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Tutorial on arbitrary and state-dependent sampling

Christophe Fiter† , Hassan Omran†, Laurentiu Hetel†, and Jean-Pierre Richard †,‡,

Abstract— This tutorial, presents basic concepts and recent
research directions about sampled-data systems. We focus
mainly on the stability of systems with time-varying sampling
intervals. Without being exhaustive, which would be neither
possible nor useful, we try to give a structural survey of what
we think to be the main results and issues in this domain.

Index Terms— networked control systems, time-varying sam-
pling, dynamic sampling, self-triggering, event-triggering.

I. INTRODUCTION

In the literature, the analysis and design of sampled-data

systems with periodic sampling is a well established domain.

In the monographs [16], [26], [71], advanced topics such

as optimal control, robust controller design, identification,

etc. can be found. In practice however, it is difficult to

maintain a constant sampling rate during the real-time control

of physical systems. Embedded and networked systems are

often required to share a limited amount of computational

and transmission resources between different applications.

This may lead to fluctuations of the sampling interval, due

to the interaction between real-time control algorithms and

task / communication scheduling protocols [15], [36], [73],

[84]. From the control theory point of view, these variations

in the sampling interval need to be treated in a robust

manner since they may have a destabilizing effect if they

are not properly taken into account [83], [46]. Furthermore,

aperiodic controller implementations may actually have in-

teresting properties in distributed control applications, when

explicitly evaluating energy, computation and communica-

tion costs [11], [14], [14], [33]. The new trend in control is

to intentionally modify the sampling interval as an additional

control parameter using event- and self-triggering control

schemes.

This tutorial will present basic concepts and research

directions for systems with time-varying sampling intervals.

After a short presentation of sampled-data systems (Sec-

tion II), qualitative properties of sampled-data system are

indicated in Section III. The main results concerning the

analysis of systems with time-varying sampling intervals

will be presented in Section IV. Finally, emerging research

directions concerning the reduction of sampling events will

be introduced in Section V.

The research leading to these results has received funding from the
European Community’s 7th Framework Programme (grant agreement No
257462) HYCON2 Network of Excellence and the Interreg IV A 2 Mers
Seas Zeeen program SYSIASS.
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ẋ(t) = f(t, x(t), u(t))

y(t)u(t)
SYSTEM

CONTROLLER A/DD/A
y(tk)u(tk)

tk+1 = tk + hk

Fig. 1: Sampled-data system

II. SAMPLED-DATA SYSTEMS

The systems under consideration consist of a plant, a

sampled-data control, and appropriate interface elements,

such as represented in Figure 1, in which the blocks A/D

and D/A correspond to an analog-to-digital converter (a

sampler) and a digital-to-analog converter (a zero-order hold)

respectively. There are various ways in which the controller

synthesis for sampled-data systems can be done [7], [16].

One possible way is to design a continuous-time controller

and then to approximate it using a sample-and-hold device.

This approach is usually called emulation. Another approach

is the discrete-time controller design where an exact or ap-

proximate discrete-time model of the plant is used to design

a discrete-time controller, which will then be implemented

to control the continuous-time plant using a zero-order-hold.

In this paper, the different concepts and results will mainly

illustrated through the use of Linear Time-Invariant (LTI)

sampled-data systems with linear state-feedback:

ẋ(t) = Ax(t) + Bu(t), ∀t ≥ 0, (1a)

u(t) = Kx(tk), ∀t ∈ [tk, tk+1), k ∈ N, (1b)

with x the system state and u the control signal, although

some of the presented results have been originally given in

more general control configurations or in the nonlinear case.

The following associated discrete-time model at instants

tk is

xk+1 = Λ(hk)xk, ∀k ∈ N, (2)

with Λ(h) := eAh +
∫ h

0 eAsdsBK , xk := x(tk). It is well

known that for a constant sampling interval hk = T, ∀k ∈
N, the discrete-time system (2) is asymptotically stable if

and only if the matrix Λ(T ) is Schur, i.e. all its eigenvalues

are strictly within the unit circle. However, in the case of

time-varying sampling intervals, the analysis of sampled-data

systems is quite complex, even in the LTI case.



Example Consider the LTI sampled-data system (1) with

A =

[

0 1
−2 0.1

]

, B =

[

0
1

]

K =
[

1 0
]

. (3)

It is stable for both constant sampling intervals T1 = 1.5s and

T2 = 3s, as both matrices Λ(T1) and Λ(T2) are Schur. One

may think that alternating the sampling interval between T1

and T2 will not affect the stability. However, the sampled-

data system with periodically time-varying sampling inter-

vals T1 → T2 → T1 → · · · is unstable (see Figure 2,

left). This is due to the fact that the Schurness of transition

matrices is not preserved under matrix product, i.e. the matrix

Λ(T2)Λ(T1) is not Schur.

On the other hand, there may also exist stabilizing sam-

pling sequences which are composed solely of sampling

intervals corresponding to non-Schur matrices. For instance,

the sampled-data system (1), (3) is unstable for both constant

sampling periods T3 = 2.1s and T4 = 4s, but it is stable

under the periodically time-varying sampling T3 → T4 →
T3 → · · · (see Figure 2, right). Indeed, the system transition

matrix Λ(T4)Λ(T3) is Schur.
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Fig. 2: Periodically time-varying sampling

Left: T1 = 1.5s → T2 = 3s → T1 → · · · - Unstable

Right: T3 = 2.1s → T4 = 4s → T3 → · · · - Stable

Thus, the following problems are raised:

- PROBLEM A: determine whether the sampled-data

system is stable for any time-varying sampling interval hk

with values in a bounded subset Ω ⊆ R+.

- PROBLEM B: design a sampling law hk =
h(t, tk, x(tk), · · · ) that enlarges the sampling intervals while

making the sampled-data system stable.

III. QUALITATIVE PROPERTIES OF SAMPLED-DATA

SYSTEMS

The choice of sampling intervals is a critical issue in

sampled-data implementations of emulated controllers. In-

tuitively, when the original continuous-time controller guar-

antees stability, by choosing a sufficiently fast sampling

frequency, the stability will be preserved under sampled-

data implementation. This conjecture has been confirmed

in [35], for the case of input-affine nonlinear systems. The

main result proves the fact that the discretization of stabi-

lizing continuous-time nonlinear control laws with Lipschitz

properties preserves the stability for constant and sufficiently

small sampling intervals. This has been generalized in [10] to

the case of time-varying sampling intervals, with dynamical

control laws discretized using Euler approximation. In [78]

it is shown that when the periodic sampling is sufficiently

fast, the Input-to-State Stability (ISS) property of a nonlinear

system is semi-globally practically preserved.

In [6], [8], [43], [59], some results concerning the emula-

tion approach were generalized and unified in a methodologi-

cal framework, by considering the preservation of dissipation

inequality under sampling. It is shown that if a continuous-

time controller provides some dissipation properties, then the

resulting sampled-data system satisfies similar properties in

a semi-global practical sense for sufficiently small sampling

intervals.

IV. STABILITY ANALYSIS UNDER ARBITRARY

TIME-VARYING SAMPLING

This section concerns the estimation of the maximum

allowable sampling intervals under arbitrary sampling varia-

tions.

A. Time-delay approach

This approach was initiated in [55] and further developed

in [28] and in several other works [27], [41], [50], [75], [78],

[85]. It consists in considering the discrete-time dynamics

induced by the digital controller as a delay effect. For system

(1), we may re-write u(t) = Kx(tk) = Kx(t− τ(t)), where

the delay τ(t) = t− tk, ∀t ∈ [tk, tk+1), is piecewise-linear,

and satisfies τ̇ (t) = 1 for t 6= tk, and τ(tk) = 0. The LTI

system with sampled data (1) is then re-modeled with a time-

varying delay

ẋ(t) = Ax(t) +BKx(t− τ(t)), ∀t ≥ 0, (4)

In this context of delay systems [72], stability is studied using

Lyapunov-Krasovskii or Lyapunov-Razumikhin functionals

[32] depending on the past system state values. LMI stability

criteria are given in [27], [28], [74]. For the nonlinear case,

we point to the works in [41], [50], [78], [85].

B. Hybrid system approach

In this approach, the LTI sampled-data system (1) is

modelled as an impulsive system (i.e. a dynamical system

with discontinuous state variables, representing the sampling

effect), with the state ξ(t) = [xT (t), zT (t)]T , where z(t) =
x(tk), ∀t ∈ [tk, tk+1):















ξ̇(t) =

[

A BK

0 0

]

ξ(t), t 6= tk, ∀k ∈ N, ,

ξ(tk) =

[

x(t−k )
x(t−k )

]

, t = tk, ∀k ∈ N.

Stability analysis in this context involves Lyapunov functions

with discontinuities at the impulse times [9], [58]. For non-

linear systems, the Lp-stability properties have been studied

in the more general context of networked control systems

(NCS) [61]. See also [12], [62], [67], for a particularization

to the sampled-data case.



C. Discrete-time approach and convex-embeddings

For system (1) with time-varying sampling intervals in

[h, h̄], h > 0, the convex-embedding approach [17], [29],

[37], [31], uses the properties of the transition matrix Λ(t−
tk) = eA(t−tk) +

∫ t−tk

0
eAsdsBK, describing the evolution

of x(t) over the sampling interval with respect to the initial

value x(tk). The idea is to express the stability problem as a

finite number of LMIs, by embedding the matrix Λ(θ), θ ∈
[h, h] in a larger polytope W̄ := conv{Λi, i = 1, · · · , N}
with finite number of vertices Λi. For quadratic Lyapunov

functions V (x) = xTPx, simple LMIs dependent on the

polytope vertices may be obtained:

P ≻ 0, ΛT
i PΛi − P ≺ 0, ∀i ∈ {1, · · · , N}. (5)

A continuous-time stability analysis of sampled-data systems

based on convexification arguments has been proposed in

[22], [38]. The discrete-time approach has also been consid-

ered in the case of nonlinear sampled-data systems [6], [42],

[57], [60], [63]. However the developments are complex even

in the case of periodic sampling.

D. I/O approach

In this approach, the sampling effect is seen as a pertur-

bation w(t) = x(tk)− x(t) = −
∫ t

tk
ẋ(τ)dτ , and tools from

robust control theory are used to guarantee the system’s sta-

bility. The main idea is to write the sampled-data system (1)

on each interval [tk, tk+1) as the feedback interconnection of

the operator ∆sh : y → w defined by: w(t) = (∆sh y)(t) =
−
∫ t

tk
y(τ)dτ, ∀t ∈ [tk, tk+1), with an LTI system

G :=

{

ẋ(t) = Aclx(t) +Bclw(t),

y(t) = ẋ(t),
(6)

where Acl = A + BK and Bcl = BK . The stability

may be studied using classical robust control tools based on

frequency domains analysis of the interconnection. See [40],

[56], for a study based on the small gain theorem and [30]

for a more general Integral Quadratic Constraints (IQCs) and

Kalman-Yakubovich-Popov Lemma analysis. Extensions to

nonlinear sampled-data systems have been provided in [64]–

[66], [68] using dissipation theory.

V. DYNAMIC CONTROL OF THE SAMPLING

In this section, the sampling interval hk is considered as a

control parameter. Increasing hk means reducing the quantity

of information sent between the sensors and the actuators. In

the literature, three main approaches cover the definition of

such a sampling law hk = h(t, tk, x(tk), · · · ). In the first ap-

proach, the event-triggered control [13], [34], [48], [54], [77],

[1], [79], [80], the system state is continuously monitored and

the control actuation is performed only when certain events

occur. These events are usually generated when the system

state crosses a frontier in the state space. A dedicated hard-

ware is required in order to monitor continuously the plant

and generate such events. The second approach, the self-

triggered control [45], [81], [82], [51], [52], [3], [2], [4], [5],

aims at emulating event-triggered control without dedicated

hardware, by pre-computing at each sampling instant the next

admissible sampling interval based on previously received

data and the knowledge of the plant dynamics. The third

approach, the periodic event-triggered control (PET Control)

[19], [70] considers uniform monitoring of the system state

and event-triggering conditions that are verified periodically.

In the following, we present a brief classification of some

research directions in event- and self-triggered control.

A. Deadband control approach [13], [69]

The main idea of this event-triggered controller is that it

is not necessary to update the control of the system when its

state is close enough to the equilibrium point. The control

is updated only when the state leaves some neighbourhood,

called deadband. In [13] for example, the authors aim at

reducing the number of actuations, while guaranteeing that

the system state stays bounded. The chosen deadband is

‖Cx‖ ≤ zmax for some zmax > 0. In order to ensure

that the disturbances will not make the output drift away

from zero, the control outside the deadband is designed as

u(t) = −sgn(Cx(t)). Inside the deadband, the control is

u(t) = sat(Kx̂(t)), and it is based on a simulation x̂(t) of the

ideal evolution of the system, with initial conditions updated

at triggering times (x̂(tk) = x(t) when ‖Cx‖ = zmax).

B. Perturbation rejection approach [44], [48], [76]

This type of event-triggered control scheme tries to take

into account exogenous perturbations in event-triggering

control by estimating and rejecting them. The sensors need

to include an observer which estimates the perturbation. The

event-generator used for this kind of controller is similar

to the one used for deadband control (i.e. information is

sent from the sensors to the actuators only when the state

leaves a neighbourhood of the origin), except that, here, the

error generating the trigger is computed with respect to the

estimated state, instead of the equilibrium point. The events

are thus generated when the measured state x(t) leaves the

vicinity Ω(x̂(t)) = {x|‖x− x̂(t)‖ ≤ ē} of the estimated state

x̂(t), for a given threshold ē.

C. Lyapunov function levels approach [79]

Another approach to event-triggered control consists in

updating the control only when a chosen Lyapunov function

crosses some predetermined energy levels. In [79], it is

considered a nonlinear sampled-data system with an event

generator defined by some levels of a Lyapunov function

V : V (x(t)) = ηV (x(tk)), for some given scalar 0 < η <

1. Note that the trigger occurs when entering the region

V (x(t)) ≤ ηV (x(tk)) therefore stability is not granted for all

values of η. To ensure stability with such an event generator,

it is necessary to guarantee that after each sampling instant

tk there will be a time t > tk for which the event-

triggering condition V (x(t)) = ηV (x(tk)) will be satisfied.

The method proposed in [79] consists in computing an upper-

bound η∗ of the minimal admissible η (i.e. such that the

previously mentionned property is satisfied for any η ≥ η∗ >

0). A gridding of the state space is used to this aim.



D. Upper-bound on the system decay rate [52], [53]

Unlike the Lyapunov function levels approach, here the

sampling occurs when the state moves away from the equi-

librium point, that is when the system does not satisfy

a specified decay rate for a chosen Lyapunov function.

Considering V , a Lyapunov function with exponential decay-

rate λ0 for the closed-loop system with continuous feedback,

and the map δc(x(tk), t) := V (x(t)) − V (x(tk))e
−λ(t−tk),

for some 0 < λ < λ0, the methods uses as a trigger the

condition δc(x(tk), t) = 0 for t > tk. Note that implicitly,

by construction, stability is granted in this approach. A self-

triggering policy may be derived by computing online a

Veronese embedding.

E. ISS - approach [3], [4], [52], [77]

ISS Lyapunov functions constitute another popular dy-

namic sampling control approach used to perform both event-

triggered and self-triggered control. It was initiated by [77],

and further developed in [52], [3], [2] and [4]. The general

approach in [77] considers the the reset system

{

ẋ(t) = Ax(t) +BK(x(t) − e(t)), ∀t ≥ 0,
e(tk) = 0,

(7)

where e : R+ → R
n is the measurement error between

the current state and the last sampled state (e(t) = x(t) −
x(tk)). The considered system is supposed to be ISS-stable

with respect to the measurement error e, i.e. there exists a

Lyapunov function V such that ∂V
∂x

(Ax + BK(x + e)) ≤
−a‖x‖2 + b‖e‖‖x‖ for some scalars a and b. To enlarge

the sampling intervals while ensuring stability, the control

is updated when b‖e(t)‖ = a‖x(t)‖. An extension to ho-

mogeneous systems, state-dependent homogeneous systems,

and polynomial systems has been proposed in [3]. Further

developments are proposed in [2] and [4], where the notion

of isochronous manifolds is used to design the sampling

function.

F. L2-stability approach [81], [82]

This approach is based on the notion of L2-stability and

involves algebraic Riccati equations:

0 = PA+ATP − PBBTP + I +
1

γ2
PEETP, (8)

where γ represents the L2 gain. Considering the sampling

error e(t) = x(t)−x(tk), and matrices M and N defined as:

M = (1−β2)I+PBBTP, N = 1
2 (1−β2)I+PBBTP , it is

shown that the L2-stability of the system is ensured with the

event generator eT (t)Me(t) = xT (tk)Nx(tk). Furthermore,

by analyzing the evolution of the term eT (t)Me(t) for

t ≥ tk, it is possible to compute at each sampling instant

a lower-bound estimation of the next allowable sampling

interval, and thus perform a self-triggered control scheme.

Differently from previous Lyapunov-based approaches, this

approach allows the use of non-monotonously decreasing

Lyapunov functions.

G. Discrete-time and switched systems [18], [49]

This approach considers the exact system discretization

at sampling instants, given by (2). When the sampling

interval hk is restricted to a finite number of values, the

design of stabilizing sampling sequence hk can be related to

the problem of designing a stabilizing switching law for a

switched linear system [47]. This idea has been exploited in

several publications using periodic [46] or state-dependent

sampling laws [18], [49]. Alternatively, one may also find

in the literature some approaches based on PET Control

[19]. In this case, the discrete-time implementation of several

triggering conditions (based on state error, L2 stability,

decay of Lyapunov functions, etc.) leads to Piecewise Linear

(PWL) discrete-time models. This allows the use of classical

LMI-based approaches [20], [39] for analysing the system’s

stability and performance.

H. Convex embeddings and state-dependent sampling [21],

[22], [24], [25]

This approach represents the counterpart of the convex

embedding method [38] (used for analysing stability under

arbitrary sampling) to the case of controlled sampling. It uses

the properties of the transition matrix Λ(t−tk) = eA(t−tk)+
∫ t−tk

0
eAsdsBK over the sampling interval [tk, tk+1) in

order to derive a sampling map defined by conic partitions

of the state space. For the case of quadratic Lyapunov

functions V (x) = xTPx, the stability condition V̇ (x(t)) ≤
−βV (x(t)) , ∀t ∈ [tk, tk + h (xk)) may be re-expressed in

the form xT
k Φ(θ)xk ≤ 0, for all θ ∈ [0, h (xk)) where

xk = x(tk) and

Φ(θ) =

[

Λ(θ)
I

]T [

ATP + PA+ βP PBK

∗ 0

] [

Λ(θ)
I

]

.

Stabilizing sampling maps may be designed using the fact

that a sampling interval h(xk) = τ ensures the decay of the

Lyapunov function V (x) in the region

Z(τ) = {x ∈ R
n : xTΦ(θ)x ≤ 0, ∀θ ∈ [0, τ ]}.

For practical implementations, considering a polytopic ap-

proximation with N vertices Φi(τ), i = 1, · · · , N , such that

Φ(θ) ∈ conv{Φi(τ), i = 1, · · · , N} for all θ ∈ [0, τ ], Z(τ)
may be over-approximated by a finite intersection of conic

regions

Ẑ(τ) = {x ∈ R
n : xTΦix ≤ 0, ∀ i = 1, . . . , N} ⊇ Z(τ).

A stabilizing sampling map h(x) may be defined as

h(xk) = max{τ ∈ R
+ : xk ∈ Ẑ(τ)}.

The approach allows to provide some optimisation in the

design of sampling maps by optimising the choice of Lya-

punov functions using LMI based tools. It is possible, for

example, to optimise the choice the the Lyapunov function

V (x) = xTPx which enlarges the lower bound of the



sampling map h(xk), by solving the optimization problem

sup τ such that

∃P ≻ 0

Φ(θ) =

[

Λ(θ)
I

]T [

ATP + PA+ βP PBK
∗ 0

] [

Λ(θ)
I

]

≺ 0

∀θ ∈ [0, τ ]

which may also be transformed in a finite set of LMIs using

polytopic approximations of Φ(τ).
This optimization procedure may also be used to analyse

the system’s stability with given conic regions Ri of the

state-space and associated bounds on the sampling intervals

τi. This problem setting is called state-dependent sampling.

In this context, convex embeddings have been used in [22],

[24], and Lyapunov-Krasovskii functionals in [23].

VI. CONCLUSION

This tutorial has presented some of the basic concepts

and recent research directions in sampled-data systems:

time-delay, hybrid, discrete-time and input-output models

for sampled-data systems; stability for systems with arbi-

trary sampling intervals; design of stabilizing state-dependent

sampling laws. It is to be emphasized that this brief overview

is far from being an exhaustive survey on the stability of

sampled-data systems with time-varying sampling intervals.

Such a research topic is still wide open and continuously

growing. Unavoidably, not all possible results are mentioned

here.
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