15 research outputs found

    Event-driven observer-based smart-sensors for output feedback control of linear systems

    Get PDF
    This paper deals with a recent design of event-driven observer-based smart sensors for output feedback control of linear systems. We re-design the triggering mechanism proposed in a previously reported system with the implementation of self-sampling data smart sensors; as a result, we improve its performance. Our approach is theoretically supported by using Lyapunov theory and numerically evidenced by controlling the inverted pendulum on the cart mechanism.Postprint (published version

    Networked control systems in the presence of scheduling protocols and communication delays

    Full text link
    This paper develops the time-delay approach to Networked Control Systems (NCSs) in the presence of variable transmission delays, sampling intervals and communication constraints. The system sensor nodes are supposed to be distributed over a network. Due to communication constraints only one node output is transmitted through the communication channel at once. The scheduling of sensor information towards the controller is ruled by a weighted Try-Once-Discard (TOD) or by Round-Robin (RR) protocols. Differently from the existing results on NCSs in the presence of scheduling protocols (in the frameworks of hybrid and discrete-time systems), we allow the communication delays to be greater than the sampling intervals. A novel hybrid system model for the closed-loop system is presented that contains {\it time-varying delays in the continuous dynamics and in the reset conditions}. A new Lyapunov-Krasovskii method, which is based on discontinuous in time Lyapunov functionals is introduced for the stability analysis of the delayed hybrid systems. Polytopic type uncertainties in the system model can be easily included in the analysis. The efficiency of the time-delay approach is illustrated on the examples of uncertain cart-pendulum and of batch reactor

    Discrete and intersample analysis of systems with aperiodic sampling

    Get PDF
    International audienceThis article addresses the stability analysis of linear time invariant systems with aperiodic sampled-data control. Adopting a difference inclusion formalism, we show that necessary and sufficient stability conditions are given by the existence of discrete-time quasi-quadratic Lyapunov functions. A constructive method for computing such functions is provided from the approximation of the necessary and sufficient conditions. In practice, this leads to sufficient stability criteria under LMI form. The inter-sampling behavior is discussed there: based on differential inclusions, we provide continuous-time methods that use the advantages of the discrete-time approach. The results are illustrated by numerical examples that indicate the improvement with regard to the existing literature

    Stabilization of systems with asynchronous sensors and controllers

    Full text link
    We study the stabilization of networked control systems with asynchronous sensors and controllers. Offsets between the sensor and controller clocks are unknown and modeled as parametric uncertainty. First we consider multi-input linear systems and provide a sufficient condition for the existence of linear time-invariant controllers that are capable of stabilizing the closed-loop system for every clock offset in a given range of admissible values. For first-order systems, we next obtain the maximum length of the offset range for which the system can be stabilized by a single controller. Finally, this bound is compared with the offset bounds that would be allowed if we restricted our attention to static output feedback controllers.Comment: 32 pages, 6 figures. This paper was partially presented at the 2015 American Control Conference, July 1-3, 2015, the US

    A delay-dependent dual-rate PID controller over an ethernet network

    Full text link
    n this paper, a methodology to design controllers able to cope with different load conditions on an Ethernet network is introduced. Load conditions induce time-varying delays between measurements and control. To face these variations an interpolated, delay-dependent gain scheduling law is used. The lack of synchronization is solved by adopting an event-based control approach. The dual-rate control action computation is carried out at a remote controller, whereas control actions and measurements are taken out locally at the controlled process site. Stability is proved in terms of probabilistic linear matrix inequalities. TrueTime simulations in an Ethernet case show the benefit of the proposal, which is later validated on an experimental test-bed Ethernet environment.Manuscript received June 07, 2010; revised September 05, 2010; accepted September 15, 2010. Date of publication October 18, 2010; date of current version February 04, 2011. The authors A. Cuenca, J. Salt, and R. Piza are grateful to Grant PAID06-08 by the Universidad Politecnica de Valencia, Grant dpi2009-14744-c03-03 from the Spanish Ministry of Education, and Grant gv/2010/018 by Generalitat Valenciana. In addition, A. Cuenca is grateful to Grant dpi2008-06737-c02-01 by the Spanish Ministry of Education, and A. Sala is grateful to the financial support of the Spanish Ministry of Education Research Grant dpi2008-06731-c02-01, and Generalitat Valenciana Grant prometeo/2008/088. Paper no. TII-10-06-0127.Cuenca Lacruz, ÁM.; Salt Llobregat, JJ.; Sala Piqueras, A.; Pizá Fernández, R. (2011). A delay-dependent dual-rate PID controller over an ethernet network. IEEE Transactions on Industrial Informatics. 7(1):18-29. doi:10.1109/TII.2010.2085007S18297

    Tutorial on arbitrary and state-dependent sampling

    Get PDF
    International audienceThis tutorial, presents basic concepts and recent research directions about sampled-data systems. We focus mainly on the stability of systems with time-varying sampling intervals. Without being exhaustive, which would be neither possible nor useful, we try to give a structural survey of what we think to be the main results and issues in this domain

    LQ-optimal Sample-data Control under Stochastic Delays: Gridding Approach for Stabilizability and Detectability

    Full text link
    We solve a linear quadratic optimal control problem for sampled-data systems with stochastic delays. The delays are stochastically determined by the last few delays. The proposed optimal controller can be efficiently computed by iteratively solving a Riccati difference equation, provided that a discrete-time Markov jump system equivalent to the sampled-data system is stochastic stabilizable and detectable. Sufficient conditions for these notions are provided in the form of linear matrix inequalities, from which stabilizing controllers and state observers can be constructed.Comment: 28 pages, 3 figure

    Digital repetitive control under varying frequency conditions

    Get PDF
    Premi extraordinari doctorat curs 2011-2012, àmbit d’Enginyeria IndustrialThe tracking/rejection of periodic signals constitutes a wide field of research in the control theory and applications area and Repetitive Control has proven to be an efficient way to face this topic; however, in some applications the period of the signal to be tracked/rejected changes in time or is uncertain, which causes and important performance degradation in the standard repetitive controller. This thesis presents some contributions to the open topic of repetitive control working under varying frequency conditions. These contributions can be organized as follows: One approach that overcomes the problem of working under time varying frequency conditions is the adaptation of the controller sampling period, nevertheless, the system framework changes from Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. This work presents two different methodologies aimed at analysing the system stability under these conditions. The first one uses a Linear Matrix Inequality (LMI) gridding approach which provides necessary conditions to accomplish a sufficient condition for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies yield a frequency variation interval for which the system stability can be assured. Although several approaches exist for the stability analysis of general time-varying sampling period controllers few of them allow an integrated controller design which assures closed-loop stability under such conditions. In this thesis two design methodologies are presented, which assure stability of the repetitive control system working under varying sampling period for a given frequency variation interval: a mu-synthesis technique and a pre-compensation strategy. On a second branch, High Order Repetitive Control (HORC) is mainly used to improve the repetitive control performance robustness under disturbance/reference signals with varying or uncertain frequency. Unlike standard repetitive control, the HORC involves a weighted sum of several signal periods. With a proper selection of the associated weights, this high order function offers a characteristic frequency response in which the high gain peaks located at harmonic frequencies are extended to a wider region around the harmonics. Furthermore, the use of an odd-harmonic internal model will make the system more appropriate for applications where signals have only odd-harmonic components, as in power electronics systems. Thus an Odd-harmonic High Order Repetitive Controller suitable for applications involving odd-harmonic type signals with varying/uncertain frequency is presented. The open loop stability of internal models used in HORC and the one presented here is analysed. Additionally, as a consequence of this analysis, an Anti-Windup (AW) scheme for repetitive control is proposed. This AW proposal is based on the idea of having a small steady state tracking error and fast recovery once the system goes out of saturation. The experimental validation of these proposals has been performed in two different applications: the Roto-magnet plant and the active power filter application. The Roto-magnet plant is an experimental didactic plant used as a tool for analysing and understanding the nature of the periodic disturbances, as well as to study the different control techniques used to tackle this problem. This plant has been adopted as experimental test bench for rotational machines. On the other hand, shunt active power filters have been widely used as a way to overcome power quality problems caused by nonlinear and reactive loads. These power electronics devices are designed with the goal of obtaining a power factor close to 1 and achieving current harmonics and reactive power compensation.Award-winningPostprint (published version
    corecore