge of data integration and consistency”. This buttresses our argument
that with a heterogeneous database system, data integration, consistency, flexibility, retrieval
and transaction services will a lot more easy.

RasDaMan (5) is one of the systems efficiently implementing raster database management.
RasDaMan is implemented as a middleware running on top of a relational database system. The
RasQL query language affords the capability to semantically manipulate and retrieve raster data
from the database. The expressiveness of RasQL enables a wide range of signal processing,
imaging, and statistical operations up to, e.g., the Fourier Transform (5)

The paper illustrated some case studies of raster database where RasDaMan was used to

successfully implement Multi-dimensional raster database management system.



Multi-Dimensional Discrete (MDD) array raster database such as 2-D seamless aerial image
map, a 3-D seamless map extended in the time dimension, and a 4-D database of climate

simulation results were implemented in RasDaMan (5).

There are great advantages in the enhanced functionality provided by the query language
approach, and in general by bringing standard database benefits such as multiuser
synchronization, transaction support, and concise, explicit schema modeling to the area of
raster data management. Finally, storing geo images in the database together with and vector

data not only eases administration, but also enhances data consistency considerably (5).

2.2.1 Efficient Raster Data Management in Relational Databases
For an efficient and functional raster data storage that affords precised and effective geo-

scientific queries in databases, raster data are stored as an array of multidimensional discrete
data (MDD). Baumann in (6) proposed managing raster as multidimensional discrete data
(MDD) in databases which relieves applications from many low-level but data-intensive data
management tasks with the need for any specialized imaging and visualization subsystem.
Storing raster data in a database as pure byte sequence where the DBMS has no knowledge
about the underlying data semantics (pixel or tile structure), execution of effective geo-
scientific queries and optimization are not possible.

Existing systems related to raster data management in a database environment, such as Oracle
Spatial GeoRaster or Rasdaman are designed to support storing and querying dense multi-
dimensional real-valued arrays based on tiling techniques (7). We are going to be adopting in
this research, the approach of MDD array storage or tile storage which has been implemented

in PostGIS 2.0.

2.2.2 Large Scale Raster Database for Geo-Services
Baumann in (8) underlined the claim that databases can introduce a new quality of geo-web

service on high volume multi-dimensional earth science raster data. The paper presented a
conceptual model for raster data in earth science and how an efficient architecture can be
derived from it. The approach is implemented in RasdaMan system. He also discussed on how

the concept can be utilized in the development of OGC’s geo raster services.



The paper outlined some important factors that make database raster services outperform the

file-based raster services. According to the paper, we could talk about;

e Optimised tiling which makes the server fetch much less data from disk.

e Database system enables the client to send a single complex request instead of a long
sequence of atomic operations.

e There is much less communication overhead when a single complex request can be made,
no intermediate results have to be transfered back and forth and hence a minimum

amount of data is required to answer the client’s needs.

Baumann in (9) highlighted the current envisaged use of WCPS as in navigation, extraction, and
server-side analysis over large multi-dimensional coverage repositories. He discussed and
illustrated the importance of SQL-like request language and database approach in geo-raster
services. The request language allows navigation, extraction, and ad-hoc analysis on multi-
dimensional geo-scientific raster data. For example extraction tasks like retrieving of satellite
image bands, performing band combination, even deriving of vegetation index maps and
classification can easily and efficiently handle on the database backend through the SQL
request language.
According to Peter Baumann in (9), the request language has the following advantages:
e |t has a (semi-) formal semantics which combines concise syntax and semantics
specification with legibility.
e The language is declarative in that there is no explicit array iteration, thereby allowing
to process arrays in any cell iteration sequence, in particular based on partitioned
(“tiled”) storage schemes.
e Coverages are treated in a data independent way: not only are requests independent
from data encoding, but also dimensions are addressed by name and not by index, thereby
avoiding an artificial dimension sorting.
e WHCPS queries are safe in evaluation — every request terminates after a finite number of

steps (proof omitted here, but straightforward).



2.2.3 PostGIS Raster Spatial Database
Raster support is one of the new features of PostGIS 2.0 (10). The new features enable users to

store georeferenced, multiband, multiresolution, with nodata value raster coverages in
Postgres/Postgis spatial database. Raster coverages are stored as tables of many tiles (Multi
Dimensional Discrete Data MDD). Rasters can be loaded in any format supported by GDAL and
the list of raster tables is available to applications in a table named raster columns. The
capability to do raster/vector analysis is our main point of attraction to this POSTGIS 2.0. This
will enable the capability of heterogeneous sensor data fusion and aggregation. It also allows
for raster analysis in the raster way with a set of map algebra functions working on one pixel at
a time, on the neighborhood of a pixel, on two rasters, with expressions or custom user
PL/pgSQL functions. All analysis takes nodata values into account unless specified. You can edit
rasters pixel by pixel, many pixels at a time, using raster coordinates or georeferenced
geometries. We also have the ability to convert PostGIS rasters to geometries or to any raster
format supported by GDAL. With raster, topology, routing and 3D capabilities, PostGIS is
becoming a complete in-the-database GIS driven with the SQL language (10). Leveraging these
capabilities to develop a heterogeneous sensor database model integrating coverage and
feature data for an efficient Sensor Observation Service (SOS) is of high benefit for

environmental monitoring applications.

2.3 Integrating Remote and In-situ Sensor Observations
Recently there have been some studies and projects dealing with real time integration of

observations from remote and in-situ sensors. The references below dealt with the real time
integration of heterogeneous sensor data types for some form of environmental monitoring
and management. Our main concern is that these integrations are done at the service
middleware level which faces the workload of massive data retrieval from different databases.
The integration is not carried out at the database backend which could leverage massive data

delivery over the network.



Carlos Rueda et al. project on real-time integration of geospatial raster and point data streams
(11) which was used for estimation of accurate Evapotranspiartion over an extended

agricultural area (California)

The system streams coverage data from Geostationary Operational Environmental Satellite
(GOES) satellite and in-situ data from the California Irrigation Management Information System
(CIMIS) network of weather stations. The system calculates spatially distributed daily reference
Evapotranspiration and produces corresponding daily maps for the state of California. The

satellite data from GOES is used within the system for evaluating the output from the

interpolation methods used.

Interpolator

® Method: "RST"
g l

—_— - Regression Plot
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®To. "AEA" >unpier »‘ R uxo

®R: ROI

®Channel: 2

GCoesReader -,

Figure 2: Workflow for comparing CIMIS and GOES temperature raster images

(Taken from (Rueda and Gertz 2008))

The resulting interpolated temperature raster is denoted as i and the GOES-derived
temperature raster is denoted as g in the figure above. And the stream extension SE actor
spatially aggregates the incoming images to a single composite over the covered region.

In our own case, the database backend aggregation, the fusion and aggregation of these two
datasets will be seamlessly carried out at the database level and only the resulting composite
images retrieved over the network. This reduces the massive workload of data retrieval from

both ends as shown in the figure above.
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2.3.1 Dynamic Web Mapping Service for Vegetation Productivity Using Earth Observation
and in situ Sensors
Lammert Kooistra et al. worked on dynamic web mapping service for vegetation productivity,

(1) integrating remote and in-situ sensor observations in a web service approach. The study is
actually a sensor web based system which combines remote sensor and in-situ sensor
observations to derive near real-time vegetation productivity products. The application was
developed and implemented within an automated processing facility.

The approach as shown in the figure, below retrieves MODIS data from the USGS DAAC file
database and the in-situ sensor meteorological data requested from the PostGIS database of
KNMI SWE server through the SOS GetObservation operation. The two different data are
aggregated and processed at the middleware to generate the daily GPP product. And the final
mapping products are stored as ASCIl raster and made available to the end user through a

WMS.

MODIS surface reflecipocs

mierpolated PAR

Potectat LUE

Look Up
Tabie (LUT)

End usin

Figure 3: Overview of the communications flow and steps for the automated
processing and calculation of vegetation productivity (Taken from (1)) proach

whereby the remote and in-situ sensor data are stored in one database. In our approach the
massive data retrieval and processing at the middleware is reduced because the different

sensor data aggregation and fusion can be carried out at the database backend.
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2.3.2 WARMER- Water Risk Management in Europe Project
The WARMER project presents a web-based monitoring and management system that

integrates and fuses medium to high resolution ocean colour satellite remote sensing data with
in-situ measurements from the buoy monitoring systems. A "production line" for daily
acquisition and generation of medium resolution satellite images (MERIS FR- Medium
Resolution Imaging Spectrometer - full Resolution) was developed and implemented for
WARMER. For In-situ data acquisition, the ADDP (Aberdeen DISPRO DB Proxy) for acquiring and
communicating the in-situ data from multiple external databases was used. These information
sources were integrated in the WARMER monitoring and management system, which is an OGC
(Open Geospatial Consortium) compliant system offering results in form of WMS and WFS to

the users (12)

‘&K...&, The WARMER information flows |

%
&> — \ o
1O Data

Aqua MODIS Ground Stations

{
- I DISPRO WAKMER
Zetaced Product Generator Data Portal Users
Syslem Sysicm #£2 — Server #2
‘\
The WARMER “bouy” (CYNERSC 2008

Figure 4: Image showing WARMER information flows (taken from (13))

This is also another concept of real-time integration of remote and in-situ observations on the
service end after heterogeneous sensor data retrieval from different database ends over the
network. Massive workload on the service end different from our approach transfers the data

fusion and integration workload to the database backend.

2.3.3 Intelligent Sensorweb for Integrated Earth Sensing (ISIES) Project
The main objective of this project is to develop an intelligent sensor web system that integrates

in-situ sensors with remote sensing and auxiliary data to provide improved predictions of crop
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and rangeland yield. ISIES is an on-line system that integrates an in-situ sensorweb, remote
sensing imagery and Geographic Information System (GIS) data to provide superior estimates
and predictions of biomass, crop yield and drought severity through open and standard
interfaces (14). The ISIES host server is built to retrieve data from the sensorweb, process and
store it in the relational database. It is actually a host of databases built on oracle 10g and file
storage system that contains all ISIES data including remote, in-situ and GIS data. Through the
automatic communication SmartCore devices, the in-situ data are retrieved on daily basis. A
data fusion engine was developed to automatically run the plant models that intergrate in-situ
and remote sensing data and the model are run on daily basis. Yield and biomass maps are
produced on daily basis for each of the test sites.

Actually this server is built around Java and database connectivity (JBDC) is Java-based. This is
also the approach of multiple databases and data retrieval from different databases and

processed at the server end.

Hamre (2) proposes the Integration of remote sensing, in-situ and model data in the marine
information system (2) and discusses about the usefulness of integration of in-situ and remote
sensor observation in the marine information system (MIS). He mentioned that the integration
of these different types of data in one information system will enable combination of data from
different sources so that more information can be extracted than when analyzing them
separately. His emphasizes here is actually on the usefulness of integrating these different
sensor data in an MIS just like it is done in a GIS to generate more useful information about the

marine environment. So it is not actually on the database approach that we are proposing.

Zaks et al. (15) reviewed the components and organization of an agro ecological sensor web
that integrates remote and in-situ sensor data with models to provide decision makers with
effective management options at very good spatial and temporal scales. This enables the
decision makers to make more informed decisions about agricultural productivity and food
security. This is another paper that discussed about the usefulness of having a system that

integrates remote and in-situ sensor observations for the agro-ecological sensor web. It is a
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useful insight for our research but is different from our approach because the data integration

is not done at the database backend.

Stonebraker et al. (16) presented a benchmark that concisely captures the database
requirements of a collection of earth scientist working in the SEQUOIA 2000 project. The
authors emphasized the fact that earth scientist in the project dealt with four kinds of data;
raster, point, polygon and detected graph data. Therefore there was a great need to develop
database benchmarks that would enable integration of these kinds of data at the database
backend. This would enable effective geo-scientific queries that run some kind of aggregation
across the different data types on the database. This is also in line which our proposal for

heterogeneous sensor database in the Sensor Observation Service (SOS) of the SWE.

2.4 Sensor Web Enablement, SWE
Sensor Web Enablement (SWE) in the Open Geospatial Consortium, (OGC) context refers to

web accessible sensor networks and archived sensor data that can be discovered, accessed and,
where applicable, controlled using open standard protocols and interfaces (APIs) (17). OGC is
working on harmonizing SWE standards with other OGC standards for geospatial processing
standards. The SWE standards enable web-based discovery, exchange and processing of sensor

observations as well as the tasking of the systems. (17)
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- All sensors reporting position - All readable remotely
- All connected to the Web - Some controllable remotely
- All with metadata registered

Figure 5: Sensor Web Concept (Source of Image courtesy of the OGC)

The OpenGlS Standards that make up the SWE suite of standards includes:

The Observations & Measurements Schema (O&M), Sensor Model Language (SensorML,
Transducer Markup Language (TransducerML or TML), Sensor Observations Service (SOS),
Sensor Planning Service (SPS), Sensor Planning Service (SPS), Sensor Alert Service (SAS) and
Web Notification Services (WNS). They specify the encodings for describing sensors and sensor
observations and interface definitions for web services. The research area of this thesis falls on
the Sensor Observation Service (SOS) domain whereby these heterogonous sensors on the

Sensor Web can be integrated on a heterogeneous database for the sensor observation service.

2.5 Sensor Observation Service SOS
The SOS is one of the main components of the SWE architecture. It defines network-centric

data representations and operations for accessing and integrating observations from sensor
systems. The OpenGIS Sensor Observation Service Interface Standards defines an API for
managing deployed sensors and retrieving sensor observation data. (17). The SOS serves as the

intermediate between the client and the observation database or near real-time sensor
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channel. The SOS can also be accessed by the client to obtain metadata information about the
associated sensors, platforms, procedures and other information associated with observations.
Our research proposal relates to the SOS by defining database models for integration and

retrieval of remote and in-situ observations at the database backend of SOS implementation.

2.6 Web Coverage Service WCS
The OGC Web Coverage Service (WCS) supports electronic retrieval of geospatial data as

"coverages" — that is, digital geospatial information representing space/time-varying phe-
nomena. (18)

The WCS 2.0 document (18) states that “A Web Coverage Service (WCS) offers multi-
dimensional coverage data for access over the Internet”

According to the OGC WCS 2.0 (18) documents a WCS provides access to coverage data in forms
that are useful for client-side rendering, as input into scientific models, and for other clients.
The WCS may be compared to the OGC Web Feature Service (WFS) and the Web Map Service
(WMS). As WMS and WEFS service instances, a WCS allows clients to choose portions of a
server's information holdings based on spatial constraints and other query criteria.

Different from the Web Map Service WMS, which portrays spatial data to return static maps
(rendered as pictures by the server), the Web Coverage Service provides available data
together with their detailed descriptions; defines a rich syntax for requests against these data;
and returns data with its original semantics (instead of pictures) which may be interpreted,
extrapolated, and even reused not just portrayed.

And also unlike the Web Feature Service WFS, which returns discrete geospatial features
(vector data), the Web Coverage Service returns coverages representing space/time-varying
phenomena that relate a spatio-temporal domain to a (possibly multidimensional) range of
properties. As such, WCS focuses on coverages as a specialized class of features and,
correspondingly, defines streamlined functionality.

WCS 2.0 uses the coverage model of the GML Application Schema for Coverages (19) which has
been developed with the goal that coverages handled by a WCS can be more easily

interchanged with other OGC services. WCS 2.0 supports all coverage types supported by said

16



Application Schema; it is not constrained to quadrilateral grid coverages like previous WCS
versions (19). The WCS is of high interest for our work as it is where the problem of massive

data retrieval over the network lies.

2.6 Web Coverage Processing Service WCPS
Web Coverage Processing Service is meant to provide an open-ended framework for submitting

requests of extensive complexity for processing on the server-side and returning the results.
The processing and returning of results is done in a systematic and formally defined ways (4).
The WCPS is currently under development within the OGC. The WCPS working group initiated
and led by Jacobs University Bremen (4) . WCPS includes the functionalities of WCS and extends
it with expression language to form requests of unlimited complexity.

The WCPS provides the GetCapabilities, DescribeCoverage and ProcessCoverage options to the
client. The GetCapabilities option just like in the WCS provides the client with an XML document
describing the service and brief descriptions of the data collections from which the client may
request coverages. The DescribeCoverage operation allows the client to request for a full
description of one or more coverages and get an XML document description of the coverages in
return. The ProcessCoverage operation provides the client with the option to process and
analyse and extract information from the coverage sets stored in the server, both grid data and
metadata. The ProcessCoverage request is systematically defined by the client in the processing
language which supports coverage processing expressions of high complexity (4).The result of
the processing is then transmitted back to the client or made available for download. The WCPS
request language proposed by peter Baumann in (9) is an SQL-like language that allows the
client to declaratively navigate extract and analyze multi-dimensional raster data. This is
implemented based on database approach and it is advantageous because the SQL is much
formalized, declarative, data independent, optimizable and safe in evaluation (9).This research
concept of heterogeneous database for integrating remote and in-situ observation at the
database backend is intended to leverage solutions in the WCPS which involves massive

coverage data retrieval.
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CHAPTER 3

3.0 REQUIREMENT ANALYSIS

In this chapter we analyse the database system requirement for seamless integration of remote
and in-situ sensor observations at the database level. The analysis is done taking into
consideration the varying properties and the underlying semantics of these two different
sensor datasets (raster and vector). The database model for this purpose will be design as a
spatial database model based on OGC standards. That is to say we treat in-situ sensor
observations as time series vector coverage and remote sensor observations as also time —

dependent raster coverage.
This requirement analysis study is divided into four sections:

1. Analysis on the two different datatype contents of the proposed database, differences
and similarities with a view in mind of possible integration option of the two datasets
considering their common geometry inheritance properties.

2. Database requirement analysis for an effective and efficient storage of time series in-
situ sensor observations which enables seamless integration with raster coverage data
and retrieval.

3. Database requirement analysis for an effective and efficient storage of time series and
multi-band remote sensor observations which enables seamless integration with feature
(vector) data and retrieval.

4. System analysis of the spatial database management system to be used based on its

capabilities to handle vector and raster over other spatial databases.

3.1 Datatype Analysis; Differences and Commonalities
Looking at sensor observations from the coverage perspective, this gives rise to two types of

coverages, the vector coverage and raster coverage. Coverages have some fundamental
properties, exploring some of these properties and how vector and raster coverages inherit
these properties, we can conceptually map out an intersection that will underline the seamless

integration of the two.
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ISO 19123:2005 defines a conceptual schema for the spatial characteristics of coverages.
Coverages support mapping from a spatial, temporal or spatiotemporal domain to feature
attribute values, where feature attribute types are common to all geographic positions within
the domain. According to ISO 19123: 2005 “a coverage domain consists of a collection of direct
positions in a coordinate space that may be defined in terms of up to three spatial dimensions as
well as a temporal dimension”- (20). We have coverage examples such as rasters, triangulated
irregular networks, point coverages etc.

“Coverages are like mathematical functions, they can calculate, lookup, intersect, interpolate,
and return one or more values given a location and/or time. They can be defined everywhere for
all values or only in certain places "’ - (21). Referencing ISO 19123:2005, the area covered by a
coverage is referred to as the domain of that coverage while the values that can be returned by
the coverage over the area are called the range of the coverage.

The range of coverage can be numbers, nominal values (for example the name of a town given
the location) as well as spatial type (vector or raster).

“Querying a coverage for a set of values given a location is called evaluating the coverage.
Querying for a (set of) location(s) given some criteria on the values is given the name
evaluatelnverse by I1SO 19123. The specifics of how answers are generated for these queries
depend on the type of coverage and how the "supporting data" are stored” - (21).

A coverage is created as soon as a way to query for a certain value given a location is created.
Coverages can be categorised into two, continuous and discrete coverages. Continuous
coverage returns a different value of a phenomenon at every possible location within the
domain. An interpolated temperature coverage which is derived from temperature data from a
set of weather stations can be an example of a continuous coverage. Discrete coverages can be
derived from the discretisation of a continuous surface. A discrete coverage consists of
different domain and range sets. The domain set consists of either spatial or temporal
geometry objects, finite in number. The range set is comprised of a finite number of attribute
values each of which is associated to every direct position within any single spatiotemporal
object in the domain. That is to say, the range values are constant on each spatiotemporal

object in the domain.
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Raster and vector coverages are both types of discrete coverage. They differ only in how they
store and manage their collection of data. As coverages, they allow for basic query functions

such as select, find, list etc. to be carried out on them.

Vector coverages handled as tables are the most common type of coverage implemented in
most of the spatial database management systems. Individual data item are stored on each row
in the table. The columns of the table ensure that collection is self-consistent. Texts are placed
in text columns, numbers in numeric columns, and geometries in geometry columns and so on.
The basic requirement a table must have for potential supply of information to a coverage is to

have at least one geometry column and one additional column for a value or an attribute.

Raster coverages are handled as an array of multidimensional discrete data. In
PostgreSQL/PostGIS precisely they are stored as regularly gridded data with the geometry of
the domain as points and the range could be one or more numeric values (for example number

of bands). Text values and timestamps may not be possible.

In-situ observations (vector data) are stored in tables with rows and columns in a relational
manner, having one-to-one or one-to-many relationship. On the other hand remote sensor
observations (raster) cannot reasonably be stored in tables but as gridded multidimensional
array of data (array of points). That is to say we only have to leverage the concept of coverages
to integrate the two tables in the database. The possible common column for the two datasets
(tables) is the geometry column. The two datasets are collected by different sensor types in
different coverage format but representing the same geographic area, it means that every point

on the vector coverage has its corresponding point on the raster coverage.

Therefore the fundamental requirement from this data analysis that could enable us to

integrate remote and in-situ sensor observations in a common database could be outlined as:

e storage of in-situ observations as vector point coverage and

e storage remote sensor observations as raster point (pixel) coverage.
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Below in Figure 6 & 7 are the conceptual map and the UML model of the concept and
management of coverages describing features, relationships, functions and how they present in
the database. This coverage conceptual map is an edited extract of the model discussed in
PostGIS Wiki - (21). This gives insight on how coverages can be effectively handled in spatial

database for seamless integration of raster and vector coverages.
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3.2 Database Requirement Analysis for In-situ Sensor Observations
Effective and efficient storage and retrieval of vector data has been well developed and

implemented in most of the spatial databases such as Oracle Spatial, MySQL, Microsoft SQL

Server 2008, Spatialite, Informix, Postgresql etc unlike the raster data counterpart .

But the issue here is on the requirements that can enable integration with raster data on the

database as well time-effective query processing and retrieval.

2.2.1 Basic In-situ Sensor Observation Components
The basic in-situ sensor observation model is made up of five components according to the OGC

Observation&Measurement specification. (22)
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The components are:

e Time (observation time or sampling time)
e Location (geometry)

e Producing sensor (sensor data)

e Phenomenon which has been observed

e Observation result value (observed data)

Looking at the list above, we have all the elements to create a coverage. The location
(geometry) column serves as the domain of the coverage and the rest of the columns
(attributes) as the range of the coverage. We will explore the use of this geometry coverage

inheritance to examine heterogeneous and homogenous geometry column integration.

We will treat in-situ sensor observations as a vector coverage backed by tables. The geometry
domain is point and the range is four or more columns which could be numeric, timestamp, text
etc. individual data item are stored on each row in the table. The columns of the table ensure
that collection is self-consistent. Texts are placed in text columns, numbers in numeric columns,

and geometries in geometry columns etc. With these items in place a vector coverage is built.

Table 1: NOAA Air temperature table sample (Taken from: (23))

ROW DATE LATITUDE |LONGITUDE AIR TEMPERATURE
1 2000-08-03 00:10:45/|22.8079 -163.0673 28

2 2000-08-03 00:20:45 (22,8015 -163.0389 279

3 2000-08-03 00:30:45 (22.7955 -163.0116 277

4 2000-08-02 08:00:44|23 5238 -165 8295 272

5 2000-08-02 08:10:44 (23.5168 -165.8007 27

6 2000-08-02 08:20:44 (23.5099 -165.7719 27

7 2000-08-02 08:30:44|23.5026 -165.7436 27
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Tablel is an example of a vector point coverage. The longitude and latitude column can be used
to build the geometry column which offers a point domain and the range is the columns with

values. The observations will be stored as time series vector point coverage.

3.2.2 Fundamental database operation requirement for integration
Leveraging the concept of coverages, the functions and operation that can be carried out on

coverages, the database can offer some of the following fundamental operations and functions
on the vector coverage of in-situ sensor observation for possible integration and analysis with

raster coverage.

e Intersection operation
e Buffer operation
e Overlay operation

e Interpolation operation ( vector to raster conversion)

With these operations, we can easily run queries for example that can lift a point on the vector
coverage, intersect it with the geometrically corresponding point or cell on the raster coverage
on the database and return a value. The goal is for us to be able to do relation and overlay
operations on the different coverages irrespective of how the coverages are stored. The

following intersection and overlay cases can be obtainable.

e Vector to vector intersection or overlay
e \Vector to raster intersection or overlay
e Raster to vector intersection or overlay

e Raster to raster intersection or overlay

The buffer operation enables the selection of a point on the vector coverage, run a buffer of
any extent over it and probably use the result for a possible intersection and overlay operation

with a raster coverage.

The interpolation operation offers vector to raster conversion which can be used afterwards for

raster to raster intersection, overlay or map-algebra operations.
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3.2.3 Spatial Indexing:
Indexes are very important in spatial databases. They are what make search in large data sets

possible. Without indexing, any search for a feature would require a sequential scan of every
record in the database. Indexing speeds up searching by organizing the data into a search tree

which can be quickly traversed to find a particular record. (24)

There are different types of indexing supported by most of the spatial database management

systems.

The B-Trees which are mainly suitable for data that are sorted along one axis, for example
numbers, letters, dates etc. This type of indexing does work for geospatial data because spatial
data cannot reasonably be sorted along one axis. Therefore this cannot be suitable for sensor

observations.

The R-Trees are suitable and supported by some spatial databases to index spatial data as well
as the GiST indexes. The most popular open source spatial database system PostgreSQL/PostGIS

does not have R-Trees well implemented as it did for GiST.

GiST stands for "Generalized Search Tree" and is a generic form of indexing. GiST is used to
speed up searches on all kinds of irregular data structures (integer arrays, spectral data, etc)

which are not amenable to normal B-Tree indexing.

Once a GIS data table exceeds a few thousand rows, there is need to build an index to speed up
spatial searches of the data unless all searches are based on attributes, in that case a normal

index on the attribute field could serve.

GiST indexes have two advantages over R-Tree indexes for example in PostgreSQL. GiST indexes
are "null safe" (24), which means, they can index columns which include null values. Secondly,
GiST indexes support the concept of "lossiness"” (24), which is important when dealing with GIS
objects larger than the PostgreSQL 8K page size. Lossiness allows PostgreSQL to store only the
"important"” part of an object in an index in the case of GIS objects, just the bounding box. GIS

objects larger than 8K will cause R-Tree indexes to fail in the process of being built (24).
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3.3 Database Requirement Analysis for Remote Sensor Observations (Raster data)
A coverage is created in the database once there is a geometry domain (column) and a range

(column with values). This goes for raster coverages, In PostgreSQL/PostGIS for example a
raster coverage is created by having a geometry column called raster and attribute columns

containing the attributes to the raster (e.g. band number).

The fundamental database or storage support needed on the raster coverage for efficient and
seamless integration and analysis with vector coverage in the database includes the following

features:

Tiled raster storage: For pixel-level query, analysis and geoprocessing, the raster coverage
must be stored in the database as gridded tiles (pixel) of data. One table row represents one
raster tile. Each raster has associated attributes such as pixel size, width, height,

georeferencing, number of bands, nodata value etc.

Saﬂﬂ"‘iﬁ""ﬂf’ B

Figure 8 : Regularly tiled rectangular raster coverage

Georeferencing: The tiles must be georeferenced or geolocated in the database so that

intersections and overlay operations with other data vector or raster can be possible.

Multiband and Multi-resolution support: There should be a support for multiband and multi-
resolution storage. Each raster tile having bands with different pixeltypes as well as support for

nodata value pixels.

Multi-Format Import and Export: Support for multi-format input and output to the database is
very vital. Remote sensor observations are encoded in different formats such as geotiff, tiff,

png, Jpeg, hdf, etc.
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Image Pyramid and compression: Image pyramid can be used to build multiple mosaics of images,
each one at a different zoom level. It helps also to speed up image handling and processing.

This is very important to support data analysis at different scales and efficient storage of large
size images.

Metadata Registration: Metadata of the observing sensor and observed data (raster data)
should be supported in the database. Information such as name, sensor id, sensor model,
spatial coverage, temporal coverage, ancillary data, quality, platform, etc. These information
can be maintained in a separate metadata table outside the raster so that it can be

conveniently used by applications and database optimizers outside the stored raster without

processing the image.

Structured Query Language (SQL) Raster Functions and Operators Support: Raster
manipulation and analysis functions and operators must be well supported by the database for
raster geoprocessing and analysis at the database backend. And also the operators and

functions for seamless integration of the raster with vector coverages in the database.

3.4 Spatial Database Management System Capability Analysis
Some of the existing relational databases management systems have relatively good support

for vector coverages. Oracle GeoRaster and PostgreSQL/PostGIS databases only have
substantial support for raster coverage management. Meanwhile Oracle GeoRaster was
primarily created for raster data storage with less support for raster data analysis in the
database. In view of that, presently Oracle GeoRaster does not have the full support for our
proposed heterogeneous sensortype database management and analysis system. However
PostgreSQL/PostGIS2.0 has relatively good raster support, functions and operations that we can
leverage for the feasibility of our research goal. In addition PostgreSQL/PostGIS2.0 can be
configured with python GDAL-bonded to leverage more functionality. We shall briefly discuss

some the PostgreSQL/PostGIS2.0 functionalities and capabilities over Oracle GeoRaster.

PostGIS 2.0 capability to carry out seamless vector and raster data integration makes it
favourable in this type of our work than Oracle GeoRaster. PostGIS2.0 can handle pixel-level

raster analysis unlike Oracle GeoRaster whose content search is based on Minimum Bounding
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Rectangle (MBR). MBR is the raster object in Oracle GeoRaster while Pixel is the raster object in
PostGIS2.0. PostGIS uses Geospatial Data Abstraction Libraries (GDAL) to handle multi-format
image input and output and when working with out-db-raster, this is a powerful functionality.
To achieve robust raster geoprocessing and analysis with Oracle GeoRaster as good as it can be
done in PostGlIS, it requires a middleware application such as RasdaMan. RasdaMan has been

implemented on top of Oracle GeoRaster for raster coverage analysis.

Table2 below is an evaluation matrix table showing the functionalities of PostGIS Raster and
Oracle GeoRaster based on the necessary system requirement for full raster data management
and analysis in the database.

Requirements Oracle GeoRaster PostGIS WKT Raster

Specific Data Type

Multidimensional
Support

Georeferencing
Image pyramids
Partitions

Raster compression '

Scan order
Analysis capability
Slicing

Subsetting

Content-based
search
Spatial Indexing

Open specification

Table 2 : Evaluation Matrix between PostGIS Raster and Oracle GeoRaster Functionalities (taken
from: (25))

From this requirement analysis study, we conclude to adopt the approach of modeling the
heterogeneous sensor database in the sense that in-situ and remote sensor observations are
stored as coverages (vector and raster respectively) in the database. As such, we can leverage
the coverage geometries for integration and analysis between the coverages. Also we tend to

leverage some of the interesting PostGIS 2.0 functionalities to prototype the database schema.
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CHAPTER 4

4.0 CONCEPTUAL DESIGN AND MODELLING OF THE DATABASE SCHEMA

In chapter 3 we carried out the system requirement analysis and addressed the current
challanges of having a heterogenous sensortype database that integrates remote and in-situ
sensor observations. In this chapter we are looking at the possible conceptual design and model
for this database. The UML model in figure 9 shows the high level abstraction model of the
differents classes (tables), their attributes and important operations that can be carried out on
them. It shows the relationships and the logic between the classes which enable integration
between these classes. The ER diagram describes the logical design or abstraction of the
entities, the fields in each class and the relationships between entities. Also in this chapter we
developed the conceptual model of how the database model can be integrated with other web

services seamlessly. The concept of the Web Query Service WQS is also explained.

4.2 The Heterogeneous Database Schema Entity Description
List_of _Table class is the table that contains the list of all the table names in the database.

Operations like GetList_of Tables and UpdateList_of Table can be perform on it from the user
end through our proposed SQL Web Query Service WQS. The efficacy of this table is to present
to the user the names and descriptions of all the tables contained in the database. A “select *
from list_of_table” SQL instruction from the client end would present a table describing all the
tables contained in the database. This is a kind of DescibeTables operation by the user from the
client end. This should be the first operation to be carried out by any user to have a good

understating of the database before sending requests for specific data abstractions.

Coverage class holds the id and description of each coverage contained in the database. The in-
situ and remote sensor observations are stored as coverages, vector and raster respectively in
the database. Therefore it is necessary to have a table that presents the collections and a short
description of the coverages contained in the database. For example vector or raster
temperature coverage, surface elevation coverage, air pressure coverage, Normalised
Difference Vegetation Index NDVI coverage and so on. The user queries this table to have a

glance of what types of coverages are available in the database and the area they present.
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Operations such as UpdateCoverage, selectCoverage, listCoverage etc. can be executed on it.
The table has many-to-many relationship with the Feature_of Interest, many-to-one
relationship with the Observed_Phenomenon tables and one-to-many relationship with the
Observation table. The table’s primary key is made foreign keys in the Feature_of Interest and
Observation tables. That is to say that every coveragelD entry in those two related tables

mentioned above must already exist in the coverage table.

30



4.1 UML Conceptual Schema Model of the Proposed Heterogeneous Sensor
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Model of the Proposed Heterogeneous

Sensor Database
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The coverage class has an interface type class which defines the data type of the coverageType
attribute of this class. The interface type is named Geometry, it has two values defining

coverage type which can either be raster or vector coverage type.

Observed_Phenomenon class is the table that contains the names, descriptions, coverage type
etc. of the various geographic phenomena that are contained in the observations. This is
different from the features of interest table which contains the different features or formats of
these observed phenomena that are of special interest. For example we have in our database,
phenomena such as sea surface temperature, elevation, air pressure, wind speed etc., but from
these phenomena, we have features such as the observations made in the night , observations
during the day, observations postprocessed to a particular format and so on. These specifics are
contained in the feature of interest table. The observed_phenomenon table has one-to-many

relationships with Feature_of _interest , Coverage and Observation tables.

Feature_of _Interest class is the table that has the records of different features of the observed
geographic phenomenon in the database. This is different from the Observed_Phenomenon
table that has the record of the geographic phenomena observed from disparate sensors. The
features of interest table can be updated, selected or listed by the user. This table has many-to-

many relationship with the coverage, observed phenomenon and observation tables.

SensorPlatform class is the table with the record of the sensor platforms on which the sensors
are mounted or housed. Attributes such as the platformld, number of sensors, platform
location etc. are contained in the table. The table can be updated, selected from or listed . This
table has one-to-many relationship with the sensor table. It has an interface type class named
location which defines the PlatformLocation attribute data type that can be either longitude or

latitude.

Sensor class is the table that contains the basic attributes about the observing sensor.
Attributes such as the sensor platform, sensor type, sensor model etc. are contained in this
table. These information are more about the sensor itself, detail information related to the

data, coverage and methods of collection of the sensor are contained in the table named
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sensorinfo which it has one-to-many relationship with. This table has an interface type table
called Type which defines the sensortype attribute which is either in-situ or remote. The table

can be updated, selected from, listed etc.

Sensorinfo table contains information related to the sensor mearsurement and method.
Attributes such as spatial coverage, temporal coverage, collection frequency, unit of
measurement etc. can be found in this table. The table has many-to-one relationship with the

sensor table. Operations such as getSensorinfo, update and list can be performed on the class.

Observation class is the table that connects the Sensor, Observed_Phenomenon, Quality, In-
situObservations and RemoteObservations tables. Observation table does not contain the
values and time stamps of each observed value, they are contained in the in-situ and remote
observations tables. The table has a unique id for each phenomenon observation stored in the
database. The Observation table has many-to-many with the feature of interest,
observed_phenomenon and the coverage table. And Many-to-one relationship with the sensor
and the remote_observation tables. One-to-one relationship with the In-situ_observation and

the quality tables.

In-situObservation class is the table that contains the compelete data of each observation that
is contained in the Observation table where observationType is in-situ. It has one-to-one
relationship with Observations table. The relationship between this table and the
remote_observation table are handled on the fly leveraging the PostGIS intersection operation
because the two coverages are handled differently in the database. Basic operations as well as
complex operations such as intersection with raster, interoplation or rasterisastion can be
carried out on this class. The attribute called the geom contains the geometry of each

observed data.

RemoteObservation table contains the raster data of each observation that is contained in the
Observation table, where observationType is remote. It has many-to-one relationship with the
Observation table. Its relationship with the In-situObservation are executed on the fly through

the geometry columns . Its attribute called rast contains the geometry or coordinate
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information as well as the the data values (geomval). The intersection between the in-situ and
remote observations tables is made possible through the intersection of the ‘the_geom’ and
the ‘rast’ which is always executed on the fly. Also more complex operations such as calculate,

vectorise, intersect with vector can be performed on this class.

Metadata tables houses some important header data about any raster data contained in the
RemoteObservations table. It has many-to-one relationship with the RemoteObservation table.
It can be updated, selected from, listed etc. from the user end through an SQL- language based
request. This table is created implicitly and encapsulated in the remote_observation table and

is used to describe the coverages.

4.3 ER-diagram and logical design of the database model
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Figure 10: ER-diagram and logical design of the database model

Figure 10 is the Entity Relationship diagram and logical design of the proposed heterogenous
sensor database. The diagram shows the relationships between the tables and the attribute
fields contained in each table. The primary keys PK are highlighted in red and underlined and
the foreign key FK in green. In this logical design we try to avoid having intermediate tables to
relate tables that have many-to-many relationship to each other. Instead we introduced foreign

keys which can be leveraged by simple SQL-JOIN statements to integrate the tables.

The relationship and integration of the In-situObservation and RemoteObservation tables are
executed on the fly, leveraging their geometry columns and the coverage concept that we

discussed in content 3.1 above.
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4.4 Integrating the Heterogeneous Sensor Database with the OGC Web Services
We are proposing an SQL-based Web Query Service WQS that delivers SQL queries from the

user end to the database in the web service . This service can be intergated and accessed from
within the user web or desktop application. This service provides the cleint the flexibility and
ability to construct queries of extensive complexity which is delivered to the database for
processing. In this case aggregations, processing and analysis of remote and in-situ observations
are carried out at the database backend. The result of the query can be delivered in different
formats such as ASCIl, GML, KML, TIFF, JPEG etc in compliance with the OGC web mapping
services, the WFS, WMS and WCS. The user specifies from the SQL query leveraging the PostGls
ST_As* function, the formats the data will be delivered. ASCII or text results are delivered to the
client directly from the database through the WQS. If the request result is to be delivered as a
raster coverage, that means the query result is a raster or a rasterised vector and will be
delivered to the client through the Web Coverage Service WCS protocol. Similar process goes
for a vector or vectorised query result which is delivered through the Web Feature service WFS
protocol. The request result can be delivered as a JPEG or PNG image format to the user

through the Web Map Service WMS protocol.

4.4.1 The concept of the Web Query Service WQS
The Web Query Service WQS is our proposed SQL query service that serves query from the

client web or desktop application to the heterogeneous sensor database. The SQL Web Query
Service WQS delivers SQL queries from the client application via the web to the sensor
database. It makes it easier to build and execute queries on a remote sensor database from any

client application.
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Figure 11: Conceptual Model of the proposed Web Query Service WQS

In Figure 11 the SQL query is delivered from the frontend dispatcher of client web or desktop
application to the query processing and optimization module for optimization and parsing to

the backend for query execution.

From a web application or API, the SQL query request is dispatched via the HTTP. From within a
desktop application, a connection to the database will have to be established before queries
are sent to the database for execution. Figure 12 is a sample OpenJump PostGIS database

connection and query delivery interface on the client OpenJump GIS application.

r
o Bun Datastore Query

Connection) 1
Layer Name new Query Layer

Query|

B R | GO

l i QK H Cancel ‘

Figure 12: OpenJump Remote Database Query Connection Interface
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4.4.2 Proposed Conceptual Architecture of Integrating the Heterogenous Sensor Database
and OGC Web Services.

CLIENT

Servic Protocol

sQL
ASCII

1
seve |1 WS aRRRE o

sQL SOS

Figure 13: Proposed Conceptual Architecture of Integrating the Heterogeneous Database and
the Web Services
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Figure 13 describes the conceptual achitecture of our proposed integration of the
heterogenous sensor database as part of the Sensor Observation Service with the proposed
Web Query Service WQS and other Web Services to deliver effective results to the end user.

The user on the client end, web or desktop application delivers SQL queries of any complexity
through the WQS to the database. The result of the query is delivered back to the user through
the relevant services depending on the format the result requested. The ST_As * PostGIS
function is used in the query to specify the format of delivery. When the user specifies for
example ST_As GeoTIFF, the raster coverage query result is wrapped in XML and delivered to
the client through the WCS protocol. The same process goes for query results specified in ST_As
JPEG, PNG and KML or GML which are dilivered through the WMS and WFS respectively to the
client. If no delivery format is specified in the query, the result is returned back to the client via
the WQS by defualt in ASCIl format. OGC web service operations such as GetCapabilities,
DescribeSensor, DescribePlatform, GetObservation, DescribeCoverage or GetRaterMetadata,
GetCoverage, ProcessCoverage etc. are carried out through this Web Query Service WQS by
SQL queries. For example to describe a coverage in a raster table in the database, an SQL query

such as in listing5 is delivered to the database through the WQS.
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CHAPTER 5

5.0 SCENARIO DESCRIPTION

In this chapter we describe some few scenarios and use cases out of the numerous use cases
where the proposed heterogeneous sensor database model can be leveraged to accomplish
geo-scientific queries and processing involving remote and in-situ observations at the database
end. Ranging from the a simple case where a geo-scientist would want to obtain the
temperature difference between in-situ and remote temperature observations to a more
complex case of estimating daily plant Evapotranspiration of a particular location. Example
SQL queries are formulated and evaluated over what has been the approach on the web

service.

5.1 Scenario 1: In-situ and satellite surface temperature analysis
A simple case of this scenario would be a situation where a geo-scientist is interested in

determining the temperature difference between a particular in-situ temperature observation
and the corresponding temperature value on the satellite surface temperature observation.
Presently to carry this out on a dynamic web service, would involve the following process flow.

e Communication to the two ends of the respective databases (In-situ observation

database and raster database).

e Data retrieval from the two respective databases

e Analysis and geo-processing at the service middleware

e Return of result to the client side.
In the heterogeneous sensor database approach, it only involves a direct communication
between the client and the database. The communication delay to the two database and
massive data retrieval and workload on the service middleware are substantially reduced as

depicted in the figures 14 and 15.
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The heterogeneous sensor database approach gives the user on the client side the leverage to

send an SQL-query request in the form in listingl to the database and gets the required result.

Listing 1: SQL sample query for scenario 1

SELECT
It (tv).valasR_t, (I_.t-R t)asD_t
FROM (SELECT ST _intersection(R.rast, I.the_geom) AS tv,
[temp_value as I_t, ST_Value(R.rast, I.the_geom) as R_t
FROM In_situ_temp [, Remote_temp R
WHERE I.the_geom && R.rast
AND ST_intersects(R.rast,l.the_geom)
AND Ltemp_id =111111111

) foo;
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The sample SQL query in listingl above does the required analysis and aggregation of the
temperature values from in-situ observation temperature table (In-situ_temp) and remote
sensor observation surface temperature table (Remote_temp), |_t and R_t respectively and
returns the difference, D_t. The Intersection operation (ST _intersection) is used to intersect
the point geometry of the particular in-situ temperature observation (the_geom) where id is
11111111’ with the corresponding geometry of the temperature pixel (rast) on the remote
temperature observation.

Note: the id value ‘111111111’ is arbitrary in these sample queries; it can become any value in
the real implementation exercise.

The ‘foo’ is an arbitrary alias name for the sub-query in the query statement.

5.1.1 Scenario 2.1: Weighted Mean surface temperature values from vector buffers
We now describe a sample case whereby a geo-scientist would want to create buffers around

the in-situ temperature observation points on the in-situ temperature observation tables,
overlaps these buffers on the raster surface temperature observations and finally retrieves the
weighted mean raster surface temperature values of these buffers in comma separated values
CSV format.

The listing 2 sample SQL query request can be delivered to the heterogeneous sensor database
through the proposed Web Query Service WQS from the client end to extract the pixel-area

weighted mean temperature values of those buffers.

Listing 2: SQL sample query for Scenario 2.1
SELECT sum(ST_Area(the_geom)*val)/(sum(ST_Area(the_geom))) AS Meantemp
FROM (Select(ST_Intersection(R.rast, (ST_Buffer(l.the_geom,1000)))).geom AS the_geom
(ST_Intersection(R.rast, (ST_Buffer(l.the_geom, 1000)))).val AS val
FROM In-situ_temp I, Remote_temp R
WHERE the_geom && R.rast
ST _Intersects(R.rast, I.the_geom)

AND Lid=11111111111
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)foo;

Weighted mean temperature here means that the weight to each temperature pixel value is
proportional to the area it occupies in the raster. For example if the area occupied by pixels
with temperature equal to 22 degree Celsius is greater than the area occupy pixels with an
temperature equal to 23, then 22 has a higher weight in the equation (proportional to its

relative area).

5.1.2 Scenario 2.2: Day and Night temperature Difference of a Location from Satellite Surface
Temperature Observations.
This is a case where one may want to obtain the night and day temperature difference of a

point whose location is given in the in-situ observation table or location provided from the user

end.
Listing 3 sample SQL queries delivered from the client end would deliver the required result.

SELECT
DT, NT, DT-NT as TD, the_geom
FROM (SELECT
ST_Value(R1.rast,I.the_geom) AS DT,
ST_Value(R2.rast,I.the_geom) AS NT,
ST_AsBinary(l.the_geom) as the_geom
FROM In-situ_temp I, Remote_Daytemp R1, Remote_Nighttemp R2
WHERE I_id = 11111111
AND ST_Value(R1.rast,I.the_geom) IS NOT NULL
AND ST_Value(R2.rast,I.the_geom) IS NOT NULL
) foo;
OR
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Listing 3: SQL sample query for sample SQL queries Scenario 2.2
SELECT
ST DT, NT, DT-NT as TD, the_geom
FROM (SELECT

ST_Value(R1.rast,ST_Point(long,lat)) AS DT,
ST_Value(R2.rast, ST_Point(long,lat)) AS NT,

ST_AsBinary(ST_Point(long,lat)) as the_geom

FROM In-situ_temp I, Remote_Daytemp R1, Remote_Nighttemp R2

WHERE ST_Value(R1.rast,ST_Point(long,lat))IS NOT NULL
AND ST_Value(R2.rast,ST_Point(long,lat))IS NOT NULL
) foo;
This is the case where the point location interest is not already in the database but provided

from the user end.

5.2 Scenario 3: Geo-scientific Analysis of In-situ Temperature /Air Pressure Data
and Satellite Elevation/ Height Observation

Considering the relationship between temperature or air pressure and surface elevation,
analysis between these different phenomena coming from in-situ sensor and remote sensors
can be carried out conveniently in the proposed heterogeneous sensor database. For instance
an earth scientist interested in ascertaining the terrain height information of a location in view
of the air pressure data of this location.

In this case, the interest is to extract the height value of a particular pixel location on the
satellite elevation data (e.g. SRTM data) whose air pressure or temperature value is obtained

from in-situ observation at this location.
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To carry out this operation on the web service with the current approach of in-situ and remote
sensor observations in web services and data analysis and aggregation on the service
middleware would entail the following processes as depicted in figurel2a.
e Back and forth communications to the two ends of the respective databases (In-situ air
pressure/temperature database and SRTM raster database).
e Massive data retrieval from the two respective databases, especially from the raster
database.
e Data analysis and geo-processing at the service- middleware to extract the elevation
value of the particular pixel in question.

e Return of result to the client side

This approach has the following drawbacks:

e communication delay
e massive data retrieval load
e massive processing work load on the service end.

e users don’t have query request flexibility.

But in our proposed heterogeneous sensor database approach, an SQL-based instruction such
as the listing 4 is delivered to the database through the proposed WQS. Data retrieval,
geometry intersection and data extraction operation are carried out on the database and the
result delivered back to the user in real time. This reduces communication delay, massive data

retrieval and excessive work load on the web service.

Listing 4: SQL sample query for Scenario 3
SELECT
Pval, (pv).val AS Elevation
FROM (SELECT lL.value, as Pval, ST_intersection(R.rast, I.the_geom) AS pv
FROM In-situ_air_pressure I, Remote_srtm R

WHERE I.the_geom && R.rast
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AND ST _intersects(R.rast,I.the_geom)
AND LLid=111111111111

) foo;
OR

In the case where more than one point is being ascertained at the same time, then we could

have such like this below;

SELECT

Pval, (pv).val AS Elevation

FROM (SELECT l.value, as Pval, ST_intersection(R.rast, I.the_geom) AS pv
FROM In-situ_air_pressure I, Remote_srtm R
WHERE IL.the_geom && R.rast
AND ST_intersects(R.rast,l.the_geom)
AND Lvalue < ‘1111111mBar’
ORDER BY lLid;

5.3 Scenario 4: Estimation of Actual Crop Evapotranspiration ET
Estimation of actual Evapotranspiration according to (26), involves the integration of

Normalised Difference Vegetation Index NDVI derived from satellite sensor observations and
gridded reference Evapotranspiration derived from observations from automatic weather
stations.

AET = FVC * RE, (26)

FVC = N*2

N= (NDVIp-NDVImin)/(NDVImax-NDVImin)

Where: AET = Actual Evapotranspiration

FVC = Fraction Vegetation Cover
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RET = Reference Evapotranspiration obtained from in-situ observation
NDVIp = the NDVI Value at a point p

NDVImax = the maximum NDVI value within the entire area of observation
NDVImin = the minimum NDVI value within the entire area of observation

Now, we describe a scenario whereby a crop scientist may be interested in obtaining the actual
Evapotranspiration of a location having the reference Evapotranspiration of this point obtained

from the weather station on that location.

In a case like this where the interest could be only a single point location, accomplishing this on
the web service with the current multiple database approach is not optimal. The massive NDVI
raster image of the area or the subset would have to be retrieved from the raster database.
Also the reference Evapotranspiration from the in-situ weather station retrieved from the in-
situ observation database. The actual Evapotranspiration calculated on the relevant web
processing service and finally the result delivered to the client. Figurel6 describes the follow

diagrammatically;

Raster In-situ

Database Database

Massive NDVI raster Image retrieval Reference ET data retrieval
Data integration
processing and extraction for
service Actual ET
Result
Client end

Figure 16: Multiple Database Approach for scenario 3
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This double communication and long process workload can effectively be accomplished with an
SQL query from the client to the proposed heterogeneous sensor database with very extensive

flexibility.

When we have the NDVI raster and reference Evapotranpiration data from in-situ weather
stations efficiently stored in a single database, we can leverage an SQL query like in the listing 5

below to extract an estimated actual crop Evapotranspiration at a point of interest.

Listing 5: SQL sample query for Scenario 4
SELECT
RET, NDVIp, FVC, AET
FROM (SELECT (pow(((NDVIp-NDVImax/( NDVIp-NDVImin)),2)) AS FVC,
pow(((NDVIp-NDVImax/( NDVIp-NDVImin)),2)) *RET AS AET,
ST_Value(R.rast,I.the_geom) AS NDVIp, L.value AS RET
FROM In-situ_RET I, Remote_NDVI R
WHERE Lid=1111111111
AND ST_Value(R.rast,I.the_geom) IS NOT NULL)
) foo;
Note: For a less précised estimation, we can assume NDVImax = 1 and NDVImin = 0, which are

the maximum and minimum NDVI values we can have belonging to thick vegetation and water

surface respectively.

But for a more précised estimation, we can obtain the maximum and minimum NDVI values
within our coverage area by querying the NDVI raster coverage statistics for maximum and
minimum pixel values. The following SQL sample codes in listings 6 can be used in POSTGIS

database to abstract these values to be used in the subsequent AET estimation.
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Listing 6: SQL sample query for abstracting maximum and minimum pixel values
SELECT (stats).max
FROM (SELECT ST_SummaryStats(rast) AS stats

FROM ndvi

ORDER BY stats DESC

LIMIT 1) AS foo;

SELECT (stats).min

FROM (SELECT ST_SummaryStats(rast) AS stats
FROM ndvi
ORDER BY stats ASC

LIMIT 1) AS foo;

5.4 Scenario 5: DescribeCoverage (Raster Coverage Metadata) Query Operation.
The DescribeCoverage or GetRasterMetadata operation is one of the important operations

provided by the web coverage service which allows the client to request for a full description of
one or more raster coverages in the database. This operation can also be done by an SQL query

request on the proposed Heterogeneous sensor database.

In this scenario we present a sample SQL query statement a user on the client end can leverage

to describe any raster coverage of interest available on the database.

This will describe the properties of the raster table such as upper left corner coordinates, width
and height, pixel sizes, skews - or rotations, SRID, number of band, pixel type, has nodata value,

nodata value, etc.
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Listing 7: SQL sample query for describing raster coverage in the database
SELECT (md).*, (bmd).*
FROM (SELECT ST_Metadata(R.rast) AS md,
ST_BandMetadata(R.rast) AS bmd
FROM Remote_Temp R
LIMIT 1
) foo;

We limit the result to one that is for the first row (tile) because the metadata for other rows or

tiles are the same except for the upperleftX and upperlefty.

In general the results of the sample queries shown above for the mentioned scenarios are
alphanumerical or CSV formatted. They are returned to the client directly from the database.
Other results formats are also possible depending on how the client wants the results
delivered. For example if the result is raster then it can delivered as JPEG image, PNG or TIFF
image formats depending on what formats expressed on the query request. In this case raster
output functions such as ST_ASIPEG, ST_ASPNG, and ST_ASTIFF etc. are used in the query
request to indicate the return format. The result can be delivered to client through the WCS

and WMS protocol as the case may be.

Also if the query result is wanted in form of vector geometry, functions such as ST_ASGML,
ST_ASKML etc. can be used in the query statement. The result can be delivered to the client

through the WFS protocol.
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CHAPTER 6

6.0 POSTGIS-BASED PROTOTYPICAL IMPLEMENTATION, PERFORMANCE AND
HYPOTHESIS EVALUATION

Amongst the existing spatial database management systems, PostGIS 2.0, extension of
PostgreSQL is the only one currently that has the functionalities for seamless integration and
processing of vector and raster observations on the database. Oracle GeoRaster presently has
less support for raster pixel-level analysis. PostGIS 2.0 is a recent development of the PostGIS
which incorporates vector and raster data manipulation functionalities. PostGIS Raster
introduces a new PostgreSQL data type called raster that stores raster data in a binary format
similar to how the PostGIS geometry and geography types store vector data (27).The efficient
ability of PostGIS 2.0 to handle raster data proves it advantageous for this heterogeneous

sensor database model in the sense that:

It supports multiband, nodata value, georeference, overviews, overlapping tiles and non

rectangular coverages.

e ltis not really limited in size (PostgreSQL has a limit of 32 TB).

o Itis very well integrated with the existing PostGIS geometry type enabling seamless and
efficient intersections operations with vector tables.

e It comes with a very versatile Python raster loader which supports batch loading

through wildcards and as many input formats as GDAL provides (28).

Based on this factor, we decided to leverage these new functionalities of PostGIS 2.0 to do a
prototypical implementation of our heterogeneous sensor database model for the Sensor
Observation Service SOS. In PostGIS 2.0 we could store in-situ sensor observations as vector
coverages and remote sensor observations as raster coverages, hence we could easily run
extensive integration and analysis between these two coverages with the functionalities it

provides.

6.1 System Configuration
For the purpose of this prototypical implementation exercise, the following software packages
and libraries are needed in combination with PostgreSQL/PostGIS2.0 to realize the
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functionalities required for efficient implementation of the heterogeneous sensor database
model.

There are different versions of these packages not all of them works for this purpose but we
had no problem with these ones:

e Python 2.7
e Numpy1l.5.1
e GDAL1.8.0

e PostgreSQL-9.0.4.1
e PostGIS-pg-binaries-2.0.0svn
e And OpenJump-bin-1.4.2

PostGIS Raster loader makes use of GDAL Python bindings and Numpy python library for
loading raster. Therefore python, numpy and GDAL are required to be installed for this
purpose.

GDAL- Geospatial Data Abstraction Library is a translator library for raster geospatial data
formats. It presents a single abstract data model to the calling applications for all supported
formats. It also comes with a variety of useful command line utilities for data translation and
processing. OGR is a subset of GDAL which in a similar way as GDAL handles simple features
vector data (29) . The most interesting capability of GDAL which we are leveraging for this
research is its vast support for many raster data formats. That is to say that we can
conveniently have majority of the remote sensor observations of different formats loaded into
the database.

Numpy is a package very vital for scientific computing with python. It affords among other

things:

¢ apowerful N-dimensional array object
¢ sophisticated (broadcasting) functions
e tools for integrating C/C++ and Fortran code

o useful linear algebra, Fourier transform, and random number capabilities (30).

NumPy is used as an efficient multi-dimensional container of generic data. Arbitrary data-types

can be defined. This allows NumPy to seamlessly and speedily integrate with a wide variety of
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databases. This is a very important package for this research as we leverage its capabilities to

handle multi-dimensional arrays of discrete data (raster data) in the database.

OpenJump is a java open source GIS application, very easy to deploy and works very great with

PostGIS. We use it in this exercise to display and visualise the geometries of the observations

loaded in the database and to act as a client side desktop application to query the database.

6.1.1 Installation Procedure:

The packages were installed in the following sequential order:

Python 2.7 was downloaded from http://www.python.org/download/releases/2.7.1/

and installed first of all.

Followed by numpy-1.5.1, downloaded http://www.lfd.uci.edu/~gohlke/pythonlibs/ and

installed. During installation, numpy automatically binds itself with the installed python
program because it is a python package.

GDAL installation follows, we download GDAL 1.8.0 from http://vbkto.dyndns.org/sdk/

and installed. After installing GDAL, it has to be configured in the system to get bonded
in the python libraries. This was done by adding this path ‘C:\Program Files\GDAL\’ in
the system’s environment variables and creating the following new variables;
GDAL_DATA=C:\Program Files\GDAL\gdal-data, GDAL_DRIVER_PATH=C:\Program
Files\GDAL\gdalplugins and PROJ_LIB=C:\Program Files\GDAL\projlib.

PostgreSQL-9.0.4.1 was downloaded from http://www.enterprisedb.com/products-

services-training/pgdownload#windows and installed. During installation, the message asking to

install other libraries using the Application Stack Builder should be cancelled or rejected
because it would automatically install PostGIS 1.5.x which is different from PostGIS2.0.

After installing  PostgreSQL,  we then downloaded PostGIS2.0 from

http://postgis.refractions.net/download/windows/experimental.php and installed manually to

bind with the installed PostgreSQL.

Finally we downloaded the OpenJump software, http://www.openjump.org/ and installed

which would be used afterwards as a client side desktop application to visualise the

sensor observations.
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For more information on how to install and configure these packages for a running PostGIS 2.0

database management system see (31).

6.2 Test Data Collection and Description
For the purpose of this prototypical implementation of heterogeneous sensor database model

and to test some of the scenarios described in chapter 4, various in-situ and remote sensor data
were gathered from different free source sensor data services on the web. The data we used

for this exercise were collected from the following sources.

6.2.1 In-situ Sensor Data
e Sea Surface Temperature SST, shipboard sensor observations acquired from the

National Oceanographic Data Center NODC,

http://www.nodc.noaa.gov/ssd/access.html within the Gulf of Mexico.

e Land Surface Temperature LST sensor observations acquired from the U.S. Climate
Reference Network of the National Oceanographic and Atmospheric Administration

NOAA, http://gis.ncdc.noaa.gov/map/crn/. The sensors were located within the

Colorado area.

e Reference Evapotranspiration data was acquired from 12 Automated Weather Data
Network (AWDN) stations within southeastern part of Nebraska where majority of
landcover is agriculture. The weather stations are being operated by High Plains
Regional Climate Center (HPRCC). The data was downloaded from

http://www.hprcc.unl.edu/.

6.2.2 Remote Sensor Data
e Land Surface Temperature, LST (day and night), Sea Surface Temperature SST and NDVI

remote sensor observations were acquired from NASA Earth Observations NEO,

http://neo.sci.gsfc.nasa.gov/ in GeoTiff format. The data were acquired by Terra/MODIS

satellite and processed by NEO.
e Shuttle Radar Topographic Mission (SRTM) elevation data was obtained from the FTP

server of Global Land Cover Facilities GLCF, http://glcf.umiacs.umd.edu/data/srtm/.
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e Reference Evapotranspiration

The table and figures below are the visualization of some of the extracted data collected from

the sources mentioned above and used for this prototypical implementation of the database

model. We actually subset some fraction of the images corresponding to the area we have the

in-situ observations collected.

Table 3: In-Situ Shipboard Sensor Air and Water Temperature Data
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Table 4: In-Situ Sensor Land Surface Temperature LST Data, Daily Average
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Figure 17: Remote Sensor Land Surface Temperature LST Data

Figure 18: Remote Sensor Sea Surface Temperature SST Data
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Figure 19: Remote Sensor Normalised Difference Vegetation Index NDVI Data

6.3 Physical Database Model Design
This section presents the physical SQL representation design of the database model which takes

into account the logical integration of the entities and constraints that ensure data integrity.
Below are few listings of the physical model design of the database, the full prototypical

database implementation model design codes are documented in the appendix.

Remote sensor observations (raster coverages) table design and data loading SQL are
generated using the raster2pgsql.py. Raster2pgsql.py is a python script which works with GDAL
library to generate SQL expressions for creating raster tables and loading the raster data.

Raster2pgsql.py takes input parameters such as;
-r RASTER, which is the raster data to be loaded, at least one raster file, is mandatorily required.
-t TABLE, this is the raster destination table, mandatory parameter too.

-s SRID, -b BAND, -k BLOCK_SIZE and so on are optional parameters needed but very important

parameters.
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The raster table physical design models were generated with the raster2pgsql.py script and
afterwards manually customized to ensure that the tables comply with the logical database

model design.

For example in creating and loading up the NDVI raster table form MODIS sensor, the

raster2pgsql.py script was used in the command line as thus:
Raster2pgsql.py —r D:/Data/ndvi.tif —t ndvi —s 4326 —I —k 30x30 —o D:/Data/ndvi.sql
Where:

e -ristheinput raster (ndvi) located at D:/Data/nduvi.tif

e -tisthe table name to be created (ndvi)

e -sisthe SRID (EPSG code) of the raster, in this case it is 4326 WGS84 lat-long

e -lisfor spatial indexing of the data

e -kisused to specify the size of each tile for breaking the input raster into tiles

e -0 is the output raster sql file (D:/Data/ndvi.sql), this contains the sql file for creating

and loading up the table in PgAdmin.

For this example, appendix C shows how the output sql file looks like, a multi-dimensional

array of discrete data in WKB (World Known Binary) format.

After the generating the tables and data with the Raster2pgsql.py script, the tables were
manually customized to comply with the necessary facilities and constraints in the logical
design. For the SQL codes of the physical implementation of some of these remote sensor

observation tables and logical design see Appendix A.

For the in-situ sensor observation and other tables in the model, the SQL codes for creation of
the tables and insertion of values carried out in this prototypical implementation exercise are

also documented in the appendixes A and B.

Figure 20 below is a screen shot excerpt showing the physical implementation of the database
model in PostgreSQL/PostGIS2.0 database management system. Both the remote and in-situ

sensor observations efficiently stored for seamless integration.
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Figure 20: A screen shot excerpt of the heterogeneous sensor database model with the tables

6.3 Implementation of some of the Application Scenarios and Use Cases.
In this section we would be implementing and testing some of the scenarios and use cases we

discussed in chapter 5. We would be running the queries from within the OpenJump desktop
application. We connect to the database from the OpenJump desktop application and run the

queries from there.

6.3.1 Scenario 1: In-situ and satellite surface temperature analysis
This scenario calculates the temperature difference between the in-situ sensor land surface

temperature observation and remote sensor land surface temperature observation of a
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particular location. Listing 8 is used to obtain the required result from within the OpenJump

desktop application.

Listing 8 : Scenario 1 implementation SQL code

SELECT vall, (gv).val AS val2 ,val1-(gv).val AS
diffval,geom

FROM ( SELECT ST_intersection(rast,the_geom) AS gv,
temp_value AS vall, ST_AsBinary(the_geom) AS geom
FROM in_situ_lIst, Ist_day

WHERE the_geom && rast

AND ST _intersects(rast,the_geom)

AND temp_Ist_id =1

) foo;

Here, this query picks up a particular temperature observation from the in-situ land surface
temperature ‘vall’, in-situ_Ist table of a location where id = 1, compares the temperature
value with the corresponding remotely observed temperature, ‘val2’ of that same location on

the raster temperature coverage, Lst_day and returns the difference, ‘diffval’.

Figure 21 below is the implementation screen short excerpts from the OpenJump desktop

application.
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Figure 21: Screen short excerpt of Scenario 1 implementation in OpenJump

6.3.2 Scenario 2.1: Weighted Mean surface temperature values from a vector buffer

In chapter 5, scenario 2.1, we described a scenario where, we could select a particular

observation in the in-situ temperature observation, create a buffer of a given radius around

that observation, then overlap this buffer geometry on the raster temperature coverage and

obtains a weighted mean surface temperature value within the buffered region from the raster

coverage.

Listing 9 below is used to obtain the required result from within the OpenJump desktop

application.
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Listing 9: Scenario 2.1 implementation SQL code

SELECT sum(ST_Area(the_geom)*val)/(sum(ST_Area(the_geom)))
AS meantemp

FROM (SELECT(ST_Intersection(R.rast,(ST_Buffer(I.the_geom,
500)))).geom AS the_geom,

(ST_Intersection(R.rast,(ST_Buffer(I.the_geom, 500)))).val AS val
FROM in_situ_lst [, Ist_day R

WHERE the_geom && R.rast

AND ST_Intersects(R.rast,the_geom)

AND Ltemp_lst_id = 2

) foo;

In this case the query select the in-situ temperature observation, from the in_situ_Ist table
where id=2, runs a buffer of 500m radius , then overlaps this buffer geometry on the raster
temperature coverage, Ist_day and calculates the weighted mean temperature value within this

buffer region from the raster temperature coverage.

Figure 22 is the result of this particular query from our database.

= Feature Info: Project 1 EE@

7 meantemp (1 Feature)
-y FID) meantermp
=] 1 27.82

— e

Figure 22: Screen short excerpt of a sample Scenario 2.1 implementation result in OpenJump
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6.3.3 Scenario 2.2: Day and Night time temperature Difference of a Location
This is a case as we described in chapter 5, where one could be interested in the day and night

time temperature difference from the satellite observation of a particular location contained in

an in-situ sensor observation table.

We implemented this scenario from within our prototypical that database using this sample

SQL code in listing 10 below.

Listing 10: Scenario 2.2 implementation SQL code

SELECT
DT, NT, DT-NT as TD, the_geom
FROM (SELECT ST_Value(R1.rast,Il.the_geom) AS DT,

ST_Value(R2.rast,I.the_geom) AS NT,
ST_AsBinary(l.the_geom) as the_geom

FROM in_situ_Ist I, Ist_day R1, Ist_night R2
Where L.temp_Ist_id = 2

AND ST_Value(R1.rast,I.the_geom) IS NOT NULL
AND ST_Value(R2.rast,l.the_geom) IS NOT NULL

) foo;

Here the query identifies the in-situ observation from in_situ_Ist temperature coverage where
id =2, intersects the geometry of that observation on the day, Ist_day and night, Ist_night raster

temperature coverages and returns the respective temperatures values and their difference

from raster coverages.
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= Feature Info: Project 1 EE@

¢ Figure 23: Screen short excerpt
(‘EL [7] Might/Day time temp diff. (1 Feature) Of a Sample S.cenarlo 2-.2

Al ..Frp  dt nt td implementation result in

4|3 3 35.354331970214544 10.551130839538574 24.80315113067627 OpenJump

? 4 1 b

Figure 23 shows the query result from within the OpenJump appliaction.

6.3.4 Scenario 3: Geo-scientific Analysis of In-situ Temperature /Air Pressure Data and
Satellite Elevation/ Height Observation

This is a scenario as described in chapter 5, where a geo-scientist wants to ascertain the surface
elevation or height factor of a particular temperature or air pressure observation. This could be

to verify the correlation between height and temperature.

In the query below, we used the geometry of the temperature observation, in_situ_lst, where

id = 2 to intersect on the SRTM raster elevation coverage and obtained the height of that point.
Hence this was implemented using these few lines of SQL codes in listing 11 below.

Listing 11: Scenario 3 implementation SQL code

SELECT I_tv, elevation, the_geom

FROM (SELECT IL.temp_value as I_tv, ST_Value(R.rast,
l.the_geom) as

elevation, ST_AsBinary(I.the_geom) as the_geom
FROM in_situ_Ist[, srtm R
WHERE ST_Value(R.rast, I.the_geom) IS NOT NULL

AND Ltemp_lst_id = 2
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Figure 24 below is the query result from within the OpenJump application.

- 1

= Feature Info: Project 1 EE@

[7] elevation (2) (1 Feature)
.. FID i_tw elevation
(=] 5 350 2390.0
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Figure 24: Screen short excerpt of a sample Scenario 3 implementation result in OpenJump

6.3.5 Scenario4: Estimation of Actual Crop Evapotranspiration ET
This scenario as described in chapter 5, where we have in-situ Reference Evapotranspiration

RET observations from weather automatic stations and NDVI raster coverage of the same area.
Hence Actual Evapotranspiration could be estimated from an aggregation of RET and Fraction

of Vegetation cover FVC, where FVC is derived from NDVI.

In the query below, a geo-scientist wants to obtain the Actual Evapotranspiration AET of a
particular location, having the Reference Evapotranspiration RET of that particular point on the
in-situ observation table and the NDVI coverage of the area as well contained in the same

database as we are proposing.

To implement this scenario as we described in chapter 4, we could use 1 and 0 as the
approximate maximum and minimum NDVI values respectively within the area, this would give

us an approximate estimation not very précised.

But to obtain the actual NDVImax and NDVImin of the coverage area, we used the SQL query

below in listings 12 and 13, which were later used in the estimation of the AET.
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Listing 12: SQL Query to obtain the NDVImax

SELECT (stats).max
FROM (SELECT ST_SummaryStats(rast) As stats
FROM ndvi

ORDER by stats DESC

limit 1) As foo;

Listing 13: SQL Query to obtain the NDVImin

SELECT (stats).min

FROM (SELECT ST_SummaryStats(rast) As stats
FROM ndvi
ORDER by stats ASC

limit 1) As foo;

Afterwards we estimated the AET of a point in the RET, in_situ_ret table where id =1 by

implementing the SQL code in listing 14. From the query in listing 21 and 22, we obtained the

NDVImax and NDVImin as 0.86 and O respectively and input them in the query below.

Listing 14: Scenario 4 implementation SQL code

SELECT RET, NDVIp,(pow(((NDVIp-0.86)/(0.86-0)),2)) as FVC,
(pow(((NDVIp-0.86)/(0.86-0)),2))*RET as AET, the_geom

FROM (SELECT ST_Value(R.rast,I.the_geom) as NDVIp, l.value as RET,
ST_AsBinary(l.the_geom) as the_geom

FROM in_situ_ret I, ndvi R

WHERE ret_id =1

AND ST_Value(R.rast,l.the_geom) IS NOT NULL) foo;
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Here in Figure 25 is the result of the query from OpenJump client end.

e o

- Feature Info: Project 1 EE@

(ﬁ. [T AET (1 Feature)

QL .\ FID ret ndvip fuc aet

u E] 1 6.652 0.4433070719242096 0,23476608473658792 1.5616639343000204
Bl m P

Figure 25: Screen short excerpt of a sample Scenario 4 implementation result in OpenJump client end

6.3.6 Scenario 5: DescribeCoverage (Raster Coverage Metadata) Query Operation
This scenario as we described in chapter 5 is a common practice in the OGC SWE, used by the

client to describe any raster coverage contained in the service database. In this case, we are
leveraging the PostGIS raster metadata description function to provide the client side

description of a raster coverage through an SQL query.

Using the SQL code in listing 15 below, we could describe some basic metadata of the SRTM

coverage in our database.

Listing 15: Scenario 5 implementation SQL code

SELECT (md).*, (bmd).*, the_geom

FROM (SELECT ST_Metadata(R.rast) AS md,
ST_BandMetadata(R.rast) AS bmd,
ST_AsBinary(R.rast::geometry) as the_geom
FROM srtm R
LIMIT 1

) foo;
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Figure 26 below shows the result of this query obtained from within the client application, the
OpenJUMP.

Figure 26: Screen short excerpt of a sample Scenario 5 implementation result in OpenJump client end

In conclusion of this chapter, the implemented scenarios have so far shown that we could
basically do geo-processing and analysis between in-situ and remote sensor observations at the
database backend. In other words, vast kinds of geo-processing on the geospatial web services
could now be done completely at the Sensor Observation Service database backend, therefore

reducing extensively, massive workload on the service middleware of the service.

6.4 Performance and Hypothesis Evaluation
The aim of this chapter is to describe and discuss the practical impact and evaluation of this

proposed heterogeneous sensor database model in the Sensor Observation Service in terms of
performance and the results of the real life scenarios we carried out in chapter 5. Hence we
discuss and evaluate the hypothesis of this thesis in relation to our practical implementation
performance, how the model goes to reduce work and communication load on the service

middleware and how flexible it is for client side operations.

6.3.1 Performance Analysis
The performance analysis of this proposed heterogeneous sensor database model is based on

heterogeneous data integration capability, speed, size and flexibility and cost.
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Integration Capability
The conceptual, logical and physical design and model of this database based on

PostgreSQl/PostGIS 2.0 functionalities is excellent in term of seamless raster and vector data
integration and processing. The concept of storing the in-situ and remote sensor observations
as vector and raster coverages, leveraging the corresponding geometry columns for integration

worked very well.

Storage and Analysis Speed
This prototypical implementation exercise was performed on a TOSHIBA machine with 2 GHz

INTEL processor and 4GB of RAM running on window 7 platform. It is good to keep the machine
capability in mind when evaluating the storage and analysis execution speed of this database

model implementation.

In the implementation exercise in this chapter, the SRTM elevation raster coverage was the
highest in size among all the data we used in the exercise. The size of the SRTM SQL file

generated with the GDAL-Python raster loader was 169MB.

This 169MB SQL file of 9213 rows of multi-dimensional arrays of discrete data was loaded into

the database in 73088 ms (1.22 minutes).

Two of the scenarios we implemented in chapter 5 that involved more geo-processing and
analysis on the vector and raster coverages are scenario 2.1, weighted mean surface

temperature within a buffer region and scenario 4, estimation of Actual Evapotranspiration.

Scenario 2.1 was executed in 1438ms (1.438 seconds) and scenario 4, executed in 341ms (0.341

seconds).

Looking at the storage speed and analysis execution speed on massive raster and vector
datasets is very impressive and commendable. The use of Gist spatial indexing is the key for the
impressive execution speed. It is also important to keep in mind that, the PostGIS2.0 database
extension we used for the prototypical exercise is a beta (trial) version which was released in
August 2011, still in development stage. The full version which is expected to be out in the first

quarter of 2012 will have more powerful capabilities in terms of data loading and analysis.
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Hopefully it will come as a full standalone extension with fewer configurations unlike what we

had to configure in this implementation.

Query Flexibility
The various geo-processing scenarios we implemented in this chapter from within the

OpenJump client side desktop application show that, this approach of delivering SQL based
gueries from the client end direct to the database backend makes it more flexible for the user
on the client end to deliver geo-processing queries of extensive complexity involving in-situ and
remote sensor observations. This extensive support for different kinds of geo-processing and
analysis involving in-situ and remote sensor observations through native SQL queries makes
this approach advantageous to the current approach of having different geo-processing
modules on the web service for specific purposes. In that case users are restricted only to the

specific capability the service offers.

Storage Size and Cost
The proposed heterogeneous database model is implemented in PostgreSQL/PostGIS database

management system which is an Open Source RDBMS. It is free and easy to install and deploy.
The maximum database storage size is unlimited, maximum table size is 32 Terabytes, Row
Size, 1.6 Terabytes, field size, 1GB, Rows per table is unlimited, Columns per table is 250-1600
depending on the column types and maximum Indexes per table is unlimited (32). These
properties in terms of size and cost give an advantage and leave us with unlimited sensor
observation storage and management. That is to say, unlimited storage and management

provision is in place for large and massive remote sensor observations.

6.3.2 Research Hypothesis Evaluation
In this section, we would be evaluating our research hypothesis which is “If remote and in-situ

sensor observations can be effectively integrated at the database backend, then
communication and work load on the service middleware of the Geo-Web Services can be
drastically reduced and query requests from the users would be more flexible” based on results
and achievement of this research so far.

In view of this, we would be evaluating how the research results so far has supported the

following claims contained in the hypothesis:
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e reduced communication load on the service
e reduced work load and massive data retrieval on the service middleware

e and more flexible query requests on the user end.

Reduced communication load
Currently as we saw in (11), (1), (13), (14) and as described in figure 27 below, geo-processing

and spatial analytics involving in-situ and remote sensor observations in dynamic systems (such
as in geo-web services) entail back and forth communication to different ends of databases. In-
situ and remote sensor observations were usually stored separately in different databases.
Remote sensor observations (raster) mainly stored as flat files and mostly accessed through the

File Transfer Protocol FTP.

Raster In-situ

Database Database

Service Geo-processing /
Middleware Spatial Analytics

Result

A 4

Client end

Figure 27: Current workflow in a dynamic geo-processing service

In the contrary, so far in this thesis, the prototypical implementation our proposed
heterogeneous sensor database model and the model of how it can be integrated seamlessly
with the OGC geo-web services show that these disparate sensor observations can be
integrated and managed in a single spatial database leveraging PostGIS functionalities. Hence

communication load to different databases reduced invariably as shown in figure 28 below. The
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communication time lag incurred in the downloading of raster images from a flat file database
via ftp, obtaining in-situ observations from an in-situ sensor observation service and integrating
the two on the service middleware level is invariably reduced greatly adopting this
heterogeneous database approach. We will provide the quantitative support to this claim as a
further work. The time frame of this thesis didn’t permit us to lay a hand on a running web
service that runs on the multiple database approach such as in (11), (1), (13), (14) etc. to obtain

a quantitative time lag comparison to our direct approach as shown in fig 28 below.

Client end
SQL-query T

| Result

[ Service Middleware ] Delivery service

Heterogeneous Geo-processing and Analytics
Sensor Database

Figure 28: Proposed workflow in a dynamic geo-processing service by means of the
heterogeneous sensor database

Reduced work and massive data retrieval load
Also taking a look at the contents and the processes in dynamic systems such as in (11), (1),

(13), (14) and in the OGC Web Processing Services, they provide clients access and results based
on pre-programmed calculations and/or computation models that operate on the spatial data.
To enable geospatial processing and operations of diverse kinds, from simple subtraction and

addition of sensor observations (e.g. the difference between satellite observed temperature
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and in-situ observation of a location) to complicated ones such as climate change models,
requires the development of a wide variety of models on the service middleware. This is
massive in work load and huge amount of programming on the service. Also the data required
for these services are usually retrieved dynamically from different databases and services as
described in figure 27. This most times entails massive data retrieval especially from the

satellite data (raster) storage.

Contrarily, by the means of a heterogeneous sensor database model as developed and
implemented in this thesis leveraging the functionalities of PostGIS 2.0 database extension,
geo-processing and analytics involving remote and in-situ sensor data are carried out at the
database backend by native SQL request statements. Therefore the variety of geo-processing
work load on the service middleware is reduced. As described in figure 28 above, the service
middleware in our case is majorly for service delivery from the client to database and vice
versa. Massive data retrieval before processing is completely avoided. Also massive
programming involved in the development of different kinds of geo-processing models on the

web service is reduced.

Flexibility in query request from the user end
Language based query request such as the (SQL) has been considered advantageous especially

by the database community because is very flexible, declarative, optimizable and more safe in
evaluation (9). The current approach of deploying specific geo-processing models for specific
tasks as a service on the geo-web service do not offer the flexibility obtainable from SQL-
enabled query request system like the Web Query Service WQS proposed in this thesis. The SQL
qguery request approach gives the users the leverage to construct queries of disparate simplicity

or complexity to get the required results.

Therefore we have so far in this research arguably provided that the hypothesis of this research
is valid. It is true and valid to say that effective and efficient integration of remote and in-situ
sensor observations at the database backend such as modeled and implemented in this thesis
would reduce communication and work load on the service middleware of the geo-web

services and as well make query request from the user end more flexible.
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Chapter 7

7.0 CONCLUSION AND FUTURE WORK

In summary, the main essence of this research is to prove that disparate sensor data from
heterogeneous sensors can be integrated in a single database schema in the sensor observation
service which gives the leverage to reduced communication and massive work load at the
service middleware and makes query request a lot more flexible from the user end by means of

SQL query request statements.

In view of that, we started in this thesis by presenting an introduction to the research concept,
which is anchored on the development of a heterogeneous sensor database model for the
Sensor Observation Service SOS whereby geo-processing and analytics could now be done on

the database backend and not necessarily on the service middleware.

We carried out a thorough background research on studies that dealt with in-situ sensor
observation service, remote sensor observation (raster) databases, integration of remote
sensor and in-situ sensor observations for environmental monitoring and management. Also we
did a good background search on the OGC SWE, SOS, WCS and WCPS to have a good
understanding of how they work. All these background research are concisely documented in

chapter 2.

Then we carried out a detailed requirement analysis on the best approach to model
conceptually and logically a heterogeneous sensor database model that allows for the
integration and analysis of disparate sensor observations (in-situ and remote) at the database
end. We discovered the power of PostGIS 2.0 extension of PostgreSQL database management

system in implementing this type sensor database model.

The outcome of the requirement analysis helped us to conceptually and logically model a
heterogeneous sensor database schema. The conceptual model was done in Unified Modeling
Language UML and abstracted the Entity Relationship logical model from the UML conceptual
model. We developed a detailed conceptual model on how the proposed heterogeneous sensor

database model can be integrated seamlessly with other geo-web services in the SOS. We
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hereby discussed the concept of Web Query Service WQS for query delivery service from the

client to the database backend.

We discussed and described scenarios/ use cases where this type of sensor database can be
leveraged to accomplish geo-scientific analysis and processing involving in-situ and remote

sensor observations. Example queries were also formulated and analyzed.

Then we prototypically implemented this heterogeneous sensor database model in
PostgreSQL/PostGIS 2.0 database management system. The scenarios were implemented and
tested from within a client application, the OpenJumP application. The performances of the

scenarios in the database context were very good.

The practical usefulness of this proposed approach will be very more appreciated when the
model of integrating the proposed sensor database and other geo-web services in the SOS is
fully implemented. Because of the limited time frame for this master’s thesis, we were not able

to implement the integration model in the SOS.

As a future work, the full integration of this heterogeneous sensor database model with other
geo-web service will be implemented as shown in figure 29 below. We discussed the

implementation details in chapter 4. Therefore it remains a further implementation exercise.
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Figure 29: Heterogeneous sensor database and Geo-web services integration model
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Appendixes

Appendix A

SQL implementation codes for physical design and creation of the prototypical

heterogeneous sensor database and the tables in PostgreSQL/PostGIS2.0.

CREATE DATABASE "heterogeneous sensors"
WITH OWNER = postgres
ENCODING = "UTF8'
TABLESPACE = pg default
LC_COLLATE = 'English_United Kingdom.1252'
LC_CTYPE = 'English_United Kingdom.1252'

CONNECTION LIMIT = -1;
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CREATE TABLE Ist_day (
rid serial NOT NULL,
filename text,
rast raster,
observed_date date,
CONSTRAINT Ist_day_pkey PRIMARY KEY (rid),
CONSTRAINT enforce_srid_rast CHECK (st_srid(rast) = 4326))
WITH ( OIDS=FALSE
);
ALTER TABLE Ist_day OWNER TO postgres;

Index: Ist_day_rast_gist_idx

CREATE TABLE list_of tables (
list_id INTEGER NOT NULL,
table_name VARCHAR (100),
table_desc VARCHAR (100),

CONSTRAINT list_of _tables_pkey PRIMARY KEY
(list_id)

);
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CREATE TABLE ndvi(
rid serial NOT NULL,

filename text,
rast raster,
observed_date date,
obs_id integer,
CONSTRAINT ndvi_pkey PRIMARY KEY (rid),
CONSTRAINT fk_ndvi FOREIGN KEY (obs_id)
REFERENCES observations (obs_id) MATCH FULL
ON UPDATE NO ACTION ON DELETE NO ACTION,
CONSTRAINT enforce_srid_rast CHECK (st_srid(rast) = 4326)));
ALTER TABLE ndvi OWNER TO postgres;

Index: ndvi_rast_gist_idx

-- DROP INDEX ndvi_rast_gist_idx;

CREATE INDEX ndvi_rast_gist_ idx ON ndvi USING gist
(st_convexhull(rast));

CREATE TABLE observed_phenomenon
(
pheno_id integer NOT NULL,
pheno_name character varying(50),
pheno_desc character varying(50),
location_desc character varying(100),

CONSTRAINT pheno_pkey PRIMARY KEY (pheno_id)

);
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CREATE TABLE in_situ_ret (
ret_id integer NOT NULL,
obs_id integer NOT NULL,
time_stamp date,
"value" real,
the_geom geometry(Point,4326),
CONSTRAINT in_situ_ret_pkey PRIMARY KEY (ret_id),
CONSTRAINT fk_in_situ_ret FOREIGN KEY (obs_id)
REFERENCES observations (obs_id) MATCH SIMPLE
ON UPDATE NO ACTION ON DELETE NO ACTION)
WITH ( OIDS=FALSE);
ALTER TABLE Ist_day OWNER TO postgres;

Index: Ist_day _rast_gist idx

CREATE TABLE coverage (
covid serial NOT NULL,
coverageName VARCHAR (45),
coverageType VARCHAR (20),
pheno_id INTEGER,
CONSTRAINT coverage_pkey PRIMARY KEY (covid),

CONSTRAINT enforce_coverageType CHECK (coverageType IN
('raster’, 'vector')),

CONSTRAINT fk_cov FOREIGN KEY (pheno_id) REFERENCES
Observed_Phenomenon(pheno_id)

);
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CREATE TABLE in_situ_sst (
temp_id integer NOT NULL,
obs_id integer NOT NULL,
time_stamp date,
"value" real,
the_geom geometry(Point,4326),
CONSTRAINT in_situ_sst_pkey PRIMARY KEY (temp_id),
CONSTRAINT fk_in_situ_sst FOREIGN KEY (obs_id)
REFERENCES observations (obs_id) MATCH SIMPLE
ON UPDATE NO ACTION ON DELETE NO ACTION)
WITH ( OIDS=FALSE);
ALTER TABLE Ist_day OWNER TO postgres;

Index: Ist_day_rast_gist_idx

CREATE TABLE feature of interest
(
foi_id serial NOT NULL,
covid INTEGER NOT NULL,
foi_Name VARCHAR (45),
foi_Desc VARCHAR (50),
pheno_id INTEGER,
CONSTRAINT foi_pkey PRIMARY KEY (foi_id),

CONSTRAINT fk1_foi FOREIGN KEY (covid) REFERENCES
coverage(covid),

CONSTRAINT fk2_foi FOREIGN KEY (pheno_id)
REFERENCES Observed_Phenomenon(pheno_id)

);
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CREATE TABLE sensorPlatform(
platform_id INTEGER NOT NULL,
platform_Model VARCHAR (50),
num_sensors INTEGER NOT NULL,
longitude REAL,
latitude REAL,
platform_loc_desc VARCHAR (100),

CONSTRAINT sensorPlatform_pkey PRIMARY KEY (platform_id),

);

CREATE TABLE sensor(
sensor_id INTEGER NOT NULL,
platform_id INTEGER NOT NULL,
sensor_type VARCHAR (20),
sensor_model VARCHAR (50),
CONSTRAINT sensor_pkey PRIMARY KEY (sensor_id),

CONSTRAINT fk_sensor FOREIGN KEY (platform_id)
REFERENCES sensorplatform(platform_id),

CONSTRAINT enforce_sensor_type CHECK (sensor_type IN
('in-situ’, 'remote"))

);
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CREATE TABLE quality(
quality_id INTEGER NOT NULL,
obs_id INTEGER NOT NULL,
quality_name VARCHAR (50),
quality_type VARCHAR (50),
quality_Value REAL,
CONSTRAINT quality_pkey PRIMARY KEY (quality_id),

CONSTRAINT fk_quality FOREIGN KEY (obs_id) REFERENCES
observations(obs_id)

);

CREATE TABLE sensorinfo(
sensor_id INTEGER NOT NULL,
spatialcoverage VARCHAR (100),
temporalcoverage VARCHAR (100),
unit VARCHAR (30),
valuerange VARCHAR (30),
collectionfrequency VARCHAR (50),
collectionmethod VARCHAR (50),
CONSTRAINT sensorinfo_pkey PRIMARY KEY (sensor_id),

CONSTRAINT fk_sensorinfo FOREIGN KEY (sensor_id) REFERENCES
sensor(sensor_id)

);
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CREATE TABLE observations (

obs_id integer NOT NULL,

pheno_id integer NOT NULL,

covid integer NOT NULL,

sensor_id integer NOT NULL,

foi_id integer NOT NULL,

obsv_type character varying(50),

CONSTRAINT obsv_pkey PRIMARY KEY (obs_id),

CONSTRAINT fk1_obsv FOREIGN KEY (pheno_id)
REFERENCES observed_phenomenon(pheno_id),

CONSTRAINT fk2_obsv FOREIGN KEY (covid) REFERENCES
coverage(covid),

CONSTRAINT fk3_obsv FOREIGN KEY (sensor_id)
REFERENCES sensor(sensor_id),
CONSTRAINT fk4_obsv FOREIGN KEY (foi_id) REFERENCES

feature_of_interest(foi_id)

);
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CREATE TABLE in_situ_sst(
temp_id INTEGER NOT NULL,
obs_id INTEGER NOT NULL,
time_stamp date,

value VARCHAR (30),

CONSTRAINT in_situ_sst_pkey PRIMARY KEY (temp_id),

CONSTRAINT fk_in_situ_sst FOREIGN KEY (obs_id)
REFERENCES observations(obs_id)

);

SELECT AddGeometryColumn( 'public’, 'in_situ_sst’,
'the_geom', 4326, 'POINT', 2 );

CREATE TABLE in_situ_lst(
temp_lIst_id INTEGER NOT NULL,
obs_id INTEGER NOT NULL,
time_stamp date,
value VARCHAR (30),

CONSTRAINT in_situ_lst_pkey PRIMARY KEY
(temp_lst_id),

CONSTRAINT fk_in_situ_lst FOREIGN KEY (obs_id)
REFERENCES observations(obs_id)

);

SELECT AddGeometryColumn( "'public’, 'in_situ_Ist’,
'the_geom', 4326, 'POINT', 2 );
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CREATE TABLE in_situ_ret(
ret_id INTEGER NOT NULL,
obs_id INTEGER NOT NULL,
time_stamp date,
value VARCHAR (30),
CONSTRAINT in_situ_ret_pkey PRIMARY KEY  (ret_id),

CONSTRAINT fk_in_situ_ret FOREIGN KEY (obs_id)
REFERENCES observations(obs_id)

);

SELECT AddGeometryColumn( 'public’, 'in_situ_ret’,
'the_geom’, 4326, 'POINT', 2 );

Appendix B

Table population SQL statements:

insert into coverage

Values (1, 'in-situ-Ist', 'vector', 1, 'A vector coverage of time series land surface temprature
observations from in-situ sensor within Colorado State in the USA');

insert into coverage

Values (2, 'remote-Ist_day', 'raster’, 1,'A raster coverage of time series land surface temprature

observations during the day within Colorado State in the USA');

insert into coverage

Values (3, 'in-situ_ret', 'vector', 2, 'A vector coverage of time series reference
evapotranspiration observations from automatic weather station within Nebraska Statein the

USA");

insert into coverage
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Values (4, 'in-situ_sst', 'vector', 3, 'A vector coverage of time series sea surface temprature
observations within the Gulf of Mexico sea');

insert into coverage

Values (5, 'remote-Ist_night', 'raster’, 1, 'A raster coverage of time series land surface
temprature observations during the night within Colorado State in the USA');

insert into coverage

Values (6, 'remote-Ist_day_utm’, 'raster’, 1, 'A raster coverage of time series land surface
temprature observations during the day within Colorado State in the USA in utm coordinate
system');

insert into coverage

Values (7, 'ndvi', 'raster’, 4,'A raster coverage of time series Normalised Diffrence Vegetation
Index NDVI observations within Nebraska State in the USA');

insert into coverage

Values (8, 'SRTM-DTM', 'raster’, 5, 'A raster coverage of time series elevation data from SRTM
observations within Colorado State in the USA');

Insert into feature_of_interest

Values ( 1, 1,'LST', 'land surface temperature from in-situ sensors',1);

Insert into feature_of_interest

Values ( 2, 2,'LST_day', 'land surface temperature during the day from modis satellite',1);
Insert into feature_of_interest

Values ( 3, 3,'RET', 'Reference Evapotranspiration from automatic weather sations', 2);
Insert into feature_of_interest

Values ( 4, 4,'SST', 'sea surface temperature from in-situ sensors', 3);

Insert into feature_of _interest
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Values ( 5, 5,'LST_night', 'land surface temperature during the night from modis satellite
sensor', 1);

Insert into feature_of_interest

Values ( 6, 6,'LST-day_utm','land surface temperature during the day in utm coordinate system

from modis satellite ', 1);

Insert into feature_of_interest

Values ( 7, 7,'NDVI', 'Normalised Difference Vegetation Index from Modis satellite sensor’, 4);
Insert into feature_of _interest

Values ( 8, 8,'Elevation’, 'surface terrian elevation observation from SRTM satellite', 5);

Insert into observed_phenomenon
Values ( 1,'LST', 'Land Surface Temperature observations', 'Colorado area in the USA');
Insert into observed_phenomenon

Values ( 2,'RET', 'Reference Evapotranspiration from automatic weather sations', 'Nebraska
area in the USA');

Insert into observed_phenomenon
Values ( 3,'SST', 'Sea Surface Temperature observations', 'Gulf of Mexico sea near the US');
Insert into observed_phenomenon

Values ( 4,'NDVI', 'Normalised Difference Vegetation Index from Modis satellite sensor’,
'Nebraska area in the USA');

Insert into observed _phenomenon

Values ( 5,'Elevation’, 'Surface Terrian Elevation observations from SRTM satellite', 'Colorado
area in the USA');
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insert into sensorplatform

Values (03060, 'NA', 4, -107.693, 38.544, 'Colorado USA', 'MONTROSE 11 ENE');
insert into sensorplatform

Values (03079, 'NA', 4, -106.171, 38.099, 'Colorado USA', 'SAGUACHE 2 WNW');
insert into sensorplatform

Values (03084, 'NA', 4, -106.144, 37.707, 'Colorado USA', 'CENTER A 4 SSW');
insert into sensorplatform

Values (53005, 'NA', 4, -106.122, 38.811, 'Colorado USA', 'BUENA VISTA 2 SSE');
insert into sensorplatform

Values (4000, 'NA', 1, -96.933, 40.933, 'Nebraska USA', 'Beatrice');

insert into sensorplatform

Values (4001, 'NA', 1, -97.967, 41.15, 'Nebraska USA', 'CentralCity');

insert into sensorplatform

Values (4002, 'NA', 1, -98.133, 40.567, 'Nebraska USA', 'Clay Center');

insert into sensorplatform

Values (4003, ': R332', 12, -88.793, 26.998, 'Gulf of Mexico', 'NOAA Ship Oregon II');
insert into sensorplatform

Values (4004, : R332', 12, -88.816, 27.0252, 'Gulf of Mexico', 'NOAA Ship Oregon II');
insert into sensorplatform

Values (4005, ': R332', 12, -88.843, 27.047, 'Gulf of Mexico', 'NOAA Ship Oregon II');

insert into sensor
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Values ( 1, 3060, 'in-situ’, '03D152');
insert into sensor

Values ( 2, 3079, 'in-situ', '0AA19E');
insert into sensor

Values ( 3, 3084, 'in-situ', '0C644E');
insert into sensor

Values ( 4, 53005, 'in-situ’, '1057D6');
insert into sensor

Values ( 5, 4000, 'in-situ', 'NA");
insert into sensor

Values ( 6, 4001, 'in-situ’, 'NA');
insert into sensor

Values ( 7, 4002, 'in-situ’, 'NA');
insert into sensor

Values ( 8, 4003, 'in-situ’, 'NA");
insert into observations

Values (1,1,1, 1,1, in-situ');

insert into observations

Values (2,1, 1, 2,1, 'in-situ');

insert into observations

Values (3,1, 1, 3, 1, 'in-situ');

insert into observations

Values (4, 1, 1, 4, 1, 'in-situ');

insert into observations
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Values (5,1, 1, 1, 1, 'in-situ');
insert into observations
Values (6,1, 1, 2, 1, 'in-situ');
insert into observations
Values (7,1, 1, 3, 1, 'in-situ');
insert into observations

Values (8, 1, 1, 4, 1, 'in-situ');

insert into in_situ_lst

Values( 1, 1,'2011-08-01',16.1,ST_GeomFromText('POINT(-107.693 38.544)', 4326));
insert into in_situ_|Ist

Values( 2, 2, '2011-08-01',17.5,ST_GeomFromText('POINT(-106.171 38.099)', 4326));
insert into in_situ_|Ist

Values( 3, 3, '2011-08-01',17.7,ST_GeomFromText('POINT(-106.144 37.707)', 4326));
insert into in_situ_|Ist

Values( 4, 4, '2011-08-01',4.5,ST_GeomFromText('POINT(-106.122 38.811)', 4326));
insert into in_situ_lIst

Values( 5, 5, '2011-08-02',15.5,ST_GeomFromText('POINT(-107.693 38.544)', 4326));
insert into in_situ_|Ist

Values( 6, 6, '2011-08-02',17.4,ST_GeomFromText('POINT(-106.171 38.099)', 4326));
insert into in_situ_lIst

Values( 7, 7,'2011-08-02',16.6,ST_GeomFromText('POINT(-106.144 37.707)', 4326));

insert into in_situ_lIst
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Values( 8, 8, '2011-08-02',-15.5,ST_GeomFromText('POINT(-106.122 38.811)', 4326));

insert into in_situ_ret
Values( 1, 9, '2005-09-09',6.652,ST_GeomFromText('POINT(-96.933 40.30)', 4326));
insert into in_situ_ret
Values( 2, 10, '2005-09-10',5.34,ST_GeomFromText('POINT(-97.967 41.15)', 4326));
insert into in_situ_ret

Values( 3, 11, '2005-09-11',5.73,ST_GeomFromText('POINT(-98.133 40.567)', 4326));

insert into in_situ_sst
Values( 1, 12, '2006-08-01 01:08:07',30.20,ST_GeomFromText('POINT(-88.793 26.998)', 4326));
insert into in_situ_sst

Values( 2, 13, '2006-08-01 01:18:07',30.176,ST_GeomFromText('POINT(-88.816 27.0252)',
4326));

insert into in_situ_sst

Values( 3, 14, '2006-08-01 01:28:07',30.148,ST_GeomFromText('POINT(-88.843 27.048)',
4326));
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Appendix C

A sample raster table creation and data population using the raster2pgsql.py script.
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