494 research outputs found

    Mobile Robot Self Localization based on Multi-Antenna-RFID Reader and IC Tag Textile

    Get PDF
    This paper presents a self-localization system using multiple RFID reader antennas and High-Frequency RFID-tag textile floor for an indoor autonomous mobile robot. Conventional self-localization systems often use vision sensors and/or laser range finders and an environment model. It is difficult to estimate the exact global location if the environment has number of places that have similar shape boundaries or small number of landmarks to localize. It tends to take a long time to recover the self-localization estimation if it goes wrong at once. Vision sensors work hard in dark lighting condition. Laser range finder often fails to detect distance to a transparent wall. In addition, the self-localization becomes unstable if obstacles occlude landmarks that are important to estimate position of the robot. Door opening and closing condition affects the self- localization performance. Self-localization system based on reading RFID-tags on floor is robust against lighting condition, obstacles, furniture and doors conditions in the environment. Even if the arrangement of the obstacles or furniture in the environment is changed, it is not necessary to update the map for the self-localization. It can localize itself immediately and is free from well-known kidnapped robot problem because the RFID-tags give global po- sition information. Conventional self-localization systems based on reading RFID-tags on floor often use only one RFID reader antenna and have difficulty of orientation estimation. We have developed a self-localization system using multiple RFID reader antennas and High-Frequency RFID-tag textile floor for an indoor autonomous mobile robot. Experimental results show the validity of the proposed methods.2013 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) Shibaura Institute of Technology, Tokyo, JAPAN November 7-9, 201

    Sensor-based autonomous pipeline monitoring robotic system

    Get PDF
    The field of robotics applications continues to advance. This dissertation addresses the computational challenges of robotic applications and translations of actions using sensors. One of the most challenging fields for robotics applications is pipeline-based applications which have become an indispensable part of life. Proactive monitoring and frequent inspections are critical in maintaining pipeline health. However, these tasks are highly expensive using traditional maintenance systems, knowing that pipeline systems can be largely deployed in an inaccessible and hazardous environment. Thus, we propose a novel cost effective, scalable, customizable, and autonomous sensor-based robotic system, called SPRAM System (Sensor-based Autonomous Pipeline Monitoring Robotic System). It combines robot agent based technologies with sensing technologies for efficiently locating health related events and allows active and corrective monitoring and maintenance of the pipelines. The SPRAM System integrates RFID systems with mobile sensors and autonomous robots. While the mobile sensor motion is based on the fluid transported by the pipeline, the fixed sensors provide event and mobile sensor location information and contribute efficiently to the study of health history of the pipeline. In addition, it permits a good tracking of the mobile sensors. Using the output of event analysis, a robot agent gets command from the controlling system, travels inside the pipelines for detailed inspection and repairing of the reported incidents (e.g., damage, leakage, or corrosion). The key innovations of the proposed system are 3-fold: (a) the system can apply to a large variety of pipeline systems; (b) the solution provided is cost effective since it uses low cost powerless fixed sensors that can be setup while the pipeline system is operating; (c) the robot is autonomous and the localization technique allows controllable errors. In this dissertation, some simulation experiments described along with prototyping activities demonstrate the feasibility of the proposed system

    An harmonic radar prototype for insect tracking in harsh environments

    Get PDF
    Harmonic entomological radars have been used in the last decades to track small and lightweight passive tags carried by various insects, usually flying at low altitude and over flat terrain. Despite being exploited in many applications, not a lot of progress was achieved in terms of performances over the years. This paper reviews the research work done in this topic throughout the European LIFE project STOPVESPA, from 2015 to 2019. The main objective of LIFE STOPVESPA was to contain the invasive Asian hornet (Vespa velutina) and prevent it from further invading Italy. Among the foreseen activities, a new harmonic radar has been developed as an effective tool to locate the hornets nests to be destroyed. A preliminary prototype, based on a magnetron generator, was tested in 2015, showing a detection range of about 125 m. A first upgrade of this prototype was released in 2016, allowing to increase the detection range up to 150 m. A new approach, based on a solid state power amplifier and a digitally modulated signal, was then adopted for the second prototype developed in 2017 and extensively run in 2018; the detection range raised to 500 m. A last engineered prototype was eventually built for the 2019 summer campaign with additional improvements. This tool has been extensively validated over the last years with the Asian hornet but it has potential for tracking and monitoring many other flying insects

    Sensor data-based decision making

    Get PDF
    Increasing globalization and growing industrial system complexity has amplified the interest in the use of information provided by sensors as a means of improving overall manufacturing system performance and maintainability. However, utilization of sensors can only be effective if the real-time data can be integrated into the necessary business processes, such as production planning, scheduling and execution systems. This integration requires the development of intelligent decision making models that can effectively process the sensor data into information and suggest appropriate actions. To be able to improve the performance of a system, the health of the system also needs to be maintained. In many cases a single sensor type cannot provide sufficient information for complex decision making including diagnostics and prognostics of a system. Therefore, a combination of sensors should be used in an integrated manner in order to achieve desired performance levels. Sensor generated data need to be processed into information through the use of appropriate decision making models in order to improve overall performance. In this dissertation, which is presented as a collection of five journal papers, several reactive and proactive decision making models that utilize data from single and multi-sensor environments are developed. The first paper presents a testbed architecture for Auto-ID systems. An adaptive inventory management model which utilizes real-time RFID data is developed in the second paper. In the third paper, a complete hardware and inventory management solution, which involves the integration of RFID sensors into an extremely low temperature industrial freezer, is presented. The last two papers in the dissertation deal with diagnostic and prognostic decision making models in order to assure the healthy operation of a manufacturing system and its components. In the fourth paper a Mahalanobis-Taguchi System (MTS) based prognostics tool is developed and it is used to estimate the remaining useful life of rolling element bearings using data acquired from vibration sensors. In the final paper, an MTS based prognostics tool is developed for a centrifugal water pump, which fuses information from multiple types of sensors in order to take diagnostic and prognostics decisions for the pump and its components --Abstract, page iv

    Angle of Arrival Estimation Utilising Frequency Diverse Radio Antenna Arrays

    Get PDF
    The purpose of this research is to investigate a novel way of combining carrier signals that are transmitted successively over Multiple Frequencies (MF) and traditional metrics to improve AoA estimation. Every signal contains three metrics, amplitude, phase, and frequency. To achieve localisation, current systems utilise the metrics of amplitude (also known as Received Signal Strength (RSS)) and phase that resolves the AoA. However, the metric of frequency is mostly used with Orthogonal Frequency-Division Multiplexing (OFDM) to increase the number of RSS and AoA metrics, which is not optimal. This research answers two questions. Can the use of MF improve AoA estimation? Also, how can MF and traditional metrics be combined for AoA estimation? The aim is to prove that the metric of frequency can be utilised more optimally. Therefore, measurements of RSS and AoA are performed in different environments for MF. To perform these measurements, ten frequency diverse Software Defined Radios (SDRs) are employed. A novel technique to time/frequency synchronise the SDRs is developed and presented. Moreover, a ten element Uniform Linear Array (ULA) is designed, simulated and manufactured. The outcomes of this research are two novel algorithms for the MF AoA estimation of a carrier transmitter. Findings of the first algorithm show that the use of MF with the RSS metric performs equally with current systems that have a higher cost and complexity. The second algorithm that utilises MF with the AoA metric demonstrates a significant reduction in the AoA estimation error, compared to current systems. Specifically, for 50\% of the measured cases the AoA estimation error is reduced by 3.7 degrees, while for 95\% of the measured cases the AoA estimation error is reduced by 27 degrees. Hence, this research proves that MF with traditional metrics can reduce system complexity and greatly improve AoA estimation

    The STRIP instrument of the Large Scale Polarization Explorer: microwave eyes to map the Galactic polarized foregrounds

    Get PDF
    In this paper we discuss the latest developments of the STRIP instrument of the "Large Scale Polarization Explorer" (LSPE) experiment. LSPE is a novel project that combines ground-based (STRIP) and balloon-borne (SWIPE) polarization measurements of the microwave sky on large angular scales to attempt a detection of the "B-modes" of the Cosmic Microwave Background polarization. STRIP will observe approximately 25% of the Northern sky from the "Observatorio del Teide" in Tenerife, using an array of forty-nine coherent polarimeters at 43 GHz, coupled to a 1.5 m fully rotating crossed-Dragone telescope. A second frequency channel with six-elements at 95 GHz will be exploited as an atmospheric monitor. At present, most of the hardware of the STRIP instrument has been developed and tested at sub-system level. System-level characterization, starting in July 2018, will lead STRIP to be shipped and installed at the observation site within the end of the year. The on-site verification and calibration of the whole instrument will prepare STRIP for a 2-years campaign for the observation of the CMB polarization.Comment: 17 pages, 15 figures, proceedings of the SPIE Astronomical Telescopes + Instrumentation conference "Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX", on June 15th, 2018, Austin (TX

    Mechatronic Systems

    Get PDF
    Mechatronics, the synergistic blend of mechanics, electronics, and computer science, has evolved over the past twenty five years, leading to a novel stage of engineering design. By integrating the best design practices with the most advanced technologies, mechatronics aims at realizing high-quality products, guaranteeing at the same time a substantial reduction of time and costs of manufacturing. Mechatronic systems are manifold and range from machine components, motion generators, and power producing machines to more complex devices, such as robotic systems and transportation vehicles. With its twenty chapters, which collect contributions from many researchers worldwide, this book provides an excellent survey of recent work in the field of mechatronics with applications in various fields, like robotics, medical and assistive technology, human-machine interaction, unmanned vehicles, manufacturing, and education. We would like to thank all the authors who have invested a great deal of time to write such interesting chapters, which we are sure will be valuable to the readers. Chapters 1 to 6 deal with applications of mechatronics for the development of robotic systems. Medical and assistive technologies and human-machine interaction systems are the topic of chapters 7 to 13.Chapters 14 and 15 concern mechatronic systems for autonomous vehicles. Chapters 16-19 deal with mechatronics in manufacturing contexts. Chapter 20 concludes the book, describing a method for the installation of mechatronics education in schools

    Double-stub loaded microstrip line reader for very high data density microwave encoders

    Get PDF
    Compact and high-data density microwave encoders useful for motion control and near-field chipless radio frequency identification (chipless-RFID) applications are proposed in this paper. The encoders are chains of metallic strips etched on a dielectric substrate. The reader consists of a microstrip line loaded with a pair of identical open-ended folded stubs located at different positions and oriented face-to-face by their extremes. By displacing the encoder over the extremes of the stubs, interstub coupling arises when a strip is located on top of the stubs, thereby generating two transmission zeros (rather than one) in the frequency response of the line. Thus, the presence of a strip on top of the face-to-face stubs produces a variation in the transmission coefficient of the line, which in turn can be detected by feeding the line with a harmonic signal, conveniently tuned. Encoder motion generates an amplitude modulated (AM) signal at the output port of the line with peaks, or dips, separated by a time distance dictated by the relative velocity between the reader and the encoder. Moreover, by making certain strips of the chain inoperative (e.g., by cutting them), it is possible to encode information that can be read as the absence (logic state "1") or presence (logic state "0") of peaks, or dips, at predefined positions in the output AM signal of the reader line. Since short strips suffice to generate interstub coupling, unprecedented data density per surface (DPS = 26.04 bit/cm 2 ) is obtained, as revealed by the implementation of 6.4 mm × 60 mm 100-bit encoder

    Design and Application of Pan and Tilt Servo Gimbals in Pointing, Acquisition, and Tracking

    Get PDF
    Directional wireless communications systems are fast becoming an essential part of the world's broadband network infrastructure. When using these types of transceivers in reconfigurable networks, it becomes necessary to point them rapidly and accurately to different locations, or even to targets that may be in motion. The most efficient way of doing this is through the use of two-axis pan and tilt motion stages, also known as gimbals. This paper presents the motivation for, design and construction of, and testing of a pair of multipurpose servo gimbals, usable for both RF and laser transceivers. The gimbals are tested in terms of pointing error, movement speed, and response time. For the network portion, relink times as a function of angular rotation are examined, as well as the angular offset vs. data rate. The gimbal is also tested as part of a remote surveillance network, evaluating its ability to track moving objects

    RFID multiantenna systems for wireless communications and sensing

    Get PDF
    Many scientific, industrial and medical applications require the measurement of different physical parameters in order to collect information about the spatially distributed status of some process. Very often this information needs to be collected remotely, either due to the spatial dispersion of the measurement points or due to their inaccessibility. A wireless embedded self-powered sensor may be a convenient solution to be placed at these inaccessible locations. This thesis is devoted to study the analytical relation governing the electromagnetic coupling between a reader and a embeddable self-powered sensor, based on radio frequency identification (RFID) technology, which is capable of wirelessly retrieving the status of physical parameters at a remote and inaccessible location. The physical parameter to be sensed may be the electromagnetic (EM) field existing at that location (primary measurement) or the indirect measurement of other parameters such as the temperature, humidity, etc. (secondary measurement). Given the simplicity of the RFID solution (highly embeddable properties, scavenging capabilities, penetration and radio coverage characteristics, etc.) the measurement can be done at a single location, or it can be extended to a set of measuring locations (an array or grid of sensors). The analytical relation is based on a reciprocity formulation studying the modulation of the scattered field by the embedded sensor in relation with the incident field, and allows to define a set of quality parameters of interest for the optimum design of the sensors. Particular attention is given to the scavenging circuitry as well as to the antenna design relevant to the sensing objective. In RFID tags, the existence of an RF harvesting section is an improvement with respect to conventional scattering field probes since it removes the need of DC biasing lines or optical fibers to modulate the sensor. However, this harvesting section introduces non-linearities in the response of the sensor, which requires a proper correction to use them as EM-field probes, although the characterization of the non-linearities of the RFID tag cannot be directly done using a conventional vector network analyzer (VNA), due to the requirements of an RFID protocol excitation. Due to this, this thesis proposes an alternative measurement approach that allows to characterize the different scattering states used for the modulation, in particular its non-linear behavior. In addittion, and taking this characterization as the starting point, this thesis proposes a new measurement setup for EM-field measurements based on the use of multiple tones to enlarge the available dynamic range, which is experimentally demonstrated in the measurement of a radiation pattern, as well as in imaging applications. The RFID-based sensor response is electromagnetically sensitive to the dielectric properties of its close environment. However, the governing formulation for the response of the probe mixes together a set of different contributions, the path-loss, the antenna impedance, the loads impedance, etc. As a consequence, it is not possible to isolate each contribution from the others using the information available with a conventional RFID sensor. This thesis mathematically proposes and experimentally develops a modification of the modulation scheme to introduce a new set of multi-load scattering states that increases the information available in the response and properly isolate each term. Moreover, this thesis goes a step forward and introduces a new scattering state of the probe sensitive to temperature variations that do not depend on the environment characteristics. This new configuration enables robust environmental sensing in addition to EM-field measurements, and sensing variations of the dielectric properties of the environment
    corecore